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Abstract
Coronavirus infectious disease 2019 (COVID-19), a viral infection caused by a novel coronavirus (nCoV), continues to emerge
as a serious threat to public health. This pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome–coronavirus-2)
has infected globally with 1,550,000 plus deaths to date, representing a high risk to public health. No effective drug or vaccine is
available to curb down this deadly virus. The expedition for searching for a potential drug or vaccine against COVID-19 is of
massive potential and favour to the community. This study is focused on finding an effective natural compound that can be
processed further into a potential inhibitor to check the activity of SARS-CoV-2 with minimal side effects targeting NSP15
protein, which belongs to the EndoU enzyme family. The natural screening suggested two efficient compounds (PubChem ID:
95372568 and 1776037) with dihydroxyphenyl region of the compound, found to be important in the interaction with the viral
protein showing promising activity which may act as a potent lead inhibitory molecule against the virus. In combination with
virtual screening, modelling, drug likeliness, molecular docking, and 500 ns cumulative molecular dynamics simulations (100 ns
for each complex) along with the decomposition analysis to calculate and confirm the stability and fold, we propose 95372568
and 1776037 as novel compounds of natural origin capable of getting developed into potent leadmolecules against SARS-CoV-2
target protein NSP15.
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Introduction

Coronavirus disease 19 (COVID-19), a viral disease caused
by the novel coronavirus (nCoV), continues to emerge as a
serious threat to public health. The first case of COVID-19
was reported in late December 2019 [1–4]. Considering the
spreading ability and the virus’s potency to cause serious
health issues, theWorld Health Organization (WHO) declared
COVID-19 as a pandemic in early March 2020. Initially, the
virus was termed as 2019-nCoV. However, due to its similar-
ity established with the coronavirus that caused the severe
acute respiratory syndrome outbreak (SARS-CoV), the

International Committee on Taxonomy of Viruses (ICTV)
termed it as SARS-CoV-2 virus [5]. In general, the coronavi-
rus is a single-stranded, spherical-shaped virus with RNA as
its genetic material and crown-shaped glycol-proteins at-
tached to its surface [6]. In the same line, the SARS-COV-2
belongs to the category of beta CoVs is a spherical-shaped
virus with a diameter of approximately 60–140 nm [5].

The SARS-COV-2 consists of ~ 3000 base pairs that en-
code essential structural proteins, namely nucleocapsid (N)
protein, spike (S) protein, envelope (E) protein, and mem-
brane (M) protein. Nucleocapsid protein is attached to a single
positive-strand RNA whose role is imperative in hijacking the
human cells to convert them into viral factories. Thus, averting
N protein binding to the viral RNA serves as a potential target
for developing drugs to prevent viral replication. The mem-
brane (M) protein is present in the viral surface, and it is
believed to be the central organization of the coronavirus as-
sembly [7]. The spike (S) protein, which is assimilated to the
viral surface, mediates the attachment and the virus’s fusion to
the host cell surface receptors, thereby facilitating the viral
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entry into the host cell. This attachment makes the spike pro-
teins a crucial target for drug development, depicted in Fig. 1
[8].

Apart from the genes that encode structural proteins, the
viral genome holds a large replicase gene encoded for the non-
structural proteins (NSPs). The ribosomal frameshift caused
by the replicase genes rep1a and rep1b encodes the two
polyproteins pp1a and pp1b. These polyproteins are processed
by 3C-like protease (3CLpro), papain-like protease (PLP), and
post-cleavage producing sixteen different viral NSPs. These
NSPs play a crucial role in complex enzymatic activities such
as viral replication and sub-genomic RNA processing.
Nevertheless, the role of some enzymes remains elusive [9].

NSP15 protein

One such inexplicable enzyme corresponding to NSP15 is the
nidoviral RNA uridylate-specific endoribonuclease
(NendoU), holding a C-terminal catalytic domain of the
EndoU enzyme family. Studies have claimed that NSP15
plays a vital role in viral replication. However, it was found
that the viruses could replicate even in the absence of NSP15
[10–12]. Also, NSP15 is responsible for protein interference
with the innate immune system [11]. Further researchers pro-
posed that NSP15might degrade viral RNA to hide it from the
host immune system. However, there is no substantial evi-
dence to support the suggestions. Nevertheless, the role of
NSP15 in coronavirus biology is found to be imperative [13].

