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Abstract Human intestinal absorption (HIA) is an im-
portant roadblock in the formulation of new drug sub-
stances. Computational models are needed for the rapid
estimation of this property. The measurements are de-
termined via in vivo experiments or in vitro permeability
studies. We present several computational models that are
able to predict the absorption of drugs by the human
intestine and the permeability through human Caco-2 cells.
The training and prediction sets were derived from
literature sources and carefully examined to eliminate
compounds that are actively transported. We compare our
results to models derived by other methods and find that the
statistical quality is similar. We believe that models derived
from both sources of experimental data would provide
greater consistency in predictions. The performance of
several QSPR models that we investigated to predict out-
side the training set for either experimental property clearly
indicates that caution should be exercised while applying
any of the models for quantitative predictions. However,
we are able to show that the qualitative predictions can be
obtained with close to a 70% success rate.

Keywords Human intestinal absorption . Caco-2
permeability . QSPR . QSAR . ADME

Introduction

Understanding the physicochemical and pharmacokinetic
properties of known drugs and potential drug candidates is
a major bottleneck for the low success rate of compounds
in clinical development [1]. Traditional structure–activity
relationship (SAR) studies optimize the potency and ef-
ficacy of a congeneric compound series on a protein target.
A rapid understanding of the absorption, distribution,
metabolism, and excretion (ADME) characteristics of
compounds still impedes significant progress in this area
[2–4]. For instance, oral dosing is usually the most de-
sirable way to administer drugs and therefore the thera-
peutic efficacy of a compound often involves the efficient
transport or absorption of a drug to the blood stream.
Therefore, the plasma solubility, membrane permeability,
protein binding, transport properties, and the diffusion
kinetics are some of the components influencing the overall
bioavailability of the drug. Metabolism or elimination of a
drug may also decrease the efficacy of a compound or
increase toxicity or unwanted side effects.

The primary barrier towards good bioavailability is
human intestinal absorption (HIA). Therefore, there is an
increasing need to understand and measure the effect of
physicochemical properties of the drug on the intestinal
absorption process [5, 6]. It requires dissolution, passage
through the gut and finally diffusion or transport into the
blood stream. For example, the P-glycoprotein (P-gp) ac-
tivity in the apical cell membrane may limit the bioavail-
ability, while absorption through transcellular (membrane
diffusion, carrier-mediated) or paracellular routes alter the
pharmacokinetic profile of the compounds [7, 8]. The cost
and time factors involved in in vivo and in situ experiments
[9–11], make it difficult to collect sufficient data to analyze
structural contributions to the rate of intestinal absorption.
Recent advances in high-throughput screening and combi-
natorial chemistry synthesis have elevated the need to gain a
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priori information regarding the intestinal absorption on a
variety of new chemical entities. Determining the amount of
HIA requires expensive experiments and hence simpler in
vitro models have been developed.

In order to obtain pharmacokinetic information earlier in
drug discovery projects, in vitro Caco-2 (immortalized
human colon adenocarcinoma cell line) monolayers are now
used because they exhibit remarkable morphological and
functional similarity to the small intestinal columnar epi-
thelium [12–15]. The permeability measured from these
experiments agrees, in general, with HIA and hence is useful
for experimental modeling of in vivo absorption. The
measured apparent permeabilities (Papp) depend on the cell
culture, growth factors, and other experimental conditions,
resulting in slightly different values reported by various
groups (see supporting information) [16–23]. There is a
need to develop quantitative and predictive mathematical
models that relate various physicochemical properties to
intestinal permeability and absorption so that poorly ab-
sorbed compounds are eliminated in the initial stages of drug
discovery. The primary goal of this work is to develop

computational models to describe the initial absorption of
compounds from the gut into the blood stream.

Cellular permeability can be understood as a series of
partitioning and associated diffusion of a molecule from
one region to another in a lipid bilayer that surrounds the
cell. Therefore, early physical and computational studies
intended to explain intestinal absorption of drugs focused
mainly on a single physicochemical property like octanol–
water partition coefficient or the distribution coefficient
[24–29]. Reasonable correlations were obtained for a homol-
ogous series of compounds, although structural diversity
impeded the model’s predictivity. Other properties such as the
molecular weight, size, and shape, polar van der Waals surface
area (PSA), and H-bonding capability are believed to be
important for modeling intestinal permeability [30]. Hence,
Lipinski proposed a scheme to classify the intestinal absorption
using simpler yet powerful 1D-descriptors such as the count of
polar atoms, logP, and the molecular weight [31]. Similarly,
Clark used the computed PSA to categorize (good, medium,
poor) the extent of intestinal absorption for structurally diverse
compounds [32].

Table 1 Statistical results for logPapp (Eqs. 3, 8, 9, 10 and 11) and logHIAa (Eqs. 4, 5, 6, 7 and 12) for training and prediction (sub)set data
and comparisons with QSPR models reported in literature

Models Typeb Ntr
c r2 (tr) r2 (cv) Npc

d rmsee Npr
f r2 (pr)g rmseh Npr

i r2 (ss)j rmsek

logPapp

Reference [23] PSA 9 0.907 0.36
Equation (8) PSA+MW 17 0.693
Reference [54] PLS (9) 17 0.909 0.852 2 0.305
Equation (9) PSA+MW 17 0.771 0.654 2 0.458 50 0.455 0.734 42 0.672 0.533
Equation (10) G/PLS (6) 17 0.972 0.549 1 0.161 50 0.010 1.526 35 0.632 0.493
Equation (11) PSA+MW 22 0.610 0.437 2 0.561 37 0.622 0.570 35 0.691 0.520
Equation (3) G/PLS (6) 22 0.892 0.535 1 0.295 37 0.629 0.840 31 0.780 0.530
logHIA & %HIA
Reference [40] PLS (10) 20 0.916 0.798 3 8.1
Reference [41] Hashkeys 20 0.691 21.7
Reference [37] PSA 20 0.94 9.2
Reference [32] PSA 20 0.94 9.1
Equation (12)l PSA 20 0.886 12.9 62 0.463 29.1
Equation (12)m PSA 30 0.549 21.3 46 0.655 19.3
Equation (4) G/PLS (6) 30 0.907 0.808 3 9.0 46 0.166 31.7 37 0.452 21.0
Equation (5) G/PLS (6) 30 0.908 0.814 3 7.6 46 0.191 31.2 38 0.462 19.6
Equation (6) G/PLS (6) 30 0.814 0.617 1 13.4 46 0.304 28.5 37 0.539 17.9
Equation (7) G/PLS (6) 30 0.668 0.343 3 17.5 46 0.367 26.4 39 0.559 17.9
aThe rms error for Eqs. (4, 5, 6, 7) and that reported by Norinder are given in %HIA after the computed logHIA values are transformed
using Eq. (2)
bVariables and methods used in fitting the experimental data. The values in parenthesis indicate the number of independent
variables used in the multivariate analysis
cNumber of molecules in the training set
dNumber of PLS components
eRoot mean square error for the training set
fNumber of molecules in the prediction set
gsquare of the correlation coefficient for the prediction set
hRoot mean square error for the prediction set
iNumber of molecules in the prediction subset
jsquare of the correlation coefficient for the prediction subset (the outliers that were not included are underlined in Table 3)
kRoot mean square error for the prediction subset
lPSA50=83.987 and the slope is −15.246
mPSA50=104.673 and the slope is −28.97
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A number of quantitative structure–property relationship
(QSPR) models have also been proposed in the literature
for predicting logPapp and %HIA [33–35]. Most of the
reported QSPR models utilize PSA as an indicator of
intestinal permeability and absorption. For a diverse set of
17 compounds, van de Waterbeemd and Camenisch showed
that the log of the apparent permeability (logPapp) measured
from Caco-2 monolayers correlates well with the molecular
weight and the PSA obtained for a single conformation [36].
By considering multiple conformations for the β-adrenore-
ceptor antagonists series, a sigmoidal relationship between the
dynamic PSA and the fractional absorption (%HIA) was
derived [37]. Similarly, the Boltzmann-averaged dynamic
solvent-accessible surface area obtained from molecular
dynamics simulations was related to the intestinal absorption
[22].

