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Abstract
Children with high Callous-Unemotional (CU) traits show deficits in recognizing and processing facial expressions. Altera-
tions in emotion recognition have been linked to a higher synaptic concentration of monoaminergic neurotransmitters. The 
current study investigated the relationship between the MAOA-Low-activity alleles and the ability to recognize and process 
facial expressions in 97 male children (8–12 years old) diagnosed with disruptive behavior disorder. Participants completed 
a computerized emotion-recognition task while an eye-tracking system recorded the number (Fixation Count, FC) and length 
(Fixation Duration, FD) of fixations to the eye region of the emotional stimuli. Children with high CU traits exhibited lower 
scores in recognition of sadness and anger, and lower FC and FD for sadness and fear than children with low CU traits. 
Children carrying the MAOA-Low-activity alleles displayed lower FD for sadness, and FD and FC for fear than those car-
rying the MAOA-High-activity alleles. These genetic effects appeared even stronger in children with CU traits. Moderation 
analysis revealed that CU traits were associated with lower FC and FD for fear, and lower FD for sadness, probably due to 
the MAOA-Low-activity alleles. Our findings, although to be replicated, suggest MAOA-Low-activity alleles as potential 
genetic biomarkers to identify CU children in need of training focused on emotion processing.
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Introduction

Callous-unemotional (CU) traits involve a lack of guilt and 
remorse, a lack of concern for others’ feelings, shallow or 
superficial emotions, and indifference about performance on 
important tasks [1]. CU traits have significant theoretical and 
clinical implications as they differentiate youths with severe 
disruptive and aggressive behavior [2], whose behavioral 

problems emerge early, are persistent, and are resistant to 
treatment [3].

Youths with high CU traits show difficulty in recogniz-
ing sad and fearful faces [4–7], and this impairment might 
extend to other types of emotions [8]. In a groundbreaking 
study [9], CU traits in children and adolescents were asso-
ciated with reduced attention to the eyes of fearful faces. 
Later studies reported impaired gaze patterns in children 
and adolescents with CU traits, showing reduced attention to 
the eyes of sad, fearful, and disgusted faces [5, 6, 10–13]. A 
recent study on twins showed that the relationship between 
high CU traits and deficits in recognizing aversive facial 
expressions in children, adolescents, and emerging adults is 
modulated by genetics [12]. The MAOA gene, encoding the 
monoamine oxidase enzyme, is a good candidate for study-
ing the relationship between inter-individual variability in 
monoaminergic neurotransmission and emotion processing. 
MAOA catabolizes the monoamine neurotransmitters sero-
tonin, noradrenaline, and dopamine, which play a signifi-
cant role in mediating emotions [13]. An elevated synap-
tic concentration of neuroactive amines may alter emotion 
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recognition by increasing the activation of the limbic areas 
and decreasing the prefrontal brain reaction during the pas-
sive observation of facial emotions [14, 15]. The promoter 
of the MAOA gene contains a Variable Number of Tandem 
Repeat (VNTR), with a 30 bp unit repeated 2, 3, 3.5, 4, 
or 5 times [16, 17]. The 2, 3, and 5 repeat alleles, known 
as Low-activity alleles, decrease the MAOA expression by 
30%. These alleles have been extensively linked to increased 
impulsivity, novelty and sensation seeking, externalizing 
problems, antisocial, aggressive, and criminal behavior 
[18–20], and evidence of their association with high psy-
chopathic traits has been reported both in youths and adults 
[21, 22].

Here, we investigated whether the MAOA-uVNTR alleles 
may be associated with deficits in emotion processing in 
youths with CU traits by studying their ability to recognize 
emotions and gaze patterns while observing facial images 
expressing different emotions.

Methods

Participants

Participants were 103 children (age: mean 9.21 ± 1.54 years, 
range 8–12 years; IQ-WISC IV [23]: mean 100.22 ± 8.46, 
range 80–130) with behavioral problems referred to a spe-
cialized service from 2019 to 2021. All participants received 
a diagnosis of Disruptive Behavior Disorder (DBD): 28 
(27%) had a primary diagnosis of Conduct Disorder (CD) 
and 75 (73%) of Oppositional Defiant Disorder (ODD). 
Additionally, 70 of these youths (68%) were also diagnosed 
with Attention-Deficit Hyperactivity Disorder (ADHD). 
The inclusion criteria were as follows: a primary diagno-
sis of CD and/or ODD; Intelligence Quotient (IQ) ≥ 80; no 
ongoing medication treatment at the time of recruitment. 
Comorbidity with Autism Spectrum Disorder was an exclu-
sion criterion. The study conformed to the principles of the 
Declaration of Helsinki and was approved by the Regional 
Ethical Committee (Meyer Hospital, Florence) (N. 64/2019).

Measures

Categorical diagnosis

Children’s diagnosis was determined using the Kid-
die  Schedule for Affective Disorders and Schizophre-
nia for School-Age Children-Present and Lifetime Ver-
sion (K-SADS-PL) [23]. Trained clinicians conducted the 
K-SADS-PL interviews. Both parents and children com-
pleted the K-SADS-PL interview independently. The rate 
of child-parent K-SADS-PL diagnosis agreement was 0.84 
(k Cohen).

Intellectual functioning

Children’s cognitive abilities were assessed using the 
Wechsler Intelligence Scales for Children–4th Edi-
tion (WISC IV) [24], and an Intelligence Quotient (IQ) score 
was calculated for each child.

Callous‑unemotional traits

CU traits were assessed by the Italian version of the Antiso-
cial Process Screening Device (APSD) [25] parent-report. 
An APSD-CU cut-off score of six was applied to separate 
youths with high vs. low CU traits, according to the APSD 
manual. Thirty-seven (36%) patients scored six or higher on 
the APSD-CU questionnaire. The Cronbach’s alfa of the CU 
scale in the current sample was 0.78.

Emotion recognition and gaze pattern

The gaze pattern was recorded using the SMI RED 500 
binocular eye-tracker (SensoMotoric Instruments; Teltow, 
Germany). Participants completed a computerized emotion 
recognition task with the eye-tracker in front of them, below 
a 22-inch flat-screen monitor, at about 65 cm. Children 
were presented with images from the NimStim Set of Facial 
Expressions [26], depicting happy, fearful, angry, disgusted, 
and sad facial expressions. An attention-getter was displayed 
before each trial to capture children’s attention.

Participants were asked to label the facial emotion dis-
played on the screen (Emotion Recognition, ER). Regard-
ing gaze pattern, the outcome measures were the number 
of fixations (Fixation Count; FC) and the average length of 
fixation (Fixation Duration; FD) to the eye region, selected 
as the area of interest [6]. A fixation threshold of 100 ms 
was applied to the raw data to avoid unconscious looking. To 
adjust for individual differences due to blinking or momen-
tary distraction from the screen, the FC and FD of the eye 
region were calculated as a percentage of the overall FC or 
FD of the whole face, respectively.

Genotyping. Each participant provided a saliva sample 
by an Oragene collection tube (DNA Genotek Inc., Ottawa, 
Ontario, Canada). DNA was extracted from saliva by the 
prepITL2P kit (DNA Genotek Inc.) and stored at − 20 °C. 
The MAOA-uVNTR sequence was amplified by Polymer-
ase Chain Reaction (PCR protocol: 95 °C/15 min, 94 °C/30  
s-62 °C/30 s-72 °C/60 s for 35 cycles, 72 °C/10 min) with 
the following primers: 5′-ACA GCC TGA CCG TGG AGA 
AG-3′ and 5′-GAA CGG ACG CTC CAT TCG GA-3′, and gen-
otyped by comparison, on a 2% agarose gel, with the GeneR-
uler DNA ladder (Thermofisher Scientific, Waltham, MA, 
USA) (error rate: 0%; call rate: 100%). For the association 
analysis, two MAOA-uVNTR allele groupings were created 
to compare MAOA-Low-activity allele carriers (3r, N = 29, 
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27.6%) with MAOA-High-activity allele carriers (3.5r and 
4r, N = 74, 70.1%) [16].

Statistical analyses

Statistical analysis was performed using the SPSS 27 soft-
ware package (IBM Corporation, Armonk, NY, USA).

Outliers

Multivariate outliers were detected by calculating the 
Mahalanobis distance [27]. Six subjects showed outliers for 
all the analyzed dependent variables (ER, FC, and FD) and 
were eliminated from the final sample (97 children).

Search for confounding factors

The Spearman’s rank correlation test was used to investigate 
whether age and IQ significantly influenced ER, FC, and FD. 
The Mann–Whitney U test was used to examine whether 
youths with APSD-CU scores ≥ 6 had significantly differ-
ent ages and IQs from those with APSD-CU scores < 6. The 
Mann–Whitney U test was also used to examine whether 
ADHD influenced ER, FC, and FD. A Chi-square (Pearson) 
test was applied to investigate possible differences in the fre-
quency of ADHD diagnoses and the MAOA-uVNTR alleles 
between youths with APSD-CU scores ≥ 6 and < 6.

Association analysis: To investigate whether the MAOA-
uVNTR alleles predict emotion recognition deficits typi-
cal of children with CU traits, the nominal and interactive 
associations among the MAOA-uVNTR alleles, APSD-CU 
cut-off, and each dependent variable were investigated by 
the Multivariate Analysis of Variance (MANOVA). Partial 
eta squared values were reported, expressing the proportion 
of total variability attributable to each factor (i.e., MAOA-
uVNTR alleles, APSD-CU cut-off, or their interaction). 
The Spearman’s rank correlation test explored collinear-
ity among dependent variables. Deviation from a normal 
distribution was assessed by the Shapiro–Wilk test. The 
presence of heteroskedasticity was assessed using the SPSS 
HeteroskedasticityV3 macro [28]. The equality of covari-
ance matrices of the dependent variables across groups was 
assessed using Box’s test, while Levene’s test assessed the 
equality error variance. Wild bootstrapping inference was 
applied to control for normality deviations and heteroskedas-
ticity based on 5000 wild bootstrap samples with Bias-cor-
rected and accelerated (Nca) and simple resampling method.

The observed power (1-β) of the effect of each factor (i.e., 
MAOA-uVNTR allele, APSD-CU cut-off, or their interac-
tion) was calculated at the appropriate alpha level:

– αlevel  = 0.05/[15 dependent  var iables ( i .e . , 
5ER + 5FC + 5FD) × 2 independent variables (i.e., 

MAOA-uVNTR allele groupings and APSD-CU cut-
off)] = 0.0017 for the nominal influence of the MAOA-
uVNTR alleles or APSD-CU cut-off.

– αlevel  = 0.05/[15 dependent  var iables ( i .e . , 
5ER + 5FC + 5FD) = 0.003 for the nominal influence of 
the MAOA-uVNTR alleles by APSD-CU cut-off interac-
tion.

To correct the post-hoc analysis of the MAOA-uVNTR 
alleles by APSD-CU cut-off interaction, the level of signifi-
cance was set according to the Bonferroni method, consider-
ing the number of simultaneously tested hypotheses to limit 
the type I error:

αlevel  = 0.05/[15 dependent  var iables  ( i .e . , 
5ER + 5FC + 5FD) × 6 MAOA-uVNTR allele groupings by 
APSD-CU cut-off comparisons (i.e., MAOA-Low/APSD-
CU < 6 vs. MAOA-Low/APSD-CU ≥ 6 + MAOA-Low/APSD-
CU < 6 vs. MAOA-High/APSD-CU ≥ 6 + MAOA-Low/
APSD-CU < 6 vs. MAOA-High/APSD-CU < 6 + MAOA-
H i g h / A P S D - C U  <  6  vs .  M AOA - H i g h / A P S D -
CU ≥ 6 + MAOA-High/APSD-CU < 6 vs. MAOA-Low/
APSD-CU ≥ 6 + MAOA-High/APSD-CU ≥ 6 + MAOA-Low/
APSD-CU ≥ 6) = 0.0006. For each comparison, the effect 
size (Cohen’s coefficient, “d”) and the power (1-β) were 
calculated by a post hoc power analysis for a two-group 
independent sample t-test in G*power 3.1.9.2 software [29].

To address whether the MAOA-uVNTR alleles moderated 
the path from emotion recognition deficits to CU traits, we 
performed a moderation analysis using SPSS Process version 
4.2 beta macro (http:// www. afhay es. com/). We computed 
logistic regression analyses into a simple moderation model 
(Model 1), with APSD-CU cut-off as the dependent variable, 
ER, FC, or FD as independent variables, and the MAOA-
uVNTR alleles as the moderators. Cribari-Neto correction 
and bootstrap inference (5000 resamplings) were applied to 
control for deviations from the normal distribution.

Results

Descriptive analyses and search for confounding 
factors

The mean and standard deviation of each variable, divided 
by APSD-CU cut-off or MAOA-uVNTR alleles, are reported 
in Supplementary Table 1, while descriptive data for each 
combination of APSD-CU cut-off and MAOA-uVNTR 
alleles in Supplementary Table 2.

Dependent variables were not significantly influenced by 
age, IQ, and ADHD diagnosis (Supplementary Table 3 and 
4). Age, IQ, and ADHD diagnosis were not significantly 
associated with the APSD-CU cut-off (Supplementary 
Table 5 and 6).

http://www.afhayes.com/
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MAOA‑uVNTR alleles by APSD‑CU cut‑off interactions

The frequency of the MAOA-uVNTR alleles was not sig-
nificantly different between youths with APSD-CU scores 
≥ 6 and < 6 (MAOA-Low-activity alleles and APSD-CU 
scores ≥ 6: N = 13, MAOA-High-activity alleles and APSD-
CU scores ≥ 6: N = 20, MAOA-Low-activity alleles and 
APSD-CU scores < 6: N = 14, MAOA-High-activity alleles 
and APSD-CU scores < 6: N = 50; OR = 2.32, Person’s Chi-
square: 3.33, p = 0.07).

Associations with emotion recognition (ER)

a) APSD-CU cut-off
  APSD-CU cut-off was significantly associated 

with ER_Anger (F1,96 = 14.105, p = 3.03 ×  10−4; 
ηpartial2 = 0.133, 1-β = 0.697; Fig.  1a) and ER_
Sadness scores (F1,96 = 38.961, p = 1.31 ×  10–8; 
ηpartial2 = 0.298, 1-β = 0.998; Fig. 1b). In detail, ER_
Anger and ER_Sadness scores were lower in youths 
with APSD-CU scores ≥ 6 (ER_Anger mean score: 
2.41 ± 1.07; ER_Sadness mean score: 1.34 ± 1.00; 
N = 32) than in those with scores < 6 (ER_Anger mean 
score: 3.06 ± 0.75; ER_Sadness mean score: 2.72 ± 1.06; 
N = 64).

  The association between APSD-CU cut-off and ER_
Happiness scores was significant (p = 2.34 ×  10–3), but 
the statistical power was low (1-β = 0.463) (Table 1). 
ER_Fear and ER_Disgust scores were not significantly 
different between youths with APSD-CU scores ≥ 6 
and < 6 (Table 1).

b) MAOA-uVNTR alleles
  ER scores were not significantly different between 

carriers of the MAOA-Low-activity alleles and carriers 
of the MAOA-High-activity alleles (Table 1).

c) APSD-CU cut-off by MAOA-uVNTR alleles interaction
  The APSD-CU cut-off by MAOA-uVNTR alleles 

interaction did not significantly influence ER scores with 
the only exception of the ER_Happiness (p = 0.026), but 
the statistical power was low (1-β = 0.224) (Table 1).

Associations with fixation counts (FC)

a) APSD-CU cut-off
  APSD-CU cut-off was significantly associated 

with FC_Sadness (F1,95 = 19.277, p = 3.00 ×  10–5; 
ηpartial2 = 0.175, 1-β = 0.870; Fig. 2a) and FC_Fear 
scores (F1,95 = 18.843, p = 3.7 ×  10–5; ηpartial2 = 0.172, 
1-β = 0.860; Fig. 2b).

  In detail, FC_Sadness and FC_Fear scores were 
lower in youths with APSD-CU scores ≥ 6 (FC_Sad-
ness mean score: 38.51 ± 26.03; FC_Fear mean score: 
45.47 ± 24.42; N = 31) than in those with scores < 6 
(FC_Sadness mean score: 57.58 ± 19.18; FC_Fear mean 
score: 60.18 ± 16.84; N = 64).

  The association between APSD-CU cut-off and 
FC_Disgust scores was significant (p = 0.010), but the 
statistical power was low (1-β = 0.111) (Table 1). The 
association between APSD-CU cut-off and FC_Anger 
scores did not survive wild bootstrapping (p = 0.079) 
(Table 1). The association with FC_Happiness scores 
was not statistically significant (Table 1).

b) MAOA-uVNTR alleles
  MAOA-uVNTR alleles significantly influenced 

FC_Fear scores (F1,95 = 18.750, p = 3.8 ×  10− 5; 
ηpartial2 = 0.171, 1-β = 0.857; Fig. 2c). In detail, FC_
Fear scores were lower in carriers of the MAOA-Low-
activity alleles (FC_Fear mean score: 43.32 ± 25.62; 
N = 27) than in carriers of the MAOA-High-activity 
alleles (FC_Fear mean score: 60.17 ± 16.27; N = 68).

Fig. 1  Direct association 
between APSD-CU cut-off and 
Emotion Recognition. Recogni-
tion of facial expressions of a 
anger and b sadness. Data are 
means  ±  1SD
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Table 1  MANOVA results testing the nominal and the interactive association between APSD-CU cut-off and MAOA-uVNTR alleles and Emo-
tion Recognition (ER), Fixation Count (FC), and Fixation Duration (FD).

*p values below the alpha level of significance

APSD-CU cut-off MAOA-uVNTR alleles APSD-CU cut-off by
MAOA-uVNTR alleles inter-
action

F df p F df p F df p

Emotion Recognition (ER) ER_Anger 14.105 1.96 3.03 ×  10–4* 1.797 1.96 0.183 3.403 1.96 0.068
ER_Sandess 38.961 1.96 1.31 ×  10–8* 0.116 1.96 0.734 2.225 1.96 0.139
ER_Fear 0.000 1.96 0.989 0.618 1.96 0.434 2.675 1.96 0.105
ER_Disgust 0.955 1.96 0.331 0.965 1.96 0.965 0.493 1.96 0.484
ER_Happiness 9.797 1.96 2.34 ×  10–3 2.686 1.96 0.105 5.128 1.96 0.026

Fixation Count (FC) FC_Anger 7.219 1.95 0.009 2.407 1.95 0.124 6.105 1.95 0.015
FC_Sandess 19.277 1.95 3.00 ×  10–5* 10.460 1.95 0.002 11.211 1.95 0.001
FC_Fear 18.843 1.95 3.70 ×  10–5* 18.750 1.95 3.80 ×  10–5* 18.751 1.95 3.80 ×  10–5*

FC_Disgust 6.936 1.95 0.010 0.797 1.95 0.374 1.690 1.95 0.197
FC_Happiness 0.047 1.95 0.829 3.889 1.95 0.052 2.403 1.95 0.125

Fixation Duration (FD) FD_Anger 9.387 1 0.004 2.212 1.95 0.140 6.474 1.95 0.013
FD_Sandess 26.801 1 1.00 ×  10–6* 14.778 1.95 2.24 ×  10–4* 11.586 1.95 0.001*
FD_Fear 18.243 1 4.80 ×  10–5* 20.468 1.95 1.80 ×  10–5* 14.347 1.95 2.72 ×  10–4*

FD_Disgust 7.836 1 0.006 0.408 1.95 0.525 1.985 1.95 0.162
FD_Happiness 0.142 1 0.707 4.361 1.95 0.040 2.476 1.95 0.119

Fig. 2  Nominal and interactive 
influence of APSD-CU cut-off 
and MAOA-uVNTR alleles on 
the Fixation Count of facial 
expressions. a Fixation Count 
of facial expressions of sad-
ness in youths with APSD-CU 
scores < 6 and youths with 
APSD-CU scores ≥ 6. Fixation 
Count of facial expressions of 
fear in b youths with APSD-
CU scores < 6 and youths with 
APSD-CU scores ≥ 6, c carriers 
of the MAOA-Low-activity 
alleles and carriers of the 
MAOA-High-activity alleles, 
and d youths with APSD-CU 
scores < 6 or APSD-CU scores 
≥ 6 divided into carriers of the 
MAOA-Low-activity alleles or 
the MAOA-High-activity alleles. 
Data are means  ±  1SD
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  The association between the MAOA-uVNTR alleles 
and FC_Sadness scores was significant (p = 0.001), but 
the statistical power was low (1-β = 0.501) (Table 1). 
The associations with FC_Anger, FC_Disgust, and 
FC_Happiness scores were not statistically significant 
(Table 1).

c) APSD-CU cut-off by MAOA-uVNTR alleles interaction
  The interaction between APSD-CU cut-off and 

MAOA-uVNTR alleles significantly inf luenced 
FC_Fear scores (F1,95  =  18.751, p  =  3.8 ×  10–5; 
ηpartial2 = 0.171, 1-β = 0.896; Fig. 2d).

  The post-hoc analysis showed that FC_Fear scores 
were lower in carriers of the MAOA- Low-activity alleles 
with APSD-CU scores ≥ 6 (25.16 ± 19.58; N = 13) as 
compared to a) carriers of the MAOA-Low-activity 
alleles with APSD-CU scores < 6 (60.18 ± 17.97; N = 14; 
p = 4.05 ×  10–7, pBonferroni-corrected = 3.65 ×  10–5; 
dCohen = 1.5, 1-β = 0.67), b) carriers of the MAOA- 

High-activity alleles with APSD-CU scores ≥ 6 
(60.14 ± 15.45; N = 18; p = 1.15 ×  10–7, pBonferroni-cor-
rected = 1.03 ×  10–5; dCohen = 2.00, 1-β = 0.96), and c) 
carriers of the MAOA-High- activity alleles with APSD-
CU scores < 6 (60.18 ± 16.71; N = 50; p = 7.81 ×  10–9, 
pBonferroni- corrected = 7.11 ×  10–7; dCohen = 1.94, 
1-β = 0.99).

  The associations with FC_Sadness (p = 0.001) and 
FC_Anger scores (p = 0.015) were significant, but the 
statistical power was low (1-β = 0.618 and 0.289, respec-
tively) (Table 1). The associations with FC_Disgust and 
FC_Happiness scores were not statistically significant 
(Table 1).

Associations with fixation duration (FD)

a) APSD-CU cut-off
  APSD-CU cut-off was significantly associated 

with FD_Sadness (F1,95 = 26.801, p = 1 ×  10–6; 
ηpartial2 = 0.228, 1-β = 0.971; Fig. 3a) and FD_Fear 

Fig. 3  Nominal and interactive influence of APSD-CU cut-off and 
MAOA-uVNTR alleles on the Fixation Duration of facial expressions. 
Fixation Duration of facial expressions of sadness in a youths with 
APSD-CU scores < 6 and youths with APSD-CU scores ≥ 6, b car-
riers of the MAOA- Low-activity alleles and carriers of the MAOA-
High-activity alleles, and c youths with APSD-CU scores < 6 or 
APSD-CU scores ≥ 6 divided into carriers of the MAOA-Low-activity 

alleles or the MAOA-High-activity alleles. Fixation Duration of facial 
expressions of fear in d youths with APSD-CU scores < 6 and youths 
with APSD-CU scores ≥ 6, e carriers of the MAOA-Low-activity 
alleles and carriers of the MAOA-High-activity alleles, and f youths 
with APSD-CU scores < 6 or APSD- CU scores ≥ 6 divided into car-
riers of the MAOA-Low-activity alleles or the MAOA-High-activity 
alleles. Data are means  ±  1SD
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scores (F1,95 = 18.243, p = 4.8 ×  10–5; ηpartial2 = 0.167, 
1-β = 0.845; Fig. 3d).

  In detail, FD_Sadness and FD_Fear scores were 
lower in youths with APSD-CU scores ≥ 6 (FD_Sad-
ness mean score: 38.11 ± 26.70; FD_Fear mean score: 
46.28 ± 24.73; N = 31) than in those with scores < 6 
(FD_Sadness mean score: 60.42 ± 24.50; FD_Fear mean 
score: 62.73 ± 18.62; N = 64).

  The association with FD_Anger scores was signifi-
cant (p = 0.004; Table 1) but did not survive wild boot-
strapping (p = 0.051). The association with FD_Disgust 
scores was significant (p = 0.006; Table 1), but the power 
was low (1-β = 0.339). The association with FD_Happi-
ness scores was not statistically significant (Table 1).

b) MAOA-uVNTR alleles
  MAOA-uVNTR alleles significantly influenced 

FD_Sadness (F1,95 = 14.778, p  = 2.24 ×  10-4; 
ηpartial2 = 0.140, 1-β = 0.726; Fig. 3b) and FD_Fear 
scores (F1,95 = 20.468, p = 1.8 ×  10-5; ηpartial2 = 0.184, 
1-β = 0.897; Fig. 3e).

  In detail, FD_Sadness and FD_Fear scores were 
lower in carriers of the MAOA-Low- activity alleles 
(FD_Sadness mean score: 39.24 ± 26.80; FD_Fear mean 
score: 43.50 ± 28.03; N = 27) than in carriers of the 
MAOA-High-activity alleles (FD_Sadness mean score: 
58.65 ± 21.07; FD_Fear mean score: 62.87 ± 16.46; 
N = 68).

  The association with FD_Happiness scores was sig-
nificant (p = 0.04; Table 1), but the statistical power was 
low (1-β = 0.134). The associations with FD_Anger 
and FD_Disgust scores were not statistically significant 
(Table 1).

c) APSD-CU cut-off by MAOA-uVNTR alleles interaction
  The interaction between APSD-CU cut-off and 

MAOA-uVNTR allele significantly influenced FD_Sad-
ness (F1,95 = 11.586, p = 1 ×  10–3; ηpartial2 = 0.113, 
1-β = 0.920; Fig.   3c) and FD_Fear scores 
(F1,95 = 14.347, p = 2.72 ×  10–4; ηpartial2 = 0.136, 
1-β = 0.963; Fig. 3f).

  The post-hoc analysis showed that FD_Sadness 
scores were lower in carriers of the MAOA-Low-activ-
ity alleles with APSD-CU scores ≥ 6 (18.20 ± 14.21; 
N = 13) than a) carriers of the MAOA-Low-activity 
alleles with APSD-CU scores < 6 (58.79 ± 19.89; N = 14; 
p = 9.07 ×  10–7, pBonferroni-corrected = 8.160 ×  10–5; 
dCohen = 2.35, 1-β = 0.99), b) carriers of the MAOA- 
High-activity alleles with APSD-CU scores ≥ 6 
(52.48 ± 24.32; N = 18; p = 9.00 ×  10–6, pBonferroni-cor-
rected = 8.100 ×  10–4; dCohen = 1.72, 1-β = 0.86), and c) 

carriers of the MAOA-High- activity alleles with APSD-
CU scores < 6 (60.87 ± 19.57; N = 50; p = 8.28 ×  10–10, 
pBonferroni- corrected = 7.46 ×  10–8; dCohen = 2.50, 
1-β = 0.99).

  As regards FD_Fear scores, the post-hoc analysis 
showed that it was lower in carriers of the MAOA-
Low-activity alleles with APSD-CU scores ≥ 6 
(25.42 ± 19.13; N = 13) as compared to (a) carriers of 
the MAOA-Low-activity alleles with APSD-CU scores 
< 6 (60.24 ± 24.59; N = 14; p = 3.00 ×  10-6, pBonferroni-
corrected = 2.7 ×  10-4; dCohen = 1.58, 1-β = 0.67), (b) 
carriers of the MAOA-High-activity alleles with APSD-
CU scores ≥ 6 (61.34 ± 15.76; N = 18; p = 5.21 ×  10-7, 
pBonferroni-corrected = 4.69 ×  10−5; dCohen = 2.05, 
1-β = 0.97), and (c) carriers of the MAOA-High-activity 
alleles with APSD-CU scores < 6 (63.43 ± 16.82; N = 50; 
p = 1.82 ×  10-9, pBonferroni-corrected = 1.63 ×  10−7; 
dCohen = 2.11, 1-β = 0.99).

  The association with FD_Anger scores was sig-
nificant (F1,95 = 6.474, p = 0.013; ηpartial2 = 0.066, 
1-β = 0.711), but did not survive the Bonferroni correc-
tion (Table 2). The associations with FD_Disgust and 
FD_Happiness scores were not statistically significant 
(Table 1).

Moderation analyses

The MAOA-uVNTR alleles significantly moderated the 
effect of FC_Fear (likelihood ratio test of highest order 
unconditional interaction: Wald Chi-square = 8.368, df = 1, 
p = 0.0138), FD_Fear (likelihood ratio test of highest order 
unconditional interaction: Wald Chi-square = 4.747, df = 1, 
p = 0.029), and FD_Sadness (likelihood ratio test of highest 
order unconditional interaction: Wald Chi-square = 9.319, 
df = 1, p = 0.0023) scores on the presence of CU traits. In 
detail, FC_Fear, FD_Fear, and FD_Sadness scores predicted 
an APSD-CU score ≥ 6 in the presence of the MAOA-Low-
activity alleles (FC_FE: Z = − 2.8956, p = 0.004, bootstrap 
95% CI − 3.659 to − 0.023; FD_Fear: Z = − 2.694, p = 0.007, 
bootstrap 95% CI − 2.723 to − 0.007;

FD_Sadness: Z = − 2.651, p = 0.008, bootstrap 95% CI 
− 6.528 to − 0.036), but not in the presence of the MAOA-
High-activity alleles (FC_Fear: Z = 0.0096, p = 0.992; FD_
Fear: Z = − 0.464, p = 0.6424; FD_Sadness: Z = − 1.239, 
p = 0.1502).

Discussion

The scientific literature has consistently reported deficits 
in emotion recognition and processing among youths with 
DBD and high CU traits [5, 6, 10, 11, 30], highlighting 
the necessity to better understand these impairments and 
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their underpinnings. The current study first explored the 
influence of CU traits on emotion recognition and process-
ing in a sample of children with DBD diagnosis. Our data 
revealed that children with high CU traits were signifi-
cantly less accurate in recognizing sad and angry facial 
expressions than those with low CU traits. Poorer hap-
piness recognition was also observed, albeit with limited 
statistical power. Our findings corroborate previous results 
demonstrating how children with high CU traits are less 
accurate in recognizing emotions with a negative valence 
[5, 6, 9] but also face challenges in identifying positive 
emotions [8]. Furthermore, we found significantly lower 
fixation count and duration for sad and fearful expressions 
in children with high CU traits. These results indicate a 
strong association between CU traits and reduced attention 
to the eyes of fearful and sad expressions, in line with the 
existing scientific literature [5, 6, 9, 11, 31].

These difficulties might be related to some of the peculiar 
features of children with CU traits, including impairments 
in reward and punishment processing, aggressive behavior 
and poorer concern for others, and low prosociality [32–34]. 
For instance, poorer anger recognition might prevent chil-
dren from properly responding to parenting strategies and 
common disciplinary behaviors used to correct aggressive 
behavior. As suggested by Dadds and Salmon [35], punish-
ment insensitivity tends to gradually disrupt parenting strate-
gies, leading to an escalation from mild to ineffective severe 
punishments, which contribute to higher rates of aggres-
sive and antisocial behavior. Instead, difficulties in properly 
processing and recognizing sad and/or fearful expressions 
could contribute to the tendency of children with CU traits 
not to care for others nor act prosocially. Indeed, if one can-
not decode and read other people’s emotional signals, they 

will not be able to empathetically respond to others’ needs 
[36–38].

The current study also investigated the potential role 
of the MAOA-uVNTR alleles in emotion recognition and 
processing (i.e., gaze pattern) deficits and further explored 
whether the MAOA-uVNTR alleles moderated the relation-
ship between emotion recognition, gaze pattern, and CU 
traits in the same clinical sample of children with DBD.

Results showed that children carrying the MAOA-Low-
activity alleles displayed lower attention to the eyes of sad 
and fearful faces than carriers of the MAOA-High-activity 
alleles. Specifically, the large effect sizes explained about 
14% of the variance in fixation duration to sad expressions 
and 17% in both fixation count and duration to fearful ones.

The interaction between high APSD-CU scores and 
MAOA-Low-activity alleles accounted for additional 11%, 
17%, and 14% increases in the explained variance of fixation 
duration to sad expressions, and fixation count and duration 
to fearful faces, respectively. These data were corroborated 
by moderation analyses, which revealed that CU traits were 
associated with lower attention to the eyes of sad and fearful 
expressions, probably due to the MAOA-Low-activity alleles.

Our study suggests that the MAOA-Low-activity alleles 
are especially associated with lower attention to the eyes of 
fearful expressions, and this evidence is further supported 
by the results of the interaction and moderation analyses. 
Based on the Violent Inhibition Mechanism (VIM) Model 
[39], individuals are equipped with a cognitive process for 
the control of conspecific aggression activated by distress 
signals (i.e., fearful and sad expressions) [39, 40]. Once 
aroused, the VIM leads to behavioral schemes that stop the 
perpetrators from attacking; this mechanism is thought to 
foster the development of moral emotions and, at the same 

Table 2  Post-hoc results (p values) testing the interaction between APSD-CU cut-off and MAOA-uVNTR alleles on Emotion Recognition (ER), 
Fixation Count (FC), and Fixation Duration (FD)

*p values below the alpha level of significance

MAOA-Low-activity 
alleles APSD-CU < 6

MAOA-High-activity 
alleles APSD-CU ≥ 6

MAOA-Low-activity 
alleles APSD-CU 
≥ 6

MAOA-High-activity alleles APSD-CU < 6 FC_Fear 0.778 0.754 7.81 ×  10–9*
FD_Anger 0.410 0.656 0.001
FD_Sandess 0.731 0.130 8.28 ×  10–10*
FD_Fear 0.566 0.678 1.82 ×  10–9*

MAOA-Low-activity alleles APSD-CU < 6 FC_Fear 0.994 4.05 ×  10–7*
FD_Anger 0.298 0.001
FD_Sandess 0.379 9.07 ×  10–7*
FD_Fear 0.867 3.00 ×  10–6*

MAOA-High-activity alleles APSD-CU ≥ 6 FC_Fear 1.15 ×  10–7*
FD_Anger 0.010
FD_Sadness 9.00 ×  10–6*
FD_Fear 5.21 ×  10–7*
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time, inhibit aggressive and violent behavior, representing 
an important precursor of moral development. Biological 
factors, like the MAOA-Low-activity variants, might hin-
der children’s ability to pay attention to relevant emotional 
cues (e.g., fearful and sad eyes), ultimately preventing the 
VIM from being activated. If children cannot properly pro-
cess others’ distress cues, the VIM will not unfold, and they 
will likely not retreat from the action that is causing harm 
to others. More importantly, early impairments in emotion 
processing might compromise the child’s moral develop-
ment and lead to aggressive behavior, lack of empathy and 
remorse, poor prosociality, and a reduced interest in others’ 
feelings and well-being, which are frequently observed in 
children with CU traits.

