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Abstract Formamide harmonic and anharmonic frequencies
of fundamental vibrations in the gas phase and in several
solvents were successfully estimated in the B3LYP Kohn-
Sham complete basis set limit (KS CBS). CBS results were
obtained by extrapolating a power function (two-parameter
formula) to the results calculated with polarization-consistent
basis sets. Anharmonic corrections using the second order
perturbation treatment (PT2) and hybrid B3LYP functional
combined with polarization consistent pc-n (n=0, 1, 2, 3, 4)
and several Pople’s basis sets were analyzed for all
fundamental formamide vibrational modes in the gas phase
and solution. Solvent effects were modeled within a PCM
method. The anharmonic frequency of diagnostic amide
vibration C=O in the gas phase and the CCl4 solution
calculated with the VPT2 method was significantly closer to
experimental data than the corresponding harmonic frequen-
cy. Both harmonic and anharmonic frequencies of C=O
stretching mode decreased linearly with solvent polarity,
expressed by relative environment permittivity (ε) ratio (ε−
1)/(2ε+1). However, an unphysical behavior of solvent
dependence of some low frequency anharmonic amide
modes of formamide (e.g., CN stretch, NH2 scissoring, and
NH2 in plane bend) was observed, probably due to the
presence of severe anharmonicity and Fermi resonance.
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Introduction

IR and Raman vibrational spectroscopies are used widely
for characterization of both novel chemical compounds and
natural products. Calculated harmonic frequencies are
usually overestimated due to neglect of anharmonicity
effects [1]. For example, the high frequency wavelengths
calculated by Hartree-Fock method are typically over-
estimated by about 10%. Although scaling of harmonic
frequencies computed at the Hartree-Fock and other levels
of theory gives reasonable results, the development of
hardware and software allow the a priori prediction of
anharmonic wavenumbers. There are three fundamental
studies [2–4] on scaling factors used in frequency and ZPV
calculations. Evaluation of scaling factors is very laborious
work and, therefore, despite the presence of myriad
methods and basis sets, only a few scaling factors are
available in the literature. In particular, scaling of results
obtained with the recently introduced Jensen’s basis sets
[5–10] and very large Dunning’s [11–14] basis sets are
lacking. Moreover, in more accurate theoretical vibrational
studies, the effect of solvent, present in most experimental
works should be also included.

Among the high number of basis sets available, the so-
called Pople basis sets (see ref. [1]), though fairly old, are
robust and relatively small. Sometimes, they reproduce very
well the experimental parameters of medium-sized mole-
cules. However, no regular change of atomic and molecular
energy is calculated with the Pople basis sets toward the
complete basis set limit (CBS). Dunning and coworkers
[11–14] utilized the idea of smooth and regular converging
energy toward the CBS for constructing correlation-
consistent basis set hierarchies. Thus, in theoretical ther-
mochemical calculations, the energy, and some other
structural and spectral parameters, have been estimated
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accurately using simple 2- and 3-parameter formulae [12,
15–17]. Later, Jensen [5–10] designed another family of
converging basis sets, the so-called polarized-consistent
basis sets pc-n, where n=0, 1, 2, 3 and 4. These basis set
series, developed explicitly for DFT, seem to converge
faster than those of Dunning while reproducing the
parameters calculated with the latter in the corresponding
SCF, DFT, MP2 and CCSD(T) basis set limits [18].
Despite the fact that the use of the CBS approach in
DFT methods can be controversial, several studies have
shown regular convergence of molecular energy and other
parameters toward the corresponding Kohn-Sham (KS)
limit [19, 20].

Formamide is the simplest model of a peptide bond and
is often used for model experimental and theoretical studies
related to protein chemistry. Cappelli [22] reported anhar-
monic frequencies of selected formamide modes in the gas
phase and in water solution calculated by B3LYP/6-311+ +
G** method. There have been several detailed and high-
level studies on anharmonicity of formamide modes [23–
25]. However, to the best of our knowledge, there have
been no studies on formamide harmonic and anharmonic
frequencies convergence toward the KS limit using a
hierarchy of systematically changed basis sets and the
influence of solvent on the obtained results. Do harmonic
and anharmonic vibrations of formamide calculated with
pc-n basis set hierarchy monotonically converge toward the
KS limit? This question would be of interest for future
detailed studies of vibrational problems. Boese and cow-
orkers [21] used Dunning’s and pc-1, 2 and 3 basis sets,
and reported on convergence of anharmonic vibrations in
case of 17 small molecules but formamide was not
considered. Besides, no CBS estimates were reported in
their paper.

