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Abstract

Main protease (MP™) plays a key role in replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
This study was designed for finding natural inhibitors of SARS-CoV-2 MP™ by in silico methods. To this end, the co-crystal
structure of MP™ with telaprevir was explored and receptor-ligand pharmacophore models were developed and validated
using pharmit. The database of “ZINC Natural Products” was screened, and 288 compounds were filtered according to
pharmacophore features. In the next step, Lipinski’s rule of five was applied and absorption, distribution, metabolism,
excretion, and toxicity (ADMET) of the filtered compounds were calculated using in silico methods. The resulted 15 com-
pounds were docked into the active site of MP™ and those with the highest binding scores and better interaction including
ZINC61991204, ZINC67910260, ZINC61991203, and ZINC08790293 were selected. Further analysis by molecular dynamic
simulation studies showed that ZINC61991203 and ZINC08790293 dissociated from MP™ active site, while ZINC426421106
and ZINC5481346 were stable. Root mean square deviation (RMSD), radius of gyration (Rg), number of hydrogen bonds
between ligand and protein during the time of simulation, and root mean square fluctuations (RMSF) of protein and ligands
were calculated, and components of binding free energy were calculated using the molecular mechanic/Poisson-Boltzmann
surface area (MM/PBSA) method. The result of all the analysis indicated that ZINC61991204 and ZINC67910260 are drug-
like and nontoxic and have a high potential for inhibiting MP™.
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Introduction

Coronavirus disease 19 (COVID-19) has caused significant
social, economic, and political problems worldwide [1-3].
Caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), it has affected more than 526 million people
(as of May 21, 2022) and about 6.3 million died from this
disease (https://www.worldometers.info/coronavirus/). So
far, several vaccines for COVID-19 have been developed
by various pharmaceutical companies. Some of them have
been authorized by the US Food and Drug Administration
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(FDA) and are widely used in many countries which had
a major impact on reducing mortality from the disease
[4-6]. However, the epidemic will probably continue until
the global launch of safe and effective vaccines to provide
herd immunity. To date, symptomatic treatment and respira-
tory support are the main way of patient management for
COVID-19 [7, 8]. Remdesivir is the only drug approved by
the FDA to treat COVID-19 [9, 10]. Besides several side
effects particularly liver inflammation, it is only prescribed
for people who are hospitalized with COVID-19. Two other
drugs including Baricitinib and Paxlovid were granted an
emergency use authorization (EUA) by the FDA [11, 12].
Baricitinib is only used in hospitalized adults, and Paxlovid
is a combination of nirmatrelvir and ritonavir and is used
to treat early COVID-19 infection and help to prevent more
severe symptoms [13—15]. Despite all efforts, efficient treat-
ment of COVID-19 is still medically unmet, requiring fur-
ther efforts, and the introduction of a suitable drug to treat
this disease is still one of the main priorities.
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Viral proteases play an essential role for the replication
of many human pathogenic viruses by the cleavage of pep-
tide bonds in viral polyprotein precursors [16]. Accordingly,
many drugs have been developed to prevent viral progress by
inhibiting the protease enzymes, like lopinavir and ritonavir
that have been approved for the treatment of acquired immu-
nodeficiency syndrome (AIDS) [17]. Two proteases are
encoded by SARS-CoV-2 RNA genome including papain-
like protease (PLpro) and main protease (also known as
MP™, chymotrypsin-like cysteine protease, 3C-like protease,
and 3CLpro). MP™ is a cysteine protease (EC 3.4.22.69)
that cleaves the coronavirus polyprotein precursor at eleven
conserved sites [18]. P1 for this enzyme is a Gln and P1’
is a small residue like Ser, Aln, or Gly. Active site of this
enzyme includes Cys145 and His41 residues which make a
catalytic dyad in which His as a general base makes sulfur of
the Cys a stronger nucleophile [19, 20]. Telaprevir is a pro-
tease inhibitor used for the treatment of hepatitis C [21, 22].
It was designed against hepatitis C virus NS3/4A protease
[23]. Recently, it was shown that this compound is able to
inhibit the SARS-CoV-2 MP™ activity with an ICs, value of
18 uM [24]. Some groups determined the crystal structure
of MP™ in complex with telaprevir which provided an oppor-
tunity to develop structure based pharmacophore modeling
for finding new inhibitors for MP™ [25-27].

Many anti-coronaviral compounds with natural sources
have been identified in recent years [28]. The mechanism
of action of these compounds varies from blocking of viral
entry (tetra-O-galloyl-B-D-glucose and caffeic acid), inhibi-
tion of protein synthesis (silvestrol), inhibition of viral repli-
cation (myricetin) to inhibition of viral proteases (a number
of flavonoids), and other mechanisms [29]. This study was
designed for finding potential inhibitors of SARS-CoV-2
MP™ among natural compounds by using structure-based
pharmacophore modeling, molecular docking, and molecu-
lar dynamic simulation studies.

