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Abstract NUPR1, a small chromatin protein, plays a critical
role in cancer development, progression, and resistance to
therapy. Here, using a combination of structural bioinformat-
ics and molecular modeling methods, we report several novel
findings that enhance our understanding of the biochemical
function of this protein. We find that NUPR1 has been con-
served throughout evolution, and over time it has undergone
duplications and transpositions to form other transcriptional
regulators. Using threading, homology-based molecular
modeling, molecular mechanics calculations, and molecular
dynamics simulations, we generated structural models for four
of these proteins: NUPR1a, NUPR1b, NUPR2, and the
NUPR-like domain of GTF2-1. Comparative analyses of these
models combined with extensive linear motif identification
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reveal that these four proteins, though similar in their propen-
sities for folding, differ in size, surface changes, and sites
amenable for posttranslational modification. Lastly, taking
NUPRI1a as the paradigm for this family, we built models of
a NUPR-DNA complex. Additional structural comparisons
revealed that NUPR1 defines a new family of small-groove-
binding proteins that share structural features with, yet are
distinct from, helix-loop-helix AT-hook-containing HMG pro-
teins. These models and inferences should lead to a better
understanding of the function of this group of chromatin
proteins, which play a critical role in the development of
human malignant diseases.

Keywords DNA-binding proteins - NUPR1 - Molecular
dynamics - High Mobility Group (HMG)

Introduction

NUPRI, also called p8, is a small nonspecific DNA-binding
protein that is induced in response to cell stress stimuli of
varying degrees, such as simple culture medium replacement,
growth inhibitory signals, starvation, hypoxia, apoptosis in-
ducers, and anticancer drugs [1]. The widely conserved
NUPRI gene was first discovered after observation of its
strong upregulation during the acute-phase response of pa-
tients with pancreatitis [2]. Currently unclassified, NUPR1
does not share any significant homology with other proteins.
Sequence analyses of NUPRI1 reveal that this protein contains
a canonical bipartite domain of positively charged amino acids
typical of nuclear-localization signals (NLS) [3] and an N-
terminal Pro/Glu/Ser/Thr-rich region [4], suggesting nuclear
localization and regulation by the ubiquitin/proteasome sys-
tem. This notion agrees with experimental data indicating that
NUPRI is a short-lived inducible protein which undergoes
cytoplasmic-to-nuclear translocation for binding to DNA and
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regulates gene expression [5]. Interestingly, careful analyses
of sequences deposited in protein databases (NCBI and
UCSD) show that alternative splicing can produce a longer
isoform, named NUPR1a (100 residues), which contains 18
additional amino acids and for which no function has been
reported (Fig. 1a). Furthermore, the difference in function and
distribution of expression between the two isoforms remains
unreported in the literature. Notably, however, all studies
performed to date on the biochemistry, biology, and pathobi-
ology of NUPR1 have been performed with the b isoform (82
residues). In this regard, previous characterizations have

A

EMAAAFEQTGGPDLT"I;ES |

-

Y :-.in~"—-t\n-:seu,
v A

YE-RKYN-ERRT!

:E—:yss:—:q
LT-DRYSLPT

revealed that NUPR1b exhibits modest primary structural
similarity (less than 35 % similarity and below 7 % identity)
to the HMG-I/Y class of transcriptional regulators, yet they
are very similar in their biochemical properties, including their
molecular masses, isoelectric points, hydrophobicity plots,
heat stabilities, and charge distributions [6]. In fact, like
HMG-I/Y, NUPRI binds to DNA in vitro [3] and regulates
gene expression networks in vivo [7-9]. Nuclear magnetic
resonance and circular dichroism analyses using NUPR1 pu-
rified from E. coli expression systems suggest that this protein
may not readily assume a stable secondary structure, and that
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Fig. 1 a—f NUPRI defines a structurally conserved family of transcrip-
tional regulatory proteins. a Pairwise alignment of the two NUPRI
isoforms, highlighting the 18-amino-acid insertion in NUPR1a. b Multi-
ple sequence alignment of NUPRI1-like and NUPR2-like sequences.
Sequences are colored according to percent identity. ¢ A neighbor-joining
phylogenetic tree was generated from the results of the multiple sequence
alignment to display the evolutionary distance between the NUPR1- and
NUPR2-like proteins. This representation clearly indicates that NUPR 1
and NUPR2 are products of different genes yet share similarities in
sequence. d A hidden-Markov-model-based domain scan of the NUPR1a
sequence yielded 134 individual sequences containing the NUPR1-like
DNA-binding domain. These sequences were aligned and used as a seed
for further HMM-based domain scans. A phylogenetic tree was
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constructed to show that the NUPR1-like domain has been conserved
across evolution from organisms ranging from nematodes to humans. e
Domain scan results reveal a DNA-binding nuclear phosphoprotein p8
domain in NUPR 1a that has been highly conserved throughout evolution.
This domain was predicted by Pfam local and global models to fall within
the sequence ranges 49-95 and 19-95, respectively. Additionally, the
HMM-based domain scan revealed a conserved bipartite nuclear locali-
zation signal located at residues 82-96. This suggests that NUPR1-like
proteins have evolved under stringent evolutionary pressures and that
their function has been carefully selected. f Visualization of the DNA-
binding nuclear phosphoprotein p8 domain in relation to the entire
NUPRI1a sequence
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its tertiary structure is very unstable [5, 6, 10]. These proper-
ties have made the traditional structural elucidation of this
protein difficult. However, in vitro phosphorylation of a single
S residue within NUPRI increases the propensity of this
protein to fold, as well as its ability to bind to DNA [10].
These data, together with the fact that the active form of
NUPRI for the regulation of gene expression requires inter-
action with other proteins and DNA, suggest that both post-
translational modification and binding to other molecules
stabilize the folding of NUPR1 in a manner that modulates
its function. However, structural models of NUPR1-DNA and
NUPR 1—partner protein complexes that can be further used
for protein—protein and protein-DNA docking studies,
pharmacophore identification, and drug screening have not
been developed. In addition to its role in cellular stress,
NUPRI is overexpressed in several types of human cancers,
namely in the late stages and metastasis of pancreatic cancer,
which is relevant to the fact that pancreatic ductal adenocar-
cinoma displays outstanding resistance to cell stress. It has
also been postulated that NUPR1 also plays a role in the
suppression of other tumors in the prostate and the brain
[11]. Thus, the functions of NUPRI1 appear to be wide-
ranging and largely dependent on the context of its expression,
signaling-induced posttranslational modifications, and inter-
molecular interactions. These data guided the efforts
expended in the study reported in the present paper, which
provides structural models for several members of the NUPR 1
family of proteins. Our data derive from detailed molecular
analyses of several NUPR1-like proteins, and show that these
proteins are a new family of small chromatin regulators that
share properties but are still distinct from AT hook-containing
HMG family members. The modeling and analyses of molec-
ular properties described here reveals the mechanisms by
which NUPR1-like proteins work at atomic resolution, which
should be taken into consideration when designing small drug
inhibitors of them. Thus, because of the emerging role of
members of this family in cancer-associated processes, our
data are not only of biochemical but also biomedical
relevance.

Materials and methods
Primary structure analysis

Sequences similar to NUPR1 were obtained using PSI-
BLAST with the BLOSUMSO0 algorithm in the NCBI data-
base [12]. The obtained sequences were then compared using
a flexible multiple sequence alignment program, and some
corrections were made by hand to remove gaps in the align-
ment (Fig. 1b). Multiple sequence alignment was performed
using the flexible alignment software MUSCLE [13]. Results
from the sequence alignment were then used to generate a

phylogenetic tree displaying the interspecies comparison and
evolutionary distances (Fig. 1¢). Phylogenetic trees (Fig. 1c)
were generated using the neighbor-joining method with the
BLOSUMS®62 algorithm [14]. Maximal likelihood analysis
was performed using bootstrap analysis (100 replicates) in
PHYML 3.0 [15]. Further primary structure analyses of these
proteins involved the use of several bioinformatics algorithms
for defining linear motifs, such as hidden Markov model
(HMM)-based domain scan analyses using the NUPRI se-
quences as a seed to search profile databases in the HMMER
software package [16], including PeroxiBase profiles,
HAMAP profiles, PROSITE patterns, More profiles, Pfam
HMMs (local models), Pfam HMMs (global models),
PROSITE patterns (frequent match producers), and
PROSITE profiles. These profile hidden Markov models use
a position-specific scoring system suitable for searching data-
bases for remotely homologous sequences [11].