In this work, we report on the convergence of
harmonic and anharmonic fundamental frequencies of
formamide modes in the gas phase and solution,
calculated with second-order vibrational perturbation
theory (VPT2) [26, 27] and pc-n polarization-consistent
basis sets toward the B3LYP CBS. The results of
individual calculations using a hierarchy of pc-n basis
sets were fitted using a simple two-parameter mathemat-
ical formula. For comparison, calculations using several
Pople basis sets were performed. The results obtained with
individual basis sets and the estimated CBS values were
critically compared with available experimental data in the
gas phase [28] and solution [29].

Computational details

All calculations were performed using the Gaussian 09
program [30].

Basis sets and density functionals

Geometry

Fully optimized geometries of formamide in the gas phase,
and solution (with PCM model [32]) were obtained using
default and tight convergence criteria for each method and
basis set selected. All positive harmonic vibration frequen-
cies were obtained ensuring ground state structures.

Harmonic and anharmonic vibration calculations

The calculations were carried out in the gas phase and for
eight selected solvents (n-hexane, chloroform, carbon
tetrachloride, acetone, acetonitrile, DMSO, water and
formamide) using the VPT2 method as implemented by
Barone [26, 27] in the Gaussian program package [30]. In
all cases, the finest DFT integration grid was selected by
using SCF=tight and Int(Grid=150590) in the command
line instead of Int(Grid=ULTRAFINE) keyword. The use
of such a fine grid is critical in the case of anharmonic
frequency calculations with large basis sets [33]. Fermi
resonances were handled in all calculations by default
settings in the G09 anharmonic calculations.

CBS calculations

The harmonic and anharmonic frequencies, Y(X), were
calculated using polarization-consistent pc-n basis sets,
where n=0, 1, 2, 3 and 4, and subsequently extrapolated
to the B3LYP CBS limit, Y(∞), by fitting the individual
results to the two-parameter function [15]:

Y Xð Þ ¼ Y 1ð Þ þ A=X3 ð1Þ

The extrapolated value Y(∞) corresponds to the best
estimate of the predicted frequency for infinite zeta (or
cardinal number “X”), and A and Y(∞) are fitted parameters.
In case of Jensen’s pc-n basis sets, X=n+2, was assumed
for graphical fitting purposes only [18, 34]. All the fittings
were performed with two-parameter formula (Eq. 1). Since
smaller values of “X” and “n” yield results (frequencies in
this study) more corrupted by errors due to basis set
imperfections, the CBS values are often estimated using
higher cardinal numbers. For example, the abbreviation
CBS(4,5,6) indicates estimation using X=Q, 5 and 6, or n=
2, 3 and 4, respectively.
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Pople’s 3-21G, 6-31G, 6-31G*, 6-31+G**, 6-311++G** and 6-
311++G(3df,2pd) (see details in ref. [30] and references therein),
and Jensen’s pc-n polarized-consistent basis sets [5–10] were
used. Efficient B3LYP density functional was selected. The pc-
n basis sets were downloaded from EMSL [31].



Scaling factors

Single scaling factors were used for low and high
frequencies. Thus, in several cases we arbitrary took the
values from partly similar basis sets [2–4]. For the reader’s
convenience, all the scaling factors used in our work are
collected in one table (Table S4 in the supporting material).

Results and discussion

Figure 1 shows B3LYP calculated harmonic and anhar-
monic frequencies of six selected (amidic) formamide
modes in the gas phase as a function of selected Pople
and Jensen basis set size. Experimental values [28] are
added as solid straight lines and the results obtained with
pc-2, pc-3 and pc-4 basis sets are nonlinearly fitted toward
the CBS using Eq. 1. The corresponding CBS values for
harmonic and anharmonic frequencies are shown as straight
dashed lines. Most results obtained with Jensen’s basis set
(starting from pc-2) converge smoothly toward the B3LYP
KS limit. On the other hand, both harmonic and anhar-
monic frequencies obtained with selected Pople type basis
set show some irregular dependence on basis set quality but
the values obtained with the largest [6-311+ +G(3df,2pd)]
are close to those estimated in the CBS limit. CBS values of
harmonic and anharmonic frequencies of asymmetric and
symmetric NH2 stretching modes behave typically, e.g., the
anharmonic ones are lower by about 200 and 170 cm−1,
respectively, and are closer to experimental values [28]. The
excellent agreement with experiment is visible for anhar-
monic CBS values of carbonyl stretching and NH2