Materials and methods
Receptor-ligand pharmacophore generation

The co-crystal structure of MP™ with telaprevir was retrieved
from the Protein Data Bank (PDB ID: 7LB7; Resolution:
2.00 A; R-value free: 0.225; and R-value work: 0.204) (www.
rcsb.org) [25]. Analyzing the receptor—ligand interactions
and defining the essential features of this interaction is the
basis of structure-based pharmacophore modeling. The most
important parts of the ligand that are responsible for ligand
binding to the receptor are named pharmacophores. Pharmit
(http://pharmit.csb.pitt.edu) is an online tool for structure-
based pharmacophore modeling and virtual screening of
large compound databases [30]. By providing protein—ligand
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complex, it will identify all pharmacophore features relevant
to the protein-ligand interaction. Therefore, MP™-telaprevir
complex (7LB7) was loaded in Pharmit, and pharmacophoric
features important in binding of telaprevir to MP™ were identi-
fied. At the first step, 20 pharmacophoric features important in
MP™-telaprevir interaction were detected by Pharmit. Then, 10
pharmacophore models with 4 to 6 features in each model were
built. These models were used to screen actives and decoys
libraries, and the model with the best results was selected for
screening the natural compounds libraries.

Pharmacophore validation and virtual screening

Before using a pharmacophore model in virtual screening, it
has to be validated. To this end, a set of previously described
active compounds (Fig. S1) and a set of inactive or decoys for a
specific target are required. A well-defined pharmacophore will
detect the most numbers of active ligands and the least number
of inactive or decoys [31]. By advanced literature search and
UniProt (https://www.uniprot.org/), twenty-six chemically syn-
thesized active inhibitors of MP™ were collected, which were
docked with MP™ protein by using SwissDock server [32, 33].

Decoy compounds used for pharmacophore validation
were obtained from DUD.E (http://dude.docking.org/)
(accessed October 05, 2021) [34]. DUD-E is a database of
thousands of active and decoy compounds for 102 targets.
It can also make dozens of decoys per active ligand. Decoys
are designed to have similar physicochemical properties to
active ligands, but their 2-D topology is different.

Active and decoy compounds were uploaded in Pharmit
as two separate libraries and were screened by using the
generated pharmacophore models to see which model leads
to the best result. Sensitivity and specificity (Egs. (1) and
(2)), the yield of actives (YA or recall), the enrichment fac-
tor (EF), and goodness of hit (GH) were calculated for each
pharmacophore (Egs. (3), (4), and (5)). The mentioned met-
rics were calculated using the following formulas [31, 35]:

Sensitivity(true positive rate) = HKa % 100 €h)

true negatives

Specificity(true negative rate) = ———— X 100
decoys
@)
Ha
YA 1) = — x 100
(recall) m 3)
YA
F=—
A/D )
Ha(3A + Ht) Ht — Ha
GH = 1-
( 4HtA X D-A ) ©)
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Figure 1 describes all the parameters used in these equa-
tions. YA (recall) is the percentage of true positives (Ha) in
total hits (Ht). GH (goodness of hit) score is between 0 and
1, where better models have values close to 1. EF (enrich-
ment factor) relates total hits (Ht) to the composition of the
screening database. Higher EF indicates a better model [36].

The best validated pharmacophore model (pharm_A) was
saved as.json format in Pharmit and was used to screen “ZINC
Natural Products” in ZINCPharmer. “ZINC Natural Products”
is a library of 224,205 secondary metabolites found in bacte-
ria, fungi, or plants. Compounds identified by pharmacophore
virtual screening were prepared in structure data file (SDF)
format to be used for Molecular docking study.

Drug-likeness Prediction

A set of basic molecular properties like molecular weight,
number of hydrogen bond donors and acceptors, and octanol/
water partition coefficient (A log P) are determinant factors
for a compound to make it a likely orally active drug in
humans. There are some computational procedures for the
prediction of these properties. In this study, SwissADME
was used for calculation of these properties in the hit com-
pounds [37]. SwissADME is a useful website that computes
ADME parameters (absorption, distribution, metabolism,
and excretion) as well as physicochemical properties and
other descriptors of drug-like molecules. Lipinski’s rule of
five was used to filter compounds. According to this rule,
an orally active drug usually has no more than one violation
of the following criteria: molecular weight (MW) <500 Da,
number of hydrogen bond donors (HBDs) <5, number of
H bond acceptors (HBAs) < 10, and octanol/water partition
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the result of pharmacophore
validation
Actives (A)
(26)

Total ligands in <
database (D)

(782)

Decoys
(756)

e

coefficient (Alog P) <5 [38]. These criteria were calcu-
lated in SwissADME and used for the filtration of the hit
compounds.

