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Abstract
The physical properties of lipid bilayers are sensitive to the specific type and composition of the lipids that make up the
many different types of cell membranes. Studying model bilayers of representative heterogeneous compositions can provide
key insights into membrane functionality. In this work, we use atomistic molecular dynamics simulations to characterize
key properties in a number of bilayer membranes of varying composition. We first examine basic properties, such as lipid
area, volume, and bilayer thickness, of simple, homogeneous bilayers comprising several lipid types, which are prevalent
in biological membranes. Such lipids are then used in simulations of heterogeneous systems representative of bacterial,
mammalian, and cancer membranes. Our analysis is especially focused on depth-dependent, transmembrane profiles; in
particular, we calculate lateral pressure and dipole potential profiles, two fundamental properties which play key roles in a
large number of biological functions.
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Introduction

Lipid bilayers are fundamental structures in biology; they
form a continuous barrier around cells, compartmentalize
the intracellular space, act as selective barriers for the per-
meation of molecules, and also play key roles in modulating
the dynamics, organization, and function of membrane pro-
teins [1–4]. A detailed understanding of the properties of
lipid bilayers is central to biology, and can help the advance-
ment of related research areas such as biomedicine and drug
design [5–7]. Molecular dynamics (MD) simulations pro-
vide a powerful, complementary approach to experiments,
and as such they have been used to study extensively many
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aspects of lipid bilayers [8–14]. Simulations are especially
useful to study those properties that fluctuate substantially
as a function of depth inside the bilayer, as experimen-
tal investigation is very arduous, mostly because of the
small thickness (∼45 Å), high fluidity and heterogeneity of
typical bilayers.

In this study, we use atomistic MD simulations to charac-
terize a number of fundamental physical properties for var-
ious bilayers of different lipid compositions. In particular,
we investigate multicomponent, asymmetric lipid bilayers
with complex compositions mimicking mammalian, cancer,
and bacterial plasma membranes.

The mammalian plasma membranes are typically made
of approximately 65% glycerolipids, 10% sphingolipids,
and 25% sterols, and have a highly asymmetric lipid com-
position [15–17]. Specifically, the extracellular leaflet is
mostly composed of phosphatidylcholine (PC) lipids such
as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC),
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and of
sphingolipids such as sphingomyelin and glycosphing-
olipids. The intracellular leaflet on the other hand is enri-
ched in phosphatidylethanolamine (PE) lipids such as 1-
palmatoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine(POPE)
and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPE),
and in negatively charged phosphatidylserine (PS) lipids
such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine
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(POPS) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine
(DOPS). While many phospholipids may show no prefer-
ence to a specific leaflet of the membrane, PS lipids are
known to be predominantly located in the inner leaflets
of the cells [18–21]. A consequence of this irregular lipid
composition is that the inner leaflet of the mammalian
plasma membrane is anionic in nature [15, 16].

When healthy cells develop into cancer ones, the trans-
formation is accompanied by a 5–9 times increase in PS
lipids in the external leaflet; in fact, this change has been
the primary mode of recognition of transformed cells by
monocytes as part of the body’s immune response [22,
23]. Indeed, in many studies, efforts have been made to
exploit this expression of PS lipids in external leaflets to
design cationic antimicrobial peptides (AMPs) and anti-
cancer peptides (ACPs) that specifically target tumor cells,
without harming the surrounding normal cells [24, 25].
Another alteration found in tumor cells is the reduction of
cholesterol. Cholesterol is a major component of all eukary-
otic membranes, where its presence induces increased
ordering of lipid hydrocarbon chains [26–28], decreased
lateral diffusion of lipids along the membrane plane [29]
and increased lateral pressure profile magnitudes [30, 31].

In this study, we simulate both a mammalian and a cancer
bilayer membrane models based on the representative
compositions of Klahn et al. [32], which reflect the two
aforementioned features of healthy mammalian cells and
transformed cancer ones. It is important to stress that the
models used in our work include only representative lipids
of a limited number of prevalent species, and thus do not
capture the full diversity of lipids in real cells; for example,
predominant species such as polyunsaturated lipids, as
well as PA, PI/PIPs and glycolipids, are not included.
Especially considering the heterogeneity in saturation levels
of lipid tails in real cells, the presence of lipids with only
monounsaturated tails is a limitation of our study.