scissoring modes. However, in the VPT2 method it is more
challenging to take into account the anharmonicity of low
frequency modes. Thus, for example, the harmonic fre-
quencies of CN stretch predicted with both Pople and
Jensen’s basis sets are close to experimental values and
show very little dependence on basis set quality. On the
contrary, the corresponding anharmonic frequencies for pc-
n basis sets regularly (and significantly) decrease toward
the CBS. This leads to the highest absolute deviation in the
CBS (−117 cm−1), significantly larger than that produced
with smaller basis sets. The reason for such a large
dependence on basis set size is probably the Fermi
resonance between this mode and the first overtone of
NCO bending. Surprisingly, in the case of in plane NH2

bending, the anharmonic frequencies calculated with the 6-
31G* and 6-31+G** basis sets are higher than the
corresponding harmonic ones. It difficult to explain this
result since this mode does not participate in Fermi
resonance with any other vibrational mode.

Table 1 gathers the deviations from experimental values
of all harmonic and anharmonic frequencies of formamide

in the gas phase calculated using the B3LYP hybrid density
functional and selected Pople and Jensen basis sets. Results
obtained with several additional basis sets are collected in
Table S1 in the electronic supplementary material. The
accuracy of frequency prediction depends strongly on the
mode type. In most cases, the deviations from experimental
values of anharmonic frequencies are smaller as compared
to those of harmonic frequencies [28]. Moreover, the
anharmonic frequency of the C=O stretch is predicted
accurately, while the NH2 wagging is very erratic for all
basis sets used. In particular, for the 6-31G* basis set an
abnormal change of frequency deviation for this mode from
−207 (Δharm) to 2245 cm−1 (Δanharm) is observed. This
results in a very large root mean square (RMS) for this
particular basis set (650 cm−1). When the deviations for
this mode are excluded, the corresponding RMS values are
significantly smaller (see Table 1). The inability of the
VPT2 method to properly treat formamide NH2 wagging
(and other modes that exhibit large anharmonicity and
strong resonances) in comparison to other methods, like
VSCF or VCI, was already reported by Bounouar [23].
Earlier, Bour [24] observed poor agreement with experi-
mental values in the case of six lower frequency anhar-
monic modes calculated by the VPT2 method. Among
Pople’s basis set, the smallest RMS for anharmonic
vibrations was observed for the 6-31+G** and 6-311++
G** basis sets, and the largest used basis set produced a
significantly poorer result (RMS of 30, 34 and 46 cm−1).
Similarly, RMS deviation of anharmonic frequencies
calculated for the pc-2 basis set is smaller than estimated
for the CBS limit (42 vs 59 cm−1). On the other hand, the
use of a single scaling factor (the scaling factors used are
gathered in Table S4 of the supplementary material) results
in deviations significantly smaller than those observed for
anharmonic frequencies [28].

The performance of the VPT2 method depends also on
the method of calculation. For example, the MP2/aug-cc-
pVTZ calculated anharmonic NH2 stretch modes [23]
reproduced the experimental data ideally (by about 2
cm−1) while our B3LYP results with both Pople and
Jensen’s basis sets show large discrepancies (about 30–50
cm−1). However, both methods predict very well the CNO
bending mode, probably due to the very low degree of
anharmonicity.

Next, the performance of VPT2 in predicting anhar-
monic formamide frequencies in solution was studied using
the PCM approach. Both low and high polarity solvents
were tested. First, the impact of low polarity solvent (CCl4)
on anharmonic vibrations for the studied Pople and Jensen
basis sets was checked; a picture very similar to that
presented in Fig. 1 was obtained (see Fig. S1 in the
supplementary material). Similarly to formamide in the gas
phase, the CBS values of anharmonic frequencies of two
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NH2 and C=O stretch modes reproduced very well the
available experimental wavenumbers (the corresponding
deviations are −30, −19 and −6 cm−1[29]). However, the
anharmonic frequency of C-N stretching is very sensi-
tive to the basis set quality and its CBS value under-
estimates the experimental value in CCl4 solution

significantly (by −102 cm−1) [29]. On the contrary, the
calculated harmonic CN stretching mode is almost indepen-
dent of the basis set size and quality, and overestimates the
corresponding experimental values by only 23 cm−1.

