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Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children, usually categorized 
as three subtypes, predominant inattention (ADHD-I), predominant hyperactivity-impulsivity (ADHD-HI), and a combined 
subtype (ADHD-C). Yet, common and unique abnormalities of electroencephalogram (EEG) across different subtypes remain 
poorly understood. Here, we leveraged microstate characteristics and power features to investigate temporal and frequency 
abnormalities in ADHD and its subtypes using high-density EEG on 161 participants (54 ADHD-Is and 53 ADHD-Cs and 
54 healthy controls). Four EEG microstates were identified. The coverage of salience network (state C) were decreased 
in ADHD compared to HC (p = 1.46e-3), while the duration and contribution of frontal–parietal network (state D) were 
increased (p = 1.57e-3; p = 1.26e-4). Frequency power analysis also indicated that higher delta power in the fronto-central 
area (p = 6.75e-4) and higher power of theta/beta ratio in the bilateral fronto-temporal area (p = 3.05e-3) were observed in 
ADHD. By contrast, remarkable subtype differences were found primarily on the visual network (state B), of which ADHD-C 
have higher occurrence and coverage than ADHD-I (p = 9.35e-5; p = 1.51e-8), suggesting that children with ADHD-C might 
exhibit impulsivity of opening their eyes in an eye-closed experiment, leading to hyper-activated visual network. Moreover, 
the top discriminative features selected from support vector machine model with recursive feature elimination (SVM-RFE) 
well replicated the above results, which achieved an accuracy of 72.7% and 73.8% separately in classifying ADHD and two 
subtypes. To conclude, this study highlights EEG microstate dynamics and frequency features may serve as sensitive meas-
urements to detect the subtle differences in ADHD and its subtypes, providing a new window for better diagnosis of ADHD.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD), charac-
terized by age-inappropriate inattention, hyperactivity and 
impulsivity, is a common neurodevelopmental disorder in 
children with an estimated prevalence about 5–6% [1]. It 
leaves a negative impact on children’s academic perfor-
mance and social functions. According to the clinical man-
ifestations, ADHD can be characterized by predominantly 
inattention (ADHD-I), predominant hyperactivity-impul-
sivity (ADHD-HI), and a combination of both (ADHD-C) 
in DSM-IV. Although subtypes reflect only the current 
symptom profile and are described as “presentations” in 
the DSM-5, differences in symptoms, function and brain 
function across dimensions suggest that commonalities 
and differences between subtypes are potentially valuable 
in understanding the pathogenesis of ADHD [2, 3].

Electroencephalogram (EEG) is readily accessible 
and inexpensive, which measures scalp electrical activity 
with millisecond temporal resolution produced by neu-
ronal ensembles of the cerebral cortex [4]. It measures 
cortical electrical activity with high temporal resolution, 
while its poor spatial resolution precludes precise ana-
tomical identification of underlying neural sources. The 
development of high-density EEG technology in recent 
years has, therefore, improved the spatial localization and 
resolution of EEG signals [5, 6], namely the 128 channels 
EEG acquisition system used in the current study. The 
temporally synchronized neural activity measured by EEG 
present reliable associations between frequency-specific 
oscillations and various cognitive functions, as well as 
their implication in various mental disorders [7, 8]. Rest-
ing-state EEG signals can be decomposed into waves that 
oscillate at different frequencies. Each sub-band occupies 
a specific portion of the spectrum and has its own charac-
teristics [9]. The power in a particular frequency band can 
be expressed in absolute or relative terms through the Fast 
Fourier Transform (FFT) [10], which may quantify infor-
mation about rhythms of the brain and provide possible 
neural marker for ADHD [11]. As mentioned in previous 
studies, the most discussed EEG feature is increased theta/
beta ratio (TBR) [12], which is characterized as ratio of 
elevated power of slow waves (theta band) and decreased 
power of fast wave (beta wave). Compared to healthy 
controls (HC), ADHD-C subtype was characterized with 
markedly increased TBR with a widespread decrease in 
beta power, while ADHD-I subtype presented increased 
TBR with a global increase in theta power [13]. However, 
more recent studies have failed to replicate TBR differ-
ences in ADHD versus non-ADHD [14]. Thus, research-
ers still struggle to identify stable and sensitive frequency 
biomarkers for ADHD and its subtypes as well.