Artursson and coworkers [38] extended the PSA model
[17] by including the dynamic non-polar surface area
(NPSA) component and showed a good correlation with
the intestinal permeability of 19 oligopeptides. However,
the PSA, NPSA and H-bond atom counts were not
determined to be the critical elements responsible for the
observed cellular permeability of the 21 peptide and pep-
tidomimetic compounds considered by a different group
[39]. This suggests that QSPR models based on logP, PSA
or NPSA, while helpful for deriving meaningful correla-
tions within a narrow structural class, may not extend
universally. Including other physicochemical variables in
the QSPR model would remove the over-dependence of
Papp on PSA. Alternatively, descriptors replacing PSA can
be mapped to HIA so that the intestinal absorption of both
polar and apolar molecules can be modeled simultaneously.

QSPR efforts along these directions reveal similar or
better performances compared to models obtained using
PSA as the response variable. In fact, the statistical results
obtained by employing multivariate partial least square
fitting (PLS) protocols with several molecular descriptors
excluding PSA [40] and also by using molecular hash keys
[41] was comparable to that derived using PSA [37] for the
same set of compounds (Table 1). Very recently, a quan-
titative model for predicting the %HIA was proposed by
combining a genetic algorithm and a neural network
scoring function [42]. The significance of the model can be
appreciated from the small (9.4%) root-mean-square error
(rmse) obtained for a training set of 67 compounds. How-
ever, the major drawback rests in the compound selection
since a single model was used to describe both passive and
carrier-mediated absorption mechanisms. In addition, with
52/67 compounds exhibiting >75% HIA (strongly ab-
sorbed), the training set data primarily contains compounds
with high absorption and therefore may result in a biased
model.

One of the primary goals of this study is to develop QSPR
models for estimating both logPapp and %HIA following the
procedure outlined in Fig. 1. As a first step, experimental
Papp measurements and %HIA data reported in literature
were compiled. Subsequently, actively transported com-
pounds were identified and separated from the dataset. The
remaining molecules were then divided into training and
prediction sets. The training set was composed such that the
experimental value was distributed uniformly with respect to
the measured Papp and %HIA. Using these evenly distri-
buted datasets, QSPR models for computing logPapp and %
HIA are derived independently. By deriving both simple and

Papp and %HIA
Data Compilation

Separate
Active/Passive

Molecules

logPapp
Data Set

%HIA
Data Set

Training Prediction

Carrier Carrier

Prediction Training

Literature Set
17 Compounds

Current Set
22 Compounds

Literature Set
20 Molecules

Current Set
30 Molecules

2-term Linear
PLS Model

6-term Linear
G/PLS Model

6-term Linear
G/PLS Model

2-term Linear
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Fig. 1 Illustration of data com-
pilation. The datasets were col-
lected from the literature and
compounds were divided into
passively and actively trans-
ported sets. Further separations
into training and prediction sets
are described in the text. Re-
gression analysis was only per-
formed on passively absorbed
compounds
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complex QSPR equations, the influence of certain indepen-
dent variables was assessed. The models were then extended
to predict the logPapp and %HIA for an external validation
set of passively absorbed compounds and compared to
reported QSPRmodels [32, 36, 37, 40, 42]. Deriving similar
mathematical relations for logPapp and %HIA and compar-
ing the results obtained with the present training set data
demonstrate the limitations with the oft-used training set
compounds in the literature. As a next step, the logPapp and
%HIA are predicted for molecules absorbed through active
transport processes to see if these external influences are
manifested in the molecular descriptors identified. This will
also help determine if simple relationships exist between the
active and passive absorption mechanisms. The quantitative
logPapp and %HIA results are then extended to categorize
the degree of intestinal permeability and absorption and
compared to literature predictions [31, 32].

Dataset

Experimental Papp values determined using Caco-2 cell
lines were pooled from several literature sources resulting
in 117 compounds [16–23]. The data revealed that the Papp

measurements reported by different laboratories for the
same compounds varied significantly in magnitude. For
example, the experimental logPapp for alprenolol ranges
from −3.9 to −5.8, while that of atenolol varies between
−5.7 and −7.5. For compounds where inter-laboratory
experimental determinations were available, the values
most consistent among the reported ones were used (see
supporting information). The drawback of models derived
based on the Caco-2 Papp values determined from a single
laboratory is the potential bias in the results that limits
extension to other compound sets reported by different
groups. Alternatively, by using experimental Papp values
that are consistent across different groups, realistic esti-
mates of the experimental uncertainty in the various
measurements can be ascertained for a larger set of com-
pounds. This also provides a confidence limit for the
experimental values reported for compounds from that
group only. By following this procedure, some reported
Papp values [43] were observed to deviate considerably
from other literature reports for the same compounds and
so were not included while generating the final training set.
However, some of these compounds are used in the second
logPapp prediction set but are not discussed in the text. The
chemical structures used in this work are available from the
authors upon request.