Table 2 presents all formamide harmonic and anhar-
monic frequencies in CCl4 solution calculated using
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Fig. 1 Sensitivity of B3LYP-
calculated selected harmonic
and anharmonic frequencies of
formamide in the gas phase to
selected Pople and polarization
consistent basis sets quality. The
results for pc-n basis sets were
fitted with Eq. 1 and the com-
plete basis set limit (CBS)
(2,3,4) estimated
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selected Pople and Jensen basis sets; the complete set of
results is shown in the electronic supplementary material
(Table S2). First, a very nice reproduction of experimental
C=O frequency [29] by the VPT2 method is visible for
better quality basis sets [6-31+G**, 6-311+ +G**, 6-311

+ +G(3df,2pd) and pc-n, for n=2–4] is apparent. On the
contrary, the NH2 wagging frequency (observed at 323
cm−1) is correctly predicted by a simple harmonic model
but significantly overestimated by VPT2 method (1,186 cm−1

for 6-31 G* basis set and about 500 cm−1 for 6-311+ +G

a Reference [28]
b RMS calculated without NH2 wagging mode

Table 2 Deviationsa of formamide harmonic (Δharm) and anharmonic (Δanharm) frequencies (cm
−1) in CCl4 solution calculated by B3LYP with

selected Pople and Jensen’s basis sets. CBS Complete basis set limit

6-31 G* 6-311 + + G(3df,2pd) pc-2 CBS

No. Mode exp.b Δharm Δanharm Δharm Δanharm Δharm Δanharm Δharm Δanharm

1 NH2 as stretch 3534 179 -41 177 -23 179 -23 164 -30

2 NH2 sym stretch 3411 173 -15 163 -14 166 -14 156 -19

3 CH stretch 2862 117 -74 100 -96 103 -97 92 -93

4 C=O stretch 1721 95 61 40 4 39 2 31 -6

5 NH2 scissoring - - - - - - - - -

6 CH bend 1391 49 43 33 23 34 22 32 29

7 CN stretch 1252 36 -36 23 -84 23 -77 23 -102

8 NH2 ip bend 1216 -148 -143 -153 -226 -153 -225 -150 -220

9 CH op bend 1064 -12 -43 -13 -37 -12 -36 -15 -34

10 NH2 tors 667 -11 -28 -20 -59 -18 -50 -23 -76

11 NCO bend 573 -5 -3 1 -55 0 -58 3 -46

12 NH2 wag 323 -167 863 -26 202 -21 200 -28 224

RMS c 112 267 93 103 94 102 89 108

RMS d 105 61 97 88 98 86 93 89

a Δ=νcalc−νexp

b Reference [29]
c RMS calculated without NH2 scissoring mode
d RMS calculated without NH2 scissoring and NH2 wagging modes
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Table 1 Deviations from experimental values of formamide harmonic (Δharm), anharmonic (Δanharm) and scaled harmonic Δscal) frequencies
(cm−1) calculated with B3LYP and selected Pople and Jensen’s basis sets. RMS Root mean square

6-31G* 6-311++G(3df,2pd) pc-2 CBS

No. mode exp.a Δharm Δanharm Δscal Δharm Δanharm Δscal Δharm Δanharm Δscal Δharm Δanharm Δscal

