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Abstract
Simulations of motion in a complex crowded environment were performed. We employed the dynamic lattice liquid model,
which was based on the cooperative movement concept. This algorithm is capable of working at very high densities, and the
motion of all objects was highly correlated. The so-called motion of a single agent, where the motion of molecules is considered
as a random walk without any correlation with other moving objects, was also calculated as the state of reference. Immobilized
chains embedded in a two-dimensional triangular lattice modeled the crowded environment. The dynamic behavior of movable
objects was studied and the influence of the structure of the matrix of obstacles on the molecular transport was discussed. It was
shown that the type of transport has an impact on the dynamics of the system. The appearance and properties of subdiffusive
motion were analyzed and referred to the structure of polymer systems.
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Introduction

Real biological environments are densely crowded with dif-
ferent components like lipids or proteins [1–6]. Transport phe-
nomena play a crucial role in such inhomogeneous systems
[1] but their dynamics are still far from being understood:
experiments indicate a diversity of dynamic behavior the ori-
gin of which is being widely discussed [7–13]. These systems
are mostly heterogeneous because the motion of molecules is
hindered not only by fixed obstacles but also by numerous
mobile objects, which can also be found there. The dynamics
of biological crowded systems was experimentally studied
using fluorescence correlation spectroscopy [1, 14–16],
pulsed field gradient NMR [17], and single particle tracking
SPT [6, 7, 18–23]. In some conditions an anomalous diffusion
(a subdiffusive behavior) was mostly detected showing that

the mean square displacement of objects 〈Δr2〉 scaled with
time t as 〈Δr2〉 ∼ tα, with α < 1 [6, 24–26]. SPT experiments
gave values of this exponent between 0.2 and 0.9 [27].

Computer simulations of crowded environments also result
in a subdiffusive motion of objects [27–31]. Usually, the pres-
ence of a matrix of fixed impenetrable obstacles results in an
anomalous diffusion [8, 24], and thus the crowded environ-
ment in such a case can be modeled as a cluster of obstacles
and the problem can be discussed using the theory of perco-
lation. If the concentration of obstacles is lower than the per-
colation threshold, the diffusion is anomalous for a short time
only. If the concentration of obstacles reaches the percolation
threshold, the diffusion becomes anomalous over the whole
time range [24, 32]. In the matrix of immobile obstacles at the
percolation threshold, the exponent α is shown to be very
close to 0.697 [14, 32–34]. In real biological systems, the
presence of obstacles can also affect chemical reaction kinet-
ics [35]. Simulations of such dense systems were performed
using molecular dynamics and Brownian dynamics tech-
niques employing both coarse-grained and atomistic models
[35–49]. The results of initial Monte Carlo simulations of
dense systems where cooperative motions were taken under
consideration were recently published [50–52].

At high densities, the motion of a given object is correlated
with the movement of neighboring objects. In this paper, we
investigated the motion of objects in matrices of obstacles
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having different sizes and shapes (protein or polymer chains)
using two different models of transport. The first one was a
single agent model (SAM), where the motion of each object
takes place without any correlation with other moving objects.
This model was also simulated to serve as a state of reference.
The dynamic lattice liquid (DLL) model was used for these
studies to study fully filled systems consisting of objects and
obstacles without any vacancies. DLL can simulate dense sys-
tems using cooperative motion, and thus correlations of move-
ment of objects were taken into consideration. Several works
show the usefulness of this model in the study of complex
macromolecular systems and crowded environments [53–60].
The comparison of results obtained for the models and their
applicability were also discussed. The model system was two-
dimensional and can be treated as a crude model of a cellular
membrane [5, 48]. The excluded volumewas the only potential
used, and thus the system under consideration was athermal.

The present study enables us to include the cooperative
motion of objects and to study the hydrodynamic properties
of the system, which is crucial for diffusion in a crowded
environment [46–48]. Thus, there is an important difference
between the proposed treatment and other lattice models
where motion was usually based on the concept of “an ant
in the labyrinth”, where the correlations of motion and also
hydrodynamic effects are practically neglected [26, 61]. In the
present work, strictly two-dimensional systems were studied
and immobilized chains served as obstacles for movable sol-
vent molecules. The relationship between the structure of
polymer films and the motion of solvent was the study intent.

The structure of the paper is the following: in the next
section “The models and the simulation methods” the basis
of the DLL model are briefly described. The section “Results
and discussion” presents the dynamics of objects in model
systems with the emphasis on the anomalous diffusion and
the comparison motion for all models under consideration.
The last section “Conclusions” summarizes the main out-
comes of the simulations.

The models and the simulation methods

The application of the DLL model and simulation method in
the case of a crowded environment was described in detail in
[53], and only a short description is given here. The DLL
model fulfilled the continuity equation and provided the cor-
related movements of ‘molecules’ as in a real liquid.
Moreover, the dynamic properties which it produced were in
good agreement with those established for liquids [54, 55].
The simulation can be performed at the highest possible den-
sity which cannot be obtained using other models. Molecular
dynamics simulations of models with a matrix of immobilized
obstacles were usually performed for total concentration up to
0.6 [40, 44, 46]. This model was based on the concept of

strictly cooperative motion of molecules in a dense system
[54, 55]. It was based on the model of liquids where molecules
vibrate near quasi-localized points (staying in a given place)
and are sometimes involved in a motion correlated with neigh-
bors resulting in a translation. This picture of a local motion in
a molecular liquid was commonly accepted and documented
by molecular dynamics simulations of dense hard disks and
Lennard-Jones systems [62, 63]. The model was coarse-
grained and beads represented entire molecules or their frag-
ments (large obstacles were linear sequences of such beads
forming polymer chains). The positions of the beads were
limited to vertices of a triangular lattice and all lattice sites in
the system were occupied by beads. The beads cannot move
simply because all neighboring lattice sites are occupied by
other objects in spite of the fact that long-rangemotions can be
found in such systems in reality. However, the DLL model
allowed the determination of the conditions required for mo-
lecular translations. Each displacement of an object from its
position was considered as an attempt of a movement to a
neighboring lattice site and the directions of these attempts
are located along lattice vectors.

DLL cooperative rearrangements on the lattice have a form
of closed loops of displacements involving at least three mol-
ecules as shown in Fig. 1. Objects that did not belong to a
closed loop consisting of at least three elements were
immobilized at the given time step. Immobile obstacles can
be introduced in a simple way: an element belonging to an
obstacle cannot take part in a cooperative loop in any case. A
time unit corresponds to an attempt to change the positions of
all molecules simultaneously. The simulation scheme of the
DLL algorithm is the following (see Fig. 1): (1) the generation
of the random vector field of motion attempts with a vector

Fig. 1 The idea of the DLL model. Polymer chains are immobilized
while solvent molecules can move. Effective cooperative
rearrangements along closed loops are marked in red
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assigned to each bead and pointed toward one of the nearest-
neighboring lattice sites, (2) the selection of groups of vectors
coinciding with contours of closed continuous paths (loops),
showing ways of possible cooperative rearrangements, and (3)
the rearrangement of objects (beads) along these closed paths
(loops) by displacing them to the neighboring sites. It should
be stressed that the algorithm based on the above assumptions
is strictly parallel.

The single agent model (SAM) was used to compare dif-
ferences in subdiffusive motion with those of the DLL model.
It is equivalent to the de Gennes ‘ant in the labyrinth’ [26, 64,
65] and can also be treated as a variant of the Lorentz gas (in
the original version of the latter model, obstacles can overlap)
[4, 66]. In SAM the motion of objects takes place without any
correlation with other moving objects. In the SAM model a
given number of obstacles was inserted at random positions
and a single agent object was placed on a randomly chosen
vacant site. It then performed a random walk on vacant sites.

The simulations were performed on a triangular lattice and
in the simulation box L × L, where L = 256 with periodic
boundary conditions employed along the x and y axes. It
was previously shown that if the system is larger than 64 ×
64 the statistic of cooperative loops of displacement did not
depend on the size of the Monte Carlo box [54]. The trajecto-
ries usually consisted of approximately 108 simulation steps
which is considerably more than in Brownian dynamics sim-
ulations even when a new fast algorithm was employed [38].
The simulations were repeated at least ten times and each
simulation run was performed for a different matrix of ran-
domly set obstacles (about 30 different matrices of obstacles
for a given concentration of obstacles), and the results were
averaged over all runs for a given set of parameters. Immobile
obstacles were generated randomly as chains of beads. The
concentration of obstacles was defined as the ratio of the sites
occupied by the obstacles to the total number of lattice sites in
the simulation box: c =mN/L2, where m is the number of
chains in the system and N is the length of each chain (each
polymer bead has the same size as a molecule of solvent).

Results and discussion

Local topological properties of a percolating system
in the critical region

There are two main factors which decide the dynamics of
moving elements in crowded environments: the topology
and the kind of transport. In the presented results, the topology
of the system was changed by varying the length of flexible
polymer chains. The scenarios of molecular transport were
also varied: DLL and SAM models were used.

The mean square displacement (MSD) is a basic quantity
that describes dynamics. It is defined as:

Δr2 tð Þ� � ¼ 1

n
∑
n

i¼1
ri tð Þ−ri 0ð Þ½ �2 ð1Þ

where ri(t) are the space coordinates of the ith molecule at
time t and n is the number of considered objects (solvent
molecules). The diffusion coefficient D is consequently de-
fined by the Einstein relationship:

Δr2 tð Þ� � ¼ 4Dt t→∞: ð2Þ

In disordered systems however, this law is not valid in
certain conditions [26] because of the appearance of anoma-
lous diffusion. Near the percolation threshold, the following
formula can be used to describe the diffusion of objects:

Δr2
� �

∼tα∼t2=dw ð3Þ

where α = 2/dw is the anomalous diffusion exponent.
Diffusion is hindered in these conditions, and one can find
α ≤ 1 or dw ≥ 2 [26]. Since it is not easy to clearly see the
changes of the exponent α from the course of the MSD func-
tion, we also present the MSD/time function, which makes it
much easier to recognize normal (Fickian) and anomalous
diffusion: the first one corresponds to a plateau (slope 0),
while the latter is featured by a negative slope. These param-
eters, calculated for solvent molecules in systems where
chains serve as immobile obstacles, are presented in
Fig. 2a,b for both models of transport. The length of chains
varies between N = 8 and N = 256, and their concentration is
set to 0.3 in order to study macromolecular systems below
(N = 8, 16, and 32), near (N = 64), and above (N = 128 and
256) the percolation threshold. One can observe dramatic
changes of the dynamic behavior of solvent particles with an
increase in polymer length for both kinds of transport.
However, for the SAM model, more rapid changes are evi-
dent. For small obstacles, i.e., for short chains (N = 8 and 16)
the diffusion of mobile objects takes place according to the
Einstein formula: MSD ~ t. For longer chains (N = 32 and 64)
one can observe that motion of solvent molecules exhibits a
significant deviation from normal diffusion, i.e., a sublinear
increase of MSD is visible, while for even longer chains (N =
128 and 256) the transition to localized motion is clearly vis-
ible. One can also observe from Fig. 2b that when increasing
the chain length, and thus approaching the percolation thresh-
old, the deviation of the exponent α from unity increases.
Therefore, for chains well below this threshold (N = 8 and
16) the distribution of positions should be close to Gaussian.
For longer chains near and above the percolation threshold,
the p distribution of positions should be described by the Fox
H-function. These distributions will be a subject of our further
studies.

The so-called non-Gaussian parameter α2(t) is a quantity
that is more sensitive to changes in the character of motion
than MSD. It is defined as [4, 67]:
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α2 tð Þ ¼ Δr4 tð Þ� �
2 Δr2 tð Þh i2 −1: ð4Þ

This parameter is close to zero when a normal (Fickan)
diffusion takes place and exhibits a peak in the crossover
to an anomalous diffusion regime. Changes of the non-
Gaussian parameter with time are presented in Fig. 3a.
This figure shows a clear example of changes in the dy-
namics of the SAM model. One can observe the transition
dynamics of solvent molecules with the change in chain
length: from normal diffusion through a subdiffusion

behavior where one can observe a strong deviation from
the Gaussian behavior to a localized motion case. In N =
8, 16, and 32, the non-Gaussian parameter is close to zero
as the system is far below the percolation threshold (the
dependency of the percolation threshold on the chain
length is given in the inset to Fig. 3) and the subdiffusive
motion appears for a very short period of time. In N = 64,
the chain system is near the percolation threshold and,
therefore, the parameter α2(t) rapidly increases, indicating
a crossover to the subdiffusive regime. The system with
chains N = 128 is above the percolation threshold and
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hence it in the region where the subdiffusive motion be-
gins. The system with the longest chains under consider-
ation N = 256 is considerably above the percolation
threshold and only localized motion can be noticed here;
for this reason the α2(t) plot does not display a peak.
Further insight into the character of motion can be obtain-
ed by studying the changes of the parameter α2 with the
distance (<Δr2>)1/2. These plots are shown in Fig. 3b for
the same polymer concentration (ϕ = 0.3) and for various
chain lengths. This type of plot is much better at showing
how the diffusion changes with the mean distance traveled
by molecules. The case of the chain N = 64 is especially
interesting here: for a certain distance a rapid increase of
the non-Gaussian parameter takes place. This is because
of the direct proximity to the percolation threshold as
confirmed by the values shown in the inset.

One can draw the conclusion that real changes of the
dynamic character of solvent appear to be connected
with the global topological properties of the system: the
presence or the absence of a cluster formed by obstacles
(polymer chains in this case) that precludes or enables
the global diffusion. At this point we would like to check
whether such serious changes could be connected with
local properties like the geometry of an obstacle (a mac-
romolecule) or local concentrations of solvent and poly-
mer. In Fig. 4, we present snapshots of polymer systems
at the considered concentration ϕ = 0.3. This concentra-
tion was chosen in order to study polymer systems be-
low, near, and above the percolation threshold. One can
observe that there are no structural differences between
these systems: there are chains that are completely sepa-
rated one from another and deeply penetrated, and there
are chains coiled as well as extended. The detailed

qualitative analysis of the chains’ structure will be car-
ried out below.

The most common parameters that describe the structure of
polymer chains are the following:

(i) The mean square radius of gyration R2
g

D E

R2
g

D E
¼ 1

N
∑
N

i¼1
ri−rcmð Þ2

� �
; ð5Þ

where N is the total number of beads constituting the chain
and rcm is a coordinate of the chain’s center of mass.

(ii) The mean squared end-to-end distance

R2
ee

� � ¼ r1−rNð Þ2
D E

ð6Þ

where r1 and rN are space coordinates of chain ends.

(iii) The gyration tensor T

Tkl ¼ 1

N
∑
N

i¼1
rik−rcm;k
� �

ril−rcm;l
� �� �

ð7Þ

where k and i are the coordinates x and y, rik is the kth coordi-
nates of the position ri, and rcm,k is the kth coordinate of the
chain center-of-mass. The tensor T has two eigenvalues de-
noted λ1 and λ2 (with the convention λ1 ≥ λ2) called shape
parameters, which fulfill the relation:

Fig. 4 Snapshots of polymer
chains (obstacles) for N = 32, 64,
128, and 256 at polymer
concentration ϕ = 0.3
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R2
g ¼ λ1 þ λ2 ð8Þ

(iv) The asphericity parameter A2, defined as

A2 ¼
λ2−λ1ð Þ2

D E

λ2 þ λ1ð Þ2
D E ð9Þ

which means that that A2 = 1 for a fully extended chain and
A2 = 0 for a disk.

(v) The intrachain site-site correlation function of sites sep-
arated by r = ri − rj

γ rð Þ ¼ 1

n
c rið Þ⋅c r j

� �� � ð10Þ

where c is a contrast operator assuming values of 1 for sites
occupied by molecular elements (beads) and assuming 0 ev-
erywhere else.

(vi) The intrachain static form factor:

S qð Þ ¼ ∑
ij
γ rð Þ sin qrð Þ

qr
ð11Þ

where q is the scattering vector and γ denotes the bead-to-
bead correlation function defined in Eq. (10).

The parameters describing size and shape of polymer

chains are shown in Fig. 5. R2
g;R

2
ee;λ1;λ2;A2;R2

g=R
2
ee are pre-

sented as functions of the chain length at the polymer concen-

tration ϕ = 0.3. Both size parameters R2
g and R2

ee are expected

to scale with the chain length as:

R2
g

D E
∼ R2

ee

� �
∼N2v ð12Þ

This scaling behavior is generally observed, but for longer
chains some deviations are clearly visible. Both shape param-
eters λ1 and λ2 exhibit a similar behavior; one can also notice
that λ1 is an order of magnitude larger than λ2, which was
expected as the shape of a chain at intermediate polymer con-
centration should be elongated [68]. The exponent ν, which
was introduced by Flory [68], is very important in polymer
physics because it shows how the size of a macromolecule
scales with the chain length N (see Eq. 12), but it also

describes the fractal dimension of chains df according to the
relation df = 1/ν. In other words, it shows how polymer chains
fill the area where they are placed. Contrary to the above

behavior, the remaining two parameters A2 and R2
g=R

2
ee in

Fig. 5 are almost constant, indicating that the changes in the
structure of macromolecules when varying the length of chain
at a given concentration are rather small. A universal scaling
behavior of polymer chains at the percolation threshold was
recently found [69], but despite this universality and similar
structures, the dynamics of the solvent is different in the two
models of transport considered.

The structural properties of polymer chains can also be
analyzed using the static form factor. This parameter gives
us information about the internal structure of a chain; it is also
important as it can be determined in real experiments. If one
considers a disk of radius r around a given bead and l beads
from the same chain are present inside that disk, then γ(r) ∝ l/
r2, where γ(r) is the correlation function defined in Eq. (10).
For long chains, the mean square end-to-end distance scales as

N2ν and, therefore, the γ(r) function scales as γ rð Þ∝r1ν−2.
Taking the Fourier transform and using scaling arguments
one can obtain:

S qð Þ∝q−1
ν ð13Þ

Figure 6a shows the static form factor S(q) for chains N =
32, 64, 128, and 256 at the polymer concentration ϕ = 0.3. In
order to emphasize any deviation of the chains studied from
Gaussian behavior, we additionally present Kratky plots for
the same parameters, i.e., the plots of q2S(q). The slopes of
linear fragments of S(q) plots in Fig. 6a are the following:
−1.445 ± 0.001 (N = 32), −1.447 ± 0.001 (N = 64), −1.451 ±
0.001 (N = 128), and − 1.465 ± 0.002 (N = 256). The
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theoretical slope predicted for Gaussian chains in two dimen-
sions is: −0.75 (a single chain) and −2 (at very high polymer
concentrations) [68]. As the chain systems studied are at in-
termediate polymer concentrations, one can expect the above
values in the slopes of S(q) plots — the slope should corre-
spond to −1/ν. The slopes in Fig. 6a are in agreement with the
values of the exponents ν calculated for the same polymer
systems [70]. Similar shape of the form factor plots for differ-
ent chain length confirms that the structure of chains
(obstacles) does not change within the considered range of
polymer length. The Kratky plot shows that there is no signif-
icant deviation form the Gaussian behavior of chains.

Dynamic behavior of the system near the percolation
threshold

The dynamic behavior of moving objects near the percolation
threshold is one of the main questions concerning systems
containing obstacles. The dependence of the dynamics on
the obstacle size and the kind of transport at the percolation
point is of great importance for physical, biological, and other
applications. Important and interesting dynamic characteris-
tics of objects moving in crowded environments can be ob-
tained from the analysis of the position autocorrelation func-
tion (PAF) defined as:

ρ tð Þ ¼ 1

n
∑
n

i¼1
mi 0ð Þmi tð Þ ð14Þ

where mi(0) = 1 and mi(t) = 1 or 0, depending whether or not
the ith bead occupied its original position (at t = 0) and at a
given time t, respectively. Figure 7 shows this function

determined for various chain lengths near the percolation
threshold for some chain lengths and employing both models
of transport: DLL and SAM. One can observe that near the
percolation threshold a similar behavior was found in both
cases: fewer and fewer moving objects remain arrested in
cages formed by immobile chains (obstacles) when the poly-
mer length increases (caging effects correspond to plateaus
observed on each curve). However, one can distinguish clear
differences between the two cases: for the SAM model the
decrease of PAF takes place more rapidly, which is related to
the lack of correlations between moving elements in this case.
The correlation between moving elements in the case of the
DLL model leads to a situation where some potentially mov-
able elements become temporary obstacles [50]; therefore, the
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effect of trapping some of the moving elements in the case of a
DLL is much stronger than in the case of SAM. It results in a
weaker disappearance of the PAF function over time and a
much higher plateau observed in the case of the DLL model.
The heights of plateaus in plots of the PAF function depend on
the chain length: the shorter the chains the higher the plateaus.
This behavior is caused by differences in the polymer concen-
tration for the systems under consideration (see inset to Fig. 3
for the changes of the percolation thresholds with chain
length). In conclusion, the caging near the percolation thresh-
old effect differs not only for models of transport but also for
chains of different lengths. The influence of the caging on
trajectories of moving objects is not presented here as it was
already described and discussed [36, 52].

The changes ofMSDwith time near the percolation thresh-
old can shed more light on the correlation between the struc-
ture of polymers (obstacles) and the dynamics of solvent mol-
ecules. Figure 8 presents MSD as a function of time for var-
ious chain lengths. For all cases under consideration in all time
regimes the displacements are very similar within a given
model of transport although for SAM the mobility of solvent
molecules is considerably higher than for DLL. This behavior
is quite different from that concerning the caging effect where
the differences are significant (see the discussion above on
results from Fig. 7). All MSD curves near the percolation
point are quite similar despite significant differences in the
size of macromolecules (obstacles) and the polymer concen-
tration, which is rather surprising given that the structure of
the polymer film was different in all cases (see Fig. 4). Slopes
of the MSD curves for long time periods are approximately
equal to 0.77 for the SAMmodel and 0.45 for the DLLmodel.
This is more than in the case of small obstacles, where the
slope was found to be 0.70 and 0.37, respectively [50, 52].
This is possibly because the distribution of small obstacles is
rather uniform when compared with the structure of a polymer
film (like those presented in Fig. 4). The observed similarity of
the MSD behavior for systems of different sizes of obstacles
near the percolation threshold and for both models of transport
confirms the results obtained from the analysis of the non-
Gaussian parameter α2 as a function of time.

The direct confirmation of the above findings can be found
in Figs. 9 and 10, where the non-Gaussian parameters α2 for
both models of transport (DLL and SAM) are shown near the
percolation threshold. The left panels show the dependence of
α2 on time while the right panels show its dependence on the
distance traveled. For both considered models only minor dif-
ferences were found despite large differences between the size
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of obstacles and their concentration. Moreover, this similarity
concerned both dependencies: time and displacement — the
subdiffusive motion starts after traveling approximately the
same distance in spite of differences in chain structures when
changing the chain length. Large differences between α2

values for the SAM and DLL models can be seen, which
can be connected with much smaller deviation from
Gaussian behavior for the SAM model than in the DLL case.
The above results indicate a certain universality of the dynam-
ic behavior within a given model of transport.

Conclusions

We used a coarse grained model for studies of the motion of
probe molecules in crowded environments. The coarse-
grained model was found to be suitable for studies carried
out at considerably long-time scales. The model objects were
beads embedded on a two-dimensional triangular lattice with
excluded volume interactions only. The system was disor-
dered by the insertion of flexible polymer chains that were
immobilized and served as impenetrable obstacles. Thus, we
consider a model of molecular transport in heterogeneous en-
vironment (the distribution of crowders was heterogeneous)
that is characteristic for biological media. To extend our pre-
vious models [50–52] and to make them more realistic, we
introduced the differentiation in size and shape of obstacles
that is a typical feature of real biological systems. The main
advantage of our simulation method is the possibility of
studiying very dense systems where the motion of objects is
strongly correlated for a very long time (seven decades). In the
systems studied, the entire space was fully occupied, which
was a unique feature of this method. The assessment of this

simulation method was done by comparing it with a method
where there were no correlations in motion of objects. The
main problem addressed in this study was the microscopic
mechanism of crowding-induced subdiffusion. The structure
of polymer films was determined and visualized, and we fo-
cused on the question of whether there are any differences in
the structure of polymer systems stemming from the fact that
some of these systems hindered the motion of solvent mole-
cules while other systems made the motion localized. To de-
termine the dynamics of the model system, the dynamic lattice
liquid algorithmwas employed. It allowed for studies of dense
systems (all lattice points were occupied) at considerably long
time periods. In this model the motion of objects is highly
correlated. A second model of molecular transport (single
agent model) was also employed; a key feature of which is
that there are no correlations in the motion of objects. We
studied all systems at a chosen polymer concentration in order
to have the system under consideration below, near, and above
the percolation threshold depending on the chain length. We
also investigated the systems at polymer concentration corre-
sponding to the percolation thresholds. A normal Fickian dif-
fusion that turned into anomalous diffusion was observed. The
anomalous diffusion was transient, and the normal diffusion
was recovered; however, for the polymer concentration above
the percolation threshold, only localized motion was ob-
served. The appearance of the subdiffusive behavior was
shown to depend on the model of transport and the length of
the macromolecules. Significant differences in mobility of
movable objects appeared mainly in the subdiffusion region.
The mobility of solvent molecules near the percolation thresh-
old was found to be quite similar despite differences in the
structure of chains. This holds true in spite of the universal
behavior of some chain parameters. One can also conclude
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that knowing the local structure of polymer film does not
enable one to recognize if it is located below, near or above
the percolation threshold. The above findings could be of
interest when studying real biological systems, where there
are differences in size and shape of moving objects. The un-
derstanding of lateral diffusion in membranes is important as
this process influences other important phenomena like elec-
tron transport, receptor signaling or gating ions. A more de-
tailed model of the motion in membranes will include interac-
tions (binding and chemical reactions).
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