We believe that it is important to use compounds that
permeate through passive absorption process in the dataset,
since actively transported molecules are influenced by
external environments that may not be modeled accurately.
Prior to generating the final dataset, molecules reported to
be substrates for various transport mechanisms or carrier-
mediated processes (P-gp, peptide, nucleoside, etc.) were
separated from those that are likely to undergo passive
intestinal permeation. This division of compounds (Fig. 1)
results in a dataset of only 59 compounds that most likely

permeate through diffusion-controlled processes. A similar
protocol was employed to gather the %HIA data from
literature [19–21, 37, 42–45]. Although most of the frac-
tional intestinal absorption data had been compiled [42],
additional %HIA values reported in literature [43, 44] were
also included, resulting in 121 compounds of which 76
molecules are probably passively absorbed. The training
and prediction sets were chosen so that the logPapp and
%HIA values span the whole range. Also, in the case
of %HIA, compounds with values of 100% or 0% were
used only in the prediction set.

Materials and methods

All the compounds were energy minimized using the
universal force field [46] implemented in the Cerius2

molecular modeling package (Accelrys, San Diego, CA)
and imported into a Cerius2 study table. Structural, con-
stitutional, topological, and other calculated descriptors
available through the Cerius2 QSAR module were then
included. In addition, the computed PSA [47] and the cube
root of the gravitational index (GRAVIND) [42] were
added. Since the passive transport of the compound across
the intestinal epithelium is largely diffusion-controlled, and
since the diffusion coefficient is inversely proportional to
the square (SQINMW) or the cube root (CBINMW) of the
molecular weight [48], descriptors representing such
features were also included. By inspecting the independent
variables in the study table, descriptors that did not have
sufficient non-zero values or adequate variation were iden-
tified and removed.

A structurally heterogeneous logPapp dataset containing
22 compounds was used as the training set for predicting
the apparent permeability of the remaining 19 molecules.
Similarly, the training set for %HIA consisted of 30
compounds, leading to an external prediction set consisting
of the remaining 46 molecules. The training set for model-
ing %HIA was selected such that molecules with 0 or 100
%HIA were not included. We believe that these limiting
values do not correspond to the actual measurements, but
reflect on the compound having crossed a threshold value.
Therefore, using these compounds in the training set will
affect the overall performance of the derived QSPR model.
Hence, molecules with 0% and 100% HIA values are used
in the prediction set and not in our training set. To have a
direct comparison with reported QSPR models, additional
equations were derived for the 17 and 20 compound train-
ing sets used in the literature for predicting logPapp and
%HIA, respectively (Fig. 1) and the results are provided in
the supporting information accompanying the paper.

Several studies in the literature have pointed out that
Papp and %HIA are not likely to be linearly related to the
computed descriptors [24–29, 36]. Therefore, the experi-
mental Papp and the reported %HIA were transformed to
logarithmic units. Since the %HIA has a closed scale with
limiting values, fitting the data using linear approximations
may lead to a statistically incorrect model. As in previous
studies [40], a logit transformation was performed on the
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Table 2 Experimental and computed logPapp for training set,
prediction set, and compounds permeating through carrier-mediated
processesa

Molecule Expt Equation (11) Equation (3)

Training Set
H216 −6.983 −5.929 −6.973
doxorubicin −6.796 −7.182 −6.772
dnalaprilate −6.208 −5.507 −5.661
benzylpenicillin −5.708 −5.264 −5.398
practolol −5.613 −4.811 −6.047
H95 −5.426 −4.807 −5.287
hydrocortisone −4.914 −5.309 −4.595
imipramine −4.851 −3.978 −4.601
desipramine −4.666 −4.096 −4.627
naloxone −4.550 −4.973 −4.885
clonidine −4.521 −4.345 −4.094
pindolol −4.460 −4.619 −4.752
propranolol −4.378 −4.337 −4.010
betaxolol −4.314 −4.627 −4.546
tenidap −4.291 −5.073 −4.584
ibuprufen −4.280 −4.153 −3.969
oxprenolol −4.184 −4.512 −4.240
alprenolol −4.125 −4.353 −4.234
caffeine −4.074 −4.375 −4.035
betaxolol ester −4.015 −4.842 −4.270
propranolol ester −3.983 −4.596 −4.452
naproxen −3.678 −4.329 −3.985
Prediction Set
G6264 −6.854 −6.194 −7.530
G6700 −6.854 −6.114 −6.678
G6249 −6.745 −6.058 −6.681
G6191 −6.456 −6.297 −7.557
G6262 −6.367 −6.092 −6.848
G6703 −6.244 −6.228 −6.805
sulpiride −6.160 −5.527 −5.356
atenolol −5.936 −5.092 −6.494
acyclovir −5.699 −5.486 −5.353
sumatriptan −5.523 −4.933 −6.193
G6203 −5.509 −6.186 −6.072
H244 −5.220 −4.881 −5.470
ziprasidone −4.910 −5.077 −2.741
tiacrilast −4.900 −4.754 −3.245
mibefradil −4.870 −5.382 −4.316
fleroxacin −4.810 −5.033 −3.928
nitrendipine −4.770 −5.502 −5.443
guanoxan −4.710 −4.900 −5.597
chloramphenicol −4.686 −5.559 −4.831
felodipine −4.644 −4.914 −4.940
fluconazole −4.526 −5.137 −3.518
trovaflaxicin −4.520 −5.646 −4.134
warfarin −4.417 −4.694 −3.980
timolol −4.354 −5.068 −4.370
theophylline −4.350 −4.603 −4.181
antipyrine −4.310 −3.928 −3.745
diltiazem −4.310 −4.945 −4.625
testosterone −4.286 −4.382 −3.400

Molecule Expt Equation (11) Equation (3)

corticosterone −4.263 −5.065 −4.273
lidocaine −4.210 −4.184 −5.512
diazepam −4.149 −4.310 −3.954
guanabenz −6.000 −4.879 −3.908
coumarin −4.110 −3.803 −1.792
timolol ester −4.103 −5.331 −3.712
metoprolol −4.036 −4.491 −4.978
oxprenolol ester −4.012 −4.756 −4.369
alprenolol ester −3.967 −4.610 −4.671
2ndPrediction Set
olsalazine −6.959 −5.859 −3.668
terbutaline −6.420 −4.728 −4.394
epinephrine −6.020 −4.659 −4.176
acetaminophen −6.000 −4.203 −4.896
acrivastine −7.721 −4.696 −4.390
bupropion −5.824 −4.149 −4.572
cefuroxime −8.420 −6.647 −5.477
chlorothiazide −8.495 −5.650 −4.691
fluparoxan −5.699 −4.132 −3.476
hydrochlorothiazide −8.036 −5.705 −4.238
ketoprofen −6.032 −4.515 −4.242
labetalol −6.119 −5.421 −6.599
lamotrigine −5.959 −5.233 −3.778
nadolol −8.409 −5.109 −5.309
netivudine −8.168 −5.558 −6.106
penicillin V −8.770 −5.436 −5.290
phenytoin −5.796 −4.680 −4.889
progesterone −6.009 −4.398 −4.099
propylthiouracil −6.018 −4.190 −4.608
sotalol −7.377 −4.999 −4.850
trimethoprim −6.061 −5.415 −5.601
Active Processes
furosemide −8.854 −5.688 −5.124
lisinopril −8.658 −6.159 −6.689
loracarbef −8.620 −5.650 −6.579
cefatrizine −8.119 −7.055 −6.552
sulfasalazine −6.886 −6.204 −3.679
methylprednisolone −6.602 −5.375 −5.340
zidovudine −6.553 −5.727 −4.000
amoxicillin −6.481 −6.029 −6.380
L-leucine −6.301 −4.320 −4.785
mannitol −6.187 −5.253 −5.998
sucrose −6.149 −6.412 −7.691
L-glutamine −6.071 −5.065 −6.409
L-dopa −6.000 −5.143 −5.474
azithromycin −5.983 −7.163 −7.033
ondansetron −5.959 −4.410 −4.817
D-mannitol −5.932 −5.200 −5.173
methotrexate −5.921 −7.552 −7.272
acetylsalicylate −5.620 −4.300 −1.296
cephalexin −5.570 −5.631 −6.384
cimetidine −5.514 −5.284 −5.524
erythromycin −5.428 −7.357 −6.789
taurocholate −5.396 −6.500 −4.240