In parallel, microstates are global patterns of scalp 
potential topographies that remain quasi-stable for around 
60–120 ms before changing to another quasi-stable map, 
which is considered to be the cornerstones of the mental 
states shown in EEG data [15, 16]. Studies showed that 
microstate analysis can help reveal the importance of the 
modularity of brain dynamics and their function in behav-
ioral control and brain disease [17, 18]. Koening et al. pre-
sented four normative microstate maps for resting-state 
EEG data with a database of 496 subjects between the age 
of 6 and 80 years [16], which are highly reproducible and 
widely used in various pioneering work [19, 20]. Britz et al. 
extended to explore the relationship between the rapidly 
fluctuating EEG-defined microstates and the slowly oscil-
lating fMRI-defined resting states, which indicated that the 
typical four EEG topographies were spatially correlated with 
four of the resting-state networks (RSN) located in bilat-
eral superior and middle temporal gyri (RSN1), bilateral 
inferior occipital (RSN2), salience network (RSN3), and 
frontal-parietal network (RSN4) by general linear model 
(GLM) and independent component analysis (ICA) decom-
position[21]. Moreover, it has been widely used to evaluate 
temporal abnormalities in schizophrenia [20, 22]. However, 
few studies have used microstates to investigate the abnor-
mal temporal dynamics in children with ADHD and their 
subtypes. One example is from Cevallos et al. [23], which 
emphasized the ADHD-HC differences using the global 
field power (GFP), while more work on ADHD subtypes 
discrimination is still to be carried out.

In this study, we leverage microstate characteristics and 
power features to investigate temporal and frequency abnor-
malities in ADHD and its subtypes using high-density EEG. 
To achieve these goals, we first calculated four microstate 
features on ADHD and subtypes, following with group dif-
ferences comparison for each microstate parameter through a 
variety of statistical methods. Then independent component 
analysis (ICA) was conducted on the absolute power of each 
frequency band to extract coherent electroencephalogram 
variations within several-related channels across subjects, 
which were further compared between groups. Finally, a 
support vector machines model with recursive feature elim-
ination (SVM-RFE) algorithm was adopted to investigate 
temporal and frequency features with high discriminative 
power.

Materials and methods

Participants

A total of 161 participants, 8–15 years of age, were recruited 
in the study (123 males, 38 females). The children with 
ADHD (n = 107) were enrolled from the Peking University 
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Sixth Hospital in Beijing. 54 HCs matched for sex and 
age were recruited from communities in Beijing. Writ-
ten informed consent was obtained from all the children 
and their parents. The study was approved by the Ethics 
Committee of Peking University Sixth Hospital/Institute of 
Mental Health. All subjects were interviewed and underwent 
diagnosis to ADHD using DSM-IV criterion by a qualified 
psychiatrist. The Kiddie Schedule for Affective Disorders 
and Schizophrenia for School-Age Children (K-SADS) was 
used to confirm the diagnosis and subtypes in the ADHD 
group. Considering the little sample size of hyperactivity 
subtype, only inattentive subtype (ADHD-I, n = 54) and 
combined subtype (ADHD-C, n = 53) were included in the 
present study. All subjects were first diagnosed patients 
in the clinics and did not receive stable intervention and 
treatment at present. All the participants met the follow-
ing criteria: (a) no history of head trauma with a loss of 
consciousness, neurological illness or other severe dis-
ease, and (b) no current diagnosis of schizophrenia, severe 
emotional disorder, or pervasive developmental disorders 
and (c) a full-scale IQ above 80. Moreover, as shown in 
Table 1, no significant group differences were observed in 
terms of gender ( X2(1) = 0.73, p = 0.39) and age (t =  − 1.36, 
p = 0.18) between ADHD and HC. Only marginal group dif-
ference was observed in hand ( X2(1) = 4.17, p = 0.04). The 
ADHD-C subtype also matched well with ADHD-I subtype 
in gender ( X2(1) = 0.34, p = 0.56), age (t = -0.05, p = 0.96), 
and hand ( X2(1) = 0.04, p = 0.98). The severity of symptoms 
was assessed by ADHD Rating Scale IV, which consists of 
18 items matched from the DSM-IV creation, and includes 
dimensions of inattention score, hyperactivity/impulsivity 
score and total score [24].

