Skip to main content
Log in

Influence of the metal − support and metal − metal interactions on Pd nucleation and NO adsorption in a Pd4/γ-Al2O3 (110D) model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The role played by the metal − support (MSI) and metal − metal (MMI) interactions on two important processes in controlling the catalyst performance — nucleation and molecular adsorption — has been investigated using density functional theory (DFT), by means of B3LYP functional, combined with localized molecular orbital energy decomposition analysis (LMOEDA), and natural bond orbital (NBO) calculations, with aid of a Pd4/γ-alumina (110D) model (Pd4/Al13O23H7). Our results indicate the occurrence of an electronic metal − support interaction (EMSI) which induces a most intense charge transfer in the Pd4 → γ-alumina backdonation direction, most expressive in Pd → Al, promoting an electronic redistribution within the units and attenuating the MMI. Nevertheless, the MSI/MMI synergistic effect seems to favor slightly the nucleation of a fifth palladium atom, leading to a distorted square pyramidal arrangement for Pd5. The LMOEDA analysis points to a mostly covalent character in the Pd − Al bonds, whereas the Pd − O bonds are mainly electrostatic in nature. The palladium atoms deposited on oxygen anions are the acid centers, where both NO molecule and an additional palladium atom anchor more strongly. In addition, the MSI/MMI effect, through the electronic and geometric contributions, drives the adsorption of the NO molecule to the mode which most favors the Pd → NO (4dz2 → *) backdonation (bridge mode).

Graphical Abstract

MSI and MMI effects on the nature of the Pd − O (electrostatic) and Pd − Al (covalent) bonds, charge transfer into Pd4/γ-Al2O3 (110D) interface (back donation) and preferential site for adsorption of a single NO molecule and an additional Pd atom (Pd − O).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. This value is in the same order of magnitude as the HOMO − LUMO gap for NO/Pdn clusters (n = 1 − 6) (1.6 − 2.3 eV) [127].

References

  1. Stevenson SA, Dumesic JA, Baker RTK, Ruckenstein E (1987) Metal support interactions in catalysis, sintering and redispersion. Van Nostrand Reinhold Company, Inc., New York

  2. Selwood PW (1951) Magnetism and the structure of catalytically active solids. In: Frankenburg WG, Komarewsky VI, Rideal EK, et al. (eds) Advances in Catalysis. 27–106

  3. Taylor WF, Yates DJC, Sinfelt JH (1964) Catalysis over supported metals. II. The effect of the support on the catalytic activity of nickel for ethane hydrogenolysis. J Phys Chem 68:2962–2966

    Article  CAS  Google Scholar 

  4. Dalla Betta RA, Boudart M (1972) Well dispersed platinum on Y zeolite: preparation and catalytic activity. Proc Int Congr Catal 2:96–1329

    Google Scholar 

  5. Guo Y, Zhang YW (2018) Metal clusters dispersed on oxide supports: preparation methods and metal-support interactions. Top Catal 61:855–874

    Article  CAS  Google Scholar 

  6. Figueiredo WT, Della MGB, Segala M et al (2019) Understanding the strong metal−support interaction (SMSI) efffect in CuxNi1−x/CeO2 (0 < x < 1) nanoparticles for enhanced catalysis. Appl Nano Mater 2:2559–2573

    Article  CAS  Google Scholar 

  7. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on TiO2. J Am Chem Soc 100:170–175

    Article  CAS  Google Scholar 

  8. Tauster SJ, Fung SC (1978) Strong metal-support interactions: occurrence among the binary oxides of groups IIA-VB. J Catal 55:29–35

    Article  CAS  Google Scholar 

  9. Bruix A, Rodriguez JA, Ramírez PJ et al (2012) A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J Am Chem Soc 134:8968–8974

    Article  CAS  Google Scholar 

  10. Senanayake SD, Rodriguez JA, Stacchiola D (2013) Electronic metal–support interactions and the production of hydrogen through the water-gas shift reaction and ethanol steam reforming: fundamental studies with well-defined model catalysts. Top Catal 56:1488–1498

    Article  CAS  Google Scholar 

  11. Ahmadi M, Mistry H, Cuenya BR (2016) Tailoring the catalytic properties of metal nanoparticles via support interactions. J Phys Chem Lett 7:3519–3533