Recently, researchers have solved the crystal structure of
NSP15 endoribonuclease NendoU from SARS-CoV-2. It was
obtained in two different forms: the apo form and the citrate
bond form (NSP15/cit). The one in the apo forms was obtain-
ed at 2.20 Å resolution, and the one with the citrate bound was
obtained at 1.90 Å. Both the apo and the citrate bound struc-
tures differ slightly in the N-terminal and the C-terminal re-
gions (RMSD 0.44 Å). The monomeric unit of NSP15 (~ 345
residues) has three distinct domains: the N-terminal domain,
the middle domain, and the C-terminal catalytic domain.

Sequence comparison of NSP15 corresponding to SARS-
CoV-2 with severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome
(MERS-CoV) revealed SARS-CoV as its closest homologue
(identity 143; similarity 14%). Similarly, structural compari-
son of NSP15 (chain A) corresponding to SARS-CoV-2 with
SARS-CoV andMERS provided similar results (SARS-CoV-
2 vs. SARS-CoV - RMSD 0.52 Å; SARS-CoV-2 vs. MERS -
RMSD 1.16 Å) (Fig. 2).

N-terminal domain

The N-terminal domain consists of alpha-helices (α1 and α2)
that wrap the antiparallel beta-sheets (β1, β2, β3).

Middle domain

The middle domain contains 10 beta-strands with three beta
hairpins (β5-β6, β7-β8, β12-β13), four beta-sheets (β4, β9,
β10, β11, β14, β115), and three helices of which one is a
310-helix (α3, η4, α5).

C-terminal catalytic domain

The C-terminal domain is made of two antiparallel beta-sheets
(β16-β17-β18, β19-β20-β21) and five alpha-helices
(α6–α10). The shallow groove between the two antiparallel
beta-sheets hosts the catalytic site containing six key residues,
namely His235, His250, Lys290, Thr341, Tyr343, and
Ser294. The two histidine residues come from the helix, and
the others come from the beta-strands. His235 acts as a gen-
eral acid, whereas His250 acts as a general base. Lys290 com-
bined with these residues forms the catalytic triad. In the
citrate-bound NSP15, the citrate is said to stabilize the active
site by establishing interactions with His235, His250, Lys290,
and Thr341. The crystal structure of NSP15 corresponding to
SARS-Cov-2 is obtained as a dimer. However, SARS-CoV
structural studies suggest that NSP15 forms hexamersmade of
dimers where the hexamer is likely to represent the active
form of the enzyme [14].

Inhibitors for EndoU

The NendoU catalytic domain present in the C-terminal re-
gion belongs to the EndoU family. The EndoU family of en-
zymes is present in almost all animal kingdom of life. It is said
to play a crucial role in the biological process associated with
RNA processing [14]. Chandra and colleagues performed
computational and experimental studies using some known
FDA-approved drugs into consideration. The authors reported
five compounds, namely dihydroergotamine, glisoxepide,
idarubicin, ergotamine, and tasosartan which are the possibleFig. 1 Structural representation of SARS coronavirus 2 [7]
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inhibitors of NSP15. Citrate was used as the control in their
study [13].

Inhibitors targeting the endoribonuclease NSP15 of
COVID-19 strategy

The objective of this approach is to design compounds based
on the existing broad spectrum of anti-virals. This approach
has the advantage of having compounds with established
pharmaceutical properties that have a history of use in people
and so can be readily used [15].

Material and methods

Protein structure and ligand retrieval and processing

The crystal structure of SARS-CoV-2 non-structural pro-
tein-15 (NSP15) protein (PDB-ID: 6VWW) was retrieved
from RCSB-Protein Data Bank [16, 17]. 6VWW is shown
in Fig. 2 and has been resolved using X-ray crystallogra-
phy at a resolution of 2.20 Å [18]. Library of natural
products (approx. 20,000 compounds) was obtained from
the ZINC database [19]. An approximate selection of
11,000 compounds out of this library was chosen for
target-specific virtual screening based on Lipinski’s rule
of 5. Relevant 3D conformers of these compounds were
downloaded from the PubChem database [20–22] in SDF
file format. The crystal structure of the protein of interest
was imported into the YASARA minimization web server
[23–27] for energy minimization using steepest descent
method. The energy minimization experiment got com-
pleted after 501 steps. And the recorded final energy is
− 2311.2 kcal/mol.