Molecular modeling

Using the threading and ab initio modeling algorithms
MUSTER [17], I-TASSER [18], QUARK [19], Chunk-
TASSER [20], and Pro-sp3-TASSER [21], several potential
models of NUPR 1a were generated with the primary sequence
as input. The best model was then determined through pair-
wise model comparisons and statistical analysis of the
RMSDs and Z-scores. RMSD and Z-score values were calcu-
lated in the PDB Structural Alignment Tool [22] according to
the methods described in [23]. Briefly, the Z-score represents
the statistical significance of the longest structural alignment
path and is calculated by evaluating the probability of finding
an alignment path of the same length with the same (or a
smaller) number of gaps and distance from a random compar-
ison of structures using a nonredundant set. This relationship
is represented by the following equation: p(0;1,—z)=p(D}",
D4 D). p(G, G549, G™). The RMSD value represents the
difference between two superimposed structures based on
their Cx positions. The structures are optimally superimposed
as rigid bodies using least-square minimization according to
[24]. Furthermore, each model comparison was individually
evaluated through qualitative observations, images of the
alignments, linear diagrams, and dot plots. As a negative
control, each generated model was also compared to a protein
with an all-3-sheet structure and an amino acid sequence with
no homology to NUPR1 (Phf19, PDB code: 4BD3).
Homology modeling was performed using MODELLER
[25]. Comparisons of the generated homology models were
performed using VADAR version 1.8 [26] and Dali [27].

Modeling of NUPR-DNA complexes

The three-dimensional complex structure of NUPR1a bound
with B-DNA was generated by docking the NUPR 1a model
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into the minor groove of DNA to achieve maximal intermo-
lecular interactions between the two partners using DP-Dock
[28]. Intermolecular interactions of the NUPR1-DNA com-
plex, including salt bridge interactions, hydrogen bonds, elec-
trostatic interactions, and hydrophobic interactions, were cal-
culated in the Receptor-Ligand function of Discovery Studio
Client 4.0 using the default parameters [29].

Linear motif analysis

Linear motifs that account for NUPR1’s translocation were
identified using the programs Psortll [30] and NetNES [31].
To identify the residues involved in the binding of DNA by
NUPRI, we performed calculations using the DP-Bind [32]
and DP-Dock [28] algorithms. Prediction of posttranslational
modification sites on NUPR 1a was performed by compiling
and statistically scoring linear motifs for phosphorylation,
acetylation, methylation, ubiquitination, and sumoylation as
predicted by 30 different software. The software used to
predict phosphorylation were NetPhosk 1.0 and 2.0 [33],
Kinasephos 2.0 [34], DIPHOS [35], PhosphoSVM [36],
Scansite [37], Musite [38], PPSP [39], and GPS 2.0 [40].
Additionally, 3D phosphorylation prediction was performed
using Phos3D [41]. Acetylation sites were predicted using
PAIL [42], PREDMOD [43], ASEB [44], PLMLA [45],
PSKAcePred [46], BRABSB-PHKA [47], LysAcet [48], and
EnsemblePail [49]. Methylation sites were predicted using
PMeS [50], BPB-PPMS [51], PLMLA [45], and CKSAAP
MetSite [52]. Sumoylation sites were predicted using
SUMOsp [53], SUMOplot [54], SUMOhydro [55], PCI-
SUMO [56], GPS-SBM 1.0 [57], and ELM [58].
Ubiquitination sites were predicted using BDM-PUB [59],
CKSAAP UbSite [60], and UbPred [61]. Results from these
predictions were then compiled and statistically scored to
assign specificity potential to sites that were predicted to
undergo modification in NUPR 1a. Briefly, for each individual
program, we considered sites for which the prediction score
was above the cutoff derived using a training set of modified
sequences that had been experimentally validated.
Subsequently, we developed a meta-prediction score by
assigning a maximum score of 1 to sites that were predicted
by all of the programs cited. Scores for other programs were
numerically expressed relative to this maximum score.

Molecular dynamics simulations

To evaluate the statistical probability of NUPR1 adopting
helical structures versus disordered conformations, we used
PrDOS [62], DisorderPredict [63], and POODLE [64]. The
generated NUPR 1a model was refined by a 60-ns (1-fs time
step) molecular dynamics (MD) simulation. The MD simula-
tion of NUPR 1a was performed using the all-atom force-field
in CHARMm c36b2 at a temperature of 300 K (NVT
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ensemble) [65]. The molecule was first energy minimized
using a two-step protocol of steepest descent and conjugated
gradients. All these steps were done using the SHAKE [66]
procedure. A distance-dependent dielectrics implicit solvent
model was used with a dielectric constant of 80 and a pH of
7.4. Using the same procedure, additional MD simulations
were performed on the NUPRI-DNA complex, setting har-
monic constraints for the DNA molecule. A total of 120
conformations were sampled from each simulation for further
analyses. Briefly, pairwise alignments for each conformation
were performed and RMSD values were reported for each
comparison. Next, to analyze structural fluctuations across the
simulation time, we sampled six models and aligned them to
calculate RMSD values at the residue level.

Results

NUPRI defines a structurally conserved family
of transcriptional regulatory proteins

The human NUPR1 gene gives rise to two proteins: NUPR1a,
which is 100 amino acids long, and NUPR 1b, composed of 82
amino acids. Sequence alignment between these two proteins
(Fig. 1a) shows that they differ by an internal deletion of 18
amino acids in NUPR1b. Since previous studies have consid-
ered these proteins to be unique, we searched for evidence for
the existence of homologs as well as evolutionary duplications
and transpositions by performing extensive database searches
using PSI-BLAST with the BLOSUMSO0 algorithm. This
BLAST method yielded sequences from several organisms,
indicating that NUPR1 has been conserved throughout evo-
lution. A flexible multiple sequence alignment (Fig. 1b) was
performed to compare these sequences and assess evolution-
ary distance (Fig. 1c). These comparisons identified a con-
served sequence—what we refer to as the “NUPR1-like do-
main,” which is the most conserved region of these proteins.
This can be used as the primary structure signature that char-
acterizes NUPR1-like proteins. Note that we found that,
throughout evolution, there have been proteins which are
related to the human NUPRI1 but display distinct differences
that are revealed by the relatedness of their overall primary
structures. Further primary structure analyses of these proteins
involved the use of several bioinformatics algorithms for
defining linear motifs, such as hidden Markov model
(HMM)-based domain scan analyses using the NUPRI se-
quences as a seed to search profile databases in the HMMER
software package [16], including PeroxiBase profiles,
HAMAP profiles, PROSITE patterns, More profiles, Pfam
HMMs (local models), Pfam HMMs (global models),
PROSITE patterns (frequent match producers), and
PROSITE profiles. These profile hidden Markov models use
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a position-specific scoring system suitable for searching data-
bases for remotely homologous sequences. Note that the
sequence profiles from these databases were assembled using
amino acid composition/position matrices to allow the detec-
tion of homology relationships, which are not commonly
identified using pairwise alignments by BLAST-related algo-
rithms (Fig. 1e). The results of these analyses demonstrated
that NUPR1 contains a domain that is present in proteins
conserved in organisms ranging from nematodes to humans
(Fig. 1d). Interestingly, we found that this NUPR1-like do-
main occurs either alone (as in small NUPR 1-related proteins)
or in combination with other DNA-binding motifs (as in
GTF2I-related proteins). Briefly, we identified at least three
highly related proteins in humans: NUPR1a and NUPRI1b,
which are alternatively spliced products of the same gene
located in chromosome 16, and a similar protein, which we
called NUPR2. Notably, no previous study has reported the
characterization of NUPR2. The presence of NUPR2-like
proteins is seen in Homo sapiens, Cavia porcellus, Mus
musculus, and Rattus norvegicus. Quantitative assessment of
the similarity of these proteins within and outside the NUPR1-
like DNA binding motif is presented in Table S1 of the
“Electronic supplementary material” (ESM). These analyses
allowed us to develop a consensus sequence that can be used
to identify other members of this family across evolution.
Combined, the data from primary structure analyses suggest
that NUPR1-related proteins define a new group of DNA-
binding proteins. Subsequently, we tried to define whether
proteins from this group are related to other transcriptional
regulators. In this regard, previous studies had suggested that
NUPRI1 is related to HMG-I/Y-like proteins, which are intrin-
sically disordered non-histone chromosomal proteins charac-
terized by the presence of three DNA-binding domains called
AT-hooks (DBD) that are known to preferentially bind to the
minor groove of short stretches of AT-rich DNA [67]. These
AT hooks (DBDs) are formed by a conserved core sequence
rich in glycine, arginine, and lysine [67]. The first HMG AT-
hook, DBD1, differs from DBD2 and DBD3 by the absence of
single proline residues that flank the G/R/K-rich core of this
domain. Interestingly, we found that NUPR1 contains a single
10-amino-acid-long AT-hook domain that is similar to the
HMGAL1 DBDI but lacks significant homology outside of
this region. Combined, the analysis provided here indicates
that a NUPR1-like sequence defines distinctly identifiable
protein groups, that share only this limited motif.