Data acquisition and preprocessing

Participants were instructed to sit in a dim lit room and keep 
their eyes closed for around 6 min. EEG data were obtained 

from EGI-128 channels (HydroCel Geodesic Sensor Net, 
Electrical Geodesics, Inc., Eugene, OR) with Net Station 
EEG Software. The impedance of all electrodes was kept 
below 50 kΩ during the data acquisition. All electrodes were 
physically referenced to Cz (fixed by the EEG acquisition 
system). The EEG recordings were amplified with a band-
pass filter of 0.01–400 Hz (half-power cutoff) and digitized 
online at 1000 Hz.

Offline EEG processing was conducted using EEGLAB 
toolbox (https:// sccn. ucsd. edu/ eeglab/ index. php) [25]. 
Thirty-eight lateral electrodes were excluded because of 
their susceptibility to movement interference, leaving 91 
electrodes in the following analysis (see Figure S1). The 
resampling frequency was 250 Hz, and the bandpass filter 
band was 1–45 Hz. The signals were then re-referenced to 
the average reference. Electrodes containing excessive arti-
facts were manually checked and interpolated. The time 
series were subsequently inspected and curated prior to 
an independent component analysis (ICA) decomposition. 
ICA components associated with vertical and horizontal 
eye movements were visually identified and removed. The 
trimmed data were segmented into contiguous 2-s windows 
and any segments with voltages exceeding ± 100 µV were 
rejected, free of artifacts data were concatenated and the first 
2 min were extracted for following analysis.

Computing microstates features

The microstate analysis was performed using a Matlab 
plugin for the EEGLAB toolbox (http:// www. thoma skoen ig. 
ch/ index. php/ softw are/ micro states- in- eeglab/). The current 
analysis was carried on Matlab R2018b [26]. Global field 
power (GFP) of the preprocessed resting-state EEG data was 
first determined at each time point for each subject. GFP is 
a measure of neuronal activity throughout the brain, which 
is calculated as the root of the mean of the squared potential 

Table 1  Demographic characteristics of the subjects in the present study

* Represents gender information for two patients was missing
# Indicates one healthy control was mix hand
† Represents only 14 HCs were recorded ADHD Rating Scale IV scores

Demographics HC ADHD p ADHD-C ADHD-I p

Number 54 107 53 54
Gender M/F 40/14 84/21* 0.39 42/9* 42/12 0.56
Age (y) Mean ± SD 11.6 ± 1.81 12.0 ± 1.71 0.18 11.6 ± 1.57 11.6 ± 2.02 0.96
Hand L/R 0/53# 8/99 0.04 49/4 50/4 0.98
Inattention score Mean ± SD 15.14 ± 3.70† 27.37 ± 3.06  < 0.001 27.58 ± 3.12 27.16 ± 2.99 0.49
Hyperactivity/impul-

sivity score
Mean ± SD 11.79 ± 2.48† 21.02 ± 6.46  < 0.001 24.60 ± 5.70 17.52 ± 5.10  < 0.001

Total score Mean ± SD 26.93 ± 5.03† 48.40 ± 7.72  < 0.001 52.18 ± 7.02 44.69 ± 6.48  < 0.001

https://sccn.ucsd.edu/eeglab/index.php
http://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab/
http://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab/
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differences at all electrodes from the mean of instantaneous 
potentials across electrodes as defined below:

where i is the electrode, n represents the number of elec-
trodes, V  represents measured voltage, t is the time point.