Target-specific virtual screening

Structure-based virtual screening is performed in drug discov-
ery and development to explore the ligand library, searching
for the best lead molecules against the particular target struc-
ture [28]. The natural compound library (approx. 11,000 com-
pounds) was obtained from the ZINC database [29] for the
best optimal hit against these mentioned targets. PyRx [30]
from MGLTools (https://ccsb.scripps.edu/mgltools/) is used
for the virtual screening using default settings (grid box size
set to be 384, while grid centre was set to 90 on all the three
axes to accommodate the whole protein, grid spacing was 0.
375 Å, while running AutoDock Vina as docking algorithm,
with 100 docking runs), and five best hits have been obtained.
The number of evaluations using Genetic Algorithm was set
to 25000000. The respective PUBCHEM identification
numbers for these compounds further taken for molecular
dynamics simulations for 100 ns simulation run are
1777791, 95372568, 25575299, 1776037, and 1751157.

Toxicity prediction

We also performed toxicity prediction of the selected five
compounds to check and verify the least toxic drugs for hu-
man use. The analyses were performed using AdmetSAR2
[31, 32], a virtual lab for the prediction of toxicities of small
molecules. The drugs were uploaded to the server, which
yielded results showing the toxicity prediction.

Molecular dynamics simulations

System setup

The protein-ligand complexes for NSP15 with the bound
compounds were prepared for molecular dynamics simula-
tions. A total of 500 ns accumulative simulations were

Fig. 2 Crystal structure of NSP15
monomer protein (PDB-ID:
6VWW) [14]
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performed with the CHARMM36 force field [33]. Solvated
systems using TCL scripts in VMD [34] were prepared, and
MD simulations using NAMD [35, 36] were performed. The
system consisted of the protein complex, TIP3P water, coun-
ter ions Na+/Cl−, and 150 mM NaCl.

Simulation setup

The set system was then subjected to energy minimization,
which lasted for around 3200 steps following 1000 ps equili-
bration. The MD production run was setup for 100 ns each,
totally to accumulative 500 ns MD production procedure.
NPT ensemble was used (1 bar) with a time step of 2 femto-
seconds. The temperature has been set up at 300 K with a low
damping coefficient, while pressure was controlled using the
Nose-Hoover Langevin piston. Electrostatics was calculated
using the particle mesh Ewald (PME) method. A total cutoff at
12 Å was given for short-range and van der Walls electrostat-
ics. All simulations were replicated twice with initialized ran-
dom seed to get average scorings.

Data analyses

Data analysis for the produced trajectories was performed
using TCL scripts previously implemented in VMD [34],
and data were plotted using GnuPlot (http://gnuplot.info).
We have also calculated RMSF α alignments for carbons for
all residues and structural changes by RMSD throughout the
simulation run. Calculations between the hydrogen donor and
acceptor were set with a cutoff at 2.2–2.5 Å for strong h-
bonds, 2.5–3.2 Å for moderate strength h-bonds, and 3.2–4.
0 Å for weak h-bonds, referring to the “heavy-atom distance”
which covers a very broad range that includes the backbone
and side chain. Other analyses such as radius of gyration
(ROG), solvent accessible surface area (SASA), secondary
structure content (DSSP), and H-bond formations upon ligand
binding were calculated using TCL bash scripts. RMSD,
RMSF, total energy, SASA, radius of gyration, and h-bonds
were plotted using Prism.

