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Abstract When analyzing computer simulations of mix-
tures of lipids and water, the questions to be answered are
often of a morphological nature. They can deal with global
properties, like the kind of phase that is adopted or the
presence or absence of certain key features like a pore or
stalk, or with local properties, like the local curvature
present at a particular part of the lipid/water interface.
While in principle all of the information relating to the
global and local morphological properties of a system can
be obtained from the set of atomic coordinates generated by
a computer simulation, the extraction of this information is
a tedious task that usually involves using a visualization
program and performing the analysis by eye. Here we
present a tool that employs the technique of morphological
image analysis (MIA) to automatically extract the global
morphology—as given by Minkowski functionals—from a
set of atomic coordinates, and creates an image of the
system onto which the local curvatures are mapped as a
color code.
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Introduction

Motivation

With the development of new models and the steady
increase in available computing power, computer simula-
tions have become more and more valuable in the study of
lipid systems. While the exact conformations of individual
lipid molecules are of interest for some applications, most
of the time the focus is on the behavior of aggregates of
lipids as a whole. Recent examples have been reviewed in
[1].

In many of these studies, at some point during the
analysis of the simulation, a morphological property of the
system—i.e., a property that solely depends on the shape of
the lipid aggregate—needs to be characterized. For the
more general properties, like the phase adopted and the
presence or absence of stalks or pores, the task at hand can
be accomplished by loading the obtained coordinates into a
visualization program and performing the analysis by eye,
but analyzing a large number of simulations in this way can
be a tedious task. For the determination of more specific,
quantitative properties like the interface area, volume and
curvatures, such a naive approach is largely impossible.

One possible way to automate morphological analyses of
trajectories generated by computer simulations is to use the
technique of morphological image analysis [2] to extract
morphological information in the form of Minkowski
functionals [3]. This approach has been used to study,
e.g., a pore distribution [4] and membrane fusion events
during a phase transition [5], as well as to monitor the self-
assembly of vesicles [6]. Another approach is to describe
morphological features as persistent voids based on the
theory of alpha shapes [7] and persistent homology [8],
which has been applied to characterize vesicle fusion [9].
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However, no implementation of either method is currently
readily available to the majority of researchers—none are
included in any of the widely used molecular dynamics
software packages.

Here, we present an extension of the Gromacs software
package [10] that enables the morphological image analysis
of molecular aggregates. In addition, an option to extract
local curvatures has been added to the method which, to the
authors’ best knowledge, has not been employed before, at
least in the field of lipid aggregates.

Theory

In three dimensions, there are four Minkowski functionals
corresponding to the volume whose morphology is to be
determined, the area of the interface separating that volume
from the rest of the system, and the integrated mean and
Gaussian curvatures of that interface.1 As such, both
geometrical (shape) and topological features (connectivity)
are characterized.2

For black and white digital (i.e., pixelated) images, the
process used to extract the Minkowski functionals is well
established and can be accomplished by simply counting
the pixels and pixel components of lower dimensionality
that comprise the image. This means, that for three-
dimensional pictures, one only needs the number of voxels3

and the number of faces, edges and vertices which these
voxels consist of, where voxel components shared by
several voxels are counted only once. The Minkowski
functionals can then be obtained as sums over these
numbers, as given in Table 1. A way of obtaining the
morphology of a set of coordinates is therefore to translate
the system into a three-dimensional image composed of
black and white voxels [2].

The advantages of this method are the straightforward-
ness of its implementation and its rigorousness in the sense
that the resulting numbers are the exact values of the
Minkowski functionals for the image. Its only disadvantage
is therefore the approximation introduced by the image
itself. The use of voxels entails a limitation to right angles,
which imposes restrictions on the values for the surface
area and integrated mean curvature obtained with this
method, causing several structures to share the same value.
As an example, removing any voxel from a cube of eight
voxels will leave the surface area and integrated mean

curvature unchanged, resulting in a general tendency to
overestimate these functionals.

However, the Euler characteristic—which only requires
the connectivity to be identical for the image and the
original system—can be determined exactly, and the
volume can be obtained with only slight errors that can be
minimized by choosing a sufficiently high resolution.

For a broad spectrum of morphological tasks, the values
obtained are sufficient, even with the restrictions mentioned
above. For most applications concerning molecular aggre-
gates, the Euler characteristic and the integrated mean
curvature are arguably the most important values. Purely
topological analyses, including both phase determination
and the detection of stalks or pores, rely primarily on the
Euler characteristic, which is not affected by the limitations
of morphological image analysis. In addition, due to the
systematic nature of the error in the integrated mean
curvature, the value obtained can still be used to extract
morphological information. The absence of mean curvature
is accurately recognized as zero mean curvature, and
systems with positive can be distinguished from those with
negative total mean curvature. In addition, both the
integrated mean curvature and the surface area can be used
to further characterize structures within families with
similar topologies, since the lack of absolute values is not
detrimental to relative comparisons.