Since scalp topographies remain quasi-stable around 
GFP peaks and present the highest signal-to-noise ratio, 
only EEG maps at the peaks were used for the subsequent 
clustering analysis. The selected GFP data were submitted 
to k-means clustering to identify the most dominant topogra-
phies as classes of microstates [20]. To further compare and 
interpret our results with previous studies, we also selected 
the most used four cluster numbers. The final maps were 
then quantified using global explained variance (GEV), 
which measures how well the spatial maps could explain 
the variance of the whole data. To reduce the influence of 
randomly selected initial template maps, we repeated the 
clustering procedure for hundreds of times and selected 
the microstates with the highest GEV [27]. The clustering 
analysis was first conducted at the individual level and then 
across subjects in each group. For cross-group comparison, 
we subsequently computed mean microstate topographies 
cross different groups and reoriented the group-mean maps 
as A–D according to their similarities to Koening et al.’s 
four-states normative microstate [28]. Each group-level 
map was then reoriented according to these group-mean 
topographies. The group-level spatial maps were further 
used as a reference map to back reconstruct information for 
each subject, where topographies at each time point were 
spatially correlated with each group-level map and labeled 
based on the most correlated map. Four microstate param-
eters for each subject were calculated: mean duration, time 
coverage, occurrence and transition probabilities [29]. The 
mean duration (in ms) is the average length of time a given 
microstate remains stable whenever it appears (yielding four 
features). The frequency of occurrence of each microstate 
is the average number of times per second that the micro-
state becomes dominant during the recording period (yield-
ing four features). The coverage (in %) is the percentage of 
total recording time that the microstate is dominant (yield-
ing four features). The transition probability quantifies the 
transformation from one state to another state (yielding 12 
features). Altogether, a total of 24 features were achieved for 
subsequent analysis.

Two‑level statistical analysis on microstate features

To investigate whether the computed microstate param-
eters reflect variations between ADHD and HC, as well 
as different subtypes, we separated the analysis into two 

(1)GFP(t) =

�

∑n

i=1

�

V
i
(t) − Vmean(t)

�2

n
,

stages. At the first stage, we conducted group-level clus-
tering analysis across all ADHDs and HCs, followed by 
calculating microstates parameters for each group. A two-
way ANOVA with group and microstates as factors was 
then performed for each of the four computed microstate 
parameters to identify the significant microstate features, 
followed by two-sample t tests between patients and con-
trols for each significant microstate feature. At the second 
stage, group-level clustering was conducted separately for 
ADHD-C and ADHD-I. We adopted the new topographies 
for back fitting and computed microstates parameters for 
each subtype participant. Then, we compared the group 
difference between ADHD-C and ADHD-I for each of 
the computed microstate parameters using ANOVA and 
two-sample t tests. Note that pairwise group comparison 
for all microstate parameters in each stage were corrected 
for multiple comparisons with Bonferroni correction with 
p < 0.05/24 comparisons.

Independent component analysis on different 
frequency bands

The aim of this part was to objectively assess and com-
pare the absolute EEG power between different groups. 
Spectral analysis of absolute power using FFT was car-
ried out for the six frequency bands: delta (1–4 Hz), theta 
(4–8 Hz), low alpha (8–10 Hz), high alpha (10–12 Hz), 
beta (12–30 Hz), gamma (30–45 Hz), as well as TBR cal-
culated by the ratio between theta and beta absolute power. 
The mean power of each frequency band in all channels of 
all ADHDs and HCs was organized into a Nsubj × Nchannel 
matrix (161 × 91) for each frequency band, obtaining seven 
power matrices. The formed power matrices were analyzed 
using ICA, which extracts maximally independent com-
ponents (ICs) through maximization of entropy which 
measures uncertainty association with a random variable. 
Each component reflects coherent electroencephalogram 
variations within several-related channels across groups 
[30]. The approach reduces multiple comparisons required 
in channel-wise analyses and also dissects the brain into 
functionally independent networks [31]. The decomposed 
components were further tested for group differences 
between HCs and ADHDs using two-sample t tests, and 
the corresponding spatial components were converted to 
Z scores to select top contribution channels. As for com-
parison between two subtypes, seven power matrices were 
also similarly constructed on ADHD-C and ADHD-I, fol-
lowed by ICA decomposition and group difference com-
parison. The ICA code is available for public use through 
the EEGIFT Toolbox (https:// trend scent er. org/ softw are/ 
eegift) [32].