    Article  CAS  Google Scholar 

  12. Li J, Guan Q, Wu H et al (2019) Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J Am Chem Soc 141:14515–14519

    Article  CAS  Google Scholar 

  13. van Deelen TW, Mejía CH, de Jong KP (2019) Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2:955–970

    Article  Google Scholar 

  14. Shi Y, Ma ZR, Xiao YY et al (2021) Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat Commun 12:1–11

    Article  Google Scholar 

  15. Figueiredo WT, Prakash R, Vieira CG et al (2022) New insights on the electronic factor of the SMSI effect in Pd/TiO2 nanoparticles. Appl Surf Sci 574:151647

    Article  CAS  Google Scholar 

  16. Zhou C, Wu J, Kumar TJD et al (2007) Growth pathway of Pt clusters on α-Al2O3(0001) surface. J Phys Chem C 111:13786–13793

    Article  CAS  Google Scholar 

  17. Vayssilov GN, Lykhach Y, Migani A et al (2011) Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat Mater 10:310–315

    Article  CAS  Google Scholar 

  18. Bruix A, Migani A, Vayssilov GN et al (2011) Effects of deposited Pt particles on the reducibility of CeO2(111). Phys Chem Chem Phys 13:11384–11392

    Article  CAS  Google Scholar 

  19. Nguyen TQ, Escaño MCS, Nakanishi H et al (2014) DFT+U study on the oxygen adsorption and dissociation on CeO2-supported platinum cluster. Appl Surf Sci 288:244–250

    Article  CAS  Google Scholar 

  20. Lykhach Y, Kozlov SM, Skála T et al (2016) Counting electrons on supported nanoparticles. Nat Mater 15:284–288

    Article  CAS  Google Scholar 

  21. Pacchioni G, Freund HJ (2018) Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chem Soc Rev 47:8474–8502

    Article  CAS  Google Scholar 

  22. Wang J, Cheng D, Gao M et al (2021) Modulation of the superficial electronic structure via metal-support interaction for H2 evolution over Pd catalysts. Chem Sci 12:3245–3252

    Article  CAS  Google Scholar 

  23. Campbell CT (2012) Catalyst-support interactions: electronic perturbations. Nat Chem 4:597–598

    Article  CAS  Google Scholar 

  24. de M Carneiro JW, de M Cruz MT (2008) Density functional theory study of the adsorption of formaldehyde on Pd4 and on Pd4/γ-Al2O3 clusters. J Phys Chem A 112:8929–8937

    Article  Google Scholar 

  25. Yang J, Wang H, Zhao X et al (2016) Correlating the surface structure and hydration of a γ-Al2O3 support with the Run (n = 1–4) cluster adsorption behavior: a density functional theory study. RSC Adv 6:40459–40473

    Article  CAS  Google Scholar 

  26. Wang H, Chen L, Lv Y, Ren R (2014) H2 dissociation on γ-Al2O3 supported Cu/Pd atoms: A DFT investigation. Appl Surf Sci 290:154–160

    Article  CAS  Google Scholar 

  27. Li J, Croiset E, Ricardez-Sandoval L (2013) Effect of metal−support interface during CH4 and H2 dissociation on Ni/γ-Al2O3: a density functional theory study. J Phys Chem C 117:16907–16920

    Article  CAS  Google Scholar 

  28. Liu B, Liu J, Li T et al (2015) Interfacial effects of CeO2-supported Pd nanorod in catalytic CO oxidation: A theoretical study. J Phys Chem C 119:12923–12934

    Article  CAS  Google Scholar 

  29. Prates LM, Ferreira GB, Carneiro JWM et al (2016) The effect of gamma-Al2O3 support on the NO adsorption on Pd4 cluster. J Brazilian Chem Soc 27:2062–2069

    CAS  Google Scholar 

  30. Prates LM, Ferreira GB, de M Carneiro JW et al (2017) Effect of the metal–support interaction on the adsorption of NO on Pd4/γ-Al2O3: a density functional theory and natural bond orbital study. J Phys Chem C 121:14147–14155

    Article  CAS  Google Scholar 

  31. Valero MC, Raybaud P, Sautet P (2007) Nucleation of Pdn (n=1-5) clusters and wetting of Pd particles on γ-Al2O3 surfaces: a density functional theory study. Phys Rev B - Condens Matter Mater Phys 75:1–12

    Article  Google Scholar 

  32. Wang Y, Xiang B, Yang H-Q, Hu C-W (2017) Density functional theory study on the nucleation and growth of Ptn clusters on γ-Al2O3 (001) Surface. ACS Omega 2:3250–3259