Regarding the bacterial membrane, we have approxi-
mated the complexity of real systems [33] with a model
consisting of a 2:1 POPE:POPG lipid composition, which
is arguably representative of the fundamental character of
most Gram-negative bacterial membranes. In fact, the lipid
composition used in our work has been used previously both
in experiments [34] and MD simulations [35, 36]. In partic-
ular, the PG lipids induce a net negative charge on bacterial
membranes (similarly to the effect of PS lipids on cancer
membranes).

Apart from the three complex bilayers discussed above
(mammalian, cancer, and bacterial), we also simulated
homogeneous bilayers composed of individual lipids
present in the complex systems, in order to investigate their
contributions to the various properties analyzed. For each
bilayer, we first calculate a number of basic membrane
structural properties, such as area and volume per lipid, and

bilayer thickness. We then place special focus on the trans-
membrane profiles of lateral pressure and dipole potential,
as these fundamental properties, which vary significantly
as a function of depth inside the membrane, are believed to
play important roles in many membrane processes [37–39].

Considering the types of known interactions that exist
at various depths inside the lipid membrane, an internal
inhomogeneous distribution of lateral pressure is expected
theoretically and can be predicted qualitatively [40]. Exper-
iments have also been conducted to quantify the lateral
pressure using pyrene moieties as probes to detect the local
pressure change [41, 42]. However, only relative pressure
changes in the tail regions could be obtained, and the accu-
racy of the experimental data is disputed [12, 41]. More
recently, numerous molecular simulations have provided
quantitative evidence that the lateral pressure profile is
characterized by depth-dependent pressure variations of the
order of hundreds of atmospheres [12, 40, 43]. Furthermore,
it is believed that the corresponding forces affect embed-
ded proteins and permeating molecules, with repercussions
on many membrane phenomena [1, 39, 44, 45]. For exam-
ple, specific changes in the membrane lateral pressure may
underpin the basic mechanism of general anesthesia by con-
trolling the opening of ion channels that conduct neural
signals [46]. An important factor that determines the shape
and magnitude of the lateral pressure profile is the specific
composition of the lipid bilayer. Notably, it has been shown
that even small changes in the lipid composition can induce
large variations in the pressure profiles [39]. Previous sim-
ulation studies have focused on the effects of cholesterol
[30, 31], changing unsaturation levels of constituent lipids
[47, 48] as well as the lamellar vs. nonlamellar lipid ratio
using coarse-grained [49] and atomistic models [50]. Per-
rin et al. [51] have reported the pressure profiles for a 1:1
POPE:POPG, which is similar to our 2:1 POPE:POPG bac-
terial bilayer. However, as far as we are aware, no previous
MD study has been reported on pressure profiles for the
complex mammalian and cancer bilayer systems considered
in this work.

The dipole potential is an intramembrane electrostatic
potential which arises at the water–lipid interface due to
the ordering of water molecular dipoles as well as dipo-
lar charge distributions on lipid molecules [37, 52]. A
direct measurement of the dipole potential would require
the deployment of nanoscale electrodes at different depths
within the bilayer, which has proved so far practically
impossible [52]. It has been, however, possible to estimate
the potential difference between the bilayer center and the
outer water phase through indirect experimental measure-
ments. In a pioneering study on ion transport [53], the trans-
bilayer conductivity of two fat-soluble ions with similar
sizes was observed to be drastically different, with the per-
meability of the negative ion (TPB-) being about 105 times
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higher than the positive ion (TPP+). This difference was
ascribed to the existence of a positive electrostatic potential
within the membrane. Some follow-up studies using varied
methods and experiments confirmed the presence of such
an electrostatic potential and estimated a magnitude of sev-
eral hundreds of mV [52, 54]. It is crucial to note that the
dipole potential fluctuates sharply within short distances of
2–3 nm, which is the approximate thickness of each of the
monolayers in a typical bilayer. The corresponding elec-
tric field (which corresponds to the spatial derivative of the
dipole potential) can therefore reach extremely large values,
predicted to be in the range of 107-109 V/m. As a result,
many electrostatically driven phenomena, such as binding
and permeation of charged or polar molecules, as well as
dynamics and interactions of ligands and corresponding
transmembrane proteins, may be affected by changes in
dipole potential. Past studies have considered the effects of
lipid composition on the dipole potential, with a focus on
the headgroup type [55], ether or ester linkage type [56]
and double bonds in the chain region [57]. An atomistic
MD simulation study by Ding et al. [50] focused on the
effects of altering the lamellar vs. nonlamellar lipid compo-
sition. Overall, previous studies have considered relatively
simple systems, either homogeneous bilayers or comprising
two lipid types. In this work, we report for the first time the
dipole potential of more complex and biologically relevant
bacterial, mammalian, and cancer model membranes.

Methods

Lipid bilayer systems

Details of the composition of the lipid bilayer systems
simulated in this work are reported in Table 1.

In particular, we study four homogeneous systems, each
containing a single lipid type: POPC, POPE, POPG, and
POPS. All the PC, PE, PG and PS lipids in this work have 1-
phosphatidyl-2-oleoyl (PO) tails. The POPC system is then
extended to include extra components, resulting in three
mixed systems of incremental complexity, which include
cholesterol (Chol) and palmitoylsphingomyelin (PSM):
PC:Chol, PC:Chol:PSM and PC:Chol:PSM:PE. Palmitoyl-
sphingomyelin (PSM) consists of 18:1-sphingosine and
16:0-palmitic acid. The molecular structures of all the lipid
types simulated in this study are displayed in Fig. 1. Three
additional systems are considered as models for bacte-
rial, mammalian, and cancer membranes. Specifically, the
bacterial membrane consists of a 2:1 PE:PG composition,
following Horn et al. [58]. Regarding the mammalian and
cancer membranes, their composition was taken from Klahn
et al. [32]; supplementary Fig. S1 displays the percentage
lipid composition and Table 2 reports their asymmetric lipid
distribution in the outer and inner leaflets.

All systems were fully hydrated with water and were
neutralized with counter-ions wherever necessary. The
CHARMM36 force field and the corresponding TIP3P
implementation were used to model the lipids and water,
respectively [59, 60]. System configurations were set up
using Membrane Builder [61–63] from the Charmm-GUI
[64]. In general, when constructing asymmetric bilayers, it
is important to include the correct number of lipids in each
leaflet, as any mismatch could introduce unrealistic effects,
such as non-zero leaflet tension [65]. As a check on our
systems, we carried out a number of extra simulations of
symmetric bilayers, each comprising a lipid composition
taken from each of the leaflets in the asymmetric systems.
We then calculated the XY leaflet areas and compared them.
As shown in the Supplementary Information (Fig. S3), after
an initial equilibration the symmetric systems converge to

Table 1 Composition of the
lipid bilayer systems simulated System Lipid type (Nlipids) Nwater Nions Natoms

POPC PC (128) 5760 0 33856

POPE PE (128) 5760 0 33280

POPG PG (128) 5760 128 33664

POPS PS (128) 5760 128 33664

PC:Chol PC (134), Chol (66) 9000 0 49840

PC:Chol:PSM PC (101), Chol (66), PSM (33) 9000 0 49609

PC:Chol:PSM:PE PC (59), Chol (66), PSM (33), PE (42) 9000 0 49231

Bacterial PE (88), PG (44) 5940 44 34452

Mammalian PC (70), PE (83), PS (45), Chol (136), PSM (63) 28000 45 127982

Cancer PC (79), PE (101), PS (86), Chol (68), PSM (66) 28000 86 131633

Nlipids is the total number of lipids, Nwater is the total number of water molecules, Nions is the total number
of ions and Natoms is the total number of atoms in the system. Lipid type names are abbreviated as follows:
PC (POPC), PE (POPE), PG (POPG), PS (POPS), Chol (cholesterol) and PSM (palmitoylsphingomyelin)
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Fig. 1 Molecular structures of all a glycerophospholipids, b palmi-
toylsphingomyelin and c cholesterol used in this study. Explicit
hydrogens are omitted for clarity. d A representative snapshot of the
mammalian bilayer system (created in VMD [108]) simulated in this

study, with an approximate scale of distance from the bilayer cen-
ter. Different colors correspond to different lipid species. The lipid
tails are displayed in licorice, phosphate atoms with VDW, and water
molecules with QuickSurf representation

areas that are at most ∼ 3% different than the corresponding
asymmetric systems. Such a difference, which is expected
to correspond to 3–4 lipids at most, is arguably negligible
and unlikely to significantly affect the bilayer properties
considered here.

The simulation input files are publicly available on
figshare.com, see the Supplementary Information for the
specific URL of each system.

Table 2 Lipid distribution in outer and inner leaflets of mammalian
and cancer membranes

Lipids Mammalian Mammalian Cancer Cancer

(Outer) (Inner) (Outer) (Inner)

PC 53 20 54 25

PE 17 66 17 84

PS 4 41 36 50

Chol 68 68 34 34

PSM 58 5 59 7

Simulation details

Molecular dynamics simulations were performed using
Gromacs version 5.1 [66, 67]. All the controls and bacterial
systems were subjected to energy minimization and then
NPT equilibration for 1 ns. The systems were coupled
to the velocity rescale thermostat [68] with a coupling
time constant of 0.1 ps. Except for the POPE, all the
other systems were simulated at 303 K. The POPE bilayer
was simulated at 310 K for consistency with the updated
CHARMM36 force field [60]; such a slightly higher
temperature typically used in previous simulations of the
CHARMM36 model for POPE [60, 69] reproduces the
correct liquid phase experimental behavior while preventing
the formation of a gel phase (this is depicted in Fig. S2
in the Supplementary Information). Semi-isotropic pressure
coupling [70–72] was carried out using the Berendsen
barostat [73] for equilibration and the Parrinello–Rahman
barostat [74] for production runs, with a coupling time
constant of 2 ps. The SETTLE algorithm [75] was used
to constrain bonds and angles in water molecules. All



J Mol Model (2019) 25: 76 Page 5 of 13 76

other hydrogen-related bonds were constrained using the
LINCS algorithm [76], with two iterations in every step
for correcting rotational effects and a numerical expansion
up to the fourth order. Volume compressibility was chosen
to be 4.5 · 10−5 bar-1. For short-range van der Waals and
electrostatic cutoff, the default optimized distance of 1.2 nm
was used and a force-switch potential modifier was applied
from 1 to 1.2 nm. Long-range electrostatic interactions were
calculated using the particle mesh Ewald (PME) algorithm
[77]. The neighbor list was updated using grid-based search
procedure every five steps. Each system was simulated for 1
μs; means and standard errors for the properties of interest
were calculated using three trajectory blocks, corresponding
to the intervals of 251–500, 501–750, and 751–1000 ns,
while the initial 250 ns was regarded as equilibration.

Some extra steps were taken for equilibrating the
mammalian, cancer, and the intermediate systems
(PC:Chol:PSM and PC:Chol:PSM:PE) due to their com-
plexity. In particular, these systems were subjected to
stepwise energy minimization and equilibration under the
NVT and NPT ensembles. The systems were coupled to the
Berendsen thermostat at 303 K with a coupling time con-
stant of 1 ps. The pressure was maintained at 1 atm using
semi-isotropic pressure coupling with the Berendsen baro-
stat [73]. For production runs, the thermostat and barostat
were switched to velocity rescale and Parrinello–Rahman
respectively, consistently with the other systems.

Calculations and data analysis

Structural properties Following a common convention, the
lipid bilayers were set up along the XY -plane, with the
Z-axis thus crossing the membrane perpendicularly. The
area per lipid (AL) is defined as the cross-sectional area
(AXY) of the whole system along the bilayer surface plane
(XY -plane), divided by half the total number of lipids
(NL) present in the bilayer, i.e., AL = AXY/(NL/2). An
exception to this method, however, is the PC:Chol bilayer,
for which the area per lipid for POPC in the presence
of cholesterol was calculated using the freely available
tool APL@VORO [78]. The volume per lipid (VL) was
calculated from the total volume of the simulation box
(Vbox) as VL = (Vbox − Vwater)/NL, where Vwater is
calculated from simulation of a pure water box at 303 K (at
310 K for POPE bilayer) and 1 atm. The bilayer thickness
(dHH) was calculated as the head-to-head distance between
the two peaks of the electron density profile. The electron
density profiles were calculated using the gmx density tool
in Gromacs, with the simulation box divided into 500 slabs
parallel to the XY -plane.

Lateral pressure profile To calculate the lateral pressure
profile π(z) we used GROMACS-LS [79–81], a custom

version of GROMACS that calculates the local stress tensor
in 3D. This package was used to rerun the simulated
trajectories and output the local stress tensors. Since
the long-range electrostatic solver is not implemented in
GROMACS-LS, an increased cutoff distance of 2.0 nm
was used for Coulomb interactions, as recommended by the
package developers. The simulation box was divided into
0.1 Å thick slabs parallel to the XY-plane, with the lateral
pressure π(zs) at slab s defined as:

π(zs) = Pxx(zs) − Pyy(zs)

2
− Pzz(zs) (1)

where Pxx(zs), Pyy(zs) and Pzz(zs) are the diagonal
elements of the pressure tensor for slab s, along the X, Y and
Z axes respectively. All the profiles have been smoothed by
adaptive high-order spline fitting for clarity [82].

Dipole potential We calculated the transmembrane dipole
potential ψ(z) using the Gromacs tool gmx potential. In
particular, the potential is obtained by summing the charge
density distribution ρ(z) per slab, where the simulation box
was divided into 500 slabs of ∼0.18 Å thickness each. The
dipole potential is obtained by double integration using the
following expression [71]:

ψ(z) = − 1

ε0

∫ z

0

∫ z′

0
ρ(z′′)dz′′dz′ (2)

where ε0 is the electrostatic permittivity in vacuum.

Results and discussion

Structural properties

Simulation results for area per lipid AL, volume per lipid
VL, and bilayer thickness dHH are reported in Table 3,
together with available literature data from experiments and
previous atomistic simulations.

For the homogeneous bilayers, as well as the PC:Chol
system, our results are in good agreement with the values
previously reported in the literature, thus validating our
simulation setup.

The bacterial bilayer, being composed of POPE and
POPG lipids in the ratio 2:1, exhibits intermediate values for
its structural properties, although closer to the homogeneous
POPE values. This is expected, due to POPE’s higher
concentration in the bacterial bilayer, however it appears
that POPE’s contribution is amplified in relation to its
concentration. In particular, the bacterial bilayer exhibits
condensation, in that the lipid area for the two-lipid mixture
is lower than expected by simply taking a weighted average
over the individual lipid areas of the POPE and POPG
bilayers. This effect is also reflected in the electron density
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Table 3 Structural properties

This Work Previous studies

AL (Å2) VL (Å3) dHH (Å) AL (Å2) VL (Å3) dHH (Å)

POPC

63.1 (0.1) 1231.2 (0.1) 37.5 (0.3) 64.3E, [93] 1256E, [94] 37E, [94]

64.7S, [60] 1191.9S, [95] 38S, [95]

POPE310K

55.6 (0.1) 1176.8 (0.1) 43.4 (0.2) 56.6E, [96] 1180308K
E, [97] 39.5308K

E, [97]

59.2310K
S, [60] 1134.9310K

S, [95] 41310K
S, [95]

58.8310K
S, [69]

POPG

64.6 (0.1) 1226.6 (0.1) 38.5 (0.2) 66E/S, [98] 1203E/S, [98] 36.7E/S, [98]

66.3310K
S, [99] 1208.7 [100] 36.3310K

S, [99]

67.2S, [101] 1151S, [101] 36.3S, [101]

POPS

55.8 (0.3) 1196.01 (0.3) 43.2 (0.5) 62.7298K
E/S, [102] 1198.5308K

E, [102] 42.2308K
E, [102]

55300K
S, [103] 1194300K

S, [103] 40.6298K
S, [102]

57.5S, [101] 1120.5S, [101] 42.4S, [101]

PC:Chol

49.45* (0.1) 1027.5 (0.1) 45.4 (0.1) 45.1321K
E,50%, [85] not available 44.5300K

S,30%, [104]

51.1298K
S,40%, [105]

Bacterial

56.8 (0.1) 1186.6 (0.1) 40.8 (0.1) 58.3S,3:1, [106] not available not available

61.5310K
S,3:1, [107]

Mammalian

42.1 (0.1) 989.5 (0.3) 47.3 (0.2) not available not available not available

Cancer

46.1 (0.1) 1085.5 (0.3) 45.9 (0.4) not available not available not available

AL, VL and dHH represent the area per lipid, volume per lipid and bilayer thickness, respectively. Standard errors are reported in round brackets.
Superscripts ’E’ and ’S’ correspond to values derived from experiments and simulations, respectively; ’E/S’ indicates values derived from a
combined experimental and simulation approach. The temperature is 303 K unless otherwise stated as subscript. For PC:Chol bilayer and bacterial
bilayers, the relevant cholesterol concentration and PE:PG lipid ratios are reported as superscripts. Last superscript numbers are references. *The
value reported for area per lipid for PC:Chol is of POPC only

profiles, reported in Fig. 2. Specifically, it can be seen that
the bacterial profile exhibits peaks that are larger than the
constituent lipid profiles.

The mammalian lipid bilayer, which is a complex
mixture of five different types of lipids, exhibits the
lowest area and volume per lipid (∼42 Å2 and ∼989 Å3,
respectively) and the highest bilayer thickness of ∼47 Å.
This can be attributed primarily to the condensation effect
induced by the predominance of cholesterol (34%) in the
bilayer. A number of studies have indeed demonstrated
that the presence of cholesterol induces a reduction in AL

and VL and an increase in dHH in phospholipid bilayers
[83–87]. Our own PC:Chol bilayer (AL: ∼45 Å2), with

one-third cholesterol content shows a ∼30% reduction in
AL as compared to POPC (∼63 Å2), in close agreement
with such previous studies [83–87]. Compared to the
mammalian bilayer, the cancer composition is characterized
by a decrease in cholesterol and an increase in PS and
PE lipids (also see supplementary Fig. S1). Such changes
bring about an ∼18% increase in AL, from ∼42 Å2 to
∼46 Å2, an ∼10% increase in VL, from ∼990 Å3 to
∼1085 Å3, and a ∼3% decrease in bilayer thickness, from
∼47.3 Å to ∼45.9 Å. The presence of cholesterol in
lipid bilayers is known to increase the ordering of lipid
chains by intercalating in free spaces between them [88],
effectively decreasing the lipid area; since a lipid membrane
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Fig. 2 Electron densities of bacterial, POPE, and POPG bilayers.
Shaded areas represent error bars. The vertical dotted lines represent
approximate boundaries for the regions occupied primarily by water,
lipid heads, and tails

behaves as an incompressible fluid [86], this decrease in
the area per lipid causes the bilayer thickness to increase.
The difference in lipid composition between mammalian
and cancer bilayers is also reflected in the electron densities,
as illustrated in Fig. 3. It can be noted, in particular, that
the mammalian profile shows a broadening of its peaks in
the headgroup region compared to its cancer counterpart,
without any significant change in the magnitudes.

Lateral pressure profile

The lateral pressure profiles for all the systems simulated in
this study are shown in Figs. 4 and 5. Specifically, Fig. 4
shows profiles for the bacterial lipid bilayer, together with
the constituent POPE and POPG homogeneous systems.
All three pressure profiles display a similar general trend.
In particular, corresponding to the profile extremes at the
outer aqueous phase, the lateral pressure is close to zero,

Fig. 3 Electron densities of mammalian and cancer bilayers. Shaded
areas represent error bars. The vertical dotted lines represent
approximate boundaries for the regions occupied primarily by water,
lipid heads, and tails

Fig. 4 Lateral pressure profiles for the bacterial, POPE, and POPG
bilayers. Shaded areas represent error bars. The vertical dotted lines
represent approximate boundaries for the regions occupied primarily
by water, lipid heads, and tails

as expected. Upon approaching the membrane, the lateral
pressure rises and forms a positive peak at the interface
between the water and lipid heads regions. Positive lateral
pressure values indicate repulsive forces, acting to increase
the area of the bilayer. Proceeding deeper into the bilayer,
the lateral pressure declines sharply, forming deep troughs
near the interface between the lipid heads and tails regions.
Negative lateral pressure reflects the presence of attractive
forces that act to reduce the bilayer area. In fact, the pressure
troughs are a manifestation of the hydrophobic effect,
whereby attractive lateral forces minimize the contact area
between the hydrophobic core of the bilayer (comprising
the hydrocarbon tails) and the hydrophilic environment
(comprising lipid headgroups and water).

In the center of the bilayer, corresponding to the core of
hydrophobic tails, the POPE and bacterial pressure profiles
have five positive peaks, with four corresponding local
minima in between them. POPG instead features a single
central maximum. In general, positive pressure peaks in
the lipid tails region represent repulsive forces arising from
entropy loss [39]. Specifically, the tight molecular packing
in the bilayer core forces the lipid tails to stretch, therefore
losing entropy when compared to the isolated ”free” tails,
ultimately causing significant intermolecular repulsion in
the bilayer center [89, 90].

While all three profiles in Fig. 4 display similar
qualitative features, important differences can be observed
in relation to the different lipid composition. At the interface
between the water and lipid heads regions, at a distance
of approximately ∼2.5 nm from the bilayer center, the
POPG system displays a maximum positive pressure of
∼530 bar, which is substantially larger than the value
for the corresponding peaks in the bacterial (PE:PG) and
POPE bilayers. Such large magnitude of the positive
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Fig. 5 Lateral pressure profiles of different bilayer systems with vary-
ing compositions. Shaded areas represent error bars. The systems vary
in complexity starting from the top, from pure, symmetric POPC a
and PC:Chol b bilayers to the mammalian e and cancer f bilayers at

the bottom. Pressure profiles from asymmetric bilayers c–f are plot-
ted separately, with the ones on the right from the outer leaflet and the
ones on the left from the inner leaflet

peak for POPG can be attributed to significant head–
head electrostatic repulsion, a consequence of POPG’s net
charge; in fact, we observed similarly high repulsion for a
homogeneous bilayer comprising POPS, which also carries
a net charge (see Fig. S4 in the Supplementary Information).
Overall, in the water and heads regions, the bacterial bilayer
displays a peak pressure of ∼400 bar, a value intermediate

between the large POPG peak of ∼530 bar and the lower
value of ∼140 bar for the pure POPE bilayer. The POPE
pressure profile is also characterized by the presence of a
small trough in the heads region at about ∼2.4 nm distance
from the bilayer center, as previously observed for a DOPE
bilayer [50]. Regarding the pressure troughs near the heads–
tails interface, the POPE system features the most negative



J Mol Model (2019) 25: 76 Page 9 of 13 76

value of ∼-720 bar, while the bacterial and POPG bilayers
feature pressures of ∼-550 and ∼-400 bar, respectively. In
the tails region, the POPE and bacterial bilayers show large
positive peaks in the range of ∼300 to ∼400 bar.

Regarding the mammalian and cancer bilayers, we
have attempted to isolate the different contributions to
the lateral pressure profiles from various lipid types.
In particular, starting from the pure POPC bilayer, we
have progressively added the required lipid species and
monitored the corresponding effects on the pressure profile,
until the attainment of the complete mammalian and cancer
bilayer compositions. The results obtained for the various
systems simulated are reported in Fig. 5. Starting from
the top, the POPC bilayer (Fig. 5a) shows a pressure
profile qualitatively similar to the previously discussed
POPG bilayer, with large positive peaks in the heads region
and a few small positive peaks in the tails region. The
profile changes its structure and magnitude significantly
with the addition of cholesterol (Fig. 5b); in particular,
more peaks and troughs emerge, in agreement with previous
studies [30, 31].

Noting that the cholesterol content in the mammalian
bilayer is 34% of all lipids, we maintain constant cholesterol
levels in both the upper and lower leaflets, while adding
different lipids in different concentrations in the subsequent
bilayers to make up the final lipid composition in the
mammalian and cancer bilayers. The replacement of a
proportion of POPC lipids with PSM (Fig. 5c) and PE
(Fig. 5d) in the subsequent bilayers marginally increases the
magnitudes of the peaks and troughs in the PC:Chol:PSM
and PC:Chol:PSM:PE bilayers. The subsequent addition of
PS lipids, which completes the formation of the mammalian
bilayer, induces a small but noticeable reduction in the
peak magnitudes (Fig. 5e). It can be observed that there
is high similarity between the pressure profiles of PC:Chol
and the more complex mammalian bilayers, indicating that
cholesterol has a predominant role in shaping the lateral
pressure profile. The PC:Chol and mammalian profiles are
superimposed in Fig. S5 in the Supplementary Information.
While the pressure profiles of the two bilayers are very
similar in the outer leaflet, the mammalian pressure profile
in the inner leaflet exhibits much higher magnitudes (up
to ∼800 bar and ∼1070 bar at a distance of 1 nm and
1.75 nm from the bilayer center, respectively). The inner
leaflet pressure profile of the mammalian bilayer also shows
an outward shift in the lipid tails region, along with the
appearance of a local trough in the lipid heads region (∼-
175 bar at a distance of ∼2.7 nm from the bilayer center).
This behavior could be attributed to a higher concentration
of PE lipids (33%) in the inner leaflet of the mammalian
bilayer, in qualitative agreement with our previous study
on mixed DOPC/DOPE bilayers [50]. Compared to the
mammalian system, the cancer bilayer (Fig. 5f) features

greatly reduced peak magnitudes, which can be ascribed to
the halving of its cholesterol content.

Dipole potential

The dipole potential profiles ψ(z) for POPG, POPE, and the
mixed PE:PG bacterial systems are displayed in Fig. 6, while
the profiles for the cancer and mammalian bilayers are dis-
played in Fig. 7. While all profiles share similar qualitative
characteristics, there are significant composition-dependent
differences in the magnitude of the potentials.

Figure 6 shows that, starting from the initial zero
reference value in the aqueous phase, the dipole potential
rises rapidly across the lipid heads region, up to peak
values of ∼370 mV for POPG, ∼530 mV for the bacterial
bilayer and ∼640 mV for POPE, at a distance of ∼1.3
nm from the bilayer center. The profiles then form a local
minimum at ∼0.8 nm from the bilayer center, at a depth
roughly corresponding to the presence of the lipid tails
unsaturation. The profiles then reach a global maximum in
the bilayer center, with values of ∼500 mV for POPG, ∼750
mV for the bacterial bilayer and ∼900 mV for the POPE
bilayer. These central peaks are associated with the presence
of partial charges, and corresponding dipoles, at the tails
methyl termini. Our results for POPE are consistent with
the previously reported atomistic simulation results of pure
DOPC, DOPE, and mixed DOPC–DOPE bilayers [50, 70,
91] while for the POPG bilayers, our profile agrees with
previous results by Zhao et al. [92].

Figure 7 reports the dipole potential profiles for the
mammalian and cancer bilayers. Starting from the zero
reference value in the water phase, the potential profiles rise
towards the heads region up to peak values of ∼540 mV
for the mammalian and ∼560 mV for the cancer system.
Proceeding towards the bilayer center, a noticeable local

Fig. 6 Dipole potential profiles for bacterial, POPE, and POPG
bilayers. Shaded areas represent error bars. The vertical dotted lines
represent approximate boundaries for the regions occupied primarily
by water, lipid heads, and tails
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Fig. 7 Dipole potential profiles for cancer and mammalian bilayers.
Shaded areas represent error bars. The vertical dotted lines represent
approximate boundaries for the regions occupied primarily by water,
lipid heads, and tails

minimum is present (although less prominent compared to
the bacterial lipid bilayer results considered previously).
The profiles then form a global maximum in the bilayer
center, with a peak value of ∼985 mV for the mammalian
and ∼920 mV for the cancer system. Upon entering the
internal leaflet (corresponding to positive distances from the
bilayer center in our convention), the profiles drop towards
the secondary peaks near the heads–tails interface region,
with values of ∼555 mV for the mammalian and ∼525 mV
for the cancer system. Overall, these results show that the
dipole potential is not significantly sensitive to changes in
cholesterol and PS lipids.

Conclusions

In this work, we have used atomistic molecular dynamics
simulations to study structural and depth-dependent proper-
ties of complex lipid bilayers with biologically relevant lipid
compositions. In particular, we analyzed key properties of
a model bacterial bilayer in terms of the contributions from
the constituent lipid types. With regards to the lateral pres-
sure profile, we found that the 2:1 POPE:POPG bacterial
bilayer profile is mostly shaped by the POPE contribution
in the central tails region, characterized by prominent pres-
sure peaks of high magnitude, while the POPG contribution
is predominant in the water and heads region. Regarding
the dipole potential, the profiles of the bacterial system and
those of the constituent lipids share the same qualitative
features, while the magnitudes reflect the different com-
position. In particular, the bacterial profile, while bounded
by the POPE and POPG bilayer profiles, has magnitudes
closer to those of the POPE bilayer, consistently with the
higher POPE concentration, compared to POPG, in the bac-
terial system. We also focused on the effects of changes

in the lipid composition between mammalian and cancer
bilayers. Cholesterol was identified as the predominant con-
tributor to the lateral pressure in both complex bilayers.
Specifically, the peak pressure magnitudes in the cancer
profile were observed to be sharply reduced compared to
those in the mammalian profile, corresponding to a 50%
decrease in cholesterol in the cancer bilayer compared to
the mammalian one. However, regarding the dipole poten-
tial, no noticeable differences were observed between the
mammalian and cancer systems. To our knowledge, this
is the first report of transmembrane lateral pressure and
dipole potential profiles for model bacterial, mammalian,
and cancer lipid bilayers.
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