https://trendscenter.org/software/eegift)
https://trendscenter.org/software/eegift)
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Classification

To provide further evidence for the effectiveness of the 
above significant features, we adopted a SVM with recursive 
feature elimination (SVM-RFE) algorithm [33] embedded in 
a balanced fivefold cross-validation framework. The SVM-
RFE is able to determine a rank of N input features based on 
their importance in classification. One or more features hav-
ing the smallest contribution are eliminated and the kernel 
matrix is updated using the remaining features. The process 
is repeated until a predetermined number of features remain 
[34]. In this study, we included all the microstate features 
and power features as original input features. We would like 
to compare whether the features identified from the above 
group differences also present significant discriminative 
power in classification (Fig. 1).

Results

Microstates between ADHD and HC

The four microstates for patients and controls are presented 
in Fig. 2. In both groups, the microstate maps consistently 
resembled those that were identified in previous literature 
[16]: state A and state B with diagonal axis orientations of 
the topographic map filed, state C with anterior–posterior 
orientation and state D with a front-central location. The 
four microstates across participants explained 80.67% and 
80.89% of the global variance in the patients and controls, 
respectively. The subsequent Kruskal–Wallis test showed no 
significant group differences between ADHDs and HCs for 
each topography map (p(A) = 0.99, p(B) = 0.98, p(C) = 0.93, 
p(D) = 0.99).

Fig. 1  Flowchart of the study design
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Based on the identified microstates, we computed 
four parameters for each subject: mean duration, time 
coverage, frequency of occurrence and transition prob-
abilities. Two-way ANOVA analysis showed significant 
microstate × group interaction effects for mean duration 
(F = 8.54, p = 1.56e-5), time of coverage (F = 13.86, 
p = 1.10e-8), occurrence (F = 11.78, p < 1.00e-12), and 
transition probabilities (F = 12.07, p < 1.00e-12). Post hoc 
pairwise group comparisons (Fig. 2, Table S1) revealed 
that the contribution of state A (p = 3.39e-5) and state C 
(p = 1.46e-3) were markedly decreased in ADHD, while 
the contribution of state B (p = 2.07e-4) and state D 
(p = 1.26e-4) were significantly increased in ADHD com-
pared to HC. These results are in keeping with the triple-
network model of pathophysiology associated with ADHD 
[35], including aberrant salience-processing (state C) and 
frontoparietal network (state D). Moreover, the transi-
tion probability between state A and state C (p = 9.85e-
7; p = 2.33e-7) was significantly decreased in patients, 
whereas increased between state B and D (p = 1.02e-7; 
p = 1.07e-6) in patients with ADHD compared to HC.

Microstates patterns for ADHD‑C and ADHD‑I

The four microstates for ADHD-C and ADHD-I are shown 
in Fig. 3. In both sub-groups, the four microstate maps 
markedly resembled those previously identified [16]. The 
four microstates across participants explained 80.06% and 
80.31% of the global variance for ADHD-C and ADHD-I. 
The subsequent Kruskal–Wallis test showed non-significant 
group difference between two subtypes for each topography 
maps (p(A) = 0.99, p(B) = 0.95, p(C) = 0.95, p(D) = 0.99). 
Two-way ANOVA analysis based on the calculated four 
microstate parameters demonstrated significant micro-
state × group interaction effects for mean duration (F = 4.24, 
p = 5.90e-3), time of coverage (F = 8.77, p = 1.32e-5), occur-
rence (F = 6.47, p = 3.02e-4), and transition probabilities 
(F = 8.20, p < 1.00e-12). Not surprisingly, we found no sig-
nificant differences in the general properties of microstates 
C and D between subtypes (Fig. 3, Table S2), as the com-
mon inattention characteristic featured by salience and fron-
toparietal network disruption was shared between the two 
subtypes. Instead, the occurrence and coverage of state B 

