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Abstract

This study is concerned with identifying features of 4-aminoquinoline scaffolds that can help pinpoint characteristics that enhance
activity against chloroquine-resistant parasites. Statistically valid predictive models are reported for a series of 4-aminoquinoline
analogues that are active against chloroquine-sensitive (NF54) and chloroquine-resistant (K1) strains of Plasmodium falciparum.
Quantitative structure activity relationship techniques, based on statistical and machine learning methods such as multiple linear
regression and partial least squares, were used with a novel pruning method for the selection of descriptors to develop robust
models for both strains. Inspection of the dominant descriptors supports the hypothesis that chemical features that enable
accumulation in the food vacuole of the parasite are key determinants of activity against both strains. The hydrophilic properties
of the compounds were found to be crucial in predicting activity against the chloroquine-sensitive NF54 parasite strain, but not in
the case of the chloroquine-resistant K1 strain, in line with previous studies. Additionally, the models suggest that ‘softer’
compounds tend to have improved activity for both strains than do ‘harder’ ones. The internally and externally validated models
reported here should also prove useful in the future screening of potential antimalarial compounds for targeting chloroquine-
resistant strains.
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Introduction

Malaria is a life-threatening disease, which, according to the
World Health Organization (WHO), resulted in almost half a
million deaths in 2016, with 91% of those occurring in the
WHO African Region [1]. Malaria is spread through the bite
of the female Anopheles mosquito, with symptoms only be-
coming apparent several days later. Of the five Plasmodium
parasites known to cause malaria (P. falciparum, P. vivax, P
malariae, P. ovale, P. knowlesi), P. falciparum is the most
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deadly form, which, if not treated, can lead to severe illness
and possible death. Upon taking a blood meal, the mosquito
injects into the human host sporozoites that invade the liver
cells and undergo development and multiplication [2]. The
eventual rupture of the hepatocytes releases merozoites into
the blood, which go on to enter the red blood cells and under-
go further maturation and multiplication. The rupture of these
blood cells results in the characteristic cyclical fever associat-
ed with malaria. During maturation in the red blood cells, the
parasite remodels the host cell by inserting parasite proteins
and phospholipids into the red blood cell membranes [3]. The
host hemoglobin is also digested and transported to the para-
site food vacuole, where it provides a source of amino acids.
Free heme is generated during this process and is ordinarily
toxic to the parasite, but it is readily converted to hematin and
subsequently undergoes dimerization to form (3-hematin. The
majority of this (3-hematin is then rendered harmless to the
parasite through biocrystallization to form insoluble hemozoin
[4].

The 4-aminoquinoline drug chloroquine (Fig. 1) has found
widespread use in the treatment of malaria [5]. Chloroquine is
thought to become trapped within the parasite food vacuole,
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Fig. 1 Chloroquine

where it prevents the biocrystallization of 3-hematin. This
occurs due to the acidic nature of the vacuole, in which chlo-
roquine becomes ‘trapped’ in its membrane-impermeable
doubly protonated form. Chloroquine then forms a complex
with free heme, leading to the accumulation of heme and,
ultimately, parasite death. Unfortunately, Plasmodium
falciparum is now resistant to chloroquine in most parts of
the world [6, 7]. In resistant strains of the parasite, chloroquine
can escape from the parasite food vacuole due to a mutation in
the Pfcrt gene that encodes a protein known as the chloroquine
resistance transporter (Pfcrt) [8, 9]. This transporter protein
causes decreased accumulation of the drug within the food
vacuole due to alterations in the membrane protein, which
allow chloroquine to diffuse away from the vacuole.
Chloroquine-resistant strains of the parasite possess a neutral
threonine residue in place of the positively charged lysine
moiety at position 76 of the Pfcrt protein, thereby allowing
the chloroquine to exit the food vacuole down a steep outward
concentration gradient [10—12]. Structural modifications to
the 4-aminoquinoline chemotype can produce analogues that
circumvent chloroquine resistance and which exhibit similar
antimalarial potential [13].