ADMET calculation

Beside efficacy against the therapeutic target is of funda-
mental importance a good drug candidate compound should
also have proper ADME properties including absorption,
distribution, metabolism, and excretion [39]. Estimating
ADME properties of compounds is of great importance in
the process of hit identification and optimization. Therefore,
the hits were investigated about their ADME properties by
using swissADME [37]. Another important part of the drug
discovery process is predicting the toxicity of compounds.
ProTox-II was used to this end [40]. To further explain, Pro-
Tox-II is a virtual lab that enables prediction of several mod-
els of toxicities including, hepatotoxicity, carcinogenicity,
immunotoxicity, mutagenicity, cytotoxicity, stress response
pathways, and nuclear receptor signaling pathways.

Molecular docking study

Finding the best pose of each ligand in the binding site of the
receptor and accurate calculation of its binding free energy
is of great importance in the process of drug discovery.
Therefore, the hit compounds selected from the previous
steps were each docked separately into the binding site of
MP™ by using SwissDock server. SwissDock uses docking
software EADock DSS, whose algorithm for local docking is
described as follow: At first, many binding modes are gener-
ated in a desired box determent by the user. Simultaneously,
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their CHARMM energies are estimated on a grid, and the
binding modes with the most favorable energies are evalu-
ated and clustered [32, 33]. Energy minimization of ligands
was performed before docking by using Avogadro version
1.2.0 to remove clashes among atoms of the ligand and to
develop a reasonable starting pose [41]. Universal force
field (UFF) with steepest descent algorithm was used for
minimization. Those compounds with appropriate binding
free energy and orientation in the binding site were used
for next rounds of docking. In this step, molecular dynamic
simulation was performed on MP™ for 50 ns, and 3 differ-
ent conformations from the trajectory were used to re-dock
each compound to the binding site of MP™. In the next step,
a 100 ns molecular dynamic simulation was performed on
all complexes resulting from docking to prove their stable
binding to MP™. Discovery studio visualizer 2016 (Accelrys
Inc., San Diego, CA, USA) and UCSF Chimera 1.14 [42]
were used for visualizing and interpreting ligand-receptor
interactions.

Molecular dynamic simulation study

Molecular dynamic simulation of the selected protein—ligand
complexes was done using Groningen machine for chemi-
cal simulations (GROMACS) 5.1.2 computational package
which was installed in Ubuntu 18.04.5 LTS [43]. Swiss-
Param server [44] was used for making topology files and
other force field parameters for the selected compounds. To
explain more, SwissParam is a server that can make topol-
ogy and parameters for small organic molecules compat-
ible with the CHARMM all atoms force field, for use with
CHARMM and GROMACS. Protein topology file was made
by using the pdb2gmx command and CHARMM?27 all-atom
force field (CHARM22 plus CMAP for proteins). “Gromacs
format” (.gro) of ligand and protein was combined in Note-
pad+ +, and topology file (.top) of the protein was edited,
and “include topology” (.itp) parameters of ligand obtained
from SwissParam were introduced to it. The protein-ligand
complex (in.gro format) was centered in a cubic box, 1.0 nm
from the box edge. The complex was solvated using water
molecules represented using a simple point charge (SPC216)
model. Four water molecules were replaced by Na +ions to
neutralize the net negative charge of the protein and ensure
the overall charge neutrality of the simulated system. Steep-
est descent minimization algorithm was used for the mini-
mization of the system in a maximum number of 50,000
steps until the maximum force became less than 10.0 kJ/mol.
For NVT, equilibration the v-rescale algorithm was used in
300 K with a coupling constant of 0.1 ps and time duration
of 500 ps. The last phase in preparation of the system was
NPT equilibration. In this step, Berenson pressure coupling
algorithm with a coupling constant of 5.0 ps was applied
for 1000 ps of NPT simulation. Particle-mesh Ewald (PME)
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algorithm was used for long-range electrostatics and cut-
off method for van der Waals interactions. Cut off distances
were set at 1.0 nm for the calculation of the electrostatic
and 1.2 nm for van der Waals interactions. Finally, the com-
pounds were subjected to three replica molecular dynamic
simulations run of 100 ns per system.