1 NH2 as stretch 3564 154 -100 10 153 -41 37 155 -41 40 141 -53 48

2 NH2 sym stretch 3440 146 -60 8 138 -30 25 140 -29 30 131 -37 42

3 CH stretch 2854 110 -57 -5 88 -90 -5 91 -89 0 80 -93 7

4 C=O stretch 1754 85 57 14 39 6 -18 37 4 -19 28 -4 -16

5 NH2 scissoring 1579 60 34 -3 39 -2 -12 40 0 -10 41 -1 0

6 CH bend 1391 47 57 -9 30 33 -15 31 33 -13 29 33 -7

7 CN stretch 1258 23 -37 -26 7 -85 -32 7 -67 -32 7 -117 -24

8 NH2 ip bend 1046 15 30 -26 9 4 -24 9 4 -24 12 5 -15

9 CH op bend 1033 12 -20 -28 9 -13 -23 11 -11 -21 8 -18 -18

10 NH2 tors 602 49 -60 24 37 -65 16 39 -50 19 33 -99 18

11 NCO bend 566 -2 3 -23 4 5 -14 3 5 -14 7 1 -8

12 NH2 wag 289 -207 2245 -210 -42 157 -50 -34 156 -42 -40 144 -46

RMS 98 650 63 69 63 26 70 60 25 64 70 26

RMSb 82 53 19 71 46 22 72 42 23 66 59 23



(3df,2pd) and pc-n, for n=2–4). The best overall result for
the VPT2 method is observed for the 6-31G* basis set (RMS
of 105 and 61 cm−1 for harmonic and anharmonic
frequencies), and there is no accuracy gain when using pc-
n basis sets (RMS of 98 and 86 cm−1 for harmonic and
anharmonic frequencies calculated using pc-2 basis set, and
93 vs 89 cm−1 in the CBS limit). The apparently best result
for the 6-31G* basis set is, however, due to incidental error
cancellation since the corresponding results for 6-311++G
(3df,2pd) basis set are similar to those obtained in the complete
basis set limit (see Table 2). Surprisingly, the largest deviation
in CCl4 (about −200 cm−1) is observed for anharmonic NH2

in plane bending. On the contrary, this mode is very well
predicted in the gas phase (deviation of about 5 cm−1).
However, comparing the experimental wavenumbers,
assigned in the gas phase and solution (1046 vs 1216
cm−1), one could question the latter assignment. The overall
RMS values for both harmonic and anharmonic frequencies
in CCl4 solution are significantly larger than the
corresponding numbers in the gas phase. Thus, the results
from Table 2 show no advantage of using the VPT2 approach
to calculate accurate frequencies of formamide in CCl4
solution (C=O mode is a striking exception to this rule).

There are no reported experimental data on all the
different formamide vibrational modes in various solvents
and only some sparse data exist [29]. This is partly due to
problems caused by formamide association. Therefore,
Table 3 compares harmonic and anharmonic frequencies
calculated at B3LYP/pc-2 level of theory for selected
vibrational modes of formamide in vacuum and in eight
solvents. It is apparent from Table 3 that, both for the
isolated molecule and in solution, the anharmonic frequen-
cy of the C=O mode is lower than the harmonic frequency.
Moreover, upon using more polar solvent, the harmonic and
anharmonic frequency of this vibration decreases in a
roughly linearly manner. However, the changes in frequen-
cy introduced by solvent are more complex for other
vibrational modes. In the case of the three amide modes
(NH2 scissoring, NH2 in plane bend and NCO bending
modes) an unphysical positive anharmonicity is observed
for more polar solvents. A particularly high positive
anharmonicity (~ 200 cm−1) in all solvents is calculated
for NH2 wagging mode. In fact, four cases of Fermi
resonances were calculated in the gas phase and solvents of
low polarity, and seven Fermi resonances in more polar
solvents. For example, NH2 scissoring mode (ν5) is in
Fermi resonance with modes ν9+ν8. Quite a similar
pictures was obtained from the corresponding B3LYP/6-
31+G** calculations (for brevity these results are presented
in Table S4 in the electronic supplementary material). Thus,
Fermi resonance could be responsible for the observed
unphysical behavior of several anharmonic modes calculat-
ed in polar solvents.
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Figure 2 presents selected formamide harmonic and
anharmonic frequencies, calculated at the B3LYP/pc-2 level
of theory as a function of medium polarity, expressed as
(ε − 1)/(2ε+1). The regular changes in harmonic frequen-
cies are roughly linear and agree with our chemical
intuition. However, the corresponding anharmonic frequen-
cies show some abrupt and unexpected behavior (there is a
kind of more or less pronounced minimum for CCl4).
Moreover, anharmonic frequencies of NH2 scissoring and
NH2 in plane bending in more polar solvents are higher
than the corresponding harmonic frequencies. A very
similar result is produced by B3LYP/6-31+G** calcula-
tions (see Fig. S2 in the supplementary material). This is
clearly some kind of artifact of handling anharmonicity in

solution, possibly introduced by the VPT2 method. To the
best of our knowledge, this artificial behavior of anhar-
monic frequencies upon solvent polarity change has not
been reported before.