As an extension to this basic application of morpholog-
ical image analysis, it is also possible to obtain local values
of the mean and Gaussian curvature. As has been shown by
Hyde et al. [11], every surface vertex can be associated with
a certain mean and Gaussian curvature. Again, these values
are exact for the image, and summation over all surface
vertices while taking into account the different surface areas
associated with each vertex leads to global (integrated)
values for the mean and Gaussian curvatures which are
identical to those obtained with the method described
above. Mapping the local curvatures onto the image as a
color code allows further characterization of the structure at
hand, enabling the easy detection of areas with different
curvatures, as well as detailed comparison of similar
structures.

1 Alternatively, integrated mean and Gaussian curvatures can be
replaced by the mean breadth and the Euler characteristic, to which
they are proportional (see Table 1).
2 Note, however, that while a given morphology specifies a specific
set of Minkowski functionals, the reverse is not necessarily true.
3 In other words, the three-dimensional analog of pixels, essentially
small cubes.

Table 1 The relation between volume V, surface area A, mean breadth
B, Euler characteristic χ, integrated mean curvature H, integrated
Gaussian curvature K, voxel edge length ξ, and the numbers of cubic
voxels nc, faces nf, edges ne and vertices nv that define the positive
space

Morphological property Related property

V /ξ3 = nc
A/ξ2 = −6nc + 2nf
2B/ξ = 3nc − 2nf + ne H = 2πB

χ = −nc + nf − ne + nv K = 4πχ
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The rest of this article is organized as follows. In the
sections “Implementation” and “User-definable options and
parameters,” details about the implementation and the user-
definable parameters are given, while “Simulation setup”
describes the parameters used in the simulations that were
analyzed in order to test our program. The “Results” section
provides the results of these sample applications, in
addition to results of tests performed on model systems.

Methods

Implementation

The implementation discussed in this publication was
realized using the Gromacs 3.3 software package [10], but
should in principle compile with any version of Gromacs
from 3.0 to date, with only minor modifications. The
executable is called g_mia and was written in the C
programming language. The source code is available upon
request. Acceptable input file formats are the standard
formats supported by Gromacs.

Basic algorithm

We treat the image as a three-dimensional cubic grid
representing the simulation box, onto which every coordi-
nate is mapped.4 To avoid any artificial empty spaces
caused by representing atoms (or groups of atoms in the
case of coarse-grained models) by their centers of mass
only, every coordinate is expanded into a spherical cloud of
coordinates, each of which is mapped onto the grid
individually.5 Depending on the type and number of
particles mapped to it, cells are declared to be either
positive or negative, where positive cells represent the
molecular aggregate. The global values of the Minkowski
functionals can then be obtained by counting the number of
cubes, cube faces, edges and vertices, taking into account
the periodic boundaries.

For the local values of the mean curvature and Gaussian
curvature, every surface vertex6 is identified as being one of
the possible cases listed in Fig. 1, and the corresponding

local curvatures given by the product of the interface area
and the curvature value associated with that type of surface
vertex are stored. However, we wish to map the curvature
to voxels, not vertices. To that end, nonsurface voxels (i.e.,

4 Assuming that the chosen grid resolution is sufficiently high, the
distortion introduced by a potential mismatch between the grid and the
simulation box and by ensuring that the periodic boundary conditions
for nonrectangular boxes can be mapped is only minor.
5 In the current implementation, the cloud is generated via a simple
loop over spherical coordinates, generating N3 coordinates within N
equidistant shells containing N2 coordinates each, corresponding to a
density distribution that decays towards the perimeter.
6 In other words, every vertex that belongs to both negative and
positive voxels.

Fig. 1 Overview of the possible types of surface vertices and the
associated local values of surface area a, mean curvature h and
Gaussian curvature k in relation to the edge-length ξ (adapted from
[11]). For each pattern, values are given both for the positive (black
represents lipids) and the negative case (black represents water).
While more patterns are possible in principle, these represent noise
and should not occur as long as the resolution used does not exceed
the coordinate density
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positive voxels that do not contribute a single face to the
interface) are eliminated. The stored curvatures of the surface
vertices are then distributed equally among the surface
voxels adjacent to that particular vertex, as illustrated in
Fig. 2.

To visualize the local curvatures, a PyMOL [12] file is
generated that represents the image as voxels onto which
the curvatures are mapped as a color code. Due to the
different ranges of curvatures encountered, it is impossible
to use a fixed color scale. We therefore employ a two-color
scheme in which white corresponds to a curvature of zero
while the two colors are used to distinguish negative and
positive curvatures, with the intensity of the color indicat-
ing the value. Full intensity is assigned to the voxel(s) with
the maximum absolute curvature encountered in a given
system, and the color range is symmetric in the sense that
full intensity indicates the same (absolute) value for both
colors. While this means that every image has its own color
code, it is the most efficient scheme to highlight differences
in local curvature.