Free binding energy calculations

After successful completion of molecular dynamic simula-
tion, the protein—ligand complex was re-centered in the box,
and analysis including calculation of root mean square devi-
ation (RMSD), radius of gyration (Rg), number of hydro-
gen bonds in protein and between ligand and protein during
the time of simulation, and root mean square fluctuations
(RMSF) of protein and ligands was performed. Binding free
energy calculation of protein-ligand complex was performed
by using the g_mmpdsa program that was developed to cal-
culate components of binding free energy using the molecu-
lar mechanic/Poisson-Boltzmann surface area (MM/PBSA)
method. This program calculates components of binding
energy of protein—ligand complex which can be described as

Free binding energy = molecular mechanics interaction energy (MMIE)

+ solvation energy (SE)
MMIE = vander Waalsenergy + Electrostaticenergy

SE = polar solvation energy (PSE)

+ nonpolar solvation energy (SASA energy)

PSE = PSE, ~ (PSE prorein + PSEjigang)

complex protein

SASAenergy = SASA — (SASA prorein + SASAjgang)

complex protein

Two hundred snapshots were taken at an interval of
100 ps during the last 20 ns period of MD trajectory, and
then binding energy calculations were performed.

Results and discussions

Structure bases pharmacophore modeling
and virtual screening

Non-bond interactions of telaprevir in the active site of
MP™ are shown in Fig. 2. Telaprevir makes hydrogen bonds
with both residues of the catalytic dyad including one
hydrogen bond with Cys145 and one hydrogen bond with
His41. Moreover, telaprevir makes two hydrogen bonds
with Glu166 and one hydrogen bond with GIn189, Gly143,
and His164. Hydrophobic interactions include one amide-Pi
stacked with Thr190 and one Pi-alkyl with Alal91.
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Fig.2 Orientation of telaprevir in complex with MP. His41 and
Cys145, residues of the catalytic dyad, are depicted as green and yel-
low, respectively (A). Non-bond interactions of telaprevir in binding
site of MP™. Green, hydrogen bond; pink, amide-Pi stacked; light
pink, Pi-alkyl; blue halo, solvent accessible surface (B)

Twenty six active inhibitors of MP™ were collected,
by advanced literature search and UniProt (https://www.
uniprot.org/). These compounds were docked to the MP™
active site by using SwissDock. Binding energy ranged
between — 6.9 kcal/mol (shikonin) to — 10.26 kcal/mol (rito-
navir) (Fig. 3). Crystal structure of MP™ in complex with
active inhibitors and the corresponding binding energies has
been provided in Fig. S1. To develop pharmacophores, the
MP™-telaprevir complex was analyzed in Pharmit. Twenty
pharmacophoric features were recognized at the first step.
In the next step, 10 pharmacophore models were made with
4 to 6 features in each model. To select the best model,
actives and decoys libraries were screened by these models.
Among the 10 pharmacophore models, the model with the
best score (Pharm_A) was used for screening the “ZINC
natural products.” The characteristics of Pharm_A including
X, ¥, z coordinates are illustrated in Fig. 4. Five of the six
hydrogen bonds and one of the four hydrophobic interac-
tions between MP™ and telaprevir were used in Pharm_A
development. These non-bond interactions can be listed as
follows: one hydrogen bond between N39 and Arg74, N32
and Gly34, O31 and Ser76; two hydrogen bonds between

N22 and Asp38, Gly227; and one hydrophobic interaction
between C28, C29 and Leu223, I1e304.

Pharm_A model was used for virtual screening of the
“ZINC natural products” databases by using ZINCPharmer.
Based on Pharm_A features, 288 compounds were screened
out from the “ZINC natural products.” Subsequently, the
screened compounds were investigated using Lipinski’s rule
of five, and 68 compounds exhibited satisfied drug-likeness
properties according to this rule.

ADMET study

Besides specific binding to its target, a drug-like compound
should have appropriate absorption, distribution, metabo-
lism, excretion, and toxicity, i.e., ADMET properties.
Therefore, estimating ADMET properties of compounds
is of great importance in the process of drug discovery. In
this study, multiple ADMET properties were estimated and
analyzed using SwissADME and ProTox-II webserver. By
using SwissADME, the key physicochemical descriptors,
ADME parameters, pharmacokinetic, and drug-like proper-
ties were investigated. Moreover, hepatotoxicity, carcino-
genicity, mutagenicity, and cytotoxicity were investigated
by using ProTox-II. In this step, 15 compounds with better
results were selected for more investigation (Fig. 5). Molecu-
lar properties and ADME results for the 4 selected com-
pounds after the docking study can be found in Tables 1 and
2. The toxicity prediction of these compounds is presented
in Table 3.