    Article  CAS  Google Scholar 

  33. Hu CH, Chizallet C, Mager-Maury C et al (2010) Modulation of catalyst particle structure upon support hydroxylation: Ab initio insights into Pd13 and Pt13/γ-Al2O3. J Catal 274:99–110

    Article  CAS  Google Scholar 

  34. Mei D, Kwak JH, Hu J et al (2010) Unique role of anchoring penta-coordinated Al3+ sites in the sintering of γ-Al2O3-supported Pt catalysts. J Phys Chem Lett 1:2688–2691

    Article  CAS  Google Scholar 

  35. Shi X-R, Sholl DS (2012) Nucleation of Rhn (n=1-5) Clusters on gamma-Al2O3 Surfaces: A Density Functional Theory Study. J Phys Chem C 116:10623–10631

    Article  CAS  Google Scholar 

  36. Campbell CT (2013) The energetics of supported metal nanoparticles: Relationships to sintering rates and catalytic activity. Acc Chem Res 46:1712–1719

    Article  CAS  Google Scholar 

  37. Yang T, Ehara M (2017) Probing the electronic structures of Con (n = 1–5) clusters on γ-Al2O3 surfaces using first-principles calculations. Phys Chem Chem Phys 19:3679–3687

    Article  CAS  Google Scholar 

  38. Cuenya BR (2013) Metal nanoparticle catalysts beginning to shape-up. Acc Chem Res 46:1682–1691

    Article  Google Scholar 

  39. Mistry H, Behafarid F, Zhou E et al (2014) Shape-dependent catalytic oxidation of 2-butanol over Pt nanoparticles supported on γ-Al2O3. ACS Catal 4:109–115

    Article  CAS  Google Scholar 

  40. Márquez AM, Sanz JF (2004) Adsorption of Pd atoms on γ-Al2O3: a density functional study of metal–support interactions. Appl Surf Sci 238:82–85

    Article  Google Scholar 

  41. Murata K, Mahara Y, Ohyama J et al (2017) The metal-support interaction concerning the particle size effect of Pd/Al2O3 on methane combustion. Angew Chemie Int Ed 8520:15993–15997

    Article  Google Scholar 

  42. Knözinger H, Ratnasamy P (1978) Catalytic aluminas: surface models and characterization of surface sites. Catal Rev 17:31–70

    Article  Google Scholar 

  43. Wang JA, Bokhimi X, Morales A et al (1999) Aluminum local environment and defects in the crystalline structure of Sol−Gel alumina catalyst. J Phys Chem B 103:299–303

    Article  CAS  Google Scholar 

  44. Bazyari A, Mortazavi Y, Khodadadi AA et al (2016) Effects of alumina phases as nickel supports on deep reactive adsorption of (4,6-dimethyl) dibenzothiophene: comparison between γ, δ, and θ-alumina. Appl Catal B Environ 180:312–323

    Article  CAS  Google Scholar 

  45. Rinne F (1928) Morphologische und physikalisch-chemische untersuchungen an synthetischen spinellen als beispielen unstöchiometrisch zusammengesetzter stoffe. Neues Jahrb Miner Beilageband, Abt A 58:43–108

    CAS  Google Scholar 

  46. Verwey EJW (1935) The structure of the electrolytical oxide layer on aluminium. Zeitschrift für Krist - Cryst Mater 91:319–323

    Google Scholar 

  47. Lippens BC (1961) Structure and texture of aluminas. Doctoral dissertation, Delft University of Technology, The Netherlands

  48. Prins R (2020) On the structure of γ-Al2O3. J Catal 392:336–346

    Article  CAS  Google Scholar 

  49. Beaufils JP, Barbaux Y (1981) Détermination, par diffraction différentielle de neutrons, des faces cristallines exposées par des supports de catalyseurs en poudre. J Chim Phys 78:347

    Article  CAS  Google Scholar 

  50. Nortier P, Fourre P, Mohammed Saad AB et al (1990) Effects of crystallinity and morphology on the surface properties of alumina. Appl Catal 61:141–160

    Article  CAS  Google Scholar 

  51. Digne M, Sautet P, Raybaud P et al (2004) Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces. J Catal 226:54–68

    Article  CAS  Google Scholar 

  52. Maresca O, Allouche A, Aycard JP et al (2000) Quantum study of the active sites of the γ-alumina surface: chemisorption and adsorption of water, hydrogen sulfide and carbon monoxide on aluminum and oxygen sites. J Mol Struct THEOCHEM 505:81–94