Molecular modeling reveals that the tridimensional structure
of NUPRI-related proteins is related to, yet distinct from,
HMG proteins

We sought to gain insight into the structure and biophysical
and biochemical properties of this protein through molecular
modeling approaches. We initially attempted to model the

structures of NUPR1a and NUPR1b through homology
modeling. Unfortunately, however, the level of identity to
potential templates deposited in the PDB was below the gold
standard of 30 % required for this method [68]. Thus, we
resorted to building a model of NUPR 1a using multiple algo-
rithms based on threading, ab initio, or mixed approaches and
evaluating the consistencies among them. We chose these
methods as they have been ranked as among the top systems
for protein structure prediction in the CASP7 [69], CASPS
[70], CASP9 [71], and CASP10 [72] experiments. Several
potential models of NUPR1a were generated using as input
the FASTA file corresponding to the NCBI-deposited primary
structure. The software systems used in our studies included
MUSTER [17], I-TASSER [18], and QUARK [19], Chunk-
TASSER [20], and Pro-sp3-TASSER [21]. Note that all of the
models generated revealed that NUPR1a has a propensity to
adopt a helix-loop-helix fold, a domain evolutionarily associ-
ated with DNA-binding proteins (Fig. S1a of the ESM). Each
model comparison was individually evaluated through quali-
tative observations, images of the alignments, linear diagrams,
dot plots, Ramachandran plots, RMSDs (root mean square
deviations), and Z-scores [22] (Fig. 2a). As a negative control,
each threading model was also compared to a protein with an
all-3-sheet structure and an amino acid sequence with no
homology to NUPR1 (Phf19, PDB code: 4BD3). RMSDs
and Z-scores were used as indicators of model quality since
the first measures the average distance in angstroms between
superimposed atoms of the two models while the second is a
measure of the energy separation between the native fold and
misfolds in units of standard deviations of the protein model.
Thus, lower RMSD values and higher Z-scores were favored
in our analyses. We found that [-TASSER and Quark had the
lowest RMSDs and highest Z-scores when compared with the
negative control Phf19, as shown in Table 1. Further statistical
evaluation of this data was performed by calculating the
Pearson’s coefficient (R value) of the RMSDs and Z-scores
in an all against all models fashion (Table 1). These analyses
showed that all R values were >0.80, reflecting a strong
inverse relationship between RMSDs and Z-scores.
However, it is worth noting that worse models (Chunk-
TASSER) had higher R values than better models did (I-
TASSER, Quark). To further estimate model quality, we sub-
sequently generated Ramachandran plots (plot of psi vs. phi
angles) using PROCHECK [73]. The I-TASSER model had
the best overall geometry, with 97 % of residues in favored
and allowed regions. The models generated by Pro-sp3 and
Chunk-TASSER both had 29 % of residues in disallowed
regions (Fig. 2a). Thus, the latter two models were eliminated
due to their poor performance in this area. Combined, these
analyses revealed that the model generated by I-TASSER was
the best model for representing the folding propensity of
NUPRI1a. This model was generated using the I-TASSER
algorithms, which combine threading approaches and ab initio

@ Springer



2357, Page 6 of 20

J Mol Model (2014) 20:2357

Residues I-TASSER MUSTER

QUARK Pro-sp3 Chunk-TASSER

Disallowed 3 4

Allowed or Favored 97 96

5 29 29

95 71 71

HI

B

p p B

MATFPPATSAPQQPPGPEDEDSSLDESDLYSLAHSYLGPL IMPMPTSPLTPALVTGGGG

i 5 10 15 20 25 30
. H2 . H3
B Bp

40 45 50 55 [

KGRTKREAAANTNRP S PGGHERKLVTKLQNSERKKRGARR

6l 65 70 75 R0 RS 90

NS

NUPR1b

NUPR1a

Fig. 2 a—-d Comparative modeling of NUPR1a through the combination
and scoring of multiple threading algorithms. a In addition to our assess-
ment of each threading model, we used PROCHECK [73] to assess their
quality. Ramachandran plots of the generated NUPR1a and NUPR1b
models revealed that the I-TASSER model had the best overall geometry.
With both models having >95 % of their residues in favored or allowed
regions, I-TASSER outperformed the other threading methods. Pro-sp3
and Chunk-TASSER, both with 29 % of the residues in disallowed
regions, were the lowest scoring of the threading algorithms used. b A
more detailed representation of the secondary structure assignment for the
I-TASSER NUPRI1a model was generated using PROMOTIF [83]. The
protein contains a signature helix-loop-helix motif with 3 distinct helices,

optimizations, using the templates listed in Fig. S1b of the
ESM. The properties of this energy-minimized structure are
summarized in Fig. 2b. Briefly, according to this model,
several regions of NUPR1a have the tendency to form three
«-helices. Helix 1 contains 14 residues and spans from Glu20
to Ala33. Helix 2 contains 8 residues and spans from Lys65 to
Thr72, while helix 3 contains 19 residues and spans from
His80 to Ala98. Other notable features of this structure in-
clude a total volume of 12,602 A?, a total accessible surface
area (ASA) of 7439.2 A?, and an electrostatic potential of
1510.2 kT. Using the NUPR1a structure as the template, we
developed homology-based models for NUPR1b, NUPR2,
and the DNA-binding domain of GTF2-I using
MODELLER [25]. Structural comparisons of these proteins
were performed based on the RMSDs of their individual
alignments, sizes, electrostatics, hydrophobicity plots, and
Ramachandran plots. For this approach, we submitted each
generated model to the VADAR version 1.8 server [26]. This
software analyzes the properties of models generated by ho-
mology modeling or traditional structural elucidation tech-
niques by calculating their electrostatic potentials, volumes,
accessible surface areas, and hydrogen-bonding interactions.
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7 B-turns, 2 y-turns, and 2 helix—helix interactions. Helix 1 contains 14
residues and spans from Glu20 to Ala33. Helix 2 contains 8 residues and
spans from Lys65 to Thr72, while helix 3 contains 19 residues and spans
from His80 to Ala98. The 7 3-turns are characterized by 4 consecutive
nonhelical residues where the «-carbon of the first residue is less than 7 A
from the a-carbon of the fourth residue. The y-turns of the protein are
characterized by 3 consecutive residues with hydrogen bonds between the
first and third residues. The psi and phi angles of the second residue fall in
the range 75.0° (phi) and —64.0° (psi) associated with a classic y-turn. ¢
Comparison of the two NUPRI isoforms. d Structural alignment of the
two NUPRI isoform models was performed using the Pairwise Structure
Alignment Tool in the PDB [22]

The comparative features among these models are described
in Fig. 3. Briefly, these models are of high quality according to
their Ramachandran plots (with each model containing >90 %
of their residues in allowed regions) and their structural align-
ments (with each comparison yielding RMSD values of <4
A). Notably, these qualities revealed that these models display
appropriate stereochemistry and consistencies among their
structures. However, although these models showed similar
qualities (stereochemistries), they differed in their volumes,
electrostatic potentials, total ASAs, molecular weights, and
hydrophobicity plots. The striking structural similarities of the
DNA-binding domain of GTF2-I to NUPR2 suggested that a
NUPR-like domain has been duplicated and incorporated into
this type of larger multi-domain transcriptional regulator.
Figure 2c—d displays a structural comparison between
NUPR1a and NUPR1b. Note that the 18-amino-acid insertion
into NUPR 1a takes the form of a flexible loop in the model,
which does not compromise any secondary structure. Further
analyses of these proteins involved the calculation of intramo-
lecular interactions. For this method, we calculated the hydro-
phobic interactions, salt bridges, and intramolecular hydrogen
bonds in NUPR1a, NUPR1b, NUPR2, and GTF2-I using the
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Table 1 Scoring of models generated by multiple threading algorithms. Each NUPR1a model generated was aligned with another model using the

Pairwise Structure Alignment Tool in the PDB [22]

RMSD I-TASSER MUSTER
I-TASSER 0 4.99
MUSTER 4.99 0
QUARK 4.16 4.64
Pro-sp3 5.16 6.08
Chunk-TASSER 4.76 6.35
Phf19 8.09 6.67
Z-score I-TASSER MUSTER
I-TASSER 6.35 3.29
MUSTER 3.29 6.35
QUARK 3.7 3.07
Pro-sp3 442 3.07
Chunk-TASSER 23 1.99
Phf19 1.24 1.99
Standard deviation I-TASSER MUSTER
RMSD 0.38 0.72
Z-score 0.92 0.56
R-values I-TASSER MUSTER
RMSD v. Z-score -0.82 -0.96
Averages I-TASSER MUSTER
RMSD 4.77 548
Z-score 32 2.74

QUARK Pro-sp3 Chunk-TASSER Phf19
4.16 5.16 4.76 8.09
4.64 6.08 6.35 6.67
0 4.71 6.79 5.17
471 0 4.88 5.33
6.79 4.88 0 8.37
5.17 5.33 8.37 0
QUARK Pro-sp3 Chunk-TASSER Phf19
3.7 4.42 23 1.24
3.07 3.07 1.99 1.99
6.35 3.7 3.29 0.73
3.7 6.35 23 1.24
3.29 23 6.35 1.64
0.73 1.24 1.64 5.6
QUARK Pro-sp3 Chunk-TASSER

1.03 0.54 0.92

0.47 0.86 0.61

QUARK Pro-sp3 Chunk-TASSER

—0.92 —0.85 —0.86

QUARK Pro-sp3 Chunk-TASSER

5.15 5.26 5.59

3.27 3.21 2.63

RMSD and Z-score values were calculated to evaluate the quality of the model based on the premise that better models would exhibit greater
consistencies than other NUPR 1a models. Each model was compared against itself as a positive control and against a model of Phf19 (PDB code: 4BD3),
a transcriptional repressor, as a negative control. This analysis revealed that the model generated by I-TASSER was the best model for NUPR 1a, as it
consistently yielded the lowest RMSD values and highest Z-scores for each comparison. The three lowest RMSD values and three highest Z-scores in

each column are shown in boldface

Nonbonding Interactions Monitor function in Accelrys
Discovery Studio 4.0 [24]. These interactions, which likely
contribute to maintaining the structural properties of these
proteins in terms of both folding and dynamic conformational
changes, are outlined in Table S2a— of the ESM.
Comparisons of the models for these members of the
NUPRI1-like family of proteins with structures that have al-
ready been experimentally solved in previous work were
made using Dali [27]. The results of this analysis indicated
that NUPR1-like proteins possess structural similarities to
members of the HMG family of transcription factors. A strik-
ing similarity was also detected between these proteins and the
gamma domain from the bacterial septum-located DNA
translocase FtsK, suggesting that NUPR1-like family mem-
bers can populate helix-loop-helix conformations, thus pre-
serving the conserved fold that already appears in some pro-
karyote transcription factors (Fig. 4a). Additionally, we sought
to investigate the structural conservation of NUPR1. Briefly,
the structure of NUPR1 was evaluated using the ConSurf
program for structural conservation [65]. This software iden-
tifies functionally important residues in proteins for which
there are known three-dimensional structures by estimating

their conservation among close sequence homologs. This
degree of conservation is then projected onto the three-
dimensional structure of the protein in order to visualize
regions of the protein that have an important biological func-
tion [74]. The results of this analysis are outlined in Fig. 4b—
and reveal conserved amino acids toward the second half of
the sequence, suggesting that it is this part of the structure that
has been better conserved across evolution. This is an impor-
tant observation, since it is the second part of the protein that
carries important functional domains such as those associated
with DNA binding and nuclear localization signals.
Furthermore, these results indicate the presence of several
conserved hydrophobic amino acids (Leu32, Leu84, and
Leu88) that may contribute to the hydrophobic collapse of
these proteins (Fig. 4b). In addition to these data, multiple
sequence alignment of NUPR1a, NUPR1b, NUPR2, and
GTF2-I reveals that hydrophobic residues Leu24 and Leu88
are conserved in 100 % of these proteins, while Ala70 and
Val85 are conserved in 50 % of these proteins (Fig. 4d). This
structural conservation suggests that these residues may con-
tribute—although not in isolation—to the structural properties
of these proteins. Therefore, taken together, our results are

@ Springer
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NUPR2 GTF2-1
B Properties NUPRI1a NUPR1b NUPR2  GTF2-1
Molecular Weight 10691.42 8873 10177.94  7913.4
Volume (Ang?) 12602 10081 12810.1 9741.4
Electrostatic Potential (kT) 1510.2 2209.4 2383.9 1929.6
Total ASA (Ang?) 7439.2 6946.0 5134.7 5134.7
Isoelectric Point 10.4 10.4 10.81 10.11
Allowed Residues (%) 97 95 97 90
RMSD NUPRI1a NUPR1b NUPR2 GTF2-1
NUPRI1a 2.23 3.59 3.23
NUPRI1b 223 3.31 2.99
NUPR2 3.59 3.31 3.34
GTF2-1 3.23 2.99 3.34

Fig. 3 a—c Comparative molecular properties of members of the
NUPRI-like family of proteins: modeling of related proteins was done
using the generated NUPR 1a model as a template in MODELLER. Here,
we developed homology models for NUPR2 and for the DNA-binding
domain of the GTF2-I transcription factor. The similarities between
NUPR2 and the DNA-binding domain of GTF2-I suggest that the
NUPR-like domain has been incorporated into the structure of the tran-
scription factor. a Comparison of the surface potentials of the members of
the NUPR1-like family of proteins. Although these proteins difter in their

consistent with the existence of a family of NUPRI1-like
proteins which are related to, yet distinct from, AT-hook-
containing HMG proteins. Notably, however, the sequence
identity between NUPR1 and HMG-I/Y-like proteins is min-
imal (<10 %).

Interestingly, HMG-1/Y-like proteins show a high ten-
dency to undergo order-to-disorder transitions [75]. This
knowledge led us to explore whether NUPR1a also
displays a tendency to transition from order to disorder
using molecular dynamic simulations combined with
protein disorder prediction algorithms and careful con-
sideration of the results from the use of multiple
methods used to build the model from Fig. 2. The
results obtained using the five threading algorithms in-
dicate that while some of these approaches, namely I-
TASSER, QUARK, and Chunk-TASSER, are concordant
in the assignment of helical structures to the regions of
NUPRI1 comprising amino acids 19-34, 64-73, and 79—
99, others such as MUSTER and Pro-sp>-TASSER
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total electrostatic potentials, similarities in surface charge distribution can
be seen for NUPR1a and NUPRI1b and for NUPR2 and GTF2-I. b
Comparison of structural features of these proteins and RMSD values
for their alignments. These proteins have similar isoelectric points but
differ in their electrostatic potentials, molecular weights, and volumes.
Structural alignments of these models yielded RMSD values of <4,
indicating structural consistencies among these proteins. ¢ Comparison
of the hydrophobicity plots for these proteins indicates that they also
differ in this area

identify these areas as randomly coiled (Fig. Sla of
the ESM). Since the assignment of secondary structures
by this software denotes a statistical probability rather
than certainty, we reasoned that these differences reflect
a tendency of NUPRI regions to populate helical and
disordered conformations. To further test the validity of
this idea, we utilized several approaches that represent
the statistical probability that NUPR1 will adopt helical
structures versus disordered conformations, including
PrDOS [62], DisorderPredict [63], and Prediction of
Order and Disorder by Machine Learning [64]. The
results of these approaches (shown in Fig. 5a) indicated
that the region corresponding to helix 1 (residues 19—
34) has the lowest probability scores for disorder. In
contrast, the scores were very high for helix 2 (residues
64-73) and intermediate for helix 3 (residues 79-99).
Finally, to complement this analysis, we sampled the
conformational behavior of NUPRI1 over time using
MD simulations. Figure 5c¢c shows an assemblage of
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Fig. 4 a—d NUPRI-related proteins are related to, yet distinct from,
HMG proteins. a A comparison between NUPR 1a and previously solved
structures of examples of HMG members, such as HMGA (PDB: 2E60)
and Bobby-SOX 1 (PDB: 1WZ6), reveals a clear similarity in tertiary
structure. Moreover, we find a striking similarity of these models to the
structure of the gamma domain from the bacterial septum-located DNA
translocase FtsK (PDB: 2VES), indicating that NUPRI is a helix-loop-
helix protein which shares similarities with members of the HMG family

the different NUPR1 conformations observed during a
60-ns MD simulation. We found that helix 1 remained

61 71 81 ¥ * 91
L [BeccR [rErEara vEEResEcEE] EffRrvrfrof] sErRKxrGARE
b bbeeb

Bobby-SOX 1 HMGA

FTSKy

£

£f £ £

¥
SELGPLIMPMPTSPLTPALVT G RPS 76
ST, ————————— G K RPS 58
PA———————————————— CS|YERSIAELINT.S HINKRLS 52
= . U — CGLY&RS R PA 64

of chromatin proteins in mammals and preserves the conserved fold seen
in some prokaryote transcription factors. b Structural conservation of
NUPRI1a in the context of its primary structure. Residues labeled with a
“b” are buried, while residues labeled with an “e” are exposed. Functional
residues are indicated by an “f.” ¢ Structural conservation within the
context of NUPR1’s 3D structure. d Multiple sequence alignment reveals
the presence of several conserved hydrophobic residues among the hu-
man NUPR1 proteins

more frequently folded during the simulation length,
helix 3 was present during 15 % of the sampled
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Fig. 5 a—c Analyses of order-to-disorder transitions in NUPR1a, as
studied via molecular dynamic simulations. a NUPR1 disorder, as deter-
mined by statistically based protein disorder prediction algorithms. Res-
idues with disorder probabilities of >0.5 are considered to have a high
propensity for disorder. Results from the PrDOS server indicate that helix
1 (residues 19-34) has the lowest probability score for disorder, while
helix 2 (residues 64-73) displays the highest probability of disorder.
Finally, helix 3 (residues 79-99) displays intermediate propensity for
disorder. These results are congruent with the predictions from

simulation time, and helix 2 became almost completely
disordered. Thus, combined, statistically based disorder
prediction methods and MD simulations are congruent
with the notion that, like HMG-I/Y-like proteins,
NUPRI1 displays a significant propensity for disorder.

Linear motif analyses provide evidence for various
mechanisms underlying the functional regulation
of NUPRI1-like proteins

Experimental data have demonstrated that NUPR 1 undergoes
nuclear translocation to access the gene networks that it reg-
ulates [5]. Thus, linear motif analyses were performed to
identify residues within NUPR1 that account for nuclear
localization. We used two bioinformatics methods, Psortll
[30] and NetNES [31]. Psortll predicts subcellular localization
sites of proteins based on the amino acid sequence using &
nearest neighbors classifiers (k-NN), and NetNES uses a
combination of neural networks and hidden Markov models
to detect the presence of leucine-rich nuclear export signals.
PsortlI predicted the NLS signal to be from residue 81 to 96 in
NUPRI1a and from residues 63-78 for NUPR1b (Fig. 6a).
Results from NetNES estimated the nuclear export signal to

@ Springer

DisorderPredict and POODLE-L. b Energy profile of the isolated NUPR1
MD simulation confirms that the simulation equilibrated. ¢ Assembly of
NUPRI1 conformers observed in a 60-ns MD simulation, showing the
conservation of helical folding in red. Green denotes previous helical
structures that underwent a transition to disorder during MD simulation. ¢
"NUPRI conformers with conservation of folding for helix 1. ¢” NUPR1
conformers showing the simultaneous conservation of folding for helix 2.
¢/ NUPR1 conformers with conservation of folding for helix 3

derive from residues 29-37 for NUPR1a and 24-37 for
NUPR1b. The predicted NLS signal followed the typical
bipartite pattern of K(K/R)X(K/R) and, likewise, the predicted
NES conformed to the general observed pattern of
LyxxLxxLxL. These signals should serve as receptor motifs
on NUPRI1 for importins and exportins to bind. The similarity
of the locations of these signals in NUPR1a and b suggest
comparable, if not identical, interactions related to these sig-
nals for both proteins (Fig. 6a—b). Furthermore, we identified a
bipartite nuclear localization signal on NUPR2, suggesting
that this protein may have similar functions to NUPRI.
However, it should be noted that, in contrast to NUPR1a and
NUPRI1b, NUPR2 and the NUPR1-like domain of GTFI do
not contain a nuclear export signal, indicating that they may
differ in how they undergo nuclear-to-cytoplasmic transloca-
tion. We used DP-Bind to identify residues involved in DNA
binding by NUPR1 [32]. This software implements three
machine learning methods—support vector machine (SVM),
kernel logistic regression (KLR), and penalized logistic re-
gression (PLR)—to predict DNA-binding and RNA-binding
residues from primary structure features, including the side-
chain pK, value, hydrophobicity index, and molecular mass of
an amino acid. Figure 6¢ provides a graphical representation
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of'the results obtained with this approach, which predicted that
the sequences RKGRTKR and KKRGARR form a bipartite
DNA-binding domain. Note that the composition of the
RKGRTKR sequence expected to interact with nucleic acid
bases is similar to the AT-hook DNA-binding motif found in
HMG-I/Y-like proteins, highlighting the reliability of this
result (Fig. 6d).

Since NUPR1 functions in the regulation of cancer-
associated gene expression networks, it is important to gain
insight into the mechanisms by which these proteins are either
activated or inactivated. Thus, we reasoned that signaling-
induced post-translational modifications as well as protein—
proteins and protein—-DNA interactions may participate in
these mechanisms. To determine potential post-translational
modification sites, extensive linear motif analysis was per-
formed on the primary structure of NUPR1a using 30 algo-
rithms and prediction software. First, posttranslational modi-
fication (such as phosphorylation, acetylation, methylation,
sumoylation, and ubiquitination) sites were predicted using
NetPhosk 1.0 [33], GPS 2.0 [40], Musite [38], Scansite [37],
PREDMOD [43], PLMLA [45], ASEB [44], SUMOsp [53],
SUMOplot [54], PCI-SUMO [56], GPS-SBM [57], and ELM
[58]—various modification prediction algorithms that pro-
duce neural network predictions of modification sites based
on a set of previously validated sites. Second, a set of methods
utilizing support vector machines (SVM) was used to predict
sites, namely Kinasephos 2.0 [34], PhosphoSVM [36],
PSKAcePred [46], LysAcet [48], and CKSAAP MetSite
[52]. Additionally, DIPHOS [35], PPSP [39], PAIL [42],
BRABSB-PHKA [47], EnsemblePail [49], PMeS [50],
BPB-PPMS [51], SUMOhydro [55], and CKSAAP UbSite
[60] were used to predict modification sites based on machine
learning methods such as kernel logistic regression (KLR) and
Bayesian decision theory. Results from these predictions were
then compiled and statistically scored in order to assign spec-
ificity potential to sites that were predicted to undergo modi-
fication in NUPR1a. Briefly, for each distinct program, we
considered sites for which the prediction score was above the
cutoff derived using a training set of modified sequences that
had been experimentally validated. Subsequently, we devel-
oped a meta-prediction score that assigned a maximum score
of 1 to sites that were predicted by all of the programs cited.
The scores for the other programs were normalized to a
maximum score of 1 (Table S3 in the ESM). Figure 6f shows
a graphical representation of these results. Results from the
linear motif analysis revealed that phosphorylation could oc-
cur throughout the entire sequence of the protein and that
potential acetylation/methylation sites are present in the sec-
ond half of the sequence. Ubiquitination and sumoylation sites
were predicted with very low probability and displayed low
specificity potential (Table S3d — 3e). Interestingly, several of
the predicted modification sites fell within the DNA-binding
region, displaying high specificity potential (Fig. 6g).

Subsequently, we compared the linear motifs present in
NUPR1a with the primary structures of NUPR1b, NUPR2,
and GTF2-I. This comparison is highlighted in Fig. 6i.
Multiple sequence alignment of these proteins revealed dif-
ferences in the positions of potential phosphorylation, acety-
lation, and methylation sites among these proteins. Notably,
the loop region of NUPR1a contains posttranslational modi-
fication sites that are not present in the other NUPR1-like
proteins. While some potential modification sites are found
in all NUPR1-like proteins, there are also differences. This
suggests that, in addition to differences among them in terms
of size and surface charge, these proteins have undergone a
degree of functional specialization, potentially enabling them
to be differentially regulated by distinct signaling pathways.

Modeling NUPR1-DNA complexes

Our prediction of a DNA-binding domain within the sequence
of NUPR1a prompted us to generate a model of NUPRI
bound to DNA. To do this, we applied two well-validated
methods. We developed a homology-based model as the first
3D approach to characterize the NUPR1 DNA-binding do-
main. This model relies upon the previously solved NMR
structure of the first hook of HMG-I/Y bound to DNA
(PDB: 3UXW). Because of its simplicity, this model lent itself
to using manual docking to superimpose the corresponding
region of NUPR1 onto the highly homologous HMG-I/'Y AT-
hook (Fig. 6d). Next, we performed minimization followed by
a 2-ns MD simulation. The NUPR1-DNA complex obtained
through this homology-based approach is shown in Fig. 7a.
This complex was maintained through ionic, van der Waals,
and hydrogen-bonding interactions, which are represented
graphically in Fig. 7b. The second method, DP-Dock, uses a
nonspecific B-DNA to probe the binding site on a 3D model
of a protein that is known to bind DNA but for which the
specific amino acid to nucleic acid base contacts are unknown.
Given the structure of a DNA-binding protein, the method
first automatically generates an ensemble of protein—-DNA
complexes obtained by rigid-body docking with nonspecific
canonical B-DNA molecules with the sequence A10-T10
[28]. Models are subsequently selected by clustering and
ranking them according to their DNA—protein interfacial en-
ergies [28]. Figure 7c shows that this method was successful
in generating a NUPR1-DNA complex where the amino acid
to base contacts were primarily given by the same
RKGRTKR/KKRGARR sequence identified through DP-
bind, as shown in Fig. 7c. Analyses of the protein-DNA
interphase indicated that residues Arg60, Lys61, and Lys65
occupy the minor groove of DNA, while Arg96, Arg99, and
Argl00 further stabilize the complex by binding to the
phosphate-rich backbone. The ionic and hydrogen-bonding
interactions that define the protein—-DNA binding interphase
are listed in Tables 2 and 3. In addition, analyses of the DNA-
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bound NUPR1 complex suggest that this protein prefers to
recognize the minor groove of DNA. Notably, these residues
have been experimentally shown to be involved in DNA
binding [4] since their NMR signals are broadened beyond
detection in the presence of DNA, as with the other residues.

MD simulations (60 ns) suggest that the interaction be-
tween NUPRI1 and this B-DNA molecule involves the inter-
molecular interactions listed in Tables 2, 3, and 4. Thus,
combined, the three methods utilized agree in revealing that
NUPRI has the ability to bind to DNA via a bipartite domain
composed of an AT-hook-like motif at the N-terminus and a
stretch of basic residues at its C-terminus. Subsequently, with
the goal of better characterizing the ability of NUPR1 to bind
to DNA, we performed in silico mutational analyses in which
key residues of interest were changed to either glutamic acid
or a residue of the opposite charge and molecular dynamic
simulations were implemented. Table 5 shows the NUPRI
residues targeted for study and their corresponding substitu-
tions. Note that these mutations disrupted the bonding pattern
observed in the WT NUPR1-DNA complex, which—accord-
ing to the so-called “additive” model of TF-DNA binding
energy [76]—should decrease the strength of these intermo-
lecular interactions. Since all of the algorithms that are widely
used for in vivo motif discovery adopt this additive model
[77], these data should help to benchmark future ChIP-Seq
experiments for genome-wide mapping of NUPR1-binding
sites in human, using both the wild-type and mutant forms
of'this protein. We next studied the order-to-disorder transition
of this complex using MD simulations. Interestingly, we ob-
served that—similar to the homology-based model—the
HMG-I/Y-like AT-hook motif of NUPR1 remains bound to
the minor groove of DNA. We also observed that binding to
the ideal B-DNA helix stabilizes helix 3, which persists more
frequently upon its formation than helix 1 during the simula-
tion, particularly its first half (Fig. 7d—f). This result suggests
that, similar to what has been described for other transcription
factors, some regions of NUPRI show the potential to be
stabilized by binding to their partners.

To further gain insight into the stabilizing effects of binding
to the ideal B-DNA helix, we performed conformational sam-
pling and analysis of both the isolated NUPR1 MD simulation
and that of the NUPRI-DNA complex. Briefly, we sampled
six conformations from each simulation and performed struc-
tural alignments to calculated RMSD values at the residue
level. The results of this root mean square fluctuation (RMSF)
analysis reveal that the isolated NUPR1 is disordered; it
undergoes wide structural fluctuations in a standard dynamics
cascade (Fig. 8a). Alternatively, RMSD analysis of conforma-
tions in the MD simulation show that the NUPR1-DNA
complex can undergo disorder transitions but is more stable
at the residues that span each «-helix (Fig. 8b). To further test
this idea, we performed pair-wise structural alignments of
each conformation in both simulations and generated heat
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Fig. 6 a-iAssignment of potential posttranslational modification sites P>
within functional domains of NUPRI1 by linear motif analyses. a
Graphical representation of the predicted NES and NLS domains within
the context of both NUPR1 isoforms as well as the similarities between
them. b PsortIl prediction of subcellular localization sites for NUPR1a
and NUPR1b. Psortll predicted that the NLS signal involves residues 81—
96 in NUPR 1a and 63—78 for NUPR1b. NLS scores of>0.20 indicate that
NUPRI1 is a nuclear protein (both isoforms). Results from NetNES
predict the nuclear export signal to fall in residues 29-37 for NUPR1a
and 24-37 for NUPR1b. The predicted NLS signal follows the typical
bipartite pattern of K(K/R)X(K/R) and, likewise, the predicted NES
follows the general observed pattern of LyyLxxL<L. Furthermore, the
results of the k-NN prediction indicate a high probability of nuclear
localization for both a and b isoforms (39.1 % and 43.5 %,
respectively). ¢ Graphical representation of the bipartite DNA-binding
domain predicted by DP-Bind. d Sequence comparison of the predicted
DNA-binding domain of NUPR1a and the AT-hook of HMGA. The
similarity between these two motifs highlights the reliability of our
prediction. e Linear motif graph representing the predicted functional
linear motifs in NUPR1a. f Phosphorylation sites in the context of
NUPRI1a. Note that residue Thr64 falls within the DNA-binding
domain RKGRTKR, suggesting that phosphorylation of this residue
could affect the DNA-binding ability of NUPRI1. Several predicted
phosphorylation sites also fall within the regions of the nuclear export
signal and nuclear localization signal. f also provides a representation of
the predicted acetylation and methylation sites. Several predicted
acetylation and methylation sites fall within the DBD and NLS of
NUPRI. The results of the predictions suggest that these sites are more
likely to be acetylated than methylated. g Results of the Phos3D
prediction. The generated 3D model of NUPR1a was used as an input
for the prediction software. Sites with a positive SVM score are
considered to be positive phosphorylation sites based on the spatial
context of previously characterized 3D phosphorylation site motifs. h
Web logo diagram illustrating the specificity potential and assigned
scores of the predicted posttranslational modification sites. i Multiple
sequence alignment of the NUPRI1-like proteins reveals differences
among them in the positions of potential phosphorylation, acetylation,
and methylation sites

maps to visualize the results of these alignments (Fig. 8c—d).
These results also suggest that NUPR1 undergoes rapid order-
to-disorder transitions but can be stabilized in some regions by
its binding to DNA.

Discussion

Here, we report several novel findings that advance our un-
derstanding of the biochemical functions of NUPR1, includ-
ing the first description of a NUPR 1-like family of helix-loop-
helix proteins which present similarities to helix-loop-helix
containing chromatin proteins in mammals and preserve the
conserved fold seen in some prokaryotic transcription factors.
Our primary structure analyses defined a NUPR 1-like domain
that has been conserved across evolution from nematodes to
humans and diverges to form a similar but uncharacterized
protein of a different gene, which we call NUPR2.
Interestingly, the conserved NUPR2-like domain is seen in
other DNA-binding proteins, such as GTF2-I. These results
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suggest that the structure and likely the function of the do-
mains formed by NUPR1-like sequences have been carefully
maintained throughout evolution. We also report the presence
of functionally important linear motifs within NUPR1, such as
a leucine-rich nuclear export signal, a signature bipartite nu-
clear localization signal, and a conserved DNA-binding do-
main. Thus, it can be inferred that NUPR1 is a highly con-
served nuclear protein that binds DNA and undergoes
cytoplasmic-to-nuclear translocation [2]. These results are
congruent with the previously postulated functions of

NUPR1a NUPRI1b
Discrimination of L“":":d"' . 15.00% 18.30%
NuclearLoc cesicues
Signals NLS Score 0.33 0.33
% Nuclear 39.1 43.5
% Extracellular 26.1 26.1
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% Cytoplasmic 8.7 8.7
% Vacuolar 8.7 43
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NUPRI1 and provide a sequence context for further studies
of its motifs. Previous biophysical work has suggested the
presence of posttranslational modification sites that modulate
NUPRI function [6]. Here, we report several likely candidates
for posttranslational modification sites, which were identified
using extensive bioinformatics analyses and statistical scor-
ing. These sites are amenable to phosphorylation, acetylation,
and methylation. However, ubiquitination and sumoylation
sites were predicted with low specificity potential. Notably,
some of these modification sites fall within regions containing
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Fig.7 a—fModeling NUPR1-DNA complexes. a 3D characterization of
the NUPR1 DNA-binding domain using a homology-based approach. To
achieve this, we used manual docking to superimpose the corresponding
region of NUPR1 onto the HMG AT-hook. b A simplified view of the
bonding interactions between NUPR1 and DNA. ¢ 3D model of the
NUPRI-DNA complex generated by DP-Dock. Representative models
are subsequently selected by clustering and ranking according to their
DNA-—protein interfacial energies. d MD simulations were used to study

functional linear motifs of NUPR1, making these potential
sites of further research interest.

The current study also increases our knowledge of the
biophysical properties of NUPR1. We built tridimensional
models for NUPR1a, NUPR1b, NUPR2, and the NUPR-like
domain of GTF2-I. These models were tested using a number
of structural validation methods and rigorous manual scoring.
The model of NUPR1a we developed suggests that this pro-
tein has a tendency to form a helix-loop-helix motif that is
characteristic of other related proteins such as the HMG
family of chromatin proteins and transcriptional regulators as
well as AT-hooks, which define the HMG-I/Y-subfamily
among these proteins. According to official nomenclature,
High Mobility Group (HMG) proteins are further classified
into three subfamilies: the HMGB (formerly HMG-1/-2) fam-
ily, the HMGN (formerly HMG-14/-17) family, and the
HMGA (formerly HMG-1/Y/C) family [78]. These HMG
subfamilies are characterized by the presence of a distinct
functional sequence motif. HMGB proteins, for instance, pos-
sess a motif known as the “HMG-box,” while the HMGN
subfamily contains a “nucleosomal binding domain,” and the
HMGA subfamily carries an “AT-hook.” These characteristic
functional motifs are widespread among nuclear proteins in a
variety of organisms. Consequently, it is accepted that proteins
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the order-to-disorder transition of the NUPRI-DNA complex. NUPR1
remains bound to the minor groove of DNA throughout the length of the
simulation. Conservation of helical folding is denoted in red, while green
marks previous helical structures that undergo a transition to disorder
during MD simulation. The first snapshot shows helix 1. e The second
snapshot shows helices 1 and 3. Binding to the ideal B-DNA helix
stabilizes helix 3, particularly its first half. f The third frame shows
another view of the helix 3 formed

containing any of these functional motifs embedded in their
sequence should be known as “HMG motif proteins.”
Interestingly, several of these related proteins have a tendency
to fold as a helix-loop-helix domain, while many of them—
though not all—have a dynamic propensity to disorder
(Figs. 4 and 5). These results and models are congruent with
data from previous structural studies suggesting that the sec-
ondary structure of NUPR 1 may be similar to helix-loop-helix
motif proteins such as HMG-I/Y (PDB: 1AAB) [79], which
also displays a large degree of disorder when isolated in
solution [5, 6, 10]. Furthermore, we infer from these models
that the 18-amino-acid insertion in NUPR 1a adopts the form
of a flexible loop. This provides a structural basis for differ-
entiating the two isoforms of NUPR1 for further studies.
However, we must also consider that, although the dynamics
of many HMG proteins—in particular HMG-I/Y-like pro-
teins—sometimes serve as a barrier to the determination of
the structures of their folds, they are still structured as sug-
gested by circular dichroism (CD) and NMR experiments
[75]. Many HMG proteins, in particular those outside the
HMG-I/Y subfamily, maintain a more robust hydrophobic/
aromatic core of the three-helix fold, which is present albeit
less pronounced in NUPR 1-like family members. These fea-
tures can be more readily observed in relevant PDB structures
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Table 2 Bonding patterns of the wild-type and mutant NUPR1a-DNA
complexes: results of interface analysis performed on the wild-type
NUPRI1-DNA complex in order to investigate contact residues between
NUPRI and the minor groove of DNA. The complex was subjected to a
2,000-step minimization using steepest descent followed by a 2,000-step

conjugated gradient minimization with harmonic restraints on all nucleic
acid groups. Contact residues between NUPR1 and DNA were analyzed
by defining an interface as a contact area with a maximum salt-bridge
distance of 5.0 A

Receptor residue Ligand residue Salt-bridge interaction constituents Distance (A)
C:A7 A:Arg60 C:A7:0P2-A:Arg60:NH1 4.77
D:T29 A:Lys61 D:T29:0P2—-A:Lys61:NZ 3.65
C:A7 A:Lys65 C:A7:0P2-A:Lys65:NZ 2.53
D:T22 A:Arg96 D:T22:0P2-A:Arg96:NH1 2.61
D:T21 A:Arg99 D:T21:0P2-A:Arg99:NH1 2.56
D:T22 A:Argl00 D:T22:0P2-A:Arg100:NH1 4.96

such as 2yul, 1ill, 1wz6, 2le4, 2e60, and 2crj. Thus, it is
likely that NUPR1 proteins conserve DNA contacts through a
combination of contributions arising from charges and fold-
ing. Finally, we underscore the fact that the current work did
not explore the contribution of DNA bending to the formation
of protein—nucleic acid complexes. Many HMG proteins bind
to bent DNA, and the bend angle is often specific to a partic-
ular protein. Thus, it is likely that NUPR1-like proteins also
share these properties, though careful empirical studies are
necessary to support the validity of this idea.

NUPRI1 has been implicated in cancer-associated pro-
cesses, although it remains poorly understood at the

mechanistic level [5]. To explore this, we used
homology-based methods and docking to develop the
first three-dimensional model of NUPRla bound to
DNA. Analyses of this model demonstrate that it could
bind to the minor groove of DNA through an HMG-like
AT-hook domain, which is part of a loop region.
Interface analysis suggests that this complex is main-
tained through ionic and hydrogen-bonding interactions
and reinforced by a second series of basic residues
present in the C-terminal domain of the protein. MD
simulations reveal that this NUPR1 remains bound to
DNA even when undergoing rapid order-to-disorder

Table 3 Bonding patterns of the

wild-type and mutant NUPR la— Receptor residue

Ligand residue

Interaction constituents Distance (A)

DNA complexes: results of an

analysis of the hydrogen-bonding C:A8 A:Gly59 A:Gly59:HN-C:A8:05 2.29

interactions between NUPR1 and C:A8 A:Arg60 A:Arg60:HN-C:A8:0P1 1.87

DNA, which was performed by C:A7 A:Arg60 A:Arg60:HH12-C:A7:0P1 175

defining an interface as a contact

area with a maximum hydrogen- C:A7 A:Arg60 A:Arg60:HH21-C:A7:05 1.63

bond distance of 2.5 A D:T29 A:Lys61 A:Lys61:HZ2-D:T29:0P1 1.68
D:T29 A:Lys61 A:Lys61:HZ3-D:T29:0P1 237
D:T29 A:Lys61 A:Lys61:HZ3-D:T29:05 1.57
D:T28 A:Arg63 A:Arg63:HH11-D:T28:02 1.8
D:T27 A:Arg63 A:Arg63:HH12-D:T27:02 1.97
C:A7 A:Lys65 A:Lys65:HZ2-C:A7:0P1 1.77
C:A7 A:Lys65 A:Lys65:HZ2-C:A7:0P2 2.32
C:A7 A:Lys65 A:Lys65:HZ3-C:A7:0P2 1.75
D:T31 A:Arg66 A:Arg66:HE-D:T31:0P1 2.02
D:T31 A:Arg66 A:Arg66:HH21-D:T31:0P1 1.73
D:T31 A:Arg66 A:Arg66:HH21-D:T31:05 1.88
D:T22 A:Arg96 A:Arg96:HH12-D:T22:0P1 235
D:T22 A:Arg96 A:Arg96:HH12-D:T22:0P2 1.69
D:T22 A:Arg96 A:Arg96:HH22-D:T22:0P2 2.49
D:T22 A:Arg96 A:Arg96:HH22-D:T22:05 1.62
D:T21 A:Arg99 A:Arg99:HH12-D:T21:0P2 1.69
D:T22 A:Argl00 A:Argl100:HH12-D:T22:0P1 1.73
D:T22 A:Argl00 A:Arg100:HH22-D:T22:0P1 1.75
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Table 4 Bonding patterns of the wild-type and mutant NUPR1a-DNA complexes: electrostatic and hydrophobic interactions between NUPR1 and

DNA

Name Distance  Category Type From From chemistry To To chemistry
A:Arg60:NH2-C:A7:01P 3.14 Electrostatic ~ Attractive charge ~ A:Arg60:NH2  Positive C:A7:01P Negative
A:Arg60:NH2-C:A8:01P 4.75 Electrostatic ~ Attractive charge ~ A:Arg60:NH2  Positive C:A8:01P Negative
A:Lys61:NZ-D:T29:01P 238 Electrostatic ~ Attractive charge ~ A:Lys61:NZ Positive D:T29:01P Negative
A:Arg63:NH1-D:T29:02P 5 Electrostatic ~ Attractive charge  A:Arg63:NH1  Positive D:T29:02P Negative
A:Lys65:NZ-C:A7:02P 451 Electrostatic ~ Attractive charge ~ A:Lys65:NZ Positive C:A7:02P Negative
A:Lys95:NZ-A:Asp28:0D1 4.94 Electrostatic ~ Attractive charge ~ A:Lys95:NZ Positive A:Asp28:0D1  Negative
A:Lys95:NZ—-A:Glu92:0E2 4.98 Electrostatic ~ Attractive charge ~ A:Lys95:NZ Positive A:Glu92:0OE2  Negative
A:Arg96:NH2-D:T22:01P 4.56 Electrostatic ~ Attractive charge ~ A:Arg96:NH2  Positive D:T22:01P Negative
A:Arg99:NH1-D:T22:02P 4.75 Electrostatic ~ Attractive charge ~ A:Arg99:NH1  Positive D:T22:02P Negative
A:Arg99:NH2-A:Asp21:0D1  5.53 Electrostatic ~ Attractive charge ~ A:Arg99:NH2  Positive A:Asp21:0D1  Negative
C:A6-C:A7 4.11 Hydrophobic 7t stacked C:A6 7t orbitals C:A7 7t orbitals
C:A6-C:A7 441 Hydrophobic 7t stacked C:A6 7t orbitals C:A7 7t orbitals
C:A6-C:A7 3.57 Hydrophobic 7t stacked C:A6 7t orbitals C:A7 7t orbitals
C:A7-C:A6 4.14 Hydrophobic 7t stacked C:A7 7t orbitals C:A6 7t orbitals
C:A7-C:A8 4.11 Hydrophobic 7t stacked C:A7 7t orbitals C:A8 7t orbitals
C:A7T-C:A8 441 Hydrophobic 7t stacked C:A7 7t orbitals C:A8 7t orbitals
C:A7-C:A8 3.57 Hydrophobic 7t stacked C:A7 7t orbitals C:A8 7t orbitals
C:A8-C:A7 4.14 Hydrophobic 7t stacked C:A8 7t orbitals C:A7 7t orbitals
C:A8-C:A9 4.11 Hydrophobic ~ 7t— stacked C:A8 7 orbitals C:A9 7 orbitals
C:A8-C:A9 441 Hydrophobic 7t stacked C:A8 7t orbitals C:A9 7t orbitals
C:A8-C:A9 3.57 Hydrophobic 7t stacked C:A8 7t orbitals C:A9 7t orbitals
C:A9-C:A8 4.14 Hydrophobic 7t stacked C:A9 7t orbitals C:A8 7t orbitals
D:T20-D:T21 4.07 Hydrophobic 7t stacked D:T20 7t orbitals D:T21 7t orbitals
D:T21-D:T22 4.07 Hydrophobic 7t stacked D:T21 7t orbitals D:T22 7 orbitals
D:T22-D:T23 4.07 Hydrophobic 7t stacked D:T22 7t orbitals D:T23 7 orbitals
D:T23-D:T24 4.07 Hydrophobic 7t stacked D:T23 7t orbitals D:T24 7t orbitals
D:T27-D:T28 4.07 Hydrophobic 77t stacked D:T27 7t orbitals D:T28 7t orbitals
D:T28-D:T29 4.07 Hydrophobic 7t stacked D:T28 7t orbitals D:T29 7t orbitals
D:T29-D:T30 4.07 Hydrophobic 7t stacked D:T29 7t orbitals D:T30 7t orbitals
D:T30-D:T31 4.07 Hydrophobic 7t stacked D:T30 7t orbitals D:T31 7t orbitals
A:Ala2—A:Pro45 4.24 Hydrophobic ~ Alkyl A:Ala2 Alkyl A:Pro45 Alkyl
A:Pro5-A:Met44 5.01 Hydrophobic ~ Alkyl A:Pro5 Alkyl A:Met44 Alkyl
A:Alal0-A:Ala52 3.82 Hydrophobic ~ Alkyl A:Alal0 Alkyl A:Ala52 Alkyl
A:Leu32-A:Leu88 4.93 Hydrophobic ~ Alkyl A:Leu32 Alkyl A:Leu88 Alkyl
A:Ala33-A:Leu53 324 Hydrophobic ~ Alkyl A:Ala33 Alkyl A:Leu53 Alkyl
A:Leud(0-A:Met42 5.15 Hydrophobic ~ Alkyl A:Leud0 Alkyl A:Metd2 Alkyl
A:Met42-A:Metd4 4.7 Hydrophobic ~ Alkyl A:Met42 Alkyl A:Met44 Alkyl
A:Pro43-A:Metl 4.25 Hydrophobic  Alkyl A:Pro43 Alkyl A:Metl Alkyl
A:Val54-A:Leu29 4.82 Hydrophobic ~ Alkyl A:Val54 Alkyl A:Leu29 Alkyl
A:Ala98-A:Arg100 4.58 Hydrophobic ~ Alkyl A:Ala98 Alkyl A:Argl00 Alkyl
A:Phe4—-A:Ala2 4.77 Hydrophobic ~ 7t-Alkyl A:Phe4 7t orbitals A:Ala2 Alkyl
A:Tyr30-A:Ala33 4.69 Hydrophobic  m-Alkyl A:Tyr30 7t orbitals A:Ala33 Alkyl
A:Tyr30-A:Leu53 4.66 Hydrophobic  m-Alkyl A:Tyr30 7t orbitals A:Leu53 Alkyl
A:Tyr36-A:Pro5 4.83 Hydrophobic  m-Alkyl A:Tyr36 7t orbitals A:Pro5 Alkyl
A:His80-A:Pro77 5.05 Hydrophobic  m-Alkyl A:His80 7t orbitals A:Pro77 Alkyl
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Table 5 Bonding patterns of the wild-type and mutant NUPR1a-DNA
complexes: results of mutational analyses performed to better characterize
the ability of NUPR 1a to bind to DNA. In these mutational analyses, key
residues of interest were changed to either glutamic acid or a residue of
the opposite charge and MD simulations were implemented. The mutated
NUPRI-DNA complex was subjected to a 2-ns molecular dynamics

simulation. The resulting complex no longer contained its original ionic
interactions. Instead, salt-bridge interactions were formed at Arg66,
Arg93, and Lys95. These changes highlight the functional importance
of modifications to the original DNA-binding residues in NUPRIa.
Ongoing mutational analysis will lend insight into the posttranslational
modifications that either enhance or inhibit its DNA binding

Wild type
Receptor residue Ligand residue Salt-bridge interaction constituents Distance (A)
C:A7 A:Arg60 C:A7:0P2-A:Arg60:NH1 4.77
D:T29 A:Lys61 D:T29:0P2-A:Lys61:NZ 3.65
C:A7 A:Lys65 C:A7:0P2—A:Lys65:NZ 2.53
D:T22 A:Arg96 D:T22:0P2-A:Arg96:NH1 2.61
D:T21 A:Arg99 D:T21:0P2-A:Arg99:NH1 2.56
D:T22 A:Argl00 D:T22:0P2-A:Arg100:NH1 4.96
Glutamic acid mutant
C:A7 A:Arg66 C:A7:0P2-A:Arg66:NH1 391
C:A7 A:Arg93 C:A7:0P2-A:Arg93:NH1 327
C:A8 A:Arg93 C:A8:0P2 — A:Arg93:NH1 5.35
D:T21 A:Lys95 D:T21:0P2-A:Lys95:NZ 3.08

A Nuprl RMSF
2

Nupr1-DNA Complex MD Simulation RMSF

19-34 64-73 79-99

Fig. 8 a—d Binding of NUPRIa to the ideal B-DNA helix provides
stabilization of the protein’s helix motifs. a Root mean square fluctuation
analysis of the isolated NUPR 1a MD simulation reveals that the protein is
highly disordered across a standard dynamics cascade. These results are
congruent with the disorder algorithm predictions which suggested that
the residues spanning helix 1 (19-34) are the least disordered (Fig. 5). b
Root mean square fluctuation analysis of the NUPR1a-DNA complex
MD simulation reveal that the residues spanning each o-helix in the
complex are the least disordered. ¢ A total of 120 conformations were

19-34 64-73 79-99

sampled from each simulation for further analyses. Pairwise alignments
for each isolated NUPR1 conformation were performed and RMSD
values were reported for each comparison. The results of this analysis
are represented visually as a heat map to show that the isolated protein
undergoes more order-to-disorder transitions. d Pairwise alignments for
each NUPR1-DNA complex conformation reveal that the complex is
more stable across the 60-ns MD simulation. These results further support
the hypothesis that the binding of NUPR1a to the ideal B-DNA helix
stabilizes the protein

@ Springer



2357, Page 18 of 20

J Mol Model (2014) 20:2357

transitions. Collectively, these results suggest that
NUPRI1 has the ability to bind to DNA, a fact that
has been shown both in vitro and in cultured cells.
However, EMSA and biophysical methods have shown
that, like several HMGs, NUPRI1 has a low affinity and
poor sequence specificity for DNA binding [6, 10]. In
addition, while these proteins have a propensity to dis-
order, biophysical methods have also shown that inter-
molecular interactions stabilize some regions of its se-
quence. These data do not, however, imply a “confor-
mational selection” scheme [58] for NUPR1-DNA bind-
ing, since the HMG-I/Y-like homology-based and DP-
Dock modeling approaches used here are ultimately
derived using parameters based on single low-energy
structures that were experimentally solved. Binding to
proteins that have a high degree of disorder is usually
explained by two models: folding after binding (also
known as “fly casting”) and conformational selection
[80]. The first model implies the presence of an inter-
mediate species that shows weak, nonspecific binding,
which is followed by folding and specific binding to the
target. The second model involves the binding of a
ligand to one of the well-folded conformations of the
protein. Thus, based on these considerations, it remains
possible that other types of NUPR-DNA complexes can
be formed depending on the structure and sequence of
its target nucleic acid. Lastly, like other transcriptional
regulators, NUPR1 forms complexes with other proteins,
which could modulate its affinity towards other partners.
Posttranslational modifications such as those predicted
here and validated experimentally [81] may further
modulate the affinity and specificity of this protein for
DNA. Therefore, we are optimistic that future studies in
which complexes with emerging NUPRI1 partners are
characterized in detail may help to shed additional light
on some important biochemical functions of this protein.

In conclusion, our results strongly suggest that NUPR1
defines a new family of DNA-binding proteins that are related
to, yet distinct from, the HMG-1/Y-like subfamily of HMG
proteins. Dynamic experiments demonstrate that these pro-
teins are also characterized by their ability to undergo signif-
icant order-to-disorder transitions. The intrinsic flexibility of
NUPRI1 appears to be stabilized by binding to DNA.
Furthermore, we report that NUPR1 contains distinct linear
motifs which were previously found to mediate nuclear im-
port, export, and DNA binding. Several posttranslational
modifications are observed adjacent to or within these motifs.
Some of these motifs are modified in vivo (e.g., by PKA and
p300) [82]. Consequently, the information reported here
should be taken into consideration when designing cell and
molecular experiments, as well as during the development of
small drugs that can modulate the function of NUPR1-like
proteins.
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