Optional steps

The data generated can often be improved considerably by
performing some image manipulation steps and averaging.

Image manipulation Depending on the particle density in
the coordinate file and the desired resolution of the grid, it
is possible to include an image manipulation step right
after the creation of the image. In this step, isolated

clusters of either positive or negative cells below a certain
size are interpreted as noise and removed. Performing this
step also allows the number of actual isolated clusters
above the threshold size to be determined at no additional
cost, which is useful morphological information in its own
right.

Spatial averaging Due to the fixed nature of the grid, even
aggregates with perfectly homogeneous curvature, like a
sphere, will display different curvatures for different regions,
depending on how well the rasterization of the image fits the
surface in that region. In general, the curvature tends to be
underestimated when the surface is aligned with the grid, and
overestimated when it is diagonal to the grid.

Two spatial averaging options can be employed to reduce
this effect. First, the local curvature obtained can be averaged
over neighboring surface voxels within a certain distance. In
addition, it is possible to further improve the results by
determining local curvatures for multiple grid orientations. In
this case, the resulting curvature values of each positive
surface voxel for every orientation are stored together with
the coordinate corresponding to the center of that voxel
rotated back to the original orientation. The values of all
rotations are then mapped back onto the original grid,
averaging the values over the entries mapped onto the same
cell. If needed, the resulting values can be averaged over
neighboring cells. Since it is not possible to preserve the
periodic boundary conditions with a rotated grid, the area of
interest is centered in the box, and only cells within a certain
distance from the center (i.e., cells that lie within both the
volume of the box and the rotated grid for all rotations) are
taken into account.

Time averaging While not included as such in the current
version of the presented tool, it can also be useful to
average the curvatures over time (i.e., over several snap-
shots of a trajectory). For the global values, this can easily
be accomplished after analysis by taking the floating
average of the calculated curvatures. For the local values,
time averaging can be performed at the coordinate level
prior to the analysis, effectively yielding time-averaged
curvatures.

User-definable options and parameters

It is not generally possible to use the same set of parameters
for the analysis of all possible structures and representa-
tions. The implementation therefore allows most parameters
to be determined by the user. This section describes the
parameters and discusses what to consider to achieve the
optimal results. The corresponding command line options
are given in parentheses.

Fig. 2 Mapping of local curvature from surface vertices to voxels.
After eliminating nonsurface voxels (gray-shaded squares), the
curvature that was calculated for the surface vertices is distributed
equally among all adjacent surface voxels (arrows). The local
curvature C of the highlighted voxel is obtained as C = (1/2)i + j +
(1/2)k, where i, j and k are the curvatures corresponding to the surface
vertices adjacent to the highlighted voxel. A two-dimensional example
is shown for the sake of simplicity, but the method also applies to
three dimensions
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Input files The tool needs a coordinate or trajectory file (-c)
and an index file (-n) in which the particles that correspond
to the positive phase are listed.

Imaging options The edge length of the grid (-dim), the
radius of the spherical cloud used to expand the coordinates
(-sr), and the number of coordinates generated during the
expansion (-npts), as well as the minimum number of
coordinates mapped onto a grid cell required to count it as
positive (-thresh1) need to be specified.

As a general consideration, the resolution needs to be
high enough to accurately depict the structure to be
analyzed, but is limited by memory requirements, due to
the need for several three-dimensional arrays during the
computation.7 In addition, using a high resolution usually
requires the expansion of the coordinates in order to avoid
the creation of artificial empty voxels due to the limited
coordinate density, which partially offsets the desired high
resolution. The radius of the spherical cloud should therefore
be chosen as the smallest radius sufficient to avoid noise.
(An example of the effects of the chosen resolution for a
sample application is given in “Applications,” Table 2)

It also turns out that, in order to accurately detect flat
morphologies with zero mean curvature, it is necessary to
calibrate the parameters used. Since molecular aggregates
usually have low short-range order, fluctuations of individ-
ual molecules from the mean will show up as either bumps
or dents in the created image. Since a given resolution does
not necessarily have the same propensity to produce bumps
as it does to produce dents, a net curvature will be
measured. The threshold parameter can be used to adjust
the number of “positive” coordinates that must be mapped
onto a single grid cell to count that cell as positive in order
to (on average) produce an equal number of bumps and
dents, thus ensuring that an artificial mean curvature is not
introduced into the measurement.

In addition, it is also possible to use the coordinates of
the particles corresponding to the negative phase—mapping
them onto the grid as described above, but counting them as
negative instead. If that is desired, the number of phases to
consider must be set from 1 to 2 (-np), and the index file
needs to contain a second group in which these particles are
listed.