Table 2 (continued)
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dependent variable (%HIA) using Eq. (1). The computed
logitHIA was transformed back to %HIA using Eq. (2), so
that direct comparisons with experimental values could be
achieved.

log it HIAð Þ ¼ ln %HIAþ 10ð Þ� 110�%HIAð Þ� �
(1)

%HIA ¼ 110 � exp logitHIAð Þ � 10ð Þ� 1þ exp log itHIAð Þð Þ� �

(2)

Using Cerius2, the training-set molecules were initially
subjected to a Genetic/Partial Least Squares (G/PLS)
statistical fitting procedure [49, 50] to fit the dependent
function (logPapp or logitHIA) using 15 variables and up to
four PLS components. In this way, a plausible subset of
descriptors that best describe logPapp and logitHIA were
obtained from the pool of independent variables. Sub-
sequent G/PLS runs on the same training-set data used only
the descriptor subset and seven terms in the regression
equation. The initial random population of 100 equations
was evolved for 20,000 generations, resulting in a final set
of 100 model equations that characterizes the observed
logPapp and logitHIA through the square of the correlation
coefficient (r2) fitness function. All the variables involved
in the G/PLS regression were scaled and a maximum of
three principal components were allowed. To determine the
role of certain variables like PSA, Jurs-terms [51], elec-
trotopological indices [52], and AlogP [53], four different
models were obtained for logitHIA by including or re-
moving some descriptors from the initial descriptor subset
used in the G/PLS run. In addition, QSPR models with
varying complexity and for the standard training set used in
the literature were obtained for direct comparison with
reported models (Table 1).

The internal cross-validated correlation coefficient,
r2(cv) (using the leave-one-out method) was used to
ascertain the statistical quality of the derived functions.
The accuracy of the estimations was evaluated by com-
paring the results obtained using the best model equation
against the experimental logPapp and logitHIA values for
each of the prediction sets. The quantitative logPapp and
%HIA results were also used to categorize the molecules
based on the extent of intestinal permeability and absorption
using the following threshold values. Thus, compounds with
computed logPapp<−6 and<−5 are classified as poorly and
moderately permeable, respectively. All the remaining
molecules are considered to possess good intestinal perme-
abilities. Similarly, a %HIA of <30 suggests poor intestinal
absorption, while molecules exhibiting HIA >70% possess
good intestinal absorption. Compounds with medium HIA
range between 30 and 70%.

Results

Table 1 summarizes the performances of the various QSPR
models derived using the experimental logPapp and %HIA
for the passively absorbed compounds listed in Tables 2
and 3. The computed logPapp and %HIA are also given for
molecules absorbed through various transport processes
but were not used as part of the training set.

Statistical results for logPapp

The G/PLS analysis on the 22 training-set molecules
(Table 2) resulted in Eq. (3) with an r2 of 0.89 for logPapp

and an r2(cv) of 0.54. The 0.3 log unit root-mean-square error
(rmse) for the training set is within experimental error limits.

logPapp ¼� 4:628þ 0:399 � Hbond acceptor þ 0:450

� AlogP � 0:329 � Hbond donor þ 0:698

� Jurs RPCS � 0:166 � Kappa 1

þ 0:00161 � Jurs�WNSA 1

(3)

The computed r2(pr) and rmse obtained for the 37
prediction-set compounds suggest a satisfactory perfor-
mance of the model when applied to an external dataset,
but with a significant rms error. However, closer exami-
nation reveals that the predicted logPapp is greater than one
log unit when compared with the experimental values for
six compounds identified in Table 2. Since the measured
apparent permeabilities are available from one literature
source only (see supporting information), it is difficult to
ascertain if these compounds possess large uncertainty in
the observed logPapp values or should be treated as the
prediction-set outliers. Assuming the latter, significant
improvement in the predicted r2 and rmse is achieved for
the remaining 31 molecules in the prediction subset

Molecule Expt Equation (11) Equation (3)

acebutolol −5.351 −5.206 −6.635
L-phenylalanine −5.161 −4.478 −4.822
salicylic acid −4.924 −4.228 −3.390
quinidine −4.690 −4.678 −3.669
dexamethasone −4.631 −5.423 −5.100
D-glucose −4.602 −5.094 −3.323
verapamil −4.580 −5.053 −4.566
acetylsalicylic acid −4.513 −4.381 −3.678
taurocholic acid −4.462 −6.487 −6.922
prazosin −4.361 −5.536 −5.204
valproic acid −4.319 −3.989 −4.595
glycine −4.097 −4.236 −4.099
gabapentin −4.046 −4.468 −5.231
aunderlined values in the prediction set represent compounds that
exhibited more than 1 log unit rms error and so were not included in
the calculations of the prediction subset in Table 1

Table 2 (continued)
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Table 3 Experimental and computed %HIA values for the training set, prediction set, and compounds absorbed through carrier-mediated
mechanisms

Molecule Expt Equation (4) Equation (5) Equation (6) Equation (7) Equation (12)

Training Set
cromolyn 0.5 −1.7 7.7 −1.2 3.4 23.2
olsalazine 2.3 0.1 8.4 6.7 19.4 27.5
cefuroxime 5.0 4.4 1.9 9.4 0.9 14.0
enalaprilat 10.0 18.1 12.5 12.6 50.3 58.1
benzyl penicillin 30.0 58.0 32.6 67.1 58.4 67.7
norfloxacin 35.0 33.3 22.5 67.7 78.6 77.0
Phenoxymethylpenecillinic acid 45.0 56.0 43.6 61.7 44.7 60.5
ziprasidone 60.0 85.1 64.7 69.0 88.1 85.7
hydorchlorothiazide 67.0 66.4 87.4 74.8 70.1 36.4
lamotrigine 70.0 74.6 79.8 61.4 67.2 56.4
guanabenz 75.0 67.5 82.9 73.0 82.8 71.7
propylthiouracil 75.0 86.7 80.5 81.0 76.8 89.3
sorivudine 82.0 80.3 66.3 47.2 57.4 46.6
bupropion 87.0 92.3 81.1 86.4 93.3 93.9
acrivastine 88.0 80.0 83.5 95.5 89.8 89.7
betaxolol 90.0 88.1 93.3 88.5 94.0 89.3
oxprenolol 90.0 93.8 96.9 86.9 88.1 87.9
pindolol 90.0 92.2 85.6 92.7 92.3 83.5
scopolamine 90.0 95.7 90.5 100.4 82.5 85.7
timolol 90.0 91.2 87.4 88.6 64.7 72.6
naloxone 91.0 89.1 83.0 83.8 87.5 80.4
progesterone 91.0 91.6 96.1 84.1 87.9 93.2
clonidine 95.0 92.7 91.2 87.7 95.6 89.8
imipramine 95.0 89.7 88.6 98.2 103.1 96.9
metoprolol 95.0 93.9 99.6 101.3 88.1 88.2
sotalol 95.0 89.2 85.8 90.2 85.5 73.3
trimethoprim 97.0 87.9 101.5 81.6 61.9 52.4
warfarin 98.0 80.9 98.7 91.2 87.8 87.2
diltiazem 99.0 94.4 86.5 79.2 71.8 88.1
nordiazepam 99.0 98.6 93.7 92.8 92.2 89.7
Prediction Set
ceftriaxone 1.0 −4.2 −6.6 −7.6 −8.9 3.0
ganciclovir 3.8 62.9 62.0 45.0 27.4 25.3
doxorubicin 5.0 29.3 39.8 −4.0 5.6 8.3
chlorothiazide 13.0 69.6 83.5 76.8 58.2 39.2
netivudine 28.0 62.2 49.0 57.9 46.5 43.0
acyclovir 30.0 56.0 66.9 66.8 31.1 38.6
nadolol 34.5 95.4 87.8 84.6 86.3 71.6
sulpiride 36.0 64.2 75.4 74.2 59.8 55.0
atenolol 50.0 81.9 89.2 89.0 75.9 67.9
metolazone 64.0 75.3 77.4 60.5 84.6 64.6
ciprofloxacin 69.0 30.4 21.2 73.2 81.4 76.5
terbutaline 73.0 83.6 73.6 75.2 86.0 77.5
sumatriptan 75.0 93.4 83.6 97.9 92.9 82.5
acetaminophen 80.0 56.0 84.7 100.5 57.5 87.7
bromazepam 84.0 101.9 95.0 96.4 82.6 84.6
trovafloxacin 88.0 23.7 1.1 18.9 73.0 60.6
chloramphenicol 90.0 63.3 71.3 39.6 36.3 50.5
ephedrine 90.0 75.0 86.3 103.0 79.9 92.1
phenytoin 90.0 60.6 92.6 94.1 87.1 82.8
propranolol 90.0 93.7 85.3 91.4 97.5 90.8
tenidap 90.0 62.5 53.7 75.8 94.8 75.2
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Molecule Expt Equation (4) Equation (5) Equation (6) Equation (7) Equation (12)

hydrocortisone 91.0 88.6 86.1 48.3 71.6 68.7
terazosin 91.0 89.4 95.9 77.8 38.3 58.2
alprenolol 93.0 89.4 89.9 96.4 92.8 90.8
fluconazole 95.0 95.3 67.7 84.3 43.1 67.3
labetalol 95.0 64.6 63.6 56.0 92.2 63.8
oxazepam 97.0 87.6 86.4 81.7 87.5 81.7
theophylline 98.0 46.6 40.1 82.6 35.2 77.7
prednisolone 98.8 87.5 75.6 55.6 72.4 68.7
naproxen 99.0 66.1 88.5 95.4 85.3 90.1
tiacrilast 99.0 59.1 49.7 78.4 63.9 79.3
antipyrine 100.0 99.6 100.2 102.4 84.1 94.5
bumetanide 100.0 28.6 79.1 47.5 63.3 45.4
caffeine 100.0 64.8 42.2 87.9 48.5 86.6
corticosterone 100.0 90.8 95.3 74.6 73.9 78.7
coumarin 100.0 49.5 87.3 101.2 67.0 94.6
desipramine 100.0 84.0 96.0 104.9 102.6 95.1
diazepam 100.0 102.4 96.4 96.7 93.3 93.2
felodipine 100.0 104.8 104.1 79.8 80.0 85.9
fluparoxan 100.0 87.4 81.1 89.7 89.8 91.9
fluvastatin 100.0 74.1 64.4 42.0 81.7 74.2
ibuprofen 100.0 45.8 75.0 91.7 76.5 92.0
ketoprofen 100.0 52.2 75.7 90.0 78.8 87.6
lormetazepam 100.0 94.2 85.2 75.2 88.8 87.4
practolol 100.0 92.8 92.6 90.0 84.1 79.9
testosterone 100.0 90.6 100.6 99.5 94.1 92.1
Active Processess
gentamicin 0.0 102.5 105.7 107.8 83.7 10.2
raffinose 0.3 99.5 79.8 −8.2 −1.2 1.1
lactulose 0.6 80.1 54.0 2.4 16.6 7.3
sulfasalazine 13.0 18.5 31.3 17.4 12.5 25.0
mannitol 15.0 83.0 79.1 55.8 45.3 46.4
foscarnet 17.0 −9.2 54.5 −8.8 −4.1 68.4
lisinopril 25.0 7.5 21.1 −2.6 31.6 31.6
pravastatin 34.0 73.4 79.6 10.4 30.0 44.3
erythromycin 35.0 56.3 104.0 3.6 −9.1 13.0
azithromycin 35.0 82.8 105.9 4.1 −8.6 18.1
defuroxime axetil 36.0 2.0 12.8 8.3 −6.9 12.7
sucrose 42.0 98.4 71.2 69.2 34.2 9.7
etoposide 50.0 92.7 108.9 21.7 −2.3 23.6
ranitidine 50.0 89.9 70.4 76.2 55.7 70.8
gabapentin 50.0 21.9 34.2 81.0 55.0 81.3
tranexamic acid 55.0 20.2 27.1 75.0 46.5 81.0
L-glutamine 60.0 6.6 25.7 51.5 14.2 49.0
taurocholic acid 60.0 50.7 51.7 38.4 25.0 29.2
furosemide 61.0 44.9 56.5 58.4 70.1 44.7
cimetidine 85.0 82.4 67.4 66.2 34.2 53.8
captopril 67.0 57.1 42.2 76.8 75.5 86.0
cefatrizine 76.0 35.9 12.6 6.0 2.6 7.3
quinidine 80.0 95.0 89.6 99.7 89.2 88.4
methylprednisolone 82.0 88.4 79.0 29.6 65.5 66.4
acebutolol 89.5 86.9 94.3 77.5 64.1 70.0
amoxicillin 93.5 37.4 14.2 22.4 45.5 30.4
verapamil 95.0 92.4 104.8 85.0 46.8 86.9
cephalexin 98.0 65.6 30.6 54.9 66.3 49.6
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(Table 1). Clearly, there are many other interpretations
available for the outliers in this case, including structural
diversity outside the training set or alternate absorption
mechanisms in these compounds.

Statistical results for logitHIA

The statistical quality of logitHIA (Eqs. 4, 5, 6, 7) and the
quantitative estimations of %HIA for the 30 training-set
compounds (Table 3) show that good QSPR models are
achieved for %HIA. Among the four models, the best
results are obtained through Eq. (4) with an r2(tr) of 0.907
while the logitHIA estimations obtained using Eq. (7)
account for only 67% of the variance in the training set
(Table 1). This is also reflected in the larger rmse obtained
using Eq. (7) compared to the 9% error in HIA associated
with Eq. (4). The subtle changes in the r2(tr) obtained
through Eqs. (4, 5, 6 and 7) are attributed to the effect of
certain independent variables like PSA, Jurs term, etc. in
modeling the intestinal absorption.

logitHIA ¼10:342þ 0:783 � S dssC � 104:493

� SQINMW � 0:0262 � S dO

� 0:022 � PSA� 0:164 � S ssCH2

� 0:366 � AlogP

(4)

log itHIA ¼3:849þ 10:991 � Jurs RNCG
þ 0:686 � S dssC þ 0:114 � S ssO

þ 0:883 � JX � 95:220 � SQINMW

� 0:232 � Hbond acceptor

(5)

log itHIA ¼11:324� 0:015 � PSA� 55:141 � CBINMW

þ 1:032 � Jurs FNSA 2þ 0:0234

� Jurs WNSA 3þ 11:329 � Jurs RNCG
� 0:171 � A logP

(6)

log itHIA ¼8:029� 0:00379 �Area þ 0:735

�GRAVIND � 0:0577 � PSA
� 61:408 � CBINMW þ 0:724

�Hbond donor � 0:0142 �MW

(7)

The computed r2(pr) and rmse associated with logitHIA
for the 46 prediction-set compounds suggest a weaker
performance of the above models for quantitative logitHIA
predictions. In striking contrast to the training set results,
the predictions obtained through Eqs. (6) and (7) are the
best among the four G/PLS models derived here for
estimating %HIA. The poor performance of Eqs. (4) and
(5) is attributed to the use of certain electrotopological
indices in these models that are not represented in some of
the validation-set compounds. For example, the absence of
methylene carbons (>CH2) in ketoprofen, ibuprofen, and
coumarin is partially responsible for the >40% rmse
observed for these molecules by using Eq. (4) (Table 3).
Similarly, the lack of ether-like oxygen (–O–) in ticrilast,
caffeine, and ciprofloxacin contributes to the smaller r2

observed by using Eq. (5), while compounds lacking a
carbonyl carbon (nadolol, chlorothiazide, etc.) are predicted

Molecule Expt Equation (4) Equation (5) Equation (6) Equation (7) Equation (12)

acetylsalicylic acid 100.0 24.1 63.0 87.5 48.0 85.4
D-glucose 100.0 79.6 52.2 52.1 49.0 54.1
D-Phe-L-Pro 100.0 48.7 42.5 80.8 71.7 71.9
dexamethasone 100.0 85.6 70.7 55.7 72.2 68.6
glycine 100.0 −7.1 2.4 65.5 −6.9 80.3
L-dopa 100.0 29.8 37.1 42.8 54.9 53.0
L-leucine 100.0 13.6 37.9 67.4 25.4 82.7
L-phenylalanine 100.0 30.3 52.9 88.2 58.6 80.9
loracarbef 100.0 47.4 16.0 43.5 60.8 48.4
methotrexate 100.0 −0.6 6.7 −6.9 −6.7 2.7
ondansetron 100.0 95.5 81.9 98.9 90.5 92.0
prazosin 100.0 89.9 85.1 78.2 48.5 60.7
salicylic acid 100.0 14.6 62.4 92.0 43.4 86.3
valproic acid 100.0 13.0 57.0 73.6 32.1 91.8
zidovudine 100.0 38.6 65.6 75.0 −4.5 22.0
aThe underlined %HIA values correspond to compounds removed in the statistical analysis of the prediction subset (Table 1)
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poorly by Eqs. (4) and (5). When molecules predicted with
large rmse (>40%) are excluded from the validation set, the
correlation coefficient for the validation subset is improved
significantly along with a substantial decrease in the rmse
(∼10%). Considering the large deviations in the reported
inter-laboratory %HIA values for certain compounds (see
supporting information), the predictions are still quantita-
tive and within acceptable experimental error limits.

Discussion

The G/PLS results presented above reveal that reliable
models have been obtained for estimating logPapp and%HIA
across a heterogeneous dataset (Tables 2 and 3). However,
the choice of the training-set data and the complexity of the
regression equations (Eqs. 3, 4, 5, 6, 7) obtained in this study
do not allow a direct comparison of the present results with
reported QSPR models. Consequently, additional models
were derived for the standard 17 and 20 training-set
compounds used in the literature for estimating logPapp and
%HIA and compared with the existing models (Table 1)
derived using 22 and 30 compound sets, respectively (see
supporting information).

Comparison with reported logPapp models

Palm et al. reported one of the earliest logPapp models by
correlating the dynamic PSA for six β-adrenoreceptor-
blocking agents [17, 23] and subsequently extended to
model nine homologues [23] with considerable success.
Our initial attempts to obtain a linear relationship between
the computed PSA and logPapp for the 22 training-set
compounds yielded an r2 of 0.583, considerably lower than
the results obtained with Eq. (3) (Table 1). This reveals the
limitation on the use of a single variable for quantitative
logPapp predictions across a diverse dataset. However, a
statistically significant correlation coefficient (0.833) was
obtained for the literature training set of 17 compounds
when logPapp was modeled using molecular weight and
PSA (Eq. 8) [32]. This equation also agrees with the
general notion that intestinal permeability is enhanced by
increasing the molecular weight and by decreasing PSA.
Since Eq. (8) was not validated through predictions for an
external dataset, the generality of the model could not be
assessed. Therefore, we refit a model using these terms to
verify its extension for all the molecules considered in this
study (Table 2). The comparable statistical quality (Table 1)
and the coefficient on the variables obtained through Eq. (9)
for the same 17 training-set compounds reflect the similarity
of our model with Eq. (8). The marginal difference in the
coefficients in Eqs. (8) and (9) is attributed to the use of
slightly different PSAvalues and also to the use of consensus

logPapp values (see supporting information), rather than the
experimental values reported in the previous work [9].