    Article  CAS  Google Scholar 

  53. Ionescu A, Allouche A, Aycard J-P, Rajzmann M (2002) Study of γ-alumina surface reactivity: adsorption of water and hydrogen sulfide on octahedral aluminum sites. J Phys Chem B 106:9359–9366

    Article  CAS  Google Scholar 

  54. Maresca O, Ionescu A, Allouche A et al (2003) Quantum study of the active sites of the γ alumina surface (II): QM/MM (LSCF) approach to water, hydrogen disulfide and carbon monoxide adsorption. J Mol Struct THEOCHEM 620:119–128

    Article  CAS  Google Scholar 

  55. Ionescu A, Allouche A, Aycard JP et al (2003) Study of γ-alumina-supported hydrotreating catalyst: I. Adsorption of bare MoS2 sheets on γ-alumina surfaces. J Phys Chem B 107:8490–8497

    Article  CAS  Google Scholar 

  56. Ching WY, Ouyang L, Rulis P, Yao H (2008) Ab initio study of the physical properties of γ-Al2O3: Lattice dynamics, bulk properties, electronic structure, bonding, optical properties, and ELNES/XANES spectra. Phys Rev B 78:014106

    Article  Google Scholar 

  57. Dabbagh HA, Taban K, Zamani M (2010) Effects of vacuum and calcination temperature on the structure, texture, reactivity, and selectivity of alumina: experimental and DFT studies. J Mol Catal A Chem 326:55–68

    Article  CAS  Google Scholar 

  58. Dong J, Wang J, Wang J et al (2017) Enhanced thermal stability of palladium oxidation catalysts using phosphate-modified alumina supports. Catal Sci Technol 7:5038–5048

    Article  CAS  Google Scholar 

  59. Acikgoz M, Harrell J, Pavanello M (2018) Seeking a structure−function relationship for γ-Al2O3 surfaces. J Phys Chem C 122:25314–25330

    Article  CAS  Google Scholar 

  60. Ge T, Zuo C, Chen H et al (2019) Catalytic activity and molecular behavior of lanthanum modified CoSx/γ-Al2O3 catalysts for the reduction of SO2 to sulfur in smelter off-gas using CO-H2 mixture as reductant. Ind Eng Chem Res 58:3595–3605

    Article  CAS  Google Scholar 

  61. Zhou R-S, Snyder RL (1991) Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta Crystallogr Sect B 47:617–630

    Article  Google Scholar 

  62. Krokidis X, Raybaud P, Gobichon A-E et al (2001) Theoretical study of the dehydration process of boehmite to γ-alumina. J Phys Chem B 105:5121–5130

    Article  CAS  Google Scholar 

  63. Digne M, Sautet P, Raybaud P et al (2002) Hydroxyl groups on γ-alumina surfaces: a DFT study. J Catal 211:1–5

    Article  CAS  Google Scholar 

  64. Ferreira AR, Martins MJF, Konstantinova E et al (2011) Direct comparison between two γalumina structural models by DFT calculations. J Solid State Chem 184:1105–1111

    Article  CAS  Google Scholar 

  65. Saniger JM (1995) Al-O infrared vibrational frequencies of γ-alumina. Mater Lett 22:109–113

    Article  CAS  Google Scholar 

  66. Pinto HP, Nieminen RM, Elliott SD (2004) Ab initio study of γ−Al2O3 surfaces. Phys Rev B 70:125402

    Article  Google Scholar 

  67. Kovarik L, Genc A, Wang C et al (2013) Tomography and high-resolution electron microscopy study of surfaces and porosity in a plate-like γ-Al2O3. J Phys Chem C 117:179–186

    Article  CAS  Google Scholar 

  68. Sohlberg K, Pennycook SJ, Pantelides ST (1999) Explanation of the observed dearth of three coordinated Al on γ-alumina surfaces. J Am Chem Soc 121:10999–11000

    Article  CAS  Google Scholar 

  69. Joubert J, Salameh A, Krakoviack V et al (2006) Heterolytic splitting of H2 and CH4 on γ-alumina as a structural probe for defect sites. J Phys Chem B 110:23944–23950