Fig. 2  Topographic maps and statistical analysis from microstate fea-
tures on ADHD and HC. A The four microstate maps consistently 
resembled those that were identified in the previous literature; B–E) 
post hoc pairwise group comparisons on four microstate features: 

mean duration (B), time coverage (C), occurrence (D), and transi-
tion probabilities (E). *Indicates 1.00e-5 < p < 2.08e-3. **Represents 
1.00e-10 < p < 1.00e-5
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(associated with visual network) were increased in ADHD-
C, while the duration and contribution of state A (associated 
with temporal network) were decreased in ADHD-C com-
pared to ADHD-I. Furthermore, the transition probability 
between state A and state C (p = 9.25e-8; p = 1.78e-8) was 
decreased in ADHD-C, whereas increased from state B to 
state D (p = 9.86e-9; p = 2.54e-7) in patients with ADHD-C 
compared to ADHD-I.

Frequency power analysis between different groups

Each prepared power matrix was decomposed into 5, 6, 7, 
8, 9, 10 components using ICA. Group difference between 
ADHD and HC were then assessed through two-sample t 
tests for each component. The components were selected 
if they passed Bonferroni correction with 0.05/compo-
nent numbers and exhibited high activations within the 
channels. The corresponding spatial maps of the selected 
components were converted to Z scores to select the top 
contributing channels with |Z|> 2.As shown in Fig. 4A, one 
delta component (p = 6.75e-4, passed Bonferroni correction 
with 0.05/9) and one TBR component (p = 3.05e-3, passed 

Bonferroni correction with 0.05/8) showed significant group 
differences between ADHD and HC. Since spatial map has 
been adjusted as HC > ADHD, ADHD-C > ADHD-I on the 
mean of loading parameters, then the red region indicates 
higher contribution in HC than ADHD, as well as higher 
contribution in ADHD-C than ADHD-I. Higher power in 
ADHD compared to HC was observed in the delta compo-
nent spanning in the fronto-central area and the TBR com-
ponent located in the bilateral fronto-temporal area. We did 
not reveal any significant group differences in other power 
matrices.

When comparing group differences between ADHD-
C and ADHD-I, we found that only one gamma power in 
the posterior occipital region was significantly increased 
(p = 7.65e-3, passed Bonferroni correction with 0.05/6) 
in ADHD-C compared ADHD-I (Fig. 4B). No significant 
group differences were observed in other frequency bands.

Classification

We fed all the microstate features, delta and TBR power 
components into the SVM-RFE model for ADHD and HC 

Fig. 3  Topographic maps and statistic analysis from microstates fea-
tures on ADHD-C and ADHD-I. A The four microstate maps con-
sistently resembled those that were identified in the previous litera-
ture; B-E) post hoc pairwise group comparisons on four microstate 

features: mean duration (B), time coverage (C), occurrence, (D) and 
transition probabilities (E). *Indicates 1.00e-5 < p < 2.08e-3. **Rep-
resents 1.00e-10 < p < 1.00e-5
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classification. Figure 5 indicates the sum of times of dis-
criminative features selected in all the fivefold cross-vali-
dation test. The best accuracy, sensitivity and specificity for 
discriminating ADHD from HC were 72.7%, 66.7%, and 
75.7%, respectively. The most frequently selected feature 

was transition probability from state C to state D, followed 
by the contribution of state D and the transition probability 
between sate A and state D (Fig. 5A). However, little power 
features were selected in the top discriminative feature 
lists. When discriminating two subtypes, all the microstate 

Fig. 4  ICA analysis on power of different frequency bands between 
ADHD and HC (A) and subtypes (B). The upper panel represents the 
spatial map. The red region indicates higher contribution in HC than 
ADHD, as well as higher contribution in ADHD-C than ADHD-I. 