As is well known, quantitative structure—activity relation-
ship (QSAR) models can be used to correlate the structural
and physicochemical features of a molecule with a measured
property of interest such as biological activity [14]. The foun-
dations of QSAR rest upon the similarity principle, which
suggests that structurally similar compounds are more likely
to exhibit similar properties [15]. The molecular descriptors
used in QSAR studies describe the various chemical and phys-
ical properties of the compounds which, when expressed nu-
merically, can form quantitative relationships with activity.
When a relationship is found, the resulting mathematical ex-
pression can predict the biological activity of other chemical
structures that were not used to develop the model, and whose
biological activity is as yet unknown. Katritzky et al. [16]
successfully used QSAR techniques to model the antimalarial
activity of two diverse sets of compounds against different
parasite strains, with the descriptors utilized in their models
being related to the mechanism of action of the compounds.

The research presented here details the development of
QSAR models for a series of compounds that contain the 4-
aminoquinoline motif and which have previously been tested
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against both a chloroquine-sensitive (NF54) and chloroquine-
resistant (K1) strain of malaria. Our aim was to develop robust
QSAR models that are capable of predicting activities for both
of these strains. A range of machine learning methods was
used, alongside rigorous validation of the resulting models.
Subsequent interpretation of the molecular descriptors in
terms of the mode of action of the 4-aminoquinoline com-
pounds provides useful guidance as to how to circumvent
parasite resistance to this class of compound.

Methods
The 4-aminoquinoline dataset

The structures and biological testing results of chloroquine
and of 44 novel 4-aminoquinoline compounds of the general
formula shown in Fig. 2 are described in US patent 5596002
[17]. The selected P. falciparum strains included the MDR
chloroquine-resistant strain K1 and the sensitive strain
NF54, which were selected on the basis of genotypic and
phenotypic information previously reported in the literature
[18]. Quantitative ICs, values have been reported for all 45
compounds against the NF54 and K1 parasite strains, with
activities ranging from 2 ng/ml to 30 ng/ml for the NF54 strain
and from 6 ng/ml to 114 ng/ml for K1 [17]. The chemical
structures, alongside these activity data, are displayed in
Table S1 (Supporting Information). After conversion of these
ICso values to mol dm >, we generated plCsy=—1g(ICs)
values for each of the 45 compounds against both parasite
strains.

The Spartan’08 package [19] was used with the MMFF94
molecular mechanics force field [20] to generate an energy
minimum conformation for each of the 45 compounds.
Molecular descriptors describing the 0, 1 and 2 dimensional
properties of the compounds, encompassing information such
as constitutional counts, chemical functionality, and topolog-
ical features, were then calculated using both DRAGON [21]
and ADMEWORKS Modelbuilder [22]. This resulted in a set
of 957 descriptors.

R

Fig. 2 The 4-aminoquinoline template, with R groups ranging from
simple H or CI atoms to alkyl substitutions and trifluoromethyl groups,
and 7 either 0 or 1
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Spartan’08 [19] was used to perform a conformational
search and subsequent structural alignment of the 4-
aminoquinoline compounds to a common pharmacophore.
This pharmacophore was defined based on the lowest energy
conformation of the most active compound across the two
strains (molecule 15 in Table S1), using chemical functional
descriptors as shown in Fig. 3. Following the generation of a
conformer library, a similarity analysis was performed for each
of the other 44 compounds so as to identify the conformation
closest to that of the pharmacophore. An additional 673 three-
dimensional (3D) molecular descriptors, which encode for im-
portant features such as structural geometry and molecular sur-
faces, were calculated for the resulting structures.

For each strain, the resulting datasets of 0 to 3D descriptors
(1630 in total) were auto-scaled: each descriptor is divided by
the standard deviation for that descriptor across all observations,
such that each scaled descriptor then has a mean of 0 and a
variance of 1 [14]. Such normalization of the variables allows
the (scaled) descriptors to be compared on an equal footing.
Although it has been shown that the exclusion of 3D molecular
descriptors can still yield significant QSARs [23], this seems
unlikely to be the case for the present study. This is because
several of the molecules considered here (see Table S1) contain
a stereogenic carbon atom, with different enantiomers
displaying different activity values. Nonetheless, we did also
seek models based only on the 0 to 2D descriptors (957 in total).

