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Abstract Geometric (HOMA) and magnetic (NICS) indices
of aromaticity were estimated for aromatic rings of amino acids
and nucleobases. Cartesian coordinates were taken directly
either from PDB files deposited in public databases at the finest
resolution available (≤1.5Å), or from structures resulting from
full gradient geometry optimization in a hybrid QM/MM
approach. Significant environmental effects imposing alter-
ations of HOMA values were noted for all aromatic rings
analysed. Furthermore, even extra fine resolution (≤1.0Å) is
not sufficient for direct estimation of HOMAvalues based on
Cartesian coordinates provided by PDB files. The values of
mean bond errors seem to bemuch higher than the 0.05Å often
reported for PDB files. The use of quantum chemistry
geometry optimization is strongly advised; even a simple
QM/MM model comprising only the aromatic substructure
within the QM region and the rest of biomolecule treated
classically within theMM framework proved to be a promising
means of describing aromaticity inside native environments.
According to the results presented, three consequences of the
interaction with the environment can be observed that induce
changes in structural andmagnetic indices of aromaticity. First,

broad ranges of HOMA or NICS values are usually obtained
for different conformations of nearest neighborhood. Next,
these values and their means can differ significantly from those
characterising isolated monomers. The most significant
increase in aromaticities is expected for the six-membered
rings of guanine, thymine and cytosine. The same trend was
also noticed for all amino acids inside proteins but this effect
was much smaller, reaching the highest value for the five-
membered ring of tryptophan. Explicit water solutions impose
similar changes on HOMA and NICS distributions. Thus,
environment effects of protein, DNA and even explicit water
molecules are non-negligible sources of aromaticity changes
appearing in the rings of nucleobases and aromatic amino
acids residues.
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Introduction

Environment effects, whether physical or chemical in nature,
can lead to significant structural alterations to molecules
directly exposed to such forces. These changes are of
particular interest for molecules important from a bio-
chemical perspective. Nucleic acid bases and amino acids, as
important building blocks of polynucleotide and polypeptide
chains, respectively, are compounds of particular significance.
All nucleobases and four amino acid residues posses aromatic
rings that can be affected by environmental heterogeneity.
These influences can be as different as explicit solvent
molecules, dense packing in solids, particular molecular
surroundings in polymeric neighborhoods and a variety of
organic or inorganic ligands directly interacting with the
solute. Straightforward contacts between molecules in closest

Electronic supplementary material The online version of this article
(doi:10.1007/s00894-010-0806-5) contains supplementary material,
which is available to authorized users.

P. Cysewski (*) :B. Szefler
Department of Physical Chemistry, Collegium Medicum,
Nicolaus Copernicus University,
Kurpińskiego 5,
85-950 Bydgoszcz, Poland
e-mail: piotr.cysewski@cm.umk.pl

P. Cysewski
Department of General Chemistry,
University of Technology and Life Sciences in Bydgoszcz,
Seminaryjna 3,
85-326 Bydgoszcz, Poland

J Mol Model (2010) 16:1709–1720
DOI 10.1007/s00894-010-0806-5

http://dx.doi.org/10.1007/s00894-010-0806-5


proximity, or chemical modification or indirect influence via
intermolecular interactions can lead to sizable alterations of
physico-chemical properties including aromaticity. This term
is associated with a cyclic π-electron delocalization imposing
an increase of stability as measured by aromatic stabilization
energy [1–3], small bond length alterations within the ring
skeleton [4, 5, 25], π-electron ring current formation after
exposition to an external magnetic field [6–10], and,
typically, reactivity toward substitution rather than addition
reactions [11–13]. This proves that aromaticity is a multidi-
mensional phenomenon [14] and justifies utilization of
different measures of aromatic character. Most aromaticity
indices are not independent, and many reports have
documented correlations between different aromaticity criteria
[15–20]. Despite the fact that any mutual relationships
between aromaticity indices depend strongly on the selection
of molecules in the probe [15, 21, 22], the correspondence
between different indices can be significant. For example, in
the case of porphyrins [19] the magnetic index changes
monotonically with the geometry-based index. Similarly,
rings in benzenoid hydrocarbons exhibit a linear correlation
between HOMA and NICS [20]. In addition, energies of ring
stabilization in benzenoid hydrocarbons correlate with NICS
and HOMAvalues [23, 24]. Moreover, the magnetic index of
aromaticity correlates best with geometry-based indices for
five-member heterocyclic compounds [15]. Although not all
aromaticity indices can be applied to heterocycles, e.g., the
Aj, index formulated by Julg and Francois [25, 26], or the
bond alternation coefficient (BAC) formulated by Krygowski
and co-workers [27], there are many indices that can be used
effectively for this particular class of compound. The HOMA
index has especially proved to be universal tool that not only
offers excellent agreement with chemical experience and
intuition [28] but also describes electron delocalization of
fragments or the π-electron system as a whole. An additional
and very important advantage of using HOMA as the criterion
of aromaticity is its potential applicability to experimental
bond lengths resulting from a variety of diffraction measure-
ments. These data are deposited in public databases providing
molecular geometries of organic molecules [29] (Cambridge
Structural Database), amino acids [30] (Protein Bank
Database) or nucleobases [31] (Nucleic Acid Database).
The usefulness of this kind of application has proven
effective in numerous studies [32–38].

Intermolecular interactions are an important factor affecting
aromaticity. For example, most heterocyclic and some carbo-
cyclic compounds increase their aromaticities with an increase
in medium polarity [39]. Differences in net of hydrogen
bonding may also lead to serious alterations of aromaticity, as
for example those that take place in the p-nitrosophenolate
anion in the crystalline state [5]. Furthermore, the aromaticity
of nucleobases involved in Watson-Crick pairs can also be
changed significantly with respect to isolated monomers [40].

The systematic study of the effect of hydrogen bonding on
the aromaticity of phenol and p-nitrophenol undertaken by
Krygowski et al. [41] demonstrated a monotonous relation-
ship between ring aromaticities and H-bond strength. The
perturbation of aromaticities imposed on π-electron systems
by alkali metal cations [42–47], alkaline earth cations [32,
48–50] as well as transition metal cation interactions with
benzene [51–53] were also intensively studied. Aromaticities
of nucleobases and amino acids have also been described
based on different aromaticity criteria [54–65].

The aim of this study was to analyze environment
influences on the aromatic character of four amino acid
residues [phenylalanine (PHE), tyrosine (TYR), tryptophan
(TRP) and histidine(HIS)] and four DNA bases [adenine
(ADE), guanine (GUA), thymine (THY) and cytosine
(CYT)] with the aid of geometric (HOMA) and magnetic
(NICS) indices. The results provide evidence that the
environment can significantly affect aromatic ring flexibil-
ity, as quantified by these aromaticity indices. The direct
utilization of molecular geometries taken from public
databases is also discussed and compared to QM/MM
optimized structures of aromatic rings immersed in native
environments. The separation of influences on aromaticity
in actual protein or DNA surroundings from artifacts related
to experimental inaccuracies is another important aspect
considered in this study. To the best of our knowledge, this
is the first study demonstrating the sensitivity of HOMA
indices to experimental errors for the aromatic compounds
considered.

Methods

The Cartesian coordinates of amino acids were extracted
from the Brookhaven Protein Database [30, 66] after
selection of only those structures meeting the quality
standard of finest resolution (≤1.5Å). Similarly, the
coordinates of nucleobases were retrieved from the Nucleic
Acid Database using the same accuracy criteria. Aromatic
rings have been probed quite extensive and the statistical
details of data distribution are provided in the electronic
supplementary material (Tables S1 and S2 for the two
classes of compounds analysed). Two criteria of aromaticity
were applied, namely HOMA [67–69] and NICS [70]
indices. These criteria were selected due to their wide usage
[19, 70–75], simple meaning [68, 69] and direct applica-
bility to both experimental [32–38, 76] and theoretical [41,
77–82] geometries. Three types of calculation were
performed in this project to estimate the aromatic properties
of the compounds analysed. In the first step, an estimation
of HOMA sensitivity to the experimental errors in bond
lengths was performed. Then HOMA and NICS(1) values
were estimated directly using experimental geometries.
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Finally, these two criteria of aromaticity were calculated for
geometries resulting from quantum chemistry optimizations
within a QM/MM hybrid approach [68, 69]. The model
analysis was performed to generate HOMA distributions
related to geometry distortions induced by experimental
inaccuracies. The original [55, 68] formula defining HOMA
was modified by introducing the following bond length
changes:

HOMAðwjÞ ¼ 1� 1

n

X

i

a Ropt � ðRi þ wjÞ
� �2

where ωj stands for the error of i-th bond length (in case of
ωj=0 , the classical definition of HOMA is recovered), Ropt

corresponds to reference values [69] (1.388 for C–C bond
and 1.334 for C–N bond), Ri represents the optimized bond
length for the isolated monomer in the gas phase, and α is
the normalization constant [69] equal to 257.7 and 93.52
for C–C and C–N bonds, respectively. The ωj values were
in the range of<−0.1Å, +0.1Å>with steps of 0.005Å and
were used for the alteration of bonds lengths. All possible
combinations of bonds deformations were taken into
account by successive changes of one, two, three, etc, up
to all bonds constituting the ring. For example, in the case
of six-membered rings there are 704 unique combinations
for any value of bond length errors. Five-membered rings
may be affected 222 ways, while for rings formed by nine
centres the number of combinations increases dramatically
up to 19,008. In this way, a series of HOMA values were
generated corresponding to all possible distortions of the
optimized structures by increasing or decreasing the bond
lengths in the ring skeleton. The structures were then
grouped according to the distribution of the average bond
length errors, as shown by the smoothed histograms in
Figs. 1, 5 and 6. In the second part of our study, full
gradient optimizations were performed for representative
sets of aromatic rings. The hybrid quantum chemistry/
molecular mechanics approach was used for systems
containing particular aromatic amino acid residues or
nucleobases with initial geometries taken directly from
PDB files. The geometry of each particular residue (PHE,
TYR, HIS, TRP or any nucleoside) was optimized at the
B3LYP/6-311+G** level of theory. The rest of the system
was treated classically using AMBER force-field [85, 86]
embedded according to ONIOM [83, 84] methodology. In
addition, explicit water solutions were modeled by immers-
ing of nucleobases or aromatic amino acid residues within a
drop of water 20Å in diameter. The QM part in these QM/
MM studies comprised the analyzed monomer along with
all water molecules within 3Å vicinity from any atom of
the monomer. Inclusion of at least the first hydration layer
within the QM region is important, as previously demon-
strated for the fenol-fluoride system [81]. In the case of

proteins or DNA, however, only monomers were included
in the QM region. Nucleobase interactions via hydrogen
bonds, inter- or intra-strand stacking would require a
significant increase in the computation resources needed.
For example, in the case of nucleobases, the QM region
would increase six-fold after inclusion of only closest
contacts. This poses serious technical problems due to the
rapid increase in computational resources needed. Although
such a simplified model can potentially be a source of error
due as it can ignore important influences (mainly dis-
persions), it is nevertheless proposed here as a reasonable
compromise between accuracy and cost of computations.
Some tests were performed for amino acid molecules inside
proteins, and inclusion of the nearest neighboring amino
acids in the QM part only slightly affected HOMA values
(increasing HOMA by <0.01 unit). Extending the QM
region led to a significant increase in computation costs, as
well as difficulties in convergence of SCF procedures and
minimization protocols. Thus, the proposed model properly
serves the purposes of this paper. All quantum chemistry
and hybrid QM/MM calculations were performed using the
Gaussian03 package [87].

Results and discussion

Definition of the HOMA index reveals its significant
sensitivity to bond length deviations from reference values.
The purpose of using the square-like relation was to allow
quantification of aromaticity changes induced by even
minute alterations from the ideal structure of benzene.
However, if coordinates are taken directly from X-ray
diffraction patterns of crystals, inaccuracies arising from
experimental procedures and interpretation can also affect
the geometric criterion of aromaticity. Naturally, these
changes are not necessarily related to the alteration of
aromatic character but can simply represent artefacts of
inaccurate geometries. Only in cases where the observed
variations in HOMA are higher than those related to
individual bond length errors, can the environment influ-
ence on aromatic character be considered as significant. In
order to visualize the influence of experimental inaccuracies
on HOMA values, a series of model calculations was
performed as described in Methods. Since the different
compounds analysed herein differ in aromatic nature and
ring size, the analysis was performed separately for each
class of aromatic rings.