Molecular docking study

For further analysis of the binding modes of the selected
compounds in the active site of MP"®, molecular docking
studies were done. At the first step, to validate the docking
procedure, telaprevir was docked into the active site of MP™.
The top-ranked pose was compared with crystallographic
pose, and the calculated RMSD was found to be 1.17 A that
indicates a good prediction of the ligand’s pose on the MP™
active site by SwissDock server. Moreover, comparative
analysis of the non-bond interaction of docked and crys-
tallographic poses indicated the accuracy of the docking
procedure. After validation of the docking procedure, the
15 compounds with the best ADMET results were docked
into the active site of MP™ one by one to analyze their ori-
entation, interactions, and free binding energy. Only those
compounds were selected that besides good docking score
had the most number of non-bond interactions, especially
hydrogen bonds in MP™ binding site. Accordingly, four
compounds including ZINC61991204, ZINC67910260,
ZINC61991203, and ZINC08790293 with AG,;,4 (kcal/mol)
of —8.23,-9.11,—8.38, and — 8.37 were selected (Fig. 5).
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Fig.3 List of 27 known active inhibitors of MP™ and their binding energy towards MP™ obtained by molecular docking method. The number in

parenthesis shows the estimated binding energy (kcal/mol)

Orientation and non-bond interactions of the lead com-
pounds in the active site of MP™ are depicted in Figs. 6, 7
and Table 4. In ZINC61991204, there are 7 hydrogen bonds
including two hydrogen bonds between cys145 and N-H23

@ Springer

and C=023, Glul66 and N-H21 and C =025, hydrogen
bond between Thr190 and O =H26, GIn189 and N-H24,
Gly143:C=023. There is also one hydrophobic interac-
tion with Pro168. ZINC67910260 has ten hydrogen bonds
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Fig.4 The structure of
Pharm_A. HBA. hydrogen
acceptor; HBD, hydrogen
donor; HYD, hydrophobic. Pro-
tein (MP™) is depicted as yellow
ribbon. Molecule description:
blue, carbon; purple, nitrogen;
red, oxygen. Numbers in paren-
theses show x, y, z coordinates
of the pharmacophoric feature

Fig.5 Compounds with the best binding energies including
ZINC61991204 (yellow), ZINC67910260 (purple), ZINC61991203
(red), and ZINCO08790293 (green) in MP™ active site. Protein is
depicted as cyan

HBD(9.03, 18.76, 23.34)

including four hydrogen bonds between Glu166 and O-H44,
C=038, O-H46 and C-H15; four hydrogen bonds between
GIn189 and C=036, C=037, O-H45 and C-H16; and
one hydrogen bond between Ser144 and O-H28, Cys145
and O-H28. Met165, Leul67, Pro168 contribute to the Pi-
Alkyl interactions. ZINC61991203 makes six hydrogen
bonds with MP™ including three hydrogen bonds between
C=029 and Gly143, Ser144 and Cys145 and three hydro-
gen bonds between Glul66 and C=030, N-H28 and
N-H25. Leul67 and Pro168 contribute to Pi-Alkyl interac-
tion; Met165, Cys145 contribute to Pi-Sulfur interaction.
In ZINC08790293, there are five hydrogen bonds including
one hydrogen bond between Thr25 and C=023, Gly143 and
C=031, Glul46 and C=032, Glul46 and N-H38, GIn189
and C=034. Cys145, Leul67, Met165 contribute to the Pi-
Alkyl interactions.

The analysis of the docking poses indicates that six resi-
dues have great impact in non-bond interactions and main-
taining the conformation of the selected compounds in the
active site of MP™. These residues include Ser84, Gly227
and catalytic Asp38 and Asp225 that make hydrogen bonds
with ligands and Leu223 and Ile304 that contribute to hydro-
phobic interactions. Five of these seven residues including
Ser84, Gly38, Gly227, Leu223, and Ile304 contributed to
Pharm_A features.

Molecular dynamic simulation study

Receptor-ligand interaction is a dynamic event and one of the
best ways to grasp the stability and flexibility of a receptor-
ligand complex and binding energy of ligand to receptor
and is analyzing the behavior and motion of the complex in
a simulated environment very similar to a natural environ-
ment that includes water and ions [45]. Herein, the complexes
docking file of selected four natural compounds includ-
ing ZINC61991204, ZINC67910260, ZINC61991203, and
ZINC08790293 and one reference ligand bind with MP™ were
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Table 1 Molecular properties of  oy0und Formula iLogP TPSA nHeavyAtoms MW  nHBA® nHBD® nRotb
the selected compounds
ZINC61991204 CI18H26N406  2.23 159.85 28 39442 7 5 13
ZINC67910260 C31H48N406  2.95 148.07 41 57274 6 5 11
ZINC61991203 C24H30N406  2.43 159.85 34 470.52 7 5 15
ZINCO08790293 C26H38N306S 3.60 161.96 36 520.66 6 3 16
“Number of hydrogen bond acceptor
"Number of hydrogen bond donor
Table2 ADME properties Compound ~ GIA* BBBP® CYPIA2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 Lipinski Log S
of the selected compounds inhibitor inhibitor  inhibitor inhibitor inhibitor
predicted by SwissADME
ZINC61991204 Low No No No No No No Yes —-3.20
ZINC67910260 Low No No No No No Yes Yes —6.58
ZINC61991203 Low No No No No No No Yes —5.66
ZINCO08790293 Low No No No No No Yes Yes —5.54
Gastrointestinal absorption
"Blood-brain barrier permanent
Table 3 Toxicity risk of the selected compounds predicted by ProTox-II. The numbers in parentheses show probability
Compound Hepatotoxicity Carcinogenicity Mutagenicity Cytotoxicity Predicted LD50 Predicted
toxicity
Class®
ZINC61991204 Inactive (0.92) Inactive (0.72) Inactive (0.77) Inactive (0.65) 5,300 mg/kg 6
ZINC67910260 Inactive (0.77) Inactive (0.65) Inactive (0.78) Inactive (0.79) 2,287 mg.kg 5
ZINC61991203 Inactive (0.88) Inactive (0.72) Inactive (0.76) Inactive (0.66) 5,300 mg/kg 6
ZINC08790293 Inactive (0.89) Inactive (0.62) Inactive (0.73) Inactive (0.63) 1,000 mg/kg 4

 “Predicted toxicity class” is a number from 1 to 6 that higher numbers indicate lower toxicity

simulated in an explicit hydration environment to evaluate the
stability, flexibility, and intermolecular interactions between
protein and compounds during the simulation time. Therefore
a short, 10 ns simulation was performed for all the complexes,
and it was observed that ZINC61991203 and ZINC08790293
were unstable in the active site of MP™ and began to dissociate
from the active site after about 7 ns of simulation. However,
ZINC61991204 and ZINC67910260 were stable in the active
site. So these two compounds were selected for further analysis.
In this step, molecular dynamic simulation was performed on
MP™ for 50 ns, and 3 different conformations from the trajec-
tory were used to re-dock ZINC61991204, ZINC67910260, and
telaprevir to the binding site of MP™ (Fig. S2). Then, a 100 ns
molecular dynamic simulation was performed on all complexes
resulting from docking to prove their stable binding to MP. In
the next steps, simulation trajectory of these compounds was
further analyzed by several tools.

RMSD and radius of gyration (Rg) were calculated
for all the saved structures during the MD simulation,
and changes in the amount of these factors during the
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simulation time were used for evaluation of the stabil-
ity of the complexes. RMSF of the backbone atoms was
also calculated for assessment of residual flexibility dur-
ing the time of simulation. The results of these calcula-
tions are shown in Figs. 8, 9, 10, 11, and 12. As it could
be seen in Fig. 8, the RMSD value of MP™ gets stable
after 10 ns of simulation and remains stable and less than
3 A for the rest of simulation time. The average RMSD
value of MP™ in complex of MP™ with ZINC61991204,
ZINC67910260, and telaprevir was 0.163 /OX, 0.234 A, and
0.239 A, respectively. RMSD of lead compounds and tel-
aprevir in complex with MP™ was less than 3 A during the
simulation time; however, it became stable only after 30 ns
(Fig. 9). The average RMSD value of ZINC61991204,
ZINC67910260, and telaprevir in complexes with MP™
was 0.199 A, 0.209 A, and 0.210 A, respectively. All these
results indicate the stability of the ligands in the active
site of MP™ especially during the last 20 ns of simulation.

Figure 10 shows that RMSF of the Ca atoms of MP™
in complexes with ZINC61991204, ZINC67910260, and
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Fig.6 The best binding pose
of the selected compounds in
the active site of MP™ resulting
from the docking studies. His41
and Cys145, residues of the
catalytic dyad, are depicted as
green and yellow, respectively
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Fig.7 Non-bond interactions of the selected compounds in the active site of MP. Green, hydrogen bond; pink, amide-Pi stacked; light pink, Pi-alkyl;
orange, Pi-sulfur
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Table 4 Non-bond interactions of the selected compounds and telaprevir in the active site of M

pro

Compound Hydrogen bonds

Pi-alkyl Pi-sulfur

ZINC61991204 Thr190:0=H26, GIn189:N-H24, Glu166:N-H21, Glu166:C =025, Cys145:N-

H23, Cys145:C=023, Gly143:C=026

ZINC67910260 Ser144:0-H28, Cys145:0-H28, Glu166:0-H44, Glu166:C =038, Glu166:0-

Prol168 -

Metl65, Leul67, Prol68 -

HA46, Glu166:C-H15, GIn189:C=036, GIn189:C=037, GIn189:0-H45,

GIn189:C-H16

ZINC61991203 Gly143:C=029, Ser144:C=029, Cys145:C=029, Glul66:C =030, Glul66:N- Leul67, Pro168

H28, Glul166:N-H25

ZINC08790293 Thr25:C=023, Gly143:C=031, Glu146:C=032, Glul46:N-H38,

GIn189:C=034

Metl165, Cys145

Cysl45, Leul67, Met165 -
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Fig.8 Superimposed RMSD of the C atoms of MP in complex with
ZINC61991204 (green), ZINC67910260 (orange), and telaprevir
(blue)
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Fig.9 Superimposed RMSD of ZINC61991204  (green),
ZINC67910260 (orange), and telaprevir (blue) in complex with MP®

telaprevir was very similar. As it could be seen, MP™ is not

a very flexible protein. In all complexes, except the first
two residues in MP™-telaprevir complex, residues had low
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0.4 =

Residue

Fig. 10 RMSF graph of the Co atoms of MP® in complex with
ZINC61991204 (green), ZINC67910260 (orange), and telaprevir
(blue)

RMSF values of less than 0.3 A. In fact, residues involved in
non-bond interactions with ligands had little fluctuation like
other residues during the simulation time. The little fluctua-
tion of these residues could demonstrate their capability in
making stable non-bond interaction with lead compounds
and telaprevir. RMSF of heavy atoms of ligands were cal-
culated (Fig. 11). All atoms had a very low RMSF value of
less than 2 A. In ZINC67910260, the least fluctuation was
related to a ring consisting of 12 heavy atoms including 4
repeats of N-H, C=0O, C. Therefore, in this ring, hydrogen
bond donor, i.e., N-H, and hydrogen bond acceptor, i.e.,
C=0, are repeated 4 times. Being in a ring led to lower
fluctuation and subsequently to more stable hydrogen bonds
of N-H and C =0 with enzyme. On the other hand, more
stable hydrogen bonds contribute to lower fluctuation of the
ring’s atoms. In fact, this part of the ligand had the most
number of hydrogen bonds with MP®. In ZINC61991204,
parts of the ligand involved in hydrogen bond with MP™ had
the lowest fluctuation. Highest fluctuation was related to
part of the ligand that had only one carbon hydrogen bond
with the enzyme.
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of these molecules with highest and lowest fluctuations are illustrated

2.35r T T T T T

23 —

| v“.‘“: ],‘ |
Pl T

(U

21 L I
0 10000

1 | |
20000 30000 40000 50000

Time (ps)

Fig. 12 Time dependence of the radius of gyration (Rg) graph of MP™
in complex with ZINC61991204 (green), ZINC67910260 (orange),
and telaprevir (blue)

Radius of gyration (Rg) of MP™ was calculated to evalu-
ate the compactness of protein during the period of simula-
tion (Fig. 12). Rg value of MP™ in complex with the lead
compounds as well as telaprevir remained between narrow
ranges of 2.175 to 2.285 nm and did not show a signifi-
cant upward or downward trend during the simulation time.
The average Rg of MP™ was 2.209, 2.244, and 2.204 in the
complex of MP™ with ZINC61991204, ZINC67910260, and
telaprevir, respectively.

The number of hydrogen bonds between ligands and
MP™ during the MD simulation was calculated by analyz-
ing the MD trajectories (Fig. 13). Accordingly, the num-
ber of hydrogen bonds changes mostly between 2 and 4 for
both complexes. These numbers are less than the number
of hydrogen bonds predicted by docking studies (Fig. 7).
This is not unexpected in dynamic simulation studies as the

@ Springer
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Fig. 13 Numbers of hydrogen bonds formed between MP™ and ZINC61991204 (green) and ZINC67910260 (orange)
Table 5 Binding free energy (KJ/mol) for two selected compounds and telaprevir
Complex van der Waals energy Electrostatic energy Polar solva-  SASA ? energy Binding
tion energy energy
ZINC61991204 —151.62 -52.31 160.87 —19.03 -62.09
ZINC67910260 —184.76 —56.45 189.52 —22.90 —74.59
Telaprevir —212.35 —14.69 138.60 —24.78 —-113.22

2Solvent accessible surface area

conformation of both ligand and the receptor fluctuates dur-
ing the simulation time, and therefore, a wide variety of
interactions arise [46]. However, binding energy analysis in
the next step demonstrated that the overall impact of these
interactions was in favor of ligand binding to the receptor.

Binding free energy analysis

The MM/PBSA is a commonly used method for estimating
binding energy of ligands to a protein receptor. It can reveal
the nature of the dominant interactions in a ligand-recep-
tor complex. In molecular docking, there is only a single
snapshot of a structure, and therefore, binding free analysis
may not be very accurate. But by simulation of molecular
dynamics in a period of time and getting several snapshots
of the ligand—protein complex, the binding energy estima-
tion would be much more accurate. The result of free bind-
ing energy analysis is presented in Table 5. In this study,
the lead compounds and telaprevir revealed average nega-
tive binding energies. The average MM/PBSA free bind-
ing energy of the known co-crystal inhibitor (telaprevir)
with MP™ was — 109.49 kJ/mol, while ZINC61991204 and
ZINC67910260 exhibited —-79.32 and —77.96 kJ/mol
binding free energies, respectively. Diagram of binding
energy changes during the last 20 ns of simulation time is

@ Springer

-100

Binding energy (KJ/mol)

-150 -

|
40000
Time (ps)

30000 35000 45000 50000

Fig. 14 Diagram of binding energy changes during the last 20 ns
of simulation time. MP® in complex with ZINC61991204 (green),
ZINC67910260 (orange), and telaprevir (blue)

presented in Fig. 14. In all these complexes, binding energy
fluctuates in a narrow negative range, and the complex is
stable during all the simulation time. ZINC61991204 and
ZINC67910260 had lower binding energies regarding the
co-crystal inhibitor, i.e., telaprevir; however, they were
completely stable in the active site of MP™. In fact, bind-
ing energy of —79.32 and —77.96 kJ/mol was sufficient for
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making a stable complex between a small molecule like
ZINC61991204 or ZINC67910260 and MP™ active site. Free

Fig. 16 Residues with the larg-
est and smallest contribution to
the binding energy (KJ/mol) of
MP-ZINC61991204 complex
(A) and MP™- ZINC67910260
complex (B)

energy components of the complexes were further inspected
for evaluating types of energy in making complexes by the
g_mmpbsa method. It was revealed that molecular mechan-
ics interaction energy was favorable and solvation energy
(the sum of polar solvation energy and SASA energy) was
unfavorable regarding formation of MP™-ligand complex. In
fact van der Waals and electrostatic energies were negative,
and solvation energy was positive in all MP-ligand com-
plexes. The value of van der Waals energy was higher than
that of the electrostatic energy.

By g_mmpbsa contribution of all residues of the protein
to the binding energy was calculated. Most of the residues
that were found to be important in ligand-receptor inter-
action based on docking studies had negative values in
dynamic simulation study too, while a few of these residues
showed little or almost no contribution. Beside these resi-
dues, some new residues were found to have a high contri-
bution to the binding energy. Because of dynamic behavior
of macromolecules and their ligands, it is quite expected to
see new intermolecular interactions between receptor and
ligand during dynamic simulations studies that were not
noticed in docking studies. Accordingly in this study, new
residues were found in dynamic simulation study that based
on docking studies, their role in ligand-receptor interaction
was not identified. Four residues including His41, Met49,
Cys145, and Glul66 had large contribution to the binding
energy in all complexes. In MP°-ZINC61991204 complex,
The25, His41, and Glul66 had the most negative contribu-
tion, and Met49, Cys145, Met165, and Asp187 had the most
positive effect to the binding energy. In MP*°-ZINC67910260
complex, Arg40, Asnl142, Glul66, and His172 had the most
negative contribution, and Met49, Leul41, Cys145, Met165,
and Aspl176 had the most positive effect to the binding
energy (Figs. 15 and 16).

Glul66
Leuld1(-3.45)

9.76

6.06
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Conclusion

MP-telaprevir complex was used for developing a structure-
based pharmacophore model by using pharmit. “ZINC Natu-
ral Products” was screened, and 288 compounds were filtered
according to pharmacophore features. After applying Lipinski’s
rule of five, this number reduced to 68. In the next step, physico-
chemical descriptors were computed to predict ADME param-
eters, and then the selected compounds were screened accord-
ing to their predicted toxicity which resulted in 15 compounds.
These compounds were docked to the active site of MP™, and
those with the highest binding scores and better interaction
were selected. Accordingly ZINC61991204, ZINC67910260,
ZINC61991203, and ZINC08790293 were selected for further
analysis to evaluate their dynamic behavior in complex with
MP™, The result of dynamic studies showed that ZINC61991203
and ZINC08790293 dissociated from MP™ active site after 7 ns;
however, ZINC426421106 and ZINC5481346 were stable. So
the simulation time was extended for another 90 ns to better
understand the behavior of these compounds in the active site
of MP™. These compounds were stable in extended simulation
time too. In the next steps, RMSD, RMSF, Rg, and number of
hydrogen bonds were calculated, and MM/PBSA analysis was
done. The result of all the analysis indicated that ZINC61991204
and ZINC67910260 are drug-like and nontoxic and have a high
potential for inhibiting MP™. In our ongoing investigation, we
are going to experimentally evaluate MP™ inhibitory activity of
these two proposed compounds hoping these compounds could
serve as appropriate hit molecules for the development of MP*
inhibitors as anti-SARS-CoV-2 agents.
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