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Abstract
A series of facial fac-[Ir(5-R-bzq)3] and meridional mer-[Ir(5-R-bzq)3] Ir(III) complexes bearing benzo[h]quinoline-based
ligands have been studied with the help of density functional theory (DFT) methods. A detailed electronic structure comparison
of the two isomers has been addressed to point out the differences in their stability and photophysical properties. An influence of
substituent impact on optical and electronic properties of Ir(III) homoleptic complexes was also explored by introducing into the
cyclometalated ligands substituents characterized with different electronic properties, e.g., R = H, F, OPh, NMe2, C6F5, and p-
C6H4-NPh2. The results herein show that fac and mer isomers exhibit remarkable differences in stability and photophysical
properties. The introduction of different functional groups into bzq ligands, despite very similar geometrical structures, signif-
icantly affected HOMO and LUMO energy levels and energy gaps of the examined Ir(III) complexes.
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Introduction

Phosphorescent transition-metal complexes have recently
caught significant attention because of their unique
photophysical properties, which are useful in applications,
such as dopants for OLEDs (organic light-emitting diode)
[1–5], light-emitting electrochemical cells (LECs) [6–9],
dye-sensitized solar cells [3, 10], water splitting [11, 12],
and biological phosphorescent labels and sensors [13, 14].
Those complexes exhibit phosphorescence due to very strong
spin–orbit coupling, which causes mutual isoenergetic transi-
tion from the singlet to the triplet state and conversely, known

as intersystem crossing (ISC) [15]. Many families of heavy
metal complexes, such as Os(II) [16], Ru(II) [17], Pt (II) [17],
and Ir(III) [18–20], have been extensively investigated with
the aim of better understanding their photophysical properties.
In particular, cyclometalated iridium(III) complexes are very
promising for a large range of luminescence-based applica-
tions because of their high photoluminescence quantum
yields, relatively short excited-state lifetime, and general ther-
mal and electrochemical stability [21–59]. Another interesting
feature is the possibility of tuning the emission energy of
Ir(III) complexes from blue to red light over the entire visible
range, which is a key step for realizing the full-color displays
and large-area solid-state lighting in OLED fields [4, 5, 19].
Emission color tuning is possible by varying emitter’s
HOMO–LUMO gap [60], either by using various ligand cores
or playing with acceptor/donor character of the substituents on
the main or the ancillary ligands.

In recent years, a number of intensive studies have been
carried out to design and synthesize phosphorescent materials
for highly efficient OLEDs. Nevertheless, most of the studies
concerning this subject have been focused on the synthesis
and photophysical properties of neutral and ionic iridium(III)
compounds, those stabilized with various types of
cyclometa la ted l igands bui l t on the bas is of 2-
phenylpyridine (ppy) cores [61]. However, there has been
little attention paid to iridium(III) compounds containing
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cyclometalating ligands, such as benzo[h]quinoline (bzq),
which is an analogue of ppy [62]. This fact has prompted us
to focus on homoleptic iridium(III) compounds with bzq li-
gands. They are termed homoleptic when three identical che-
lating ligands are present in the complex structure as illustrat-
ed below.

Furthermore, there are two possible isomers, facial and
meridional (fac and mer), for such complexes having three
identical but unsymmetrical bidentate ligands [63–66]
(Fig. 1).

In this work, we present a series of iridium(III) complexes
with three cyclometalating ligands based on bzq. We report
herein an extensive theoretical investigation of the structural,
electrochemical, and photophysical properties of these com-
pounds. A systematic comparison of fac and mer isomer pairs
aimed at identification of the differences in their stability and
photophysical properties is presented. In addition, as HOMO
and LUMO energy levels are likely to be affected by the
substitution effects, we were interested in red or blue shifts
in the emissions of these fac and mer Ir(III) complexes.

Computational details and theory

The ground-state geometries were fully optimized using the
density functional theory (DFT) [67] with B3LYP [68–70],
M06 [71], and WB97XD [72] functionals. These methods
were selected on the basis of the results from extensive com-
parative studies, they are also recommended for robust and
fast calculations for large organometallic compounds
[68–72]. The 6-31G(d,p) basis set was used for H, C, N, O,
and F atoms [73] and LANL2DZ basis set was adopted for the
Ir atom [74]. A relativistic effective core potential (ECP) on Ir
replaced the inner core electrons leaving the outer core
(5s25p6) electrons and the valence electrons (5d6) of Ir(III).