If isolated clusters below a certain size are to be removed
(see above), the maximal cluster size that is considered
noise must be specified (-cs).

Averaging options The range over which the local curva-
tures are averaged over neighboring voxels needs to be

specified (-ar1 and -ar2), with a value of zero indicating no
averaging. Two values are needed, one for the averaging of
every single grid orientation (-ar1) and one for the
averaging performed after the values of all grid orientations
have been collected (-ar2).

If multiple grid orientations are to be used, the number
of rotations around every axis (-nx, -ny and -nz) and the
corresponding angle increments (-depsilon, -dphi and
-dtheta), as well as the radius around the center of the box
within which the voxels are considered must be set (-dr).8

In order to achieve the best result, care must be taken to
avoid sampling similar orientations.

In addition, it is possible to specify a threshold which
ensures that voxels are only counted as positive if a
minimum number of local curvatures corresponding to
different rotations have been mapped onto that voxel
(-thresh2). However, unlike the other averaging steps, this
option will discard curvature and does not yield exact
results, and should therefore be used with care. For the
results presented in this work, a threshold of zero has been
used, effectively disabling this option.

For the results discussed in the “Results” section, the
grid resolution and the radius used to expand the coor-
dinates will be given, along with the number of rotations
and the distance used to average the local values.

Simulation setup

The simulations shown in this article were performed using
the coarse-grained MARTINI model [13] with the Gromacs
3.3 software package [10], employing the standard run
parameters for the MARTINI model at a timestep of 40 fs.
Both pressure and temperature were coupled to a reference
value using the Berendsen scheme [14]. Lennard-Jones and
Coulomb interactions were obtained at every step for
particles occurring within a cut-off of 1.2 nm according to
a neighbor list that was updated every 10 steps. The
Lennard-Jones and the Coulomb potentials were modified
with a shift function to ensure that the interactions vanished
smoothly at the cut-off. Electrostatic interactions were
screened with an effective dielectric constant of 15 (which
is the standard value for the MARTINI model).

Three processes were used as sample applications:
spontaneous aggregation of lipids into a lipid bilayer,
closure of a pore in a membrane, and stalk formation
between apposed lipid bilayers (with setups similar to those
used for the simulations described in [15–17], respectively).

7 No attempt was made to optimize the code in this respect.

8 This radius needs to be specified as a value between 0 and 1, and it
will be multiplied by half of the smallest box dimension internally.
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Spontaneous aggregation The system simulated consists of
256 DOPE (dioleoylphosphatidylethanolamine) lipids with
768 water beads (with one bead corresponding to four
water molecules), starting from random coordinates. The
simulation was carried out at a reference temperature of
315 K, with a coupling time constant of 0.5 ps, anisotropic
pressure coupling, compressibilities of 5×10−5 bar−1 for the
diagonal elements and 1×10−7 bar−1 for the off-diagonal
elements of the pressure tensor, coupling time constants of
1.2 ps, and reference pressures of 1.0 bar.

Porated membrane The system consists of a bilayer of 128
DPPC (dipalmitoylphosphatidylcholine) lipids with a pre-
formed pore at excess hydration (2653 water beads). After a
short equilibration, the simulation was carried out at a
reference temperature of 323 K with a coupling time
constant of 1.0 ps, semi-isotropic pressure coupling with a
compressibility of 1×10−5 bar−1, a coupling time constant
of 1.0 ps, a reference pressure of 1.0 bar for the direction
perpendicular to the bilayer, and a compressibility of
0 bar−1 for the plane containing the bilayer.

Stalk formation The initial configuration was two bilayers
of 98 DOPE lipids each, separated by two slabs consisting
of 65 water beads each, corresponding to an effective
hydration level of 2.65 water molecules per lipid. To induce
the formation of stalks, the simulation was carried out at a
reference temperature of 375 K with a coupling time
constant of 0.5 ps, semi-isotropic pressure coupling with a
compressibility of 1×10−5 bar−1, a coupling time constant
of 1.2 ps, and a reference pressure of 1.0 bar for all
directions.

Results

Model systems

The method was first tested on two artificially constructed
model systems with very high coordinate densities: a solid
sphere and a toroidal pore. This allowed the potential of the
method to be assessed by analyzing virtually noise-free
structures, and meant that the exact values for these ideal
geometries were available for comparison. Plots of the
coordinates of the model systems used are depicted in
Figs. 3 and 4.