Experimental errors affecting HOMA values of amino acids

Figure 1 presents the distributions of HOMA values for
each of the analysed aromatic rings of amino acid residues
for three selected values of mean error of bond lengths. The
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significant influence on HOMA values of these inaccuracies
is clearly visible, irrespective of residue type. Firstly, a
considerable negative skew characterizes all distributions
apart from the most precise case where the bond length
inaccuracies do not exceed 0.01Å. Geometries of such
accuracy lead to only small HOMA alterations, as
expressed by very small values of standard deviations,
skewness and kurtosis. The increase in the mean value of

the bond length significantly affects HOMA distributions,
as clearly manifested by the presence of a strong negative
skew. In all cases, the highest values of the mean error of
bond lengths are accompanied by the broadest distributions
of HOMA values. Consequently, there is fairly linear
relationship between skewness and kurtosis estimated for
different bond length inaccuracies, as shown in Fig. 2.
Since kurtosis and skewness are equal to zero for normal
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Fig. 1 Heterogeneity of the structural index of aromaticity (HOMA)
calculated for four aromatic amino acids residues. Two sets of plots
correspond to the systematic analysis of mean bond length errors
(gray lines) and to protein environment (black lines with open circles
or triangles). Only high quality structures (resolution better than 1.5

Å) from the Protein Database [30] were used. For detailed statistics,
see Table S1. Standard deviations of the analysed HOMA values
distribution are given in brackets. The amount of mean bond length
errors is indicated in the legends. HOMA(x) Aromaticity of the x-
membered ring
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distributions, these quantities can be used as an indicator of
HOMA alterations observed in experimental geometries. It
is evident that the aromatic rings of phenylalanine and
tyrosine are most sensitive to such geometry inaccuracies
since comparable bond distortions lead to the highest values
of kurtosis and skewness. Tryptophan—a compound
comprising two conjugated rings—is much more resistant
to experimental errors of ring deformations. Aromaticity of
five-membered rings is also slightly less prone to bond
length errors compared to that of six-membered rings.
Figure 1 also plots smoothed histograms obtained for
aromatic rings of amino acid residues that are directly
exposed to the influences of the protein environment. The
detailed statistical characteristics are also provided in Table
S1 (see electronic supplementary materials). All PDB files
used for Cartesian coordinates extraction belong to the best
available structures obtained with resolutions better than
1.5Å. Despite this fact, surprisingly high values of
skewness and kurtosis are observed for HOMA distribu-
tions corresponding to experimental geometries. As docu-
mented in Table S1 and Fig. 2a, all values of skewness are
negative, and kurtosis can reach values of several units.
Thus, either individual bond lengths differ by more than 0.1
Å or environmental effects are strong and non-negligible. It
is interesting to separate these two effects in order to gain
deeper inside into the observed heterogeneity of HOMA
values. First of all, we found that about 2% of experimental
structures were obviously incorrect. Among the several
thousands of rings analysed, some were incomplete for not
having all atoms in the PDB files. In other cases geometries
were incorrect since their use led to non-physical values of
HOMA (for example negative values for PHE). Thus,
simple estimation of HOMA indices based on experimental
geometries could be an alternative, direct and effective
means of checking for possible errors in the Cartesian
coordinates obtained via X-ray diffraction protocols. For
files obtained with fine resolution (≤1.5Å), the estimated
overall coordinate error is usually claimed to be less than
0.05Å. However, from the plots presented in Fig. 1, it is
obvious that, at least for aromatic rings, the actual

distortions must be much higher. This is also addressed in
Fig. 3, where the correspondence between the HOMA
values estimated using Cartesian coordinates taken directly
from PDB files (denoted hereafter as HOMAPDB) and those
obtained from the QM/MM optimization (HOMAQM/MM) is
presented. It is evident that the broad range of HOMAPDB