There were no symmetry constraints on these Ir(III) com-
plexes during the geometry optimizations. Vibrational analy-
ses for the optimized structures of isolated molecules were
performed to verify if a given structure corresponded to po-
tential energy minima and to calculate zero-point vibrational
energies, entropies, and thermal corrections for Gibbs free
energies. Solvent–solute interactions were taken into account
with the aid of the polarizable continuum model (PCM)
[75–77] and acetonitrile or dichloromethane as the solvent
usually used in experimental studies [78, 79]. All calculations
were carried out with Gaussian09 software package [80] in
PL-Grid infrastructure.

In this paper, we focused our attention on several R-
substituted (R = H, F, OMe, OPh, NMe2, C6F5, and p-
C6H4-NPh2) Ir(5-R-bzq)3 complexes in both fac and mer
isomeric forms. These tris–cyclometalated Ir(III) com-
plexes were studied to explore preferences toward fac or
mer isomers of Ir(III) complexes.

Results and discussion

Geometries in the ground state (S0)

The representative optimized structures of fac-[Ir(bzq)3] and
mer-[Ir(bzq)3] in the ground state (S0) along with the number-
ing of some key atoms are shown in Fig. 2. In order to inves-
tigate the solvent effect, the ground-state geometry optimiza-
tionwas also carried out within the PCMmethod [75–77]. The
selected optimized geometry parameters for [Ir(bzq)3] in the
gas phase and the acetonitrile environment are summarized in
Table 1S (Supplementary materials).

Table 1S (Supplementary materials) illustrates the parame-
ters of Ir–ligand bond lengths and bond angles in the gas phase
and CH3CN media for [Ir(bzq)3]. Calculated Ir–N, Ir–C, and

Fig. 1 Chemical formulas of Ir(III) complexes examined

154 Page 2 of 9 J Mol Model (2019) 25: 154



Ir–O bond lengths are slightly larger in the gas phase than in
the acetonitrile environment. The maximum deviation in bond
distances between coordinating atoms and Ir(III) is 0.008 Å,
while changes in bond angles are less than 1.0°. However, the
geometries of all complexes present similar features, indicat-
ing that the solvent environment has little effect on the geom-
etry of the complexes.

The optimized structures showed the expected pseudo-
octahedral coordination geometry around the iridium center
(the corresponding parameters provided as Supplementary
material). According to Fig. 2 and Table 1S, two coordinated
atoms (N(2) and C(3)) in the fac isomer are in trans position
and the valence angle of N(2)–Ir–C(3) is nearly 180°, while
the coordinating atoms (N(3) and C(2)) are in cis position and
the valence angle value N(3)–Ir–C(2) is close to 90°.
Furthermore, two valence angles between the coordinating
atoms from the same ligand and the central iridium atom
N(2)–Ir–C(1) and N(1)–Ir–C(3) are nearly identical, ca. 90°
(Table 1S and Fig. 1). Likewise, the valence angles N(2)–Ir–

N(1) and C(1)–Ir–C(3) in the mer isomer are also ca. 90°. For
fac-[Ir(bzq)3], Ir–N bonds lengths (Ir–N1, Ir–N2, Ir–N3) are in
the range of 2.195 – 2.199 Å, while Ir–C bonds (Ir–C1, Ir–C2,
Ir–C3) vary from 2.033 to 2.035 Å (Table 1). It was found that
Ir–C bond lengths are significantly shorter by ∼0.15 Å com-
pared to Ir–N bonds. A similar electronic environment of Ir–
C/Ir–N bonds leads to their similar bond distance (0.002 Å
and 0.004 Å). It is also notable that the change of substituent
(R = H, F, OMe, OPh, NMe2, C6F5, and p-C6H4-NPh2) in
position 5 in bzq ligand very slightly affects Ir–C and Ir–N
bond lengths of fac complexes containing these functionalized
ligands.

In the case of complex mer-[Ir(bzq)3], Ir–C and Ir–N bond
lengths are different from those in the fac isomer. In mer
configuration, two donor carbon atoms (C1 vs. C2) and two
donor nitrogen atoms (N2 vs. N3) adopt a trans orientation,
leaving the remaining C3 and N1 atoms trans to each other.
The different local environments result in different bond
lengths for these Ir–C and Ir–N bonds. For instance, owing

Table 1 Selected calculated bond distances (Å) in the ground states (S0) for the studied complexes

1 2 3 4 5 6 7

fac mer fac mer fac mer fac mer fac mer fac mer fac mer

Ir–C1 2.035 2.117 2.035 2.117 2.033 2. 117 2.034 2.116 2.034 2.115 2.034 2.114 2.033 2.113

Ir–C2 2.035 2.106 2.035 2.106 2.034 2.105 2.034 2.104 2.033 2.102 2.033 2.101 2.033 2.102

Ir–C3 2.035 2.024 2.035 2.025 2.034 2.024 2.035 2.024 2.035 2.023 2.033 2.022 2.033 2.022

Ir–N1 2.197 2.215 2.196 2.215 2.196 2.215 2.196 2.215 2.197 2.216 2.196 2.215 2.196 2.214

Ir–N2 2.197 2.078 2.198 2.078 2.198 2.078 2.198 2.078 2.197 2.078 2.195 2.078 2.195 2.078

Ir–N3 2.197 2.089 2.198 2.089 2.199 2.090 2.199 2.091 2.197 2.092 2.198 2.092 2.196 2.083

Fig. 2 Optimized geometries of fac-[Ir(bzq)3] and mer-[Ir(bzq)3] in the ground state
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to the strong trans influence of carbon atom C3, Ir–N bond
(Ir–N1) trans to it is much longer (about 0.13 Å) than the other
two Ir–N ones (Ir–N2, Ir–N3, see Table 1 and Fig. 2). It was
also found that Ir–C and Ir–N bond distances follow the trend:
Ir–C1 > Ir–C2 > Ir–C3 and Ir–N1 > Ir–N3 > Ir–N2. Moreover,
hardly any variation in Ir–C and Ir–N bond lengths (the dif-
ferences are 0.005 Å and 0.004 Å) was observed upon the
substituent change in position 5 of these mer complexes.

On the basis of the obtained Gibbs free energies for
iridium(III) complexes, populations of conformers were cal-
culated using a standard Boltzmann formalism. The percent-
age of a conformer X is given as:

%X ¼
exp −

ΔG0
x

RT

� �

∑iexp −
ΔG0

i

RT

� � � 100% ð1Þ

where ΔGx
0 is the relative energy of a conformer X.

The relative free energies of the optimized conformations
in the ground state along with their distributions are summa-
rized in Table 2. In all cases, the most energetically preferred
structure was the fac configuration. The relative energy of
fac-[Ir(5-R-bzq)3] in comparison to the mer-[Ir(5-R-bzq)3]

was more favorable from about 8 kcal mol–1 to 9.2 kcal
mol–1. As we can see, the fac isomer is more stable than
mer, which is consistent with the experimental observations
for similar ppy-based complexes [81]. The calculated popula-
tions of conformers suggest that virtually only the facial iso-
mers are likely to be observed in the equilibrium.

NMR chemical shifts

The 1H NMR calculations were carried out for the two iso-
mers of complex [Ir(bzq)3] in CH2Cl2 solvent using PCM
model and compared to experimental 1H chemical shifts re-
ported in literature [81]. It must be underlined here that exper-
imental data relate to a mixture of isomers [82] because the
isolation of pure facial or meridional isomer was not achieved;
as reported by Lamansky et al. [81]: BThe Ir(bzq)3 product
from this reaction is a mixture of fac- and mer-isomers.
Several wash cycles (acetone and dichloromethane) cause sig-
nificant enrichment of the mixture in fac-product but still does
not allow isolation of a pure facial complex.^. Therefore, the
experimental data was compared with computational data ob-
tained for both isomers (Table 3). The spectral data of the
complexes fac-[Ir(bzq)3] and mer-[Ir(bzq)3] have been sum-
marized in Table 2S and Table 3S (Supplementary materials).

Table 2 Comparison of fac/mer relative energies in the ground state obtained in B3LYP calculations and population of obtained conformers

Species Conformer Relative energy in
vacuum [kcal mol–1]]

Entropy
[cal mol–1 ∗K]

Thermal correction
to G [hartree]

Solvation correction
to G [hartree]

Relative ΔG
[kcal mol–1]

Population of
conformers

B3LYP/GEN B3LYP/GEN B3LYP/GEN B3LYP/GEN B3LYP/GEN X [%]

1 fac 0a 193.690 0.458803 −0.015587 0 >99.9

mer 8.8 192.757 0.459205 −0.014579 9.1 <0.1

2 fac 0b 206.874 0.430771 −0.014756 0 >99.9

mer 8.9 205.930 0.431161 −0.013616 9.2 <0.1

3 fac 0c 231.231 0.546774 −0.017932 0 >99.9

mer 9.2 230.219 0.547219 −0.018567 9.4 <0.1

4 fac 0d 294.705 0.681898 −0.016932 0 >99.9

mer 7.9 293.201 0.680728 −0.017243 8.4 <0.1

5 fac 0e 251.058 0.662387 −0.018438 0 >99.9

mer 8.9 249.993 0.662842 −0.017271 9.2 <0,1

6 fac 0f 248.126 0.66722 −0.195789 0 >99.9

mer 7.9 336.044 0.638312 −0.186478 8.6 <0.1

7 fac 0g 436.178 1.161229 −0.029694 0 >99.9

mer 8.0 435.391 1.160379 −0.028532 9.1 <0.1

Absolute energy baselines [in hartree]:
a 1769.811996
b 2067.526347
c 2111.509138
d 2689.066343
e 2171.723886
f 3948.794651
g 4011.872968
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As shown in Fig. 1S (Supplementary materials), calculated
chemical shifts of 1H NMR spectra for fac-[Ir(bzq)3] and
mer-[Ir(bzq)3] are in good agreement with the experimental
data, the obtained correlation equaled 0.95. The comparison of
calculated and experimental data let us assume that signals in
experimental spectrum come from both isomers. In the 1H
NMR spectrum of fac-[Ir(bzq)3], eight protons of a single
bzq ligand are displayed because the three ligands surround-
ing the iridium atom are magnetically equivalent. The signals
appearing at 8.03 ppm, 7.53 ppm, and 7.39 ppm originate

from fac-[Ir(bzq)3] and the other signals originate from
mer-[Ir(bzq)3].

Frontier molecular orbitals analysis

Results from numerous literature reports indicated that frontier
molecular orbitals analysis constitutes a useful proxy for exper-
imentally recorded photophysical properties of iridium(III)
complexes [78, 79, 82–84]. It is known that frontier molecular
orbitals (FMO) of complex ground state S0 are related to its
spectral properties [86]. Emission color of iridium(III) com-
plexes can be adjusted by changing their HOMO–LUMO
bandgap, which can be achieved on the course of ligand
functionalization with electron-donating and electron-
withdrawing substituents [86], and values of HOMO–LUMO
gaps predicted for Ir(III) complexes by DFT methods showed
surprisingly good correlation with the experimentally recorded
values of energies of emitted photons even in the case of phos-
phorescence, see for example [21, 22, 83–85, 87–90]. Contour
plots of frontier orbitals of both [Ir(bzq)3] isomers are depicted
in Fig. 3, while the visualizations of complexes 2–7 are collect-
ed in Table 4S (Supplementary materials).

As shown in Fig. 3, HOMO of fac-[Ir(bzq)3] is predomi-
nantly localized on the iridium atom and over benzo moieties
of the three bzq ligands. Similarly, LUMO is localized mostly
on pyrido fragments of the bzq ligands. It is also noteworthy
that change of the substituent in position 5 (R = H, F, OMe,
OPh, NMe2, C6F5, and p-C6H4–NPh2) causes minor effects

Table 3 Calculated 1H
NMR chemical shifts
(ppm) together with the
experimental data for
fac-[Ir(bzq)3] and
mer-[Ir(bzq)3]

Experimentala Calculated

8.31 8.31 (H14, mer)

8.19 8.22 (H7, mer)

8.12 8.12 (H2, mer)

8.03

7.90

7.60

7.47

8.03 (H4, fac)

7.85 (H17, mer)

7.67 (H10, mer)

7.67 (H13, mer)

7.39

7.22

7.14

7.07

7.53 (H2, fac)

7.50 (H20, mer)

7.49 (H6, mer)

7.46 (H24, mer)

6.96 7.46 (H15, mer)

6.8 7.39 (H8, fac)

6.57 7.18 (H8, mer)

a Ref. [81]

Fig. 3 Contour plots of HOMOs
(bottom) and LUMOs (top) of
fac-[Ir(bzq)3] (left) and mer-
[Ir(bzq)3] (right)
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on the electron densities of the HOMOs and LUMOs of com-
plexes 1–7 (Supplementary material).

In the case of mer isomers, HOMO dominants residues on
Ir metal center and benzo moieties of two bzq ligands contain-
ing C1 and C3 donor atoms. LUMO ofmer-[Ir(bzq)3] is main-
ly spread over pyrido moieties of the bzq ligands containing
N1 and N2 donor atoms. Similarly, as in the case of
fac-[Ir(bzq)3], HOMO and LUMO distributions seem not to
be very sensitive to substituents influence.

Energy levels of frontier orbitals and HOMO–LUMO en-
ergy gap for studied complexes are plotted in Fig. 4. It can be
seen that the impact of R substituent variation on HOMO and
LUMO energy levels for fac-[Ir(5-R-bzq)3] series follows the
same trend as in the case of mer-[Ir(5-R-bzq)3] series. In gen-
eral, electron-withdrawing substituents (R = F, C6F5) are re-
sponsible for lowering energy levels of HOMO and LUMO,
but does not extend the HOMO–LUMO energy gap in com-
parison to unmodified [Ir(bzq)3]. According to that, electron-
donating groups (R =OMe, OPh, NMe2, and p-C6H4–NPh2)
cause a higher increase of HOMO and LUMO levels in refer-
ence to unmodified [Ir(bzq)3]. In addition, such substituents
induce more destabilization of HOMO than LUMO, resulting
in smaller HOMO–LUMO energy gaps (Eg).

Moreover, it should also be pointed out that LUMO levels of
complexes in fac configuration are similar to theirmer analogues,
while HOMOenergy is decreased in comparison tomer isomers,
thereby leading to larger energy gaps of fac-[Ir(5-R-bzq)3] than
the corresponding mer-[Ir(5-R-bzq)3] (Fig. 4). The energies of
FMOs calculated with the use of different methods were listed in
Tables 5S–7S in Supplementary materials.

Conclusions

Electronic structures and photophysical properties of facial and
meridional Ir(III) complexes (fac-[Ir(5-R-bzq)3] andmer-[Ir(5-R-

bzq)3]) series were examined with the use of density functional
theory. For all of the studied iridium complexes, a greater ther-
modynamic stability of fac isomers in reference to mer isomers
were observed. DFT calculation with different functionals
(B3LYP, M06, and WB97XD) showed approximately 9 kcal
mol–1 stabilization of total energy in favor of fac isomers. The
differences in the ligand orientation around the metal center
causes the HOMO energies of meridional isomers to be higher
than those of facial forms, while LUMO energies are roughly the
same. Consequently, HOMO–LUMO energy gaps are wider for
fac-[Ir(5-R-bzq)3] than the corresponding mer-[Ir(5-R-bzq)3].
The obtained results show that geometrical structures of the com-
plexes are hardly affected by change of substituent (R =H, F,
OPh, NMe2, C6F5, and p-C6H4–NPh2) in position 5 of
cyclometalated ligand, while HOMO and LUMO energy levels
are significantly influenced by the substitution effects. In partic-
ular, the incorporation of electron-donating substituent p-C6H4–
NPh2 leads to decreased HOMO–LUMO gap, thus suggesting
red shift on the absorption/emissions spectra lines. In addition,
the predicted change of HOMO and LUMO energy levels for
both fac and mer forms are similar. Moreover, we suggested
which signals in 1H NMR spectra are likely to correspond to
fac ormer isomers, which should help in interpretation of exper-
imental NMR spectra.
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