Spheres Figure 5 shows the measured and theoretical
values of the Minkowski functionals for solid spheres of
different radii. The image was constructed with a
resolution of 0.4 nm and by expanding the coordinates
into spheres of 0.2 nm. As predicted for a solid object, the

Euler characteristic is obtained with a value of exactly 1.
The volume of the image is only slightly higher than that
of the original, which is due to the rasterization of the
image and the expansion of the coordinates into spheres.
However, the surface area and integrated mean curvature
are overestimated to a larger extent. In fact, the values
obtained lie between the values of the sphere and a cube
with an edge length identical to the diameter of the sphere
(see discussion in “Theory”). Nevertheless, the values are
proportional to the values of the original and could
therefore be used in principle to distinguish between
spheres with different sizes.

To calculate the local curvatures, eight rotations around
every axis were used, and the values were averaged over
neighboring voxels up to a distance of three grid cells.
Looking at the mapping onto the image shown in Fig. 6, we
can see that both the mean and the Gaussian curvatures are
accurately mapped with positive values. While the mean
curvature is correctly mapped almost homogeneously over
the whole surface, the distribution of the Gaussian
curvature for the larger sphere is less even, even with
averaging performed. This is a symptom of a general
difficulty with mapping the Gaussian curvature that was
found in most of our measurements for systems which
display large areas of homogeneous Gaussian curvature.9

However, while this behavior might seem problematic at

Fig. 3 The spherical model system. The volume of the sphere was
filled with coordinates at a regular distance (d=r/20) that depends on
the radius r (large black dots). In addition, the surface (the most
important part) was covered with coordinates at a very high density
(small gray dots)

9 This is also true, to a lesser degree, for the mean curvature; however,
the values of the mean curvature tend to be higher and therefore less
sensitive to artificial fluctuations caused by the rasterization.
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first, it is partially due to the color scale employed, which
assigns full color intensity to the voxel with the highest
absolute curvature (see “Implementation”). In the presence
of regions with high Gaussian curvature (as in the example

of the smaller sphere), these are accurately detected, and
artificial fluctuations in regions of lower Gaussian curvature
become relatively less important as well as less visible in
our depiction.

Toroidal pores Figure 7 shows the values of the Minkowski
functionals for a toroidal10 pore through an 8.8×8.8 nm2

layer of 4.0 nm thickness as a function of the pore radius,11

obtained using a grid size of 0.2 nm and by expanding the
coordinates to a radius of 0.1 nm. In addition, the analytical
values for the volume V, surface area A, and integrated
mean curvature H are plotted:12

V ¼ Vslab � Vcyl þ p2d2 d þ rð Þ � 4

3
pd3; ð1Þ

A ¼ 2 Arec � Acircð Þ þ 2p2d d þ rð Þ; ð2Þ

H ¼ p2 d þ rð Þ � 4pd: ð3Þ
In these expressions, d is half the thickness of the slab, r

is the radius of the pore at its smallest extension, Arec is the
area of the bottom or top of the unporated slab, Acirc is the
area of the circle with radius d+r, Vslab is the volume of the
unporated slab, and Vcyl is the volume of the cylinder with a
height of 2d and a radius of d+r.

10 In other words, a pore in which the curvature of the surface varies
smoothly in a manner identical to the “inner” part of a torus.
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Fig. 5 Morphological image analysis of model systems of solid
spheres of different radii (lines between measured points serve to
guide the eye). Calculated values corresponding to the underlying
geometry are plotted (dashed lines) for comparison

Fig. 4a–b The model system for the ideal toroidal pore (a xz plane, b
xy plane). The volume of the porated slab was filled with coordinates
at a regular distance of 0.176 nm in the x and y directions and 0.2 nm
in the z direction (large black dots). In addition, the curved surface
(the most important part) was covered with coordinates at a very high
density (small gray dots)

11 Defined as the radius of the actual opening.
12 Note that periodic boundary conditions apply.

Fig. 6a–d Mapping the local values of mean (a, c) and Gaussian (b,
d) curvature onto the constructed images of spherical model systems.
Shown are the results for spheres with radii of 2 nm (a, b) and 5 nm
(c, d). Positive curvature is depicted in red, zero curvature in white,
and negative curvature in blue
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As before, the Euler characteristic is obtained with the
exact value of −1, and the volume of the image is higher
but proportional to that of the original. The surface area is
overestimated to a larger extent, again showing how the
area of a curved surface is increased by the rasterization of
the image. The fact that the surface area of the image is
actually found to increase over the whole range of radii, in
contrast to the values calculated for the original, reflects the
increasing percentage of the total surface that is curved for
larger pore radii. This causes the slight decrease in the
surface area in the original geometry to be overshadowed
by the overestimation of areas of curved surfaces in the
image.

The integrated mean curvature shows the same general
trend for both image and original, but the amount of
negative curvature is higher in the image for the measured
range of radii. This causes small pores to display negative
values for radii of up to 1 nm, while the actual crossover
point for the original geometry occurs at approximately
0.5 nm. In addition, it becomes apparent that the values
obtained by morphological image analysis are discrete and
not continuous,13 causing small changes in curvature in the
original geometry to go unnoticed in the image.

The local curvatures were calculated using four orienta-
tions for each axis and by averaging over neighboring
voxels up to a distance of five grid cells. Looking at the
mapping onto the image shown in Fig. 8, the dominance of
negative mean curvature for pores of small radii found in
the global values is also visible. The mean curvature is
accurately found to be minimal in the midsections of the

pores, reflecting the fact that the highest negative principal
curvature is located in that region, and maximal close to the
rim, reflecting the fact that the lowest negative principal
curvature occurs in that region,14 and is in fact accurately
found to be approximately zero in the midsection of the
pore of radius 2.0 nm (for this radius and a layer thickness
of 4.0 nm, the two principal curvatures cancel in this
region). In addition, it becomes more positive overall for
higher pore radii, in accordance with the lower negative
principal curvature. The Gaussian curvature is also found to
be accurately mapped, with the maximum (negative)
curvature found in the midsection, and the curvature
gradually decreasing to zero the closer one gets to the rim
for the two bigger pores. The minimum Gaussian curvature
in the midsection is only not detected for the smallest
radius, due to the pore size being close to the limit of the
resolution used. In principle, this problem could be avoided
by using a higher resolution.

It is worth mentioning that the negative spaces of the
images of the ideal toroidal pores are images of a stalk. The
corresponding stalks will therefore have identical Gaussian
curvature and surface area to the pores, but the sign of the
mean curvature will be inverted. For the global values, it
can therefore be deduced that stalks are accurately
characterized as having negative mean curvature if one
considers that stalks have a certain minimum radius given
by the lipid tail length (approximately 2.0 nm for a typical
lipid tail of 16–18 carbon atoms).

Applications

Next we tested our method with trajectories and snapshots
taken from actual simulations of lipids. For these, it proved
advantageous to define the positive phase as only the atoms
or beads corresponding to the lipid tails. This allowed
details like pores to be amplified and stalks to be
distinguished from configurations in which two membranes
are close but there is no contact between the hydrophobic
cores.

Spontaneous aggregation The first application is the
determination of the phase adopted by a mixture of DOPE
and water, starting from random coordinates, in a sponta-
neous aggregation approach [15]. The Minkowski func-
tionals obtained using a grid size of 0.5 nm and by
expanding the coordinates to a radius of 0.4 nm are shown
in Fig. 9. Looking at the Euler characteristic, the most
significant morphological indicator, one can see that the
system quickly adopts a metastable phase, where it remains

13 The distance between the discrete levels depends on the grid
resolution.
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Fig. 7 Morphological image analysis of model systems of ideal
toroidal pores of different radii (lines between measured points serve
to guide the eye). Calculated values corresponding to the underlying
geometry are plotted (dashed lines) for comparison

14 The second, positive, principal curvature is constant across the
whole pore.
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for just over 0.5 μs, before it adopts its final configuration,
in which it remains for the rest of the simulation. The
metastable state has a negative Euler characteristic of −2,
which, when compared to a lamellar state, suggests the
presence of pores or stalks. Taking into account the amount
of negative mean curvature, the most likely state is a stalk
phase, since pores display a higher mean curvature. The
stable phase adopted for the rest of the simulation has a
Euler characteristic of 0, suggesting a lamellar or inverted
hexagonal phase. The fact that the integrated mean
curvature remains negative rules out the lamellar phase,
leaving just the inverted hexagonal phase. Visual inspection
confirms these findings.

Porated membrane As a second application, we looked at a
closing pore in a DPPC membrane. The Minkowski
functionals shown in Fig. 10 were obtained using a grid size
of 0.5 nm and by expanding the coordinates to a radius of
0.4 nm. The closure of the pore can be detected and is clearly

reflected in the Euler characteristic, the integrated mean
curvature as well as the surface area, with the observed
changes agreeing with our earlier measurements for the model
pores (see above). The presence of noise, especially in the
integrated mean curvature and the surface area, stems from
natural fluctuations in the coordinates as well as translational
movements of the system and fluctuations in the box size, all
of which cause changes in the image. However, averaging
over time reduces the noise significantly, as demonstrated for
the integrated mean curvature in Fig. 10.

In addition, we chose this application to demonstrate the
effects of the chosen grid resolution and the radius used for
the coordinate expansion on the results obtained. Table 2
shows the average values of the Minkowski functionals for
the open pore (i.e., the first 30 nm of the trajectory analyzed
in Fig. 10) using a higher resolution or a smaller expansion
radius. The deviations of the Euler characteristic from the
correct value of 1 indicate the presence of noise in the
analysis. Considering the nature of the changed parameters, a
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Fig. 9 Morphological image analysis of the spontaneous aggregation
of a random mixture of lipids and water into an inverted hexagonal
phase

Fig. 8a–f Mapping the local values of mean (a, b, c) and Gaussian
(d, e, f) curvature onto the constructed images of model systems of
ideal toroidal pores. Shown are the results for pores with radii of

0.4 nm (a, d), 1.2 nm (b, e) and 2 nm (c, f). Positive curvature is
depicted in red, zero curvature in white, and negative curvature in blue
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Fig. 10 Morphological image analysis of the trajectory of a closing
pore. In addition to the properties indicated by the legend, the running
average of the integrated mean curvature is plotted in white
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reduced expansion radius or a higher grid resolution can both
potentially lead to empty grid cells in regions occupied by
the molecular aggregate. As a result, additional tunnels
(which would lower the value by one in that particular frame
of the trajectory) as well as cavities (which would raise the
Euler characteristic in that respective frame by one) are both
possible. However, the fact that the Euler characteristic
increases indicates that cavities are the dominant artifact. The
observed decrease in volume and the increase in surface area
both corroborate this interpretation. The changes in the
integrated mean curvature are less clear (except for the
drastic change to negative values at a grid resolution of
3 nm), but, as has been pointed out in “Methods,” the mean
curvature obtained depends on the system’s propensity to
produce bumps and dents in the image, which in turn
depends on the parameters used, making a comparison of the
curvatures obtained with different parameters difficult.

The mapping of the local curvatures obtained for a
snapshot of the open pore is depicted in Fig. 11. Data were
used from eight grid orientations for each axis at a
resolution of 0.3 nm, with the coordinates expanded to
0.3 nm and averaging performed over neighboring voxels
up to a distance of three grid cells. The mean and Gaussian
curvatures associated with the pore are accurately mapped
as being positive and negative, respectively. While the
distributions are less homogeneous than those for the ideal
model systems, this is not an artifact of the method; it
indicates the accurate detection of features that are present
at the analyzed coordinates. Regions with groups of atoms
protruding from the mean are correctly displayed as having
high mean and Gaussian curvatures,15 whereas regions with
saddle-splayed surfaces are shown to have low mean and
high (negative) Gaussian curvatures. The general trend seen
with the model systems for the location of the highest local

mean curvature to be close to the rim of the pore and the
highest Gaussian curvature to occur in the midsection is
also preserved in the simulated pores, but is slightly
modified by the superposition of effects due to deviations
from the ideal toroidal shape.

For comparison, a snapshot of the underlying structure is
shown in Fig. 12.

Stalk formation Figure 13 shows the Minkowski func-
tionals obtained for the formation of stalks between two
DOPE bilayers at low hydration and high temperature. Data
were obtained using a grid resolution of 0.2 nm and
expanding the coordinates to a radius of 0.34 nm. Starting

Fig. 12 Snapshot taken from the trajectory of a closing pore in a
DPPC membrane. For clarity, only the beads representing the lipid
carbon tails (the terminal beads are shown in black, the remaining
beads in gray), which are the beads used to define the positive space
in our analysis, are shown

Fig. 11a–b Visualization of the local distributions of mean (a) and
Gaussian (b) curvature for a snapshot of a pore in a DPPC membrane.
Positive curvature is depicted in red, zero curvature in white and
negative curvature in blue

15 In fact, the Gaussian curvature in these regions should be positive,
but this is likely masked because the surrounding negative Gaussian
curvature is carried into the relatively small area of positive curvature
by the averaging procedure.

Table 2 Average values of the volume V, the surface area A, the
integrated mean curvature H, and the Euler characteristic χ extracted
from the simulation of a porated membrane in relation to the
resolution (identified by the edge length d of the grid) and the radius
of the spherical cloud rS used for the expansion of the spheres. Note
that, in order to ensure that no effects are masked, cluster filtering was
not applied to the images

rS (nm) d (nm) V (nm3 ) A (nm2) H (nm) χ

0.4 0.5 131.47(6) 168.8(2) 8.8(2) −1.000(0)
0.4 0.4 117.4(1) 169.7(2) 11.4(2) −0.89(2)
0.4 0.3 100.76(3) 247.2(3) −205(1) 71.4(4)

0.3 0.5 126.00(6) 169.7(2) 11.3(2) −0.997(3)
0.2 0.4 120.25(6) 170.1(3) 12.2(2) −0.71(3)
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from a lamellar configuration, the formation of the stalks is
reflected in a change in the Euler characteristic from 0 for
the two bilayers to −2, indicating the simultaneous
formation of two stalks. At the same time, the integrated
mean curvature drops from 0 to negative values, also
indicating the formation of stalks.

Shown in Fig. 14 is the mapping of the local curvatures
of an isolated stalk using data from four rotations of the
grid around each axis at a resolution of 0.17 nm while
expanding the coordinates to a radius of 0.34 nm and
averaging over neighboring voxels up to a distance of three
grid cells. As for the simulated pore, the detected curvature
is not homogeneous, but the general trend in the relative
distribution of curvature between foot (the counterpart to
the rim of a pore) and midsection is also preserved here: a
higher (negative) mean curvature is observed close to the
foot of the stalk, and a higher (negative) Gaussian curvature
close to the midsection. While some of the observed
inhomogeneities, especially in regions of relatively low
curvature, are likely caused by artificial noise introduced by
insufficient averaging, most of the detected curvature can
again be attributed to actual morphological properties
present at the analyzed coordinates.

A snapshot of the formed stalk is shown in Fig. 15.

Computational costs

To give a rough indication of the time required to perform
the analyses presented here, we will state the CPU times16

needed for some of the performed calculations. This is not
intended to be an extensive analysis of scaling and
computational efficiency, but rather to act as an aid for
readers interested in using the method. So far, the program

has not been optimized for computational efficiency;
however, the time required to perform the presented
morphological analyses is still on the order of only a few
minutes.

To compute the global morphology for the trajectory of
the closing pore shown in Fig. 10, a total CPU time of
120 s was needed for all 2,500 frames, corresponding to
approximately 50 ms per frame. If the grid resolution is
reduced by a factor of two, the CPU time required for the
whole trajectory drops to 104 s.

To compute the local curvatures, the time required to
analyze the largest of the model pores presented in Fig. 8 was
187s, corresponding to approximately 7 s per orientation

Fig. 15 Snapshot of a stalk formed between two apposed DOPE
membranes. For clarity, only the beads representing the lipid carbon
tails (the terminal beads are shown in black, the remaining beads in
gray), which are the beads used to define the positive space in our
analysis, are shown

Fig. 14a–b Visualization of the local distributions of mean (a) and
Gaussian (b) curvature for a snapshot of a stalk between two DOPE
membranes. Positive curvature is depicted in red, zero curvature in
white, and negative curvature in blue
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Fig. 13 Morphological image analysis for the simulation of stalk
formation starting from two isolated bilayers

16 For an Intel Core 2 Duo 6700 2.66 GHz CPU.
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used in the averaging. As before, reducing the grid resolution
increases the performance, with a reduction in resolution of a
factor of two decreasing the time required to 132 s. Note that
the analysis of the local curvature for a snapshot of the pore
taken from the simulation referred to in the previous
paragraph is performed much more rapidly, due to the lower
coordinate density and system size. The results shown in
Fig. 11 required a CPU time of 57 s, corresponding to
167 ms per orientation used for the averaging.

Conclusions

Our tool uses the technique of morphological image
analysis to analyze sets of coordinates that describe
aggregates of soft matter. The implementation is intended
for the analysis of mixtures of lipids and water obtained
from molecular dynamics simulations, but is also in
principle applicable to all kinds of coordinates that describe
binary mixtures, and is independent of the model and the
method used to generate the coordinates.

It has been demonstrated to be helpful for a range of
morphological tasks, including phase detection and the
monitoring of dynamic processes like stalk formation and
pore closure. While the global values obtained for the
Minkowski functionals are subject to the limitations
inherent in the technique of morphological image analysis
(i.e., overestimation of the surface area and the integrated
mean curvature), the most significant value—the Euler
characteristic—is obtained correctly and virtually free of
noise. In addition, the systematic nature of the error in the
total mean curvature means that it can be used in comparative
analyses and to more generally detect the presence or absence
of mean curvature, as well as to distinguish systems with
negative from those with positive values, enabling a broad
spectrum of applications. Only in complex systems that
contain both stalk-like and pore-like structures simultaneously
can one encounter problems with interpretation. In such
ambiguous cases, analyzing the number of separate clusters
for both components of the binary mixture—which can also
be done in our implementation—can help.

In addition, by mapping the local values of mean and
Gaussian curvature onto an image representing the system,
morphological features that are overlooked during naive
analysis by eye can be visualized. While the tool still
exhibits some difficulties in avoiding artificial inhomoge-
neities during the detection of local curvature in larger areas
with low homogeneous curvature (due to the rasterization
of the underlying image), the general trend towards a

specific curvature in a given area is preserved, and areas
that show an actual prevalence of either positive or negative
curvature in comparison with their neighborhoods are
accurately visualized.

So far, our implementation only analyzes coordinate sets
as they are generated by the simulation, and does not
include an option for time averaging over multiple frames
of a trajectory. If an analysis of average structures is
desired, it is therefore necessary to create an averaged
coordinate set before the analysis is performed.

We hope that our program, which is compatible with the
popular Gromacs package, will allow a wide range of users
to benefit from using morphological image analysis in their
research.
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