Analysis of binding free energy (MMPBSA) from MD
simulations

MMPBSA.py module was used to calculate the free energy
and interaction energy of the ligand. The mathematical formu-
la used to calculate the energies was as follows:

ΔGbind:solv ¼ ΔGbind:vaccum þ ΔGsolv:complex– ΔGsolv:ligand þ ΔGsolv:receptor

� �

The solvation energy for all the states was calculated using
Generalized Born (GB) and Poisson Boltzmann (OB) [37,
38]. This analysis revealed the electrostatic contribution of

the solvation state. The final data was plotted using Prism 8.
The detailed view of protein-ligand binding in all the
NSP15:compound complexes was obtained using the
MMGBSA energy decomposition analysis. The decomposi-
tion analysis was performed to address the contributions of the
binding free energy of each residue, which can provide infor-
mation regarding the influence of energy on binding affinity.
The energy decomposition procedure consists of several steps:
first minimizing the receptor, followed by minimization of the
ligand, and finally minimization of the receptor-ligand
complex.

The equation for the total binding free energy calculation
used was as follows:

ΔG bindð Þ ¼ Ecomplex minimizedð Þ
� �

− Eligand minimizedð Þ þ Ereceptor minimizedð Þ
� �

:

MMGBSA binding free energy calculations were per-
formed on all complexes, and in order to achieve comprehen-
sive understanding for the nature of binding, interaction terms
such as Coulombic + GB solvation + pi–pi packing + H-bond
+ VDW+ lipophilic + self-contact) were grouped into three
distinct categories:

1. Eelectrostatics, where Eelectrostatics = (Hbond + Ecoulomb +
EGB_solvation).

2. EvdW, where EvdW = (EvdW + Epi-p + Eself-contact)
3. Elipophilic.

The conformational entropy of the solute is not included in
MMGBSA analysis. Hence, binding energies by the
MMGBSA method can sometimes overestimate the binding
affinity. However, MMGBSA energies can be used to esti-
mate relative energy for binding, helping us distinctively rank
the compounds [37, 39]. The MMGBSA method has been
used for benchmarking studies extensively, which concluded
MMGBSA to be a robust method in ranking compounds
[40–44].

Results and discussion

Protein selection and preparation

The protein used for this study is an experimentally solved
structure of NSP15 protein (PDB-ID: 6VWW) of SARS-
CoV-2, which was obtained from PDB [16] energeticallymin-
imizedwith YASARAminimization sever [27]. This prepared
protein is used for virtual screening of desired compounds.

Virtual screening and ligand selection

Natural compounds were acquired using the ZINC natural
library with approx. 11,000 functional compounds (selected
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on the basis of Lipinski’s rule of 5). These small molecules
were docked to the protein macromolecule through global
docking to shortlist the best lead candidates. This virtual
screening gave optimum hits for these five compounds having
PubChem Ids as 1777791, 95372568, 25575299, 1776037,
and 1751157 (Fig. 3).

The final list of ligands tested thoroughly and obtained as
best hits after docking with the mentioned PubChem ID, 2D
structures, and other relevant properties is given in
Supplementary Table 1. Information about the binding affin-
ity and interacting partners (interacting residues of the protein)
is provided in Supplementary Table 2. It is evident that com-
pound 1777791 shows the best binding affinity of −
11.880 kcal/mol followed by 95372568 (− 11.2790 kcal/
mol) with the protein structure, but compound 1776037 has
been chosen over 1777791 because of better energy profiles in
MMPBSA calculations (shown in the “Binding free energy
(MMPBSA) and per-residue energy decomposition
(MMGBSA) analysis from MD simulations” section).
Figure 4 (left panel) shows the interacting residues along with
the legends for 1776037, and Fig. 4 (right panel) shows inter-
actions with compound 95372568. All interacting residues are
also given in Supplementary Table 2. The interaction profile

for the rest of the three compounds is provided in
Supplementary Figs. 1–3 and Supplementary Table 2.

In the case of 1776037, 1 H-bond, 4 acidic, and 3 basic
interactions are obtained (in total 21 interactions) in compar-
ison with 95372568 where 3 H-bond, 3 acidic, and 4 basic
interactions are found (in total again 21 interactions).
Although the difference between the two ligands’ binding
energy is just ~ 0.6 kcal/mol, the increase in number of H-
bond interactions in the case of 95372568 makes it a better
choice to be a lead molecule. To validate our hypothesis, we
performed various studies including MD simulations. The
docking conformations of protein-ligand complexes are rea-
sonably accurate as this docking procedure is validated by a
control. The PDB structure 6WXC (crystal structure of
NSP15 endoribonuclease from SARS-CoV-2 in the complex
with potential repurposing drug tipiracil) has been redocked
(results not shown) and found to bind at the same site, thus
validating the protocol [14].