logPapp ¼ 0:008 �MW � 0:043 � PSA
� 5:165 n ¼ 17ð Þ (8)

logPapp ¼ 0:00443 �MW � 0:0288 � PSA
� 4:459 n ¼ 17ð Þ (9)

logPapp ¼� 3:238� 0:695 � CHI 3 C

þ 0:00129 � Jurs PPSA 2

� 0:309 � Kappa 3� 0:00730

� Jurs TPSA� 0:149 � Hbond donor
þ 0:0655 � Rotlbonds

(10)

logPapp ¼� 0:00291 �MW � 0:0150 � PSA
� 3:052 n ¼ 22ð Þ (11)

The simplicity and the easily computable variables suggest
Eqs. (8) or (9) to be versatile in modeling the apparent
intestinal permeability of virtual compound-libraries. Ap-
plying Eq. (9) to a validation set of 50 molecules resulted in
an inferior performance with an r2(pr) of 0.455 and an rmse
of 0.73 log units. To determine if the predictions are
affected by the choice of descriptors, additional regressions
were performed and compared with a reported PLS model
[54] (r2=0.91 versus logPapp and using nine variables). The
G/PLS model represented by Eq. (10) for the same 17
compounds demonstrates a much better performance with
fewer variables (Table 1). In contrast, the correlation co-
efficient obtained for the 50 validation-set molecules
clearly invalidates the extension of Eq. (10) for logPapp

predictions on unknowns.
In comparing previous QSPR models of logPapp and

Eq. (10), it is clear that neither the choice of descriptors
nor the number of terms in the QSPR equation is a major
contributor for the weaker correlations of the models. One
of the key reasons for the failure of Eqs. (9) and (10)
derived using the standard 17 compounds in the literature
arises due to the lack of structural diversity in the training
set. Molecules like alprenolol, atenolol, practolol, and
metaprolol fall within a homologous series, as do the
steroids corticosterone, hydrocortisone, and testosterone.
In addition, recent pharmacokinetic studies show some of
the literature training-set compounds, like dexamethasone
and sulfasalazine, to be transported through efflux mecha-
nisms. [43] Since our attempt was to derive a QSPR
model for passively permeable compounds, a training set
that spans more of the diversity space was essential. The
22 training-set compounds (Table 2) used for deriving the
logPapp model in the present study overcome some of
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the contaminations in the dataset and represent diverse
compounds that appear to permeate predominantly through
passive processes.

Equation (11) derived from 22 training-set compounds
yielded weaker correlations with an increased rmse com-
pared to equations obtained with the 17-compound training
set (Table 1). However, the contrasting interpretations of
the effect of molecular weight (compare the coefficients in
Eqs. (9) and (11) suggest the sensitivity of the independent
variables to the number and choice of the compounds in the
dataset. On the other hand, the comparable statistical quality
of Eq. (3) with the reported PLS model [54] (Table 1)
clearly demonstrates that the lack of predictive ability of
Eq. (11) is not due to the different selection of the training set
molecules but caused by the incomplete representation of
the descriptors. This incomplete representation is further
substantiated by the fact that models of HIV-protease-
inhibitor uptake by Caco-2 monolayers required multivar-
iate regressions with proper choice of independent variables
[55].

Comparison with reported %HIA models

Similar to the logPapp models, QSPR efforts in modeling
%HIA involved a standard dataset of 20 molecules in the
literature (see supporting information). Using only PSA as
the independent variable, a simple non-linear model was
obtained with an r2 of 0.90 [23, 29]. Similarly, a linear
model was derived for logitHIA by using multivariate
statistics [40]. In spite of a good correlation [r2(tr)=0.916]
for the 20 training-set compounds, neither of these models
has been used for quantitative %HIA prediction on an
external validation set. Our attempts to model the %HIA
using the Boltzmann sigmoidal curve function (Eq. 12) and
PSA for the same 20 compounds yielded a correlation
coefficient of 0.941, in close agreement to reported QSPR
models (Table 1).

%HIA ¼ 100=½1þ expð PSA50 � PSAð Þ slope= Þ where
PSA50 is the PSAvalue atwhichHIA ¼ 50%

(12)

However, the use of both actively transported and
passively diffused compounds in the literature %HIA and

logitHIA models can affect the predictive ability. Although
stringent conditions were used in obtaining the 20 training-
set compounds in the literature [23], pharmacokinetic
studies reveal foscarnet and sulfsalazine to be absorbed
through various transport mechanisms [7, 8, 43]. Conse-
quently, Eq. (12) was fitted against the experimental %HIA
values for the 30 training-set compounds used in this study
(Table 3) and compared with the G/PLS results obtained
through Eqs. (4, 5, 6 and 7). In spite of explaining only
55% of the variance in the training-set data, this single
descriptor non-linear model outperforms all the G/PLS
models in its predictive ability. The reversal in the r2 and
rmse trends between the training and prediction sets
(Table 1) for the %HIA models also demonstrates that the
G/PLS procedure perhaps overfits the 30 training-set
compounds considerably and more so when electrotopolo-
gical descriptors are used (compare Eqs. 4 and 5 with 6 and
7). Given the similar r2(ss) and rmse obtained through Eqs.
(6) and (7) with that of Eq. (12), it is tempting to use the
PSA model for the sake of simplicity. However, this non-
linear model breaks down when apolar molecules are
considered and while predicting the %HIA of a congeneric
series where hydrophobic substitutions (–CH3, –C2H5, –Ph,
etc.) are made. In both these cases, no change in the
computed %HIAwill be necessarily observed, although the
intestinal absorption process could be affected significantly.
Again, by virtue of the sigmoidal relationship of PSAwith
%HIA, the PSA50 and the slope values in Eq. (12) are
highly sensitive to the number of compounds used in the
training set (Table 1).