values is significantly narrowed after QM/MM geometry
optimization. In the case of tyrosine, QM/MM optimization
did not introduce any changes in ring aromaticities since all
HOMAPDB and HOMAQM/MM values differ by less than
0.012 units. The six-membered ring of tryptophan proved
slightly more sensitive to optimization, with corresponding
changes from 0.068 to 0.023 units. For all other amino acid
residues, the geometry was changed significantly by QM/
MM optimizations. For example, for phenylalanine the
discrepancies in HOMA values were reduced from 0.170 to
0.017 units of HOMA. The most significant impact of QM/
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MM optimization was observed for the five-membered
rings of histidine (reduced from 0.576 to 0.079) and
tryptophan (decreased from 0.615 to 0.072). This suggests
that most of HOMA heterogeneity coming from PDB files
should not be ascribed directly to protein environment but
rather to experimental inaccuracies. This is also supported
by the fact that the localization of maxima in Fig. 1,
indicating the most frequently occurring values of HOMA,
are almost the same for PDB structures and those coming
from model analysis. This conclusion is not surprising in
the light of Krygowski’s findings [88, 89] suggesting that
π-electron delocalization in the aryl ring is strongly
resistant to chemical modification of the substituents.
However, it is known [41, 78–82] that the environment
can significantly affect aromaticity, as, for example, in the
case of fluoride approaching phenol in the gas phase
leading to a significant reduction in the aromaticity of the
phenyl ring [41, 81]. Although this effect is significantly
screened [82] by the presence of discrete water molecules,
it is still non-negligible, and is particularly emphasized by
the broad spectrum of HOMA values obtained for different
conformations of the first hydration layer around the phenol
solute. Data presented in Fig. 3 suggest that protein
environment affects amino acid aromaticities only slightly;
however, systematic trends are observed, i.e., the HOMA
values of most QM/MM structures being higher in
comparison to those of the isolated monomers in the gas
phase. The five-membered rings of histidine and tryptophan
are characterized by the highest diversity of HOMA values
obtained after QM/MM optimization. Furthermore, in the
case of histidine, interesting differences in the shape of
HOMA distribution plots corresponding to fine (≤1.5Å)
and extra fine (≤1.0Å) resolution (see Fig. 1) are observed.
One obvious reason for this fact might be the difference in
the size of the two samples. However, for other amino acids
this effect is almost insignificant. The second observation is
that the set of highest resolution histidine residues is not
quite representative since it comprises a significant portion
of histidine–porphyrine complexes. Among 47 histidine
residues found within PDB files corresponding to extra fine
resolution (≤1.0Å), there are 16 rings that form complexes
with a heme moiety via iron cations. These interactions
might affect the aromaticity of histidine. In order to
quantify the presence of iron–histidine interactions, the
model system was analysed as shown in Fig. 4. It contains
four amino groups and two histidine molecules forming
complex with one Fe+2 cation. For such a simplified model
of heme, the separation distance of one histidine molecule
[HIS(1)] was fixed at specific values and all the remaining
coordinates were optimized at the B3LYP/6-311+G** level
both in the gas phase and in the water solutions using the
PCM model. Interestingly, the separation distance of both
histidine molecules from the iron cation are not indepen-

dent and the increase in the r1 bond forces a decrease in r2
values, which suggests that HIS(2) approaches closer to the
metal center. The shorter the Fe–HIS bond, the smaller the
aromaticity of histidine, and this relationship is almost
linear (R2=0.980). The polar environment modeled by
continuum field of water significantly reduces the influence
of the iron cation on the aromaticity of histidine. Despite
the fact that Fe–HIS(2) bond lengths are slightly shorter in
water solution, HOMA values are significantly less affected
by this kind of environment interaction. The polar solution
screens down structural changes induced by the presence of
the iron cation in the model heme system. This suggests
that the observed differences of HOMA distributions
between extra fine and fine resolutions is only partly
explained by this kind of interaction. Indeed, the average
value of bond length formed between Fe2+ and the nitrogen
atom of the histidine ring in PDB files is 1.974±0.028Å.
However, closer inspection of PDB files leads to another
interesting observation, namely there is a significant
difference between the aromaticity of histidine residues
located inside the protein compared to in the outer regions.
The most aromatic histidine rings occupy external regions
of the protein. These structures are exposed to interactions
with the solution environment and can be more easily
protonated, and interact more directly with the water
molecules or cations that are present in the solution. Thus,
these external histidine moieties are responsible for the
increase of aromaticity and consequently affect HOMA
distributions. On the other hand, the histidine-heme com-
plexes are simply forced to be inside the protein volume
and are prone to local interactions, which usually reduce the
aromaticity of this five-membered ring. Both these effects
cause the flattening of HOMA value distributions. In the
case of a much larger set of structures corresponding to fine
resolution (≤1.5Å), the population of such externally
localized moieties is significantly smaller, and even
reducing the resolution in PDB files to≤2.0Å does not
alter the shape of the HOMA distribution. In conclusion, it
is worth emphasizing that, although it is possible to identify
some environmental effects that impose alterations of
HOMA of aromatic amino acid rings, the majority of
observed HOMA variations are related simply to experi-
mental inaccuracies rather than to the protein environment
itself, and even extra-fine resolution (≤1.0Å) is not
sufficient for direct assessment of aromaticities via the
geometric index.