The lower panel represents the group difference of loading parameter 
of the selected component. The red and blue color separately repre-
sents HC and ADHD, as well as ADHD-C and ADHD-I

Fig. 5  Comparison between the 
selected features of SVM-RFE 
classification on ADHD vs 
HC (A) and two subtypes (B). 
A Indicates the ranking of all 
features when discriminating 
ADHD from HC. B Indicates 
the ranking of all features on the 
classification of ADHD-C and 
ADHD-I
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features and gamma power components were used as the 
input features. The best accuracy, sensitivity and specific-
ity for discriminating two subtypes were 73.8%, 74.1%, 
and 73.6%, respectively. As shown in Fig. 5B, the most fre-
quently selected feature was the transition probability from 
state D to state B, followed by the transition probability from 
state A to state C, state A to state D, state B to state D and 
state C to state D. Compared to microstate features, IC3 
of gamma power which activated in the posterior occipital 
region was selected in three out of five tests.

Discussion

In this work, we adopted temporal microstate dynamics and 
spectral power features to analyze group differences between 
ADHD and HC, as well as ADHD subtypes. Results demon-
strated that (1) both subtypes showed shared aberrant pat-
terns on dynamics of salience (state C) and frontal-parietal 
network (state D), as well as higher delta power in the fronto-
central area and higher TBR power in the fronto-temporal 
area for ADHD compared to HC. (2) Remarkable subtype 
microstate differences were found primarily in the visual 
network (state B) between ADHD-I and ADHD-C as well as 
higher gamma signals over the posterior occipital region in 
ADHD-C compared to ADHD-I. (3) The top discriminative 
features selected from SVM-RFE model well replicated the 
results identified from group differences, which achieved 
an accuracy of 72.7% and 73.8% separately in classifying 
ADHD patients and two subtypes.

Shared patterns in ADHD‑C and ADHD‑I

Compared to HC, we showed that the occurrence and 
coverage of state C were decreased in ADHD (p = 0.002; 
p = 0.0015), while the duration and contribution of state 
D were observably increased (p = 0.0016; p = 0.0001) 
compared to HC. These two states were also highlighted 
in the subsequent selected features of SVM-RFE model. 
On the one hand, microstate state C has been attributed to 
the salience network [21], comprising anterior insular and 
anterior cingulate cortex, which has a central role in the 
detection of behaviorally relevant stimuli and the coordina-
tion of neural resources [36]. There is a wealth of neuro-
imaging evidence for ADHD-related abnormalities in the 
structure and function of this network [37]. For example, a 
meta-analytic comparison showed that patients with ADHD 
presented decreased GM volume in salience network [38]. 
Moreover, a previous study using resting-state functional 
magnetic resonance imaging scans of 19 drug-naïve boy 
with ADHD and 23 controls indicated that children with 
ADHD presented a decreased anti-correlation between 
the dorsal anterior cingulate cortex and the default mode 

network [39]. During a Go/NoGo fMRI task, the evoked 
dorsal anterior cingulate cortex-ventrolateral prefrontal cor-
tex in the salience network was positively correlated with 
NoGo accuracy, and negatively correlated with severity of 
inattention symptoms [40]. The decreased activation on 
salience network would help us understand the inattention 
symptoms in ADHD patients, which prevented the children 
from encoding the stimuli effectively and leading to general 
performance deficits [41]. Another study further suggested 
that the brain-computer-interface (BCI)-based attention 
training facilitated attention improvement in children with 
ADHD primarily through renormalizing salience network 
processing [42]. On the other hand, class D is correlated 
with frontal and parietal cortex function (frontoparietal net-
work), also known as the executive control circuit, which 
is involved in sustained attention, inhibition, work memory 
and goal-directed decision making [43]. The dysregulation 
of frontoparietal network (FPN) systems has been increas-
ingly reported in ADHD. Cai et al. revealed that the con-
nectivity between right dorsolateral prefrontal cortex and 
posterior parietal cortex in the frontoparietal “central execu-
tive” network emerged as the most distinguishing link to 
distinguish the ADHD and HC [40]. Children with ADHD 
have higher fractional anisotropy values in white matter 
in the right frontal regions [44]. In addition to the execu-
tive deficits, the abnormal increased class D state might be 
associated with emotion dysregulation and impulsivity in 
ADHD, which was similar to the FPN hyperconnectivity 
for ADHD in the pooled rs-fMRI meta-analyses [35], as the 
abnormal emotional regulation would induce an excessive 
activation of FPN[45].