QSAR generation

Defining appropriate training and test sets is an essential part
of the QSAR development process: it allows for models to be
built on a training set and then for their performance to be
assessed on a test set. Such training and test sets should satisfy
various criteria [24], including: (1) representative points of the
test set must be close to representative points of the training

Hydrogen bond
donor
Positive
ionisable site
Aromatic Hydrogen bond
acceptor

Hydrophobe

Fig. 3 Pharmacophore shown with chemical functions labels (H atoms
removed for clarity)

set; (2) representative points of the training set must be close
to those of the test set; and (3) the training set must be diverse.
The sphere-exclusion algorithm described by Hudson et al.
[25] attempts to meet such criteria, identifying which com-
pounds most effectively cover the available property space.
Briefly, the most active compound is selected for the training
set, following which all compounds that are within the simi-
larity threshold to the selected compound are placed instead in
the test set. This is analogous to removing from the training set
all compounds that are enclosed in a notional hypersphere
centered on the most active compound. Out of the remaining
compounds, the algorithm then identifies the one that lies
closest to the center of the hypersphere and places it in the
training set. Again, compounds within a similarity threshold
are placed instead in the test set. This process continues until
there are no more compounds to select.

Appropriate feature selection, using both objective and
subjective methods, was applied to the datasets of molecular
descriptors. In general terms, objective selection techniques
aim to remove molecular descriptors which are irrelevant or
redundant, so as to minimize multicollinearity. A key benefit
is a lower probability of chance correlations, which are possi-
ble when there are more descriptors than data points. The
selection strategy involves removing those descriptors that
are highly correlated to one another, keeping only the descrip-
tors that provide unique information. The CORCHOP [26]
routine was used as the objective method providing a means
of systematically reducing the initially large number of de-
scriptors whilst retaining the vital information. So as to reduce
the number of molecular descriptors still further, a variety of
subjective methods were used to generate subsets [27]. Whilst
objective methods simply consider the relationships between
the independent variables (descriptors), subjective methods
select the most appropriate descriptors based on their relation-
ship to the dependent variable, in this case biological activity,
as quantified by the pICsq values. The methods we employed
included forward selection, which selects the descriptors
which contribute the most to a model in an iterative process,
based on their correlation to activity [28]. Backwards elimi-
nation was also studied; it involves periodically removing the
least informative descriptors until a desired number is reached
[14]. Additionally, a stepwise procedure was considered,
which is similar to forward selection, except that at each stage
the possibility of deleting a descriptor is considered [29].
Finally, a genetic algorithm (GA) was considered that gener-
ated a population of linear regression equations, with each
having a different combination of descriptors, so that ultimate-
ly the best selection can be chosen [30].

We made extensive use of the software package PHAKISO
[31] for the generation of QSAR models as well as for data
pruning and for the splitting of the data into training and test
sets. Default settings were employed except for subjective
selection where the maximum/minimum variables was altered
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so that the molecule to descriptor ratio > 5 and the error mea-
surement was adjusted coefficient of determination. For the
various descriptor subsets that were selected, QSAR models
were generated using linear methods, starting with multiple
linear regression (MLR). Subsequent to MLR generation
using PHAKISO [31], programs and scripts were written that
can generate and process the MLR equations for all possible
combinations of up to 23 descriptors (with the actual MLR
statistics obtained using calls to NAG library routines [32]).

Partial least squares (PLS) was examined as an alternative
to MLR, given that it can be particularly useful when the
number of independent variables is comparable to, or much
greater than, the number of data points. The chosen descrip-
tors explain not only the variance in the descriptors, but also in
the dependent variable, and can lead to highly stable and pre-
dictive models even when there is a high degree of correlation
between descriptors [33].

Model validation

The validation of QSAR models was performed according to
standard criteria that are specified throughout the literature.
For the internal validation of our models, we required [14,
34-37]: a molecule to descriptor ratio>5; 1*>0.7; 12, >
0.5; ¥ — rﬁootmp )<0.3; F-statistic > tabulated value; t-sta-
tistic for each descriptor >2. Here, 72 is the coefficient of
determination (squared correlation coefficient) between the
predicted and observed pICs, values; 77, is the leave-one-
out (LOO) cross-validation value of 72, found when a single
data point is removed and a new model is calculated, with the
new model being used to predict the dependent variable of the
removed object; rﬁomstrap is determined by resampling the ini-
tial data and generating new models, which can then predict
the excluded samples, with a high rf,ootstmp value generally
being indicative of a robust model [38].

Internal validation allows an assessment of the robustness of
a model, but gives no true measure as to its predictive capabil-
ities. Instead, external validation on a test set not used during
the model development is realistically the only truly predictive
test [38]. Accordingly, the models were applied in the present
work to the test sets that were generated during the splitting of
the original data. The following standard criteria were applied:
q*>0.5; 7 >0.6; |ro” — 0% <0.3; (P-roD)* <0.1; 0.85<k<
1.15 or 0.85<k'<1.15. Here, ¢* represents the LOO cross-
validated #* for the test set. The coefficient of determination
and the gradient of the best-fit line passing through the origin
are denoted roz and k, respectively, for the predicted against
observed pICs, values. The primed quantities, 7> and k', sig-
nify the analogous quantities for the observed against predicted
values. The family of QSAR models developed after different
random shuffling of the dependent variable (Y-randomization)
should of course generally have inferior training statistics [38].
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Such Y-randomization tests were performed for our more
promising models. The relative weights of the descriptors with-
in significant regression models were calculated by closely
approximating the average increase in  obtained by adding
a predictor variable across all possible sub-models [39]. This
allows for the proportion of the variance accounted for by the
model to be divided amongst the independent variables.

Results and discussion
NF54 strain

Various encouraging models could be generated using the 0 to
3D descriptors (Table 1, models 1-4), with GA-MLR identi-
fying the most promising QSARs. Applying the principle of
parsimony, we judged that model 4 was better than model 3,
with all descriptors possessing a z-statistic greater than 2.

In order to identify the most significant independent vari-
ables, a descriptor selection method was adopted in which
QSAR models were developed independently using either
the DRAGON [21] or ADMEWORKS Modelbuilder [22]
descriptor sets (plus 3D descriptors). Using GA-MLR, a series
of eight models based on between seven and ten descriptors
was developed and validated internally for all 45 compounds
(i.e., there were no test sets). Descriptors with a #-statistic > 2
were then collated into a new subset of descriptors. It was
hoped that more statistically valid models could be found
when using the resulting set of 38 descriptors.

Models were initially developed with GA-MLR (Table 1,
models 5-9) using these 38 descriptors but they failed to satisfy
all validation criteria. On the other hand, an alternative subjective
selection method, GALIib [40], resulted in three models (Table 1,
models 10—12) that passed all of the required validation criteria,
with strong statistics observed throughout. Figure 4 illustrates the
linear relationship that was observed for model 11, clearly show-
ing the favorable performance for both the training and test set.

Further validation was sought for models 10-12 using the
leave-many-out (LMO) cross validation approach. A mean ¢
was calculated over 1000 iterations, with a value exceeding
0.5 generally considered to be a significant cut-off point for
good models [34]. Y-randomization of both the /* and LMO
¢ statistics was also performed to check that the models were
robust and not simply down to chance correlations. It is clear
from the results shown in Table 2 that models 10-12 all pass
the thresholds. The plots collected in Fig. 5 demonstrate very
clearly for model 11 that the alternative models generated
through Y-randomization consistently have much poorer sta-
tistics than does the actual model. The corresponding plots for
models 10 and 12 have similar characteristics. These three
models can therefore be considered robust and statistically
significant with regard to predicting the NF54 activity of these
4-aminoquinoline compounds.
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Table 1 Summary of key statistics for the NF54 and K1 MLR models. Results given to two decimal places

Model  Descriptorset ~ Method #descs”  Training set statistics Test set statistics
” 7 F- r%ommp 7 s D)/ k -
statistic ” o

NF54:
1 0-3D Forward 12 0.72 0.41 5.76 —0.80 0.02 062 0.02 099 048
2 0-3D Stepwise 3 0.60 031 1827 -1.20 0.86 097 0.04 1.00  0.05
3 0-3D GA-MLR 8 0.84 0.74 2047 0.66 056 0.72  0.00 1.00 0.14
4 0-3D GA-MLR 7 0.75 057 1348 0.43 0.60 0.73  0.00 1.00  0.09
5 (38)° GA-MLR 10 088 —1.04 17.73 0.91 0.63 0.74  0.00 .01 0.12
6 (38) GA-MLR 9 0.89 031 2275 0.89 0.62 0.74  0.00 1.01  0.04
7 (38) GA-MLR 8 084 457 17.28 0.87 0.67 0.73  0.00 1.00  0.08
8 (38) GA-MLR 7 083 —470 1930 0.87 0.64 0.79 0.00 1.01  0.07
9 (38) GA-MLR 6 078 —220 16.89 0.81 0.63 0.74  0.00 1.00  0.10
10 (38) GALib-MLR 10 0.90 0.69  20.70 0.59 0.75 0.88 0.03 1.00  0.11
11 (38) GALib-MLR 7 0.83 053 1823 0.70 0.68 0.80 0.01 1.01  0.12
12 (38) GALib-MLR 8 0.85 059 18.54 0.61 0.64 0.86 0.05 1.01  0.17

K1:
13 0-3D GA-MLR 9 0.89 0.82 2567 0.72 020 031 1.04 1.00 021
14 (33" GA-MLR 8 091 0.83  35.09 0.78 072 0.75  0.02 1.00  0.01
15 (33) GA-MLR 7 0.91 0.83 3348 0.72 0.57 0.68 0.00 1.00  0.11
16 (33) Stepwise 3 0.68 0.56 2245 0.53 0.89 0.89 0.04 1.00  0.03
17 (33) Stepwise 3 0.74 0.62  25.06 0.56 0.59 0.68 0.02 1.00  0.05

(38) and (33) denote models created from the pruned subsets of 38 and 33 descriptors, with # descs being the actual number of descriptors used to build

the model

As we had anticipated, QSAR analysis of the NF54 dataset
using just 0 to 2D descriptors was unsuccessful. A single
model found using GA-MLR displayed some promise, with
an internal 7 value of 0.80, but it failed to meet the acceptance
criteria when tested externally, showing no predictive
capabilities.

Fig. 4 Linear relationships 8.2 1

observed in model 11 for NF54
data

7.8
7.6

7.4

Predicted values (pIC50)

7.2

6.8

K1 strain

Much the same strategies were applied to the K1 data, but this
time only one internally valid model was found using GA-
MLR with the 0 to 3D descriptors (Table 1, model 13), and
we could not find any externally valid models. (Unsurprisingly,

R?=0.8011

R>=0.8253
°

® Training Set

X Test Set
—— Training Set (line of best fit)
——Test Set (line of best fit)

6.8 7

712 7i4 716 718 8 812
Actual values (pIC50)
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Table 2 Summary of Y-

randomization and leave-many- Model Method s Average 17 LMO ¢* Average LMO ¢°
out (LMO) qz validation tests for (Y-randomization) (Y-randomization)
models 10-12 and 1417 (using
1000 iterations) NF54:
10 GALib-MLR 0.90 0.30 +0.12 0.59 0.035 + 0.053
11 GALib-MLR 0.83 021 +0.11 0.59 0.034 + 0.051
12 GALib-MLR 0.85 023 +0.11 0.52 0.031 £ 0.046
KI:
14 GA-MLR 0.91 023 £0.10 0.82 0.044 + 0.055
15 GA-MLR 0.91 023 £0.11 0.82 0.051 + 0.067
16 Stepwise 0.68 0.083 + 0.067 0.56 0.050 + 0.063
17 Stepwise 0.74 0.099 £ 0.075 0.62 0.058 + 0.074
no statistically valid models could be found using just the 0 to ~ randomization analysis. These results provide further evi-
2D descriptors.) It was thought that the large descriptor space  dence of the predictive nature of the models (Table 2, models
may have hindered descriptor selection using objective and 14—-17). The plots collected in Fig. 7 demonstrate very clearly
subjective methods, so we tried instead our alternative  for model 17 that the alternative models generated through Y-
descriptor selection method that proved successful for the  randomization consistently have much poorer statistics than
NF54 data. does the actual model. The corresponding plots for models
As before, the descriptors were split into subsets according 14-16 have similar characteristics. All four models (14—17)
to which computational program was used to generate them.  can thus be considered robust and statistically significant with
Models were developed using GA-MLR (with all compounds ~ regard to predicting the K1 activity of these 4-aminoquinoline
in the training set) and descriptors with a z-statistic > 2 were ~ compounds.
selected from the eight statistically significant models that we
found. This procedure yielded a new ‘pruned’ set of 33 de- Descriptor frequency
scriptors that could then be used in QSAR development using
multiple subjective selection methods. Our approach yielded  For each of the descriptors with #statistics > 2 in the validated
four internally and externally significant models (Table 1,  models of both strains, we determined the total number of
models 14-17). Just as in the NF54 study, QSAR analysis  times that they were used, with the aim of finding the most
using the pruned descriptor set produced much more success-  commonly occurring descriptors used to predict pICs, values
ful models. Figure 6 illustrates the linear relationship that was for the two strains. Figure 8 illustrates the results, with some
observed for model 17, showing favorable performance for  descriptors common to models from both strains, and others
both the training and test sets. unique to one or the other. Six descriptors were present within
Although model 16 has an 7 value of 0.68, slightly below all three of the NF54 models: G3u, Hy, JGI5, Mor31m,
our 0.7 cut-off, we chose to include it because it performs well PCHGMH, and RDF055m. Only one descriptor, Mor31e,
across all of the other validation criteria. It was validated fur- was present for all four K1 models. Descriptors DIPY and
ther, along with the other models, through LMO q2 and Y- HARD were the only ones common to models for both strains.
(@ o (b) 8 (©
> & > © @©
§ o £ o °
& 2o E o=
g - 2 o
B =]
C T T T T T | T T | | T | =
00 02 04 06 08 10 00 02 04 06 08 1.0
2 LMO ¢ LMO ¢

Fig. 5 a—c Y-randomization and leave-many-out (LMO) ¢* validation
(1000 iterations) tests for model 11. a Histogram showing the effect of
Y-randomization on the 7 statistic, with the better value for the actual
model shown by the green vertical line. b Histogram showing the effect
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of Y-randomization on the LMO ¢ statistic, with the better value for the
actual model shown by the green vertical line. ¢ Scatter plot of ¥ values
against LMO ¢~ values, with the actual model (green cross) clearly
performing better those generated by Y-randomization
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Fig. 6 Linear relationships 78 9

observed in model 17 for K1 data
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To garner further support for the 20 significant descriptors
identified by Fig. 8, we examined the MLR models for all
possible combinations of these descriptors. From this rather
large set of models, further analysis was performed only for
those with fewer than ten descriptors (to avoid over-fitting)
and that have an rz(adj) > (.7 (where the notation rz(adj) sig-
nifies that /* has been adjusted in the standard way that takes
account of the number of degrees of freedom in the model).
The frequency of descriptor usage in the models that met these
criteria were found to be concordant with conclusions drawn
from Fig. 8. In particular, the descriptor Hy was present across
all 41 models for the NF54 strain, with JGIS present in all but
one model. Additionally, the Mor31e descriptor was the only
one present across all 61 models for the K1 strain. The HARD
descriptor was relatively common for both strains, being pres-
ent in 25 of the NF54 models and 53 of those for K1.

Analysis of the relative descriptor weights within models
1012 for NF54, and 14-16 for K1 offered additional support
for their importance. Descriptors JGIS and Hy were consis-
tently found to be those with the greatest relative contribution

~
<]
~

(b)

68 7 72 74 76 78
Actual values (pIC50)

to #* in models 10—12 for NF54, with respective weights of
40.8%, 45.0% and 43.6% for JGI5, and of 13.8%, 21.2% and
19.2% for Hy. Similarly, the Mor31e descriptor, which was
present across all regression models for K1, had weights for
models 14-17 of 26.5%, 24.6%, 35.0% and 33.9%, respec-
tively. This shows that not only were these the most common-
ly occurring descriptors across the models, but that they were
also the most significant in terms of defining the models.

To assess whether the same descriptors would be found to
be as important when using an alternative machine learning
method, models were developed using PLS QSAR, for both
the NF54 and K1 strains, using the pruned subsets of descrip-
tors (vide supra) of 38 for NF54 and 33 for KI1. The best
model obtained using PLS is reported in Table 3 for each
strain. Both models satisfy the requirement of at least a 5:1
ratio between the number of molecules in the training set and
the number of principal components in the model. Information
about the relative importance of the descriptors in the principal
components (see Table S2 in the Supplementary Information,
which also provides brief descriptions of the various

o o
g 8 ¢ 3
g ]
s o g 9
. s &
o o
[ ! I ! ! 1 [ !
00 02 04 06 08 10 00 02

r2

Fig. 7 a—c Y-randomization and LMO ¢ validation tests (1000 itera-
tions) for model 17. a Histogram showing the effect of Y-
randomization on the /* statistic, with the better value for the actual model
shown by the green vertical line. b Histogram showing the effect of Y-

r
0.0 04 08

T T T 1
04 06 08 1.0

LMO ¢

LMO 4>

randomization on the LMO ¢ statistic, with the better value for the actual
model shown by the green vertical line. ¢ Scatter plot of 1 values against
LMO ¢ values, with the actual model (green cross) clearly performing
better those generated by Y-randomization
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Fig. 8 Frequency of descriptor
usage in the validated NF54 and
K1 models

Frequency
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descriptors) comes from an examination of the absolute
weights. In this way, descriptors Hy and JGIS were found to
be two of the most important descriptors in the NF54 PLS
model, with Mor31e being the most important in the corre-
sponding K1 model. Additionally, the HARD descriptor has a
strong weight in both models.

Descriptor interpretation

Whether we used MLR or PLS, descriptors Hy and JGIS were
found consistently to be the most influential in describing the
activity for NF54, whilst Mor31e was the most influential for
K1. The HARD descriptor was common in models for both
strains. This identification of the most important molecular
descriptors may highlight important differences between the
chloroquine-sensitive and chloroquine-resistant strains of the
parasite and it could provide useful clues to the resistance
mechanism.

Given that the hydrophobicity of compounds has previous-
ly been shown in QSAR analysis to be of importance for
influencing antimalarial activity [41], we start by considering
the Hy descriptor, which encodes hydrophilicity. This descrip-
tor, which was introduced by Todeschini and Gramatica [42],
is a simple empirical index related to the hydrophilicity of the
substituents within a compound. We observe that the Hy de-
scriptor features in the NF54 models with a positive coeffi-
cient, suggesting that more hydrophilic compounds have im-
proved activity against the NF54 strain, whereas the hydro-
philic properties of these 45 compounds appear to have rela-
tively little bearing on their K1 activity. Similarly, it is well
established that amodiaquine and its metabolite
desethylamodiaquine (see Fig. 9) are equipotent against
chloroquine-sensitive parasites [43]. The Hy descriptor values
are almost identical for these two compounds. Conversely,
desethylamodiaquine is less potent than amodiaquine against
chloroquine-resistant strains [43], suggesting that their hydro-
philic properties are of lower importance with regard to their
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antimalarial activity in resistant strains, just as was observed
for our K1 models. Another example is provided by
hydroxychloroquine, which is a much more hydrophilic ana-
logue of chloroquine with lower logD [44] (where logD quan-
tifies the distribution of charged states of the compound be-
tween organic and aqueous phase at a given pH and thus
indicates the degree of lipophilicity). Whereas
hydroxychloroquine exhibits similar activity against
chloroquine-sensitive strains, it is many times less active than
chloroquine against resistant parasites [44].

These various observations are consistent with the known
resistance mechanism, namely decreased accumulation of the
drug in the food vacuole due to expression of chloroquine
resistance transporter [5]. Hydrophilic compounds are likely
to be more easily protonated and thus trapped in the food
vacuole in the chloroquine-sensitive strain. This trapping is
less efficient in the resistant strain, so that the hydrophilicity
(and protonation state) of the 4-aminoquinolines is not as im-
portant for predicting their K1 activity. The hydrophilicity of
these 4-aminoquinolines therefore represents an important
consideration to optimize activity against the chloroquine-sen-
sitive NF54 strain, but unfortunately not to overcome chloro-
quine resistance in the K1 strain.

Clearly there are many important physical, chemical, and
biological properties that are related to the charge distribution
within a compound. The JGIS descriptor, which is of signifi-
cance within the NF54 models, represents the mean Galvez
topological charge index of order five [45]. Such topological
charge indices were proposed for evaluating the charge transfer
between pairs of atoms, and therefore the global charge trans-
fers in a given molecule [46, 47]. Here, the negative coefficient
for the JGIS descriptor in the NF54 models indicates that
charge transfer between the atom pairs has a negative influence
on activity, so that compounds with lower global charge trans-
fers have improved activity against the NF54 strain.

We found that the most essential descriptor for explaining
and predicting the activity of these 4-aminoquinolines
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Table 3

Summary of key statistics for the partial least squares (PLS) models generated using the pruned sets descriptors (38 for NF54 and 33 for K1),

with # comps being the number of principal components used in the model. Results mostly given to two decimal places

Model Strain # Training set statistics Test set statistics
comps
¢ Fsatisic Ry, ¢ 7 e k o]
18 NF54 7 0.97 0.60 4.04x10° 0.45 0.72 0.84 0.007 1.01 0.07
19 K1 4 0.98 0.75 5.72x10° 0.77 0.80 0.85 0.014 1.01 0.01

molecules against the K1 strain is the Mor31e descriptor,
which is defined as a 3D-MoRSE descriptor that encodes for
signal 31, weighted by atomic Sanderson electronegativities
[45]. Descriptors of this type are based on the idea of obtaining
information from the 3D atomic coordinates of a given mo-
lecular structure from the transformations used in electron
diffraction studies for preparing theoretical scattering curves
[48]. As such, it is difficult to interpret the Mor31e descriptor
directly in terms of its chemical significance. An additional
descriptor that is of moderate frequency across the various
MLR and PLS K1 models is the ring count descriptor, with
higher values favoring higher K1 activity. This descriptor is
found to be in the top two in order of importance in the re-
gression models that contain it, with weights of 22.4% and
29.3%, respectively, in models 14 and 15. It follows from our
various observations that the identification of structurally sim-
ilar 4-aminoquinoline compounds that feature both more rings
and low Mor31e descriptor values could prove promising for
optimizing activity against K1. The addition of more rings
tends to increase logD, which has been shown to be a key
factor in influencing resistance ratios, with higher logD values
corresponding to increased activity against K1 [49].

Finally, the HARD descriptor, which was present through-
out the successful models for both strains, represents a mea-
sure of the hardness of a given compound, i.e., the resistance
to change of its electron distribution [50]. It is associated with
the hard and soft acids and bases (HSAB) concept, also known
as the Pearson acid base concept [51], which is used widely in
chemistry for rationalizing the stability of compounds, reac-
tion mechanisms and pathways, and so on. As is well known,
the term ‘hard’ is generally used for chemical species that are
small, have high charge states and are weakly polarizable,
whereas ‘soft’ species tend to be big and strongly polarizable,
and to have low charge states. We found that the HARD

Fig. 9 Amodiaquine and
desethylamodiaquine

Cl

descriptor enters the NF54 and K1 models with a negative
coefficient, so that it is the ‘softer’ molecules that have im-
proved activity against both strains. In general terms, the
‘softer’ molecules tend to be more lipophilic: they have higher
logD values and so we may expect better activity against K1
[49]. Additionally, ‘softer’ systems may interfere more than do
‘harder’ ones with the (3-hematin biocrystallization [52].

Conclusions

Statistically significant QSAR models have been developed
for both the chloroquine-sensitive NF54 and chloroquine-
resistant K1 strains using MLR and PLS methods. A novel
method for selecting a ‘pruned’ set of optimum descriptors for
model development was particularly effective. Several QSAR
models were validated statistically and shown to exhibit
strong predictive capabilities, so that they may now be used
with some confidence to predict the potential activity against
both the NF54 and K1 strains of structurally similar 4-
aminoquinoline compounds.

Analysis of the frequency of use of the various descriptors
within the models proved to be informative, with Hy and JGIS
being used commonly for the NF54 strain, the Mor31e de-
scriptor being present in all K1 models, and the HARD de-
scriptor being common throughout models for both strains.
This pattern of descriptor usage can be interpreted in terms
of the mode of action of these 4-aminoquinoline compounds,
as well as their chloroquine resistance mechanism. In particu-
lar, the hydrophilic properties were crucial in predicting NF54
activity, with more hydrophilic compounds (which are likely
to be more easily protonated) showing improved potency.
This supports the hypothesis that the compounds become
trapped in the food vacuole of the malaria parasite, where they

e ¢
H
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elicit their response. Additionally, the descriptor usage sug-
gests that ‘softer’ compounds have higher activity than do
‘harder’ ones. Taken together, these various observations
should prove useful in rational drug design, with the direct
use of our QSAR models in future virtual screening cam-
paigns aiding the in silico identification of potentially active
compounds that merit subsequent synthesis and biological
testing.
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