Experimental errors affecting HOMA values of nucleobases

Analogous investigations were performed to estimate the
environmental effect on aromaticity of nucleobases. Again,
model analysis was followed by extraction of the Cartesian
coordinates from PDB files [30, 66] with extra fine (≤1.0Å)
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and fine (≤1.5Å) resolutions. As illustrated in Figs. 5 and 6,
the main consequence of bond length distortions is the
broadening of HOMA value distribution, without signifi-
cantly affecting the positions of maxima of smoothed
histograms. This observation matches that mentioned above
for amino acids residues, and the linear relationships
between skewness and kurtosis is also fulfilled for
nucleobases (see Fig. 2b). However, the analysis of HOMA
distributions from PDB files reveals a novel and interesting
feature. First of all the aromaticity of pyrimidine rings in
terms of the HOMA index is much higher inside the
polynucleotide chain than for the isolated molecule, the
only exceptions being imidazole and the purine rings of
adenine. On the contrary, according to HOMAPDB values,
the whole molecule aromaticity of guanine is increased by
0.15 units if this nucleobase is present within a polynucle-
otide chain. Interestingly, the analysis of different poly-
morphic forms as double-stranded (ds)A-DNA, B-DNA,
Z-DNA or even single-stranded (ss) RNA interiors does not
alter these conclusions. The differences in HOMA value
distributions in these various environments are rather
minor, although some trends are visible. For example, the
maxima on smoothed histograms are located at systemat-
ically higher values of HOMA for ss-RNA compared to ds-
B-DNA irrespective of the nucleobase involved. Of course
thymine is not present in the case of RNA and instead the
uracil moiety is analyzed in Fig. 5. An even higher impact
of the Z-DNA environment is observed on the aromaticities
of cytosine populations. Interestingly, this effect is not
observed in the case of guanine, for which all analysed

forms of polynucleotide chains induce very similar varia-
tions in HOMA distributions irrespective of the ring size.
Furthermore, as was demonstrated in Fig. 2b, the skewness
and kurtosis of HOMAPDB value distributions are much
higher for purine than for pyrimidine rings. They are even
higher than for distributions obtained from model analysis.
This might suggest that these rings are very sensitive to
bond lengths errors or that the environment effect is
significant. The analysis presented in Fig. 7 clarifies this
observation. After optimization of nucleobases using the
QM/MM approach, the variability of HOMAQM/MM is
reduced significantly if compared to HOMAPDB. The most
spectacular change is clearly visible in the case of thymine,
for which the aromaticities of several conformations are
completely incorrect if PDB coordinates are used. After
geometry optimization, the structures adopt the correct
geometry, clearly implicating the strange values of
HOMAPDB as coming from coordinates inaccuracies.
Cytosine is also prone to experimental inaccuracies. After
nucleoside geometry optimization, the smallest variations in
HOMAQM/MM values are observed for adenine (0.024) and
the largest for cytosine (0.106). Furthermore, significant
increases of ring aromaticities are observed inside DNA as
compared to monomers in the gas phase. Only imidazole
rings and the purine rings of adenine seem to behave in the
opposite manner. Thus, aromaticity can be affected signif-
icantly by different contexts and structures of polynucleo-
tide chains, leading to considerable alterations in HOMA
values with respect to free monomers. The importance of
the environmental effects of nucleic acid interiors on the
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aromaticities of nucleobases is more pronounced than that of
the protein environment on amino acid residues. The quite
significant increase of both HOMAPDB and HOMAQM/MM

values observed should not be ascribed merely to errors
imposed on coordinates by X-ray diffraction processing,
although they cannot be neglected. Furthermore, the poly-
morphic forms are important factors affecting the aromatic
characteristics of nucleobases and the direct use of Cartesian
coordinates significantly exaggerate this effect. These
aspects deserve a more detailed analysis, and will be
addressed in a subsequent study.