Looking for a possible explanation for the poor behavior
of anharmonic frequencies of formamide in solution, we
considered two reasons: limitations of the PCM model or
VPT2 method, and/or its implementation for studies in
solution. Intuitively, the correct behavior of the PCM model
in solvents of increased polarity should results in linear
changes of structural parameters optimized for both
equilibrium and rovibrationally averaged geometry. We
thus analyzed the corresponding changes introduced by
solvent to selected geometrical parameters of formamide.
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First, the percentage changes of C=O and C – N bonds at
equilibrium in the gas phase, and rovibrationally averaged
by the VPT2 method were plotted as a function of medium
polarity in Fig. 3. These results show that both bond lengths
change linearly in response to medium polarity. Thus, in
comparison to vacuum, the C=O bond is longer by about+
1%, and the C–N bond is shorter by about −1% in
formamide solution. It is also apparent that the equilibrium
C=O bond length and rovibrationally averaged length are
essentially similar (the corresponding lines are parallel and
separated by only 0.2% of the initial equilibrium structure
in vacuum). On the other hand, the corresponding C–N
bond lengths are fairly different (well separated lines are
observed in Fig. 3). Obviously, the elongation of the C=O
and shortening of the C–N bond in response to solvent
polarity reflects the increased contribution of the more polar
structure B due to amide resonance (Fig. 4). We also noted
that the equilibrium and rovibrationally averaged structural
parameters obtained for the isolated formamide molecule
reproduces experimental gas phase data fairly well [35, 36].
Similarly, the agreement between our rovibrational
averaged formamide structural parameters calculated in
formamide solution is close to recent ab initio molecular-
dynamic data for liquid formamide reported by Tsuchida
[37].

We conclude that the VPT2 method in combination with
the PCM model is able to correctly predict changes of
rovibrationally averaged structural parameters in response
to solvent polarity. On the other hand, calculated frequen-
cies are second derivatives of total energy of the system and
changes of atomic positions. Thus, all minute errors in
geometry or energy calculations are seen as if through a

“magnifying glass” in the calculated anharmonic frequen-
cies. Therefore, in the case of formamide, some anharmonic
frequencies behave erratically upon increasing solvent
polarity. A similar sensitivity of calculated magnetic
parameters, for example, the accuracy of nuclear isotropic
shieldings, is observed upon application of correlation-
consistent or polarization-consistent basis set [18, 34].
Another reason for the unphysical changes in anharmonic
CN stretch vibration with solvent polarity could be Fermi
resonance with a 2ν11 overtone.

Conclusions

In this paper, for the first time, we showed the convergence
of formamide harmonic and anharmonic (calculated using
the VPT2 method) frequencies toward their corresponding
B3LYP/pc-n CBS limits in the gas phase and in solution. A
systematic study of the basis set convergence was carried
out. From our results, the following conclusions can be
drawn:

1. In the case of polarization consistent basis sets, starting
from pc-2, a regular and systematic convergence
(leading mainly to a decrease in wavenumber) of both
harmonic and anharmonic frequencies in the gas phase
and solution is observed. In fact, harmonic and
anharmonic wavenumbers practically converge for pc-
2, and sometimes for pc-3, basis sets, making calcu-
lations with larger basis sets unnecessary. Only in the
case of anharmonic C–N stretching mode (and contrary
to the corresponding harmonic counterpart), is a very
strong dependence on Jensen’s basis set size observed,
and the corresponding CBS limit underestimates the
experimental value. Thus, this mode is difficult to
predict correctly by VPT2 combined with B3LYP.

2. Increasing the size and quality (flexibility) of Pople
basis set leads to irregular and non-monotonic changes
in formamide harmonic and anharmonic frequencies.
However, the frequencies calculated with fairly large 6-
311++G** and 6–311++G(3df,2pd) basis sets approach
the CBS limit observed for pc-n basis sets.

3. The most important and diagnostic amide mode (C=O
stretching), relevant to studies on amides and peptides,
is fairly well predicted by VPT2 method, both in the
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gas phase and in solvents of low, medium and high
polarity.

4. The quality of anharmonic frequencies is inferior to
simple harmonic frequency scaling procedures (RMS in
case of B3LYP/6-31G* calculations is 53 vs 19 cm−1,
and for B3LYP/CBS results is 59 vs 23 cm−1). This fact
is important for studies on peptide systems.

5. Solvent dependence of some low frequency anhar-
monic amide modes of formamide (e.g., CN stretch,
NH2 scissoring, and NH2 in plane bend) is incorrect.
The VPT2 method reproduces some formamide fre-
quencies in solution in an irregular way, probably due
to the presence of severe anharmonicity and Fermi
resonance.
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