Toxicity prediction and ligand characteristics

The ligands were then subjected to drug likeliness and toxicity
prediction, and the analyses were performed using

Fig. 3 Five best compounds selected after virtual screening
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AdmetSAR2 [31, 32], a virtual lab for the prediction of tox-
icities of small molecules. This study indicated how likely and
effective a drug could be with the least side effects and also
informs us with a prediction score. The analysis revealed that
compounds 1776037 and 95372568 were the best possible
molecules amongst the shortlisted compounds. The molecular
weight and other parameters for the compounds were also
found to be fitting well with the Lipinski rule of 5 for drug
likeliness. The drug likeliness parameters with toxicity predic-
tion are displayed in Table 1. The numbers in parentheses
denote the probability of the respective trait of toxicity; e.g.
hepatotoxic (0.7750) means the probability of the molecule to
be hepatotoxic is 77%.

Molecular dynamics simulations

To confirm the stability of the complex structures in combi-
nation with the drug candidates, we performed an

accumulative 500 ns (100 ns each for all 5 complexes) molec-
ular dynamics simulation on all five complexes. This produc-
tion run posted 1 ns equilibration using NAMD. Total poten-
tial energy (Supplementary Fig. 4, left) shows that all the
simulation runs are quite fantastically equilibrated. The poten-
tial energy was analysed during the 100 ns molecular dynam-
ics simulations for all 5 complexes. The potential energy plot
shows that all the molecular systems stabilized and remained
stable throughout 100 ns of molecular dynamics simulations.
Free energy of solvation (Supplementary Fig. 4, right) also
ranged between − 16.8 and − 9.6 kcal/mol for all five
protein-ligand complexes. We found that the RMSD fluctua-
tions between structures are not too high, explaining why the
structures with the complexed ligand are relatively stable.
Overall trajectory analyses for all the compounds are more
or less equilibrated with an average change of approx. 2.5 Å
in the RMSD except for a sudden spike to approximately 4 Å
between the trajectories (Fig. 5). The most deviated was

Fig. 4 NSP15-1776037 (left) and NSP15-95372568 (right) complex showing polar and non-polar interactions. The small molecule is shown in the stick
model

Table 1 Acute oral toxicity: category III includes compounds with
LD50 values greater than 500 mg/kg but less than 5000 mg/kg.
Category IV consisted of compounds with LD50 values greater than

5000 mg/kg based on the criterion of US EPA. The value within the
brackets donates the probability [31, 32]

CID AMES toxicity Carcinogens Acute oral toxicity Hepatotoxicity

1777791 Non AMES toxic (0.8616) Non-carcinogens (0.9685) Category III (0.5622) Hepatotoxic (0.7750)

95372568 Non AMES toxic (0.7118) Non-carcinogens (0.7997) Category III (0.6816) Hepatotoxic (0.6000)

25575299 Non AMES toxic (0.7279) Non-carcinogens (0.8523) Category III (0.6869) Hepatotoxic (0.7250)

1776037 Non AMES toxic (0.7688) Non-carcinogens (0.9473) Category III (0.6311) Hepatotoxic (0.7000)

1751157 Non AMES toxic (0.6296) Non-carcinogens (0.7639) Category III (0.5839) Hepatotoxic (0.9500)
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observed (4 Å) as average RMSD change for around steps 35
to 40 ns for 1777791 (shown in black) (Fig. 5). After that point
in time, the trajectory is relatively stable and equilibrated.
1777791 also offered the best docking score, and this devia-
tion might be the result of the change in conformation as the
ligand molecule binds with the protein. The trajectory of com-
pound 1776037 (shown in blue) showed the best equilibrated
profile throughout the simulation (Fig. 5).

Similarly, the RMSF plot for the trajectories shows approx-
imately the same per-residue fluctuation in the case of
1777791, 25575299, and also for 1776037 (Fig. 6). The rest
of the compounds showed slight fluctuations in the whole run.
1777791, as expected from the RMSD plot, showed most
local residue-based fluctuation near residue numbers 30 to
40, 155 to 165, and 300. The same kind of profile is also
observed in other compounds. These residue clusters could
be the functional site of the ligand binding phenomenon.