NICS(1) alterations imposed by environment

The final aspect analysed in this paper is the influence of
the environment on aromaticity expressed by the magnetic
susceptibility index. Negative values of magnetic shielding
estimated 1Å above or below the ring centre [NICS(1) or
NICS(−1)] are commonly used as a measure of the
magnetic criterion of aromaticity. The geometries obtained
after QM/MM optimizations were used to estimate the
NICS values of both amino acid resides and nucleobases.
The values obtained, along with those corresponding to

isolated monomers (optimized in the gas phase) are
presented in Fig. 8. Interestingly, the six-membered ring
of TRP, as the most aromatic among all amino acid residues
in the gas phase, is also the most affected by protein
environment. Heterogeneity of aromatic character is quite
high and amounts to about 8% for TRP(5) and 7% for
histidine. The lowest influence of the environment is
observed for the rings of phenylalanine, and tyrosine, and
the six-membered rings of tryptophan. In the latter case, it
reaches 0.04 of NICS units with 4% fluctuation. For most
conformations comprising the aromatic rings of amino
acids, a reduction of NICS values with respect to the
isolated monomers was noted. The most significant
influence of protein environment on NICS values was
observed for the five-membered rings of tryptophan and
histidine. The mean values of ΔNICS, estimated as the
difference with respect to the isolated monomers (NICSprotein

−NICSgas) were −1.0 ppm and −0.5 ppm for TRP(5) and
HIS(5), respectively. On the contrary, the average aromaticity
of the six-membered ring of tryptophan is almost unaffected
by protein environment (ΔNICS=0.0). Phenylalanine and
tyrosine are characterized byΔNICS values of −0.4 and −0.1,
respectively. All these conclusions are in good accord with
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previously discussed observations related to the structural
index of aromaticity. Thus, protein environments modestly
affect the aromaticity of amino acids, although for some
conformations this influence is non-negligible.

Similar results, characterising the B-DNA influence on the
magnetic index of nucleobase aromaticity is presented in
Fig. 8b. In the case of a double-stranded helix, two contexts,
corresponding to NICS(1) and NICS(−1) distributions, are

a b

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0.40 0.50 0.60 0.70 0.80 0.90 1.00

H
O

M
A

P
D

B

HOMAQM/MM

ADE(6)
GUA(6)
CYT
THY

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0.70 0.75 0.80 0.85 0.90 0.95

H
O

M
A

P
D

B

HOMAQM/MM

ADE(9)
ADE(5)
GUA(9)
GUA(5)

Fig. 7 Correlation between HOMA values of (a) pyrimidine rings and
(b) imidazole/purine rings of nucleobases estimated using Cartesian
coordinates taken directly from PDB files (HOMAPDB) and those
obtained after QM/MM optimizations (HOMAQM/MM) at ONIOM

(QM:B3LYP/6-311+G**//MM:AMBER) level. Vertical lines HOMA
values estimated for geometries of isolated monomers optimized in the
gas phase (using B3LYP/6-311+G** level)

0%

10%

20%

30%

40%

50%

60%

0.80 0.85 0.90 0.95 1.00

p
o

p
u

la
tio

n

HOMA(9) of adenine

ds B-DNA(X-Ray) (0.032)
ss RNA(X-Ray)     (0.012)
model 0.01 (0.002)
model 0.05 (0.009)
model 0.10 (0.017)

0%

10%

20%

30%

40%

50%

60%

70%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

p
o

p
u

la
tio

n

HOMA(9) of guanine

dsB-DNA(X-Ray) (0.032)
ds Z-DNA(X-Ray) (0.074)
ss RNA(X-Ray)    (0.021)
model 0.01 (0.003)
model 0.05 (0.016)
model 0.10 (0.030)

0%

10%

20%

30%

40%

50%

60%

70%

0.6 0.7 0.8 0.9 1

p
o

p
u

la
tio

n

HOMA(5) of adenine

ds B-DNA(X-Ray) (0.050)
ss RNA(X-Ray)     (0.014)
model 0.01   (SD=0.006)
model 0.05   (SD=0.023)
model 0.1     (SD=0.057)

0%

10%

20%

30%

40%

50%

60%

0.7 0.8 0.9 1

p
o

p
ul

at
io

n

HOMA(5) of guanine

dsB-DNA(X-Ray) (0.034)
ssRNA(X-Ray)     (0.015)
model 0.01 (0.005)
model 0.05 (0.022)
model 0.10 (0.055)