    Article  CAS  Google Scholar 

  70. Liu X (2008) DRIFTS study of surface of γ-alumina and its dehydroxylation. J Phys Chem C 112:5066–5073

    Article  CAS  Google Scholar 

  71. Gribov EN, Zavorotynska O, Agostini G et al (2010) FTIR spectroscopy and thermodynamics of CO and H2 adsorbed on γ-, δ- and α-Al2O3. Phys Chem Chem Phys 12:6474–6482

    Article  CAS  Google Scholar 

  72. Wischert R, Copéret C, Delbecq F, Sautet P (2011) Dinitrogen: a selective probe for tri-coordinate Al “defect” sites on alumina. Chem Commun 47:4890–4892

    Article  CAS  Google Scholar 

  73. Ahrem L, Scholz G, Gutmann T et al (2017) Direct observation of coordinatively unsaturated sites on the surface of a fluoride-doped alumina catalyst. J Phys Chem C 121:12206–12213

    Article  CAS  Google Scholar 

  74. Escribano VS, Garbarino G, Finocchio E, Busca G (2017) γ-alumina and amorphous silica–alumina: Structural features, acid sites and the role of adsorbed water. Top Catal 60:1554–1564

    Article  Google Scholar 

  75. Mao BH, Chang R, Lee S et al (2013) Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. J Chem Phys 138:1–8

    Article  Google Scholar 

  76. Qiao B, Liang J, Wang A et al (2015) Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res 8:2913–2924

    Article  CAS  Google Scholar 

  77. Tyo EC, Vajda S (2015) Catalysis by clusters with precise numbers of atoms. Nat Nanotechnol 10:577–588

    Article  CAS  Google Scholar 

  78. Cortese R, Schimmenti R, Prestianni A, Duca D (2018) DFT calculations on subnanometric metal catalysts: a short review on new supported materials. Theor Chem Acc 137:59

    Article  Google Scholar 

  79. Wyckoff RWG (1968) Crystal structures. John Wiley Interscience Publishers, New York

    Google Scholar 

  80. Lide DR (1996) Handbook of chemistry and physics, 76th edn. CRC Press, Florida

    Google Scholar 

  81. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  82. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:1–15

    Article  Google Scholar 

  83. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  84. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  85. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  86. Reed AE, Weinhold F (1985) Natural localized molecular orbitals. J Chem Phys 83:1736–1740

    Article  CAS  Google Scholar 

  87. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  88. Chandrasekaran K, Kumar RT (2015) Structural, spectral, thermodynamical, NLO, HOMO, LUMO and NBO analysis of fluconazole. Spectrochim Acta - Part A Mol Biomol Spectrosc 150:974–991

    Article  CAS  Google Scholar 

  89. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct THEOCHEM 169:41–62

    Article  Google Scholar 

  90. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1990) NBO 3.0 Program Manual. http://www.ccl.net/cca/software/MS-WIN95-NT/mopac6/nbo.htm. Accessed 10 Jul 2021

  91. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular aave functions. I J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  92. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  93. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  94. Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  95. Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09, Revision D.01

  96. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  97. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  98. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  99. Li R, Cheng L (2012) Structural determination of (Al2O3)n (n=1-7) clusters based on density functional calculation. Comput Theor Chem 996:125–131

    Article  CAS  Google Scholar 

  100. Jaroszynska-Wolinska J, Garabato BD, Alam J et al (2015) Structural and electronic properties of an [(Al2O3)4]+ cluster. J Mol Model 21:170

    Article  Google Scholar 

  101. Plattner M, Baloglou A, Ončák M et al (2019) Structural properties of gas-phase molybdenum oxide clusters [Mo4O13]2−, [HMo4O13], and [CH3Mo4O13] Studied by collision-induced dissociation. J Am Soc Mass Spectrom 30:1946–1955

    Article  CAS  Google Scholar 

  102. Bjerregaard JD, Mikkelsen KV, Johnson MS (2022) Hybrid DFT small-cluster model of CO oxidation on CeO2/(110). Chem Phys Lett 793:139436

    Article  CAS  Google Scholar 

  103. Zanti G, Peeters D (2009) DFT study of small palladium clusters Pdn and their interaction with a co ligand (n = 1–9). Eur J Inorg Chem 2009:3904–3911

    Article  Google Scholar 

  104. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  105. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  106. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724

    Article  CAS  Google Scholar 

  107. Francl MM, Pietro WJ, Hehre WJ et al (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  108. Gordon MS, Binkley JS, Pople JA et al (1982) Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J Am Chem Soc 104:2797–2803

    Article  CAS  Google Scholar 

  109. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  110. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  111. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21+G basis set for first-row elements, Li–F. J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  112. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  113. Boswell FWC (1951) Precise determination of lattice constants by electron diffraction and variations in the lattice constants of very small crystallites. Proc Phys Soc Sect A 64:465

    Article  Google Scholar 

  114. Frenkel AI, Hills CW, Nuzzo RG (2001) A view from the inside: complexity in the atomic scale ordering of supported metal. J Phys Chem B 105:12659–12703

    Article  Google Scholar 

  115. Ettenberg M, Komarek KL, Miller E (1971) Thermodynamic properties and ordering in PdAl. Metall Trans 2:1173–1181

    Article  CAS  Google Scholar 

  116. Valero MC, Raybaud P, Sautet P (2006) Influence of the hydroxilation of γ-Al2O3 surfaces on the stability and diffusion of single Pd atoms: a DFT study. J Phys Chem B 110:1759–1767

    Article  CAS  Google Scholar 

  117. Keating J, Sankar G, Hyde TI et al (2013) Elucidation of structure and nature of the PdO–Pd transformation using in situ PDF and XAS techniques. Phys Chem Chem Phys 15:8555

    Article  CAS  Google Scholar 

  118. Meschel SV, Kleppa OJ (2001) Thermochemistry of alloys of transition metals and lanthanide metals with some IIIB and IVB elements in the periodic table. J Alloys Compd 321:183–200

    Article  CAS  Google Scholar 

  119. Li Z, Zhou Z, Zhao Z, Wang Q (2018) Density functional theory study on CO adsorption on the PdnAl (n = 1–5) clusters. Int J Mod Phys B 32:1–10

    Article  Google Scholar 

  120. Liu Y, Cen W, Feng G et al (2014) First principles study on the adsorption of Ptn(n = 1–4) on γ-Al2O3(1 1 0) surface. Appl Surf Sci 313:424–431

    Article  CAS  Google Scholar 

  121. Viñes F, Desikusumastuti A, Staudt T et al (2008) A combined density-functional and IRAS study on the interaction of NO with Pd nanoparticles: identifying new adsorption sites with novel properties. J Phys Chem C 112:16539–16549

    Article  Google Scholar 

  122. Wang C-B, Yeh T-F, Lin H-K (2002) Nitric oxide adsorption and desorption on alumina supported palladium. J Hazard Mater 92:241–251

    Article  CAS  Google Scholar 

  123. Roy S, Hegde MS, Madras G (2009) Catalysis for NOx abatement. Appl Energy 86:2283–2297

    Article  CAS  Google Scholar 

  124. Begum P, Gogoi P, Mishra K et al (2015) Theoretical insight of nitric oxide adsorption on neutral and charged Pdn (n= 1–5) clusters. Int J Quantum Chem 115:837–845

    Article  CAS  Google Scholar 

  125. Grybos R, Benco L, Bučko T, Hafner J (2009) Interaction of NO molecules with Pd clusters: ab initio density-functional study. J Comput Chem 30:1910–1922

    Article  CAS  Google Scholar 

  126. Grybos R, Benco L, Bučko T, Hafner J (2009) Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO adsorption on Pdn (n=1–6) clusters in mordenite. J Chem Phys 130:104503

    Article  Google Scholar 

  127. Ahmed AA, Ahmed MAE, Abouhaddaf RM (2020) Density functional investigation of the adsorption of nitric oxide on palladium clusters (Pdn n =1-6). Int J Adv Chem Res 2:05–08

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support given by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq − grant 478302/2012-6) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ − grant E-26/201.302/2014 and E-26/111.708/2013). CNPq research grants for J. W. de M. Carneiro are also acknowledged. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 (grant 88882.450884/2019-01) (L. M. P.).

Funding

This work was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq − grant 478302/2012–6), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ − grant E-26/201.302/2014 and E-26/111.708/2013) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES − Finance Code 001 − grant 88882.450884/2019–01) (L. M. P.).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Maurício T. De M. Cruz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1978 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prates, L.M., De M. Carneiro, J.W. & De M. Cruz, M.T. Influence of the metal − support and metal − metal interactions on Pd nucleation and NO adsorption in a Pd4/γ-Al2O3 (110D) model. J Mol Model 28, 394 (2022). https://doi.org/10.1007/s00894-022-05374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05374-7

Keywords

Navigation