Consistently with this hypothesis, growing findings point 
to a possible role of the MAOA alleles in emotion processing 
and recognition. MAOA is a key enzyme for the catabolism 
of monoaminergic neurotransmitters, including serotonin, 
noradrenaline, and dopamine. The MAOA-Low-activity 
alleles decrease the MAOA expression by 30%, thus increas-
ing neurotransmitter concentration in the synaptic cleft [16, 
17].

Pharmacological treatment with d,l-fenfluramine, which 
primarily increases the serotonin and, to a lesser extent, the 
dopamine release, reduces the ability to experience both 
positive and negative emotions in humans [41]. Additionally, 
electrophysiological studies demonstrated that the increasing 
of serotonin by the serotonin reuptake inhibitor citalopram 
alters the cortical processing of emotionally relevant stim-
uli, resulting in a response suppression to unpleasant visual 
images [42] and in reduced amygdala activation to fearful 
facial expressions [43]. In addition, the pharmacological 
enhancement of serotonergic and noradrenergic neurotrans-
mission globally decreases brain activation in response to 
unpleasant images [44]. Concerning dopamine, evidence 
exists of its involvement in fear processing [45], though 
defining its role is complex. The inhibition of dopamine 
receptors with haloperidol, for example, has been shown to 
enhance the ability to recognize emotions in individuals with 
low basal dopamine levels and to reduce it in subjects with 
high basal dopamine levels [46].

Carriers of the MAOA-Low-activity alleles exhibit abnor-
malities in the connectivity between the cortex and amyg-
dala [15]. Moreover, increased surface areas of the right 
basolateral nucleus of the amygdala and the right anterior 
cortical amygdaloid nucleus have been observed in antiso-
cial individuals carrying these alleles [47]. Of note, these 
structural changes were also associated with high psycho-
pathic traits [47]. The amygdala, together with the pulvinar 
and the insula, plays a significant role in the face recogni-
tion network and is specifically involved in processing facial 
emotion expressions [48, 49], particularly emphasizing fear 
[8].

We hypothesize that the higher brain extracellular mono-
amine concentration due to the MAOA-Low-activity alleles 
might reduce the capability of recognizing sad and fear-
ful facial expressions by inducing structural changes in 
the amygdala and functional alterations in both the amyg-
dala and cortex that may impact their connectivity. These 
changes might precede and underlie the development of CU 
traits, representing a risk for greater aggressive and violent 
behavior, poor empathetic concern, and low prosociality. 
Future longitudinal studies are warranted to corroborate 
this hypothesis.

Conclusions

The results of the current study need to be interpreted con-
sidering some limitations, including the relatively small 
sample size and the cross-sectional design. Additionally, 
sample individual ancestry data, useful to accurately inter-
pret genetic risk [50], were self-reported and not estimated 
through genome sequencing. Moreover, relevant contex-
tual variables, which might also influence the link between 
emotion recognition impairments and CU traits [51], were 
unavailable. The growth environment, in interaction with 
genetics, is known to exert a relevant role in modulating 
behavior [52–54].

Finally, we employed a candidate gene approach—more 
prone to false positive results and less informative than 
genome-wide studies (GWAS) [55, 56]. However, solid 
evidence from scientific literature sustained the validity of 
the MAOA-uVNTR as a candidate gene variant able to affect 
emotional deficits [21, 22]. Moreover, the obtained p-values, 
corrected by the Bonferroni method, were as small as close 
to the threshold generally applied for genome-wide studies 
[57].

Despite its limitations, the current study may have rel-
evant clinical implications. DBD is an umbrella concept 
encompassing a wide range of manifestations, and litera-
ture has pointed out the limits of the traditional disorder-
centered and symptom-based classifications of mental disor-
ders in unraveling the heterogeneity of DBDs and providing 
insights into the prevention and treatment of such disorders 
[48]. This calls for novel frameworks to study them, like the 
Research Domain Criteria (RDoC) initiative to investigate 
mental disorders in the context of the major domains of basic 
neurobehavioral functioning rather than within established 
diagnostic categories (https:// www. nimh. nih. gov/ resea rch/ 
resea rch- funded- by- nimh/ rdoc/ about- rdoc) [58].

We explored the association between CU traits and 
impaired emotion recognition and processing, which rep-
resents a mechanism highly related to social processing 
according to the RDoC. Our results provided further evi-
dence of severe impairment of this ability in children with 

https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc
https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/about-rdoc
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DBDs and CU traits. Moreover, going beyond the exist-
ing literature, our findings, although preliminary and to be 
replicated, showed that the MAOA-Low-activity alleles are 
involved in the emotion recognition deficits associated with 
CU traits, suggesting them as potential genetic biomarkers 
useful to identify youths with DBDs at greater risk for such 
impairment. Children and adolescents with CU traits are 
typically, less responsive to traditional treatments. However, 
scientific evidence suggests that these children may benefit 
from interventions focused on emotion processing [59, 60], 
as supported by the recent development of interventions 
addressing the emotion processing deficits and the impaired 
sensitivity for emotional distress associated with CU traits 
[61, 62]. Our findings might help identify children who are 
more in need of training focused on emotion processing.
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