Fig. 6 Heterogeneity of HOMA values characterising aromaticity of
the purine [HOMA(9)] and imidazole (HOMA5) rings of adenine and
guanine. The two sets of plots correspond to systematic bond length
error analysis (gray lines without symbols) and native DNA

environment (taken from Nucleic Acid Database [31]) (black lines
with symbols). Only high quality structures (resolution better than 1.5
Å) were taken into consideration. Standard deviations of the analysed
HOMA values distribution are given in brackets

J Mol Model (2010) 16:1709–1720 1717



clearly identified. Here, the former is related to the 5′-side
and the latter to the 3′-region of the nucleobase. Since the
point located above the purine rings is above the C–C bond,
the corresponding NICS values cannot be used as a measure
of the whole molecule aromaticity, and only pyrimidine and
imidazole rings are analysed here. According to this measure
of aromaticity, the polynucleotide chain can significantly
affect aromaticities of all rings, since the range of obtained
values spans from the smallest variability (1.1 ppm) in the
case of the 3′-imidazole ring of adenine up to the highest
variety for 3′-thymine rings (reaching 3.3 ppm). Both
analysed aromatic rings of adenine and the imidazole ring
of guanine are characterized by positive values of mean
ΔNICS, which suggests a decrease in aromaticity with
respect to the free monomer in the gas phase. For the
remaining rings, a significant increase in aromaticity is
expected. For example, the mean ΔNICS values of 5′- and
3′-pyrimidine rings of guanine are equal to 1.1 ppm and
2.0 ppm, respectively. Also the remaining 5′-(3′-) pyrimidine
rings are characterized by an increase in their aromatic
character by −0.5(−0.8)ppm and −1.4(1.0)ppm for cytosine
and thymine, respectively.

Conclusions

The discussion presented above demonstrated that even
extra fine resolution (≤1.0Å) is not sufficient for direct
estimation of HOMA values based on Cartesian coordinates
provided by PDB files obtained via X-ray diffraction of
protein and DNA crystals. The values of mean bond errors
seem to be much higher than the 0.05Å often reported for
such files. This imposes serious limitations on the direct use
of Cartesian coordinates, and even the best available PDB
files cannot provide structures of acceptable accuracy. On
the other hand, we propose the estimation of HOMA values
as an effective alternative method to verify the accuracy of
experimental structures. Despite the fact that environment
effects are significantly overestimated if direct coordinates
are taken from the PDB files, they are still non-negligible.
However, the use of quantum chemistry geometry optimi-
zation is strongly advised; even a simple QM/MM model
comprising only the aromatic molecule within the QM
region, with the rest of the biomolecule being treated
classically within the MM framework, proved a reliable
method for aromaticity description inside the native
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environment. According to the results presented here, three
consequences of environment inducing changes of struc-
tural indices of aromaticity can be observed. First of all, a
broad range of HOMA values are usually obtained for
different conformations. These values, and their mean, can
differ significantly from those characterizing the isolated
monomer. Protein and DNA interiors can also affect the
values of the magnetic index of aromaticity, both by
increasing the range of values related to different con-
formations and by altering the mean ΔNICS values
estimated with respect to isolated monomers in the gas
phase. The most significant increase in aromaticity is
expected for the pyrimidine rings of guanine, thymine and
cytosine. The same trend is also visible for all amino acids
inside proteins, but this effect is much smaller, reaching the
highest value for the five-membered ring of tryptophan.
Thus, environment effects are non-negligible and need
further investigation to reveal the details of aromaticity
changes imposed by biomolecule interiors. Interestingly,
explicit water molecules also form a significantly non-
homogeneous environment. Figure 9 collects values
corresponding to QM/MM computations of biopolymer
environments and water solutions. As discussed previously,
both B-DNA and protein interiors significantly affect the
aromaticity of the compounds analysed. It is also worth
noting that the fluctuations of water molecules around the
aromatic rings imposes flexibility on amino acid residues
and nucleobase rings quantified by HOMA distributions.
Although this paper is not devoted to detailed analysis of
particular neighborhoods (such as B-DNA or protein
sequence, context or conformation), the statistically signif-
icant probe of structures with non-zero (non-trivial)
distributions of aromaticity indices provided offers serious
evidence that aromaticity can be affected by environmental
factors that do not induce chemical modifications of the
analyzed aromatic compounds. Further investigations will
be essential in order to provide a more precise description
of these contributions.
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