Interpretation of the physicochemical descriptors

Several studies have demonstrated that the intestinal
absorption and permeability are governed by a number of
factors including the lipophilicity, molecular size and
shape, and hydrogen-bonding capabilities [27]. The G/PLS
models derived here (Eqs. 3, 4, 5, 6, 7 and 10) utilize all
these variables in the regression equations and illustrate
that random descriptors are not included in explaining the
dependent property. For example, three out of the five
variables considered by Lipinski [31] as features consistent
with drug-like compounds for classifying the intestinal
absorption process are manifested through Equation (3).
The diversity in the physicochemical variables describing

Table 4 Total and percent correct classification (%, in parenthesis) of HIA based on Eqs. (4, 5, 6, 7, and 12) for the training set, prediction
set, and the molecules considered to be absorbed through carrier-mediated processes

Dataset Na Eq. (3) Eq. (11) Na Eq. (4) Eq. (5) Eq. (6) Eq. (7) Eq. (12)

Training 22 20 16 30 28 27 27 22 24
(90.9) (72.7) (93.3) (90.0) (90.0) (73.3) (80.0)

Prediction 19 17 10 46 26 29 32 31 34
(89.5) (52.6) (56.5) (63.0) (69.6) (67.4) (73.9)

Transport 34 15 15 43 15 13 21 14 19
(44.1) (44.1) (34.9) (30.2) (48.8) (32.6) (44.2)

aNumber of molecules in the dataset
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the logPapp also shows that the H-bonding and the Jurs’
terms in Eq. (3) capture the effects of PSA in Eq. (11).
Eq. (3) further reveals that H-bond acceptor atoms and
lipophilic substitutions improve the intestinal permeabil-
ity while H-bond donors decrease permeability.

The multiple QSPR models for logitHIA substitute the
Jurs descriptors (compare Eq. 4 with Eq. 5) and the
substitution of electrotopological indices through compo-
nents of Jurs-terms, gravitational index, and area (compare
Eqs. 4 and 5 with Eqs. 6 and 7). The use of molecular
weight in all the G/PLS equations agrees with the general
notion that molecular weight and diffusion are interrelated.

Qualitative predictions of intestinal permeability
and absorption

Although quantitative estimates of logPapp and %HIA are
effective for comparisons across a homologous series, such
accuracies are not essential for screening large compound
libraries. Furthermore, given the considerable uncertainty in
the experimental %HIA measurements and the sizeable
errors in the computed values, it would be beneficial if the
QSPR models reported in this study reproduce qualitative
features correctly. The coarse filters (poor, medium, good)
used to define the extent of intestinal permeability (see
Materials and methods) demonstrate that reasonable hit rates
are observed when the logPapp values obtained from
multivariate analysis are used (Table 4; Eq. 3). The results
also show that the 2-term logPapp model is approximately
20% less accurate in qualitatively classifying the apparent
permeability of compounds in the training and the prediction
sets. In spite of the relatively poor r2(pr) observed for the
four %HIA models (Eqs. 4, 5, 6 and 7), the consistent clas-
sification of the degree of intestinal absorption adds confi-
dence in extending these equations for qualitative %HIA
predictions of molecules that have not been considered in the
prediction set. Although the classifications obtained through
the non-linear %HIA model (Eq. 12) perform better for the
prediction-set compounds, Eqs. (6) and (7) perform well
when outliers are removed. Also, Eq. (12) may not perform
well for a homologous series where the analogues differ by
their hydrophobic substitutions (–CH3, –C2H5, –CH(CH3)2,
etc.) while Eqs. (6) and (7) should predict trends in these
series more consistently. The <50% hit rates obtained in
correctly classifying compounds that are carrier-mediated
(Table 4) suggests that Eqs. (6), (7) and (12) discriminate
molecules transported through different transport mechan-

isms from those that are passively diffused. In addition, the
QSPR models derived here indirectly suggest that the
intestinal permeability and absorption of actively trans-
ported compounds are modeled reasonably, except for the
inability in accounting for the factors contributed by the
solute environment and the kinetics of the mediators.

Since the five QSPR models derived for predicting the
%HIA perform only moderately well for the prediction-
set data, a consensus approach was designed to minimize
the number of false positives in the classification scheme.
Alternatively, comparing the results obtained using all
five %HIA models provides an indirect mechanism of
assessing the reliability of computed predictions. The
results in Table 5 show that 21 of the 32 compounds in the
training-set compounds are classified correctly by all the
models, resulting in a 100% confidence in the computed
values. The predictions are 80% accurate if four out of the
five models classify a molecule similarly. Alternatively,
borderline cases are identified when three out of the five
models predict similarly. These results show an improved
performance when the results of all the five models are
used collectively (Table 5) over the %HIA models con-
sidered individually (Table 4) for qualitative classification.

Conclusions

To derive the logPapp and logitHIA models, linear
relationships were assumed to exist with the descriptors
investigated. However, a non-linear behavior is illustrative
when %HIA is modeled using PSA. In comparing the
QSPR models derived for logPapp and %HIA, we believe
that the multivariate-statistics approach performs the best
for estimating the Papp while a single variable like PSA
describes the human intestinal absorption process satisfac-
torily. The logPapp models derived in the present study also
demonstrate that the intestinal permeability is governed by
several parameters. The varied dataset used in the reported
QSPR models restricts a direct comparison on the per-
formance of the present models to that proposed in lit-
erature for modeling logPapp and HIA. However, QSPR
models derived using the standard training set used in the
literature resulted in weaker correlations when extended to
an external prediction set. This is attributed to the lack of
structural diversity and the inclusion of actively transported
compounds in the literature training set and to the use of
non-passively absorbed molecules. In contrast, the use of
training-set data containing more passively absorbed

Table 5 Total and percent correct consensus prediction and success rate (%, in parenthesis) based on Eqs. (4, 5, 6, 7 and 12) for the training
set, prediction set, and the molecules considered to be absorbed through other mechanisms (Transport Set)

Confidence level Na 100% 80% 60% 40% 20% 0%

Equation’s (4, 5, 6, and 7, 12)
Training Set 30 21(70.0) 2(6.7) 2(6.7) 4(13.3) 1(3.3) 0(0.0)
Prediction Set 46 18(39.1) 5(10.9) 8(17.4) 6(13.0) 6(13.0) 3(6.6)
Transport Set 43 2(4.6) 5(11.6) 8(18.6) 10(23.3) 8(18.6) 10(23.3)
aNumber of molecules in the dataset
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compounds resulted in models with good predictive ability.
In the absence of a quantitative %HIA comparison for the
models derived here with reported QSPR results, qualita-
tive features on the extent of intestinal absorption can be
used as an index to assess the performance.

We believe that Eqs. (4, 5, 6, 7) describe %HIA and Eqs.
(9, 10 and 11) describe logPapp well. The complexity of both
experiments implies that careful use of any models for these
properties is necessary. We have attempted to eliminate
actively transported compounds from the data. Further work
on computational models will be required as additional
measurements are reported. We do find that we can obtain
predictive models without large numbers of variables and
that these models are predictive outside the training set.

The fact that coefficients on common variables in the
two equation sets are not always consistent is problematic.
Papp is often used as a surrogate test for HIA, yet some of
our equations imply the physical processes involved in the
two experiments are not the same. Because the correlations
and validations are better for Papp and that it is a simpler
experiment, we believe that the Papp models are more likely
to extend to new compounds.
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