Figure 7 (left) demonstrates the hydrogen bonding pattern
observed during 100 ns simulation runs in all five protein-
ligand complexes. The highest number of H-bonds was ob-
served in the case of NSP15-95372568 complex, and the least
number of H-bonds was observed in the case of NSP15-
25575299 and NSP15-1776037 complexes. Figure 7 (right)
shows the change in the secondary structure content of all the
5 protein-ligand complexes during the 100 ns simulation run.
The least secondary structure change has been observed in the
NSP15-1777791 complex. The rest 4 complexes along with
1776037 show more or less the same pattern of the secondary
structure change which can be thought out to be their efficient
involvement in ligand binding. These results suggest that
1776037 can also be a potential binding partner for the
NSP15 protein along with 95372568, which will inhibit its
bio-functional activity without showing any side effect.

Apart from RMSD, RMSF, and the number of hydrogen
bonds formed between protein and ligand, radius of gyration,

SASA, and MMPBSA graphs were also calculated. Solvent ac-
cessible surface area (SASA) for all the proteins was also calcu-
lated to check the effect of ligand binding on the residue profiling
of the surface of the protein. Supplementary Fig. 5 (left) shows
the SASA plot for all five complexes as obtained using gmx sas
command in Gromacs [45, 46] for 100 ns simulation run. More
or less, the profiles are the same, leaving some exceptions in the
case of 1776037 near 90 ns time frame. This suggests no signif-
icant change in the protein structure on binding with different
ligands except 1776037. Supplementary Fig. 5 (right) depicts the
radius of gyration plots for all the five complexes over 100 ns of
simulation time. As we can observe that Rg for NSP15-1777791
complex increased around 40 ns, this may facilitate the change in
conformation of a ligand inside the binding pocket at that time. It
also points out that protein is exceptionally receptive and making
conformational space for better ligand fitting. On the other hand,
NSP15-1776037 complex shows least Rg value of approx.

Fig. 5 RMSD profile for all 5 protein-ligand complexes for alpha carbon (left panel) and backbone (right panel)

Fig. 6 RMSF plot for the 5 trajectories shows approximately the same
per-residue fluctuation in the case of 1777791, 25575299 and also for
1776037 bound NSP15 complexes
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2.35 Å, making it structurally stable for ligand binding. The rest
of the complexes show a slight decrease in Rg, suggesting that
the ligand binding helps stabilize the protein’s stabilized com-
pactness. The radius of gyration (Rg) indicates the degree of
compactness and is defined as the mass weighted root mean
square distance of a collection of atoms from their common
centre of mass. It is an important parameter which provides us
an insight of the overall dimensions of the protein [47–49].
Changes studied through the use of the radius of gyration are,
for instance, association and dissociation effects, conformational
changes by denaturation, binding of coenzymes, and temperature
effects (O. Kratky, P. Laggner, in Encyclopaedia of Physical
Science and Technology (Third Edition), 2003).

Binding free energy (MMPBSA) and per-residue ener-
gy decomposition (MMGBSA) analysis from MD
simulations

Individual energy components like Vander Walls forces,
Coulomb, and H-bond are calculated using MMPBSA/
MMGBSA tool in Gromacs (Supplementary Fig. 6).

Also, Table 2 representing these values is included in the
text for better understanding. The complex of NSP15 and
95372568 shows the highest Gibbs free energy (−
48.532 kcal/mol). It suggests that compound 95372568
attains the best lead molecule position after simulation
and shows good interaction with the NSP15 protein
exhibiting as the potential drug candidate for SARS-
COV-2 NSP15 protein. However, the whole study indicat-
ed that we could have 95372568 and 1776037 as lead can-
didates for new drug development to curb down the
COVID-19 pandemic. New strategies need to be incorpo-
rated to fight newly evolved pathogens.

The energy decomposition analysis was performed at
per-residue level using MMGBSA methods (see “Material
and methods”). We identified several residues on the ac-
tive binding site to be involved in the interaction. The
cutoff value for the important residues taking part in the
interaction was set to − 0.5 kcal/mol. The per-residue
values correlated with the MMPBSA analysis and showed
both the compounds with highest hits as 95372568 with
ΔG of − 48.3 kcal/mol and 1776037 with ΔG of −

Fig. 7 H-bonding pattern (left panel) and secondary structure change (right panel) during the 100 ns simulation run

Table 2 MMPBSA profiling
values of all five complexes. All
energy components like Vander
Walls forces, Coulomb, and H-
bond are calculated and presented
in this table

Contribution (kcal/mol) 25575299 1751157 1776037 1777791 95372568

ΔGbind −22.2 −32.8 −40.2 −32.5 −48.5
ΔGcoulomb −29.5 −36.7 −44.8 −34.5 −56.8
ΔGcovalent 0.7 0.8 3.7 1.0 6.5

ΔGH-bond −1.5 −2.4 −4.7 −0.7 −7.5
ΔGlipo −20.9 −24.4 −30.9 −25.9 −33.9
ΔGpacking −1.0 −2.5 −4.7 −1.1 −5.6
ΔGGB 44.3 42.4 55.8 44.0 58.1

ΔGvdW −20.9 −24.4 −33.5 −31.4 −37.5
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39.9 kcal/mol, corroborating all the previous analysis
(Table 3).

Conclusions

Initial molecular dynamics, primary screening, molecular
docking, and post-complex molecular dynamics simula-
tions for 100 ns each in this research suggested that the
interactions between the NSP15 protein and the found
lead molecules 95372568 and 1776037 are significant.
We also performed decomposition analysis, as shown in
Table 3. The interactions are strongly on the active site
of the protein. This was also shown in the 100 ns sim-
ulation run to capture the functional conformation of the
complex. The most crucial residues we see from all the
ligand interaction diagrams are ARG199, ASN200,
TYR279, and ASP297 of the NSP15 protein, which lie
on the surface, very important in terms of interaction
with ligands utilizing polar and non-polar binding.
This interaction of ligand to protein will be an essential
factor in abolishing the disease’s further spread by leav-
ing the virus non-functional. Compounds 95372568 and
1776037 have shown promising binding and stability
results by molecular dynamics, indicating their useful-
ness in developing these lead molecules in potent inhib-
itors of this essential target protein of SARS-COV-2.

There may also be a possibility to use both the candi-
date molecules (95372568 and 1776037) to target
NSP15 protein for more profound results. Additional
experimental in vitro studies are suggested to be per-
formed with the use of these ligands for further analysis
and corroboration.
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Table 3 MMGBSA per-residue
decomposition analysis for five
complexes

Contribution (kcal/mol) per-residue 25575299 1751157 1776037 1777791 95372568

Lys 71 −1.2 −1.5 −2.1 −1.4 −3.4
Lys 90 −1.6 −1.7 −1.9 −1.6 −2.1
Val 166 −2.2 −2.6 −2.4 −2.2 −2.8
Thr 167 −1.8 −1.9 −2.2 −1.7 −2.6
Ser 198 −1.6 −2.7 −2.6 −2.3 −3.1
Arg 199 −1.1 −1.9 −1.8 −2 −2.4
Asn 200 −0.5 −0.8 −1.3 −1.1 −1.5
Leu 201 −0.7 −2.3 −2.3 −1.9 −2.4
Gln 202 −0.9 −0.6 −1.9 −1.2 −1.8
Leu 252 −1.8 −0.8 −1.8 −0.8 −2.2
Phe 259 −0.7 −1.4 −2 −1.2 −2.3
Leu 266 −0.6 −2.8 −3.1 −2.3 −2.9
Ser 274 −0.5 −1.8 −1.9 −2.1 −3.1
Thr 275 −0.7 −0.5 −1.5 −0.9 −1.9
Lys 277 −0.9 −2.7 −3.1 −2.9 −2.8
Tyr 279 −1.1 −0.8 −1.9 −1.5 −2.3
Val 295 −0.6 −2.5 −3.1 −2.2 −3.4
Ile 296 −0.5 −1.8 −1.9 −1.6 −2.4
Asp 297 −0.8 −0.9 −1.1 −1.1 −2.9
Cumulative ΔGper-residue −19.8 −32 −39.9 −32 −48.3
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