In parallel, power analysis revealed that higher delta 
power in the fronto-central area and higher TBR power 
in the fronto-temporal area were revealed in ADHD com-
pared to HC, which were supported by many previous 
studies [46–49]. For example, children with ADHD have 
been revealed increased power in the slow EEG frequency 
bands, including delta and theta bands over centro-parietal 
regions [46, 47]. Accumulating evidences confirm that TBR 
is closely related to ADHD, as patients with higher TBR 
showed more severe inattentive issues [50, 51]. Moreover, 
frontal TBR is negatively related to executive, most notably 
attentional control [48, 49], and elevated TBR in ADHD was 
related to more difficulty in inhibiting surrounding stimuli 
[52].

Distinct patterns in ADHD‑C and ADHD‑I

Besides the shared abnormal patterns in ADHD-C and 
ADHD-I, the distinct patterns are valuable for understanding 
the mechanisms of ADHD symptom dimensions. Because 
the distribution of ADHD subtypes evolves with individ-
ual development and functional differentiation, and the 
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mechanisms of their evolution remain unknown [2, 3]. The 
differential patterns of ADHD-I and ADHD-C may reflect 
stage-specific brain function properties of the two sub-
types. When comparing the differences between subtypes, 
ADHD-C presented higher occurrence and coverage of state 
B than ADHD-I (p = 9.35e-5; p = 1.51e-8). In the subsequent 
SVM-RFE analysis, state B was also revealed as the top dis-
criminative feature between two subtypes. State B has been 
attributed to the visual network [21]. In a Go/NoGo task of 
inhibitory control, children with ADHD-C activated bilateral 
medial occipital lobe to a greater extent than children with 
ADHD-I [53]. Consistent with temporal microstate results, 
when comparing group differences of frequency power 
between ADHD-C and ADHD-I, we also identified higher 
gamma power in the posterior occipital region of ADHD-C 
compared ADHD-I. Gamma-band responses (GBR) from 
visual cortex play a pivotal role in visual processing [54, 55]. 
The hyper-activated occipital gamma and state B might sug-
gest ADHD-C exhibited a stronger visual functional activity 
compared to children with ADHD-I. The over-activation of 
visual function is widely reported in patients with ADHD 
during cognitive tasks [56], which generally improved the 
task performance and might represent a compensation pro-
vided by the visual process [57–59]. This stronger visual 
abnormality in ADHD-C may reflect an underlying mecha-
nism of subtype differences. Previous studies have found 
that visual abnormalities in ADHD are developmentally spe-
cific for age and present only at specific stages of cognitive 
development [60], which may also suggest a stage-specific 
emergence of subtype differentiation which may be less pro-
nounced with the maturation of cognitive development. And 
some studies have also suggested that excessive activation 
of the visual cortex may be a sign of insufficient inhibition 
control [61]. A task-based experiment indicated that the unu-
sual evoked GBRs of ADHD patients brought a lack of early 
memory-based classification which possibly resulted in an 
impaired ability to rapidly reallocate attentional resources 
to relevant stimuli [62]. Our findings might suggest chil-
dren with ADHD-C show less control on themselves than 
ADHD-I, who exhibited more visual activation when asked 
to close eyes. Moreover, because of the declined top-down 
eye movement control ability of ADHD [63], children with 
ADHD-C might exhibit impulsivity of opening their eyes in 
an eye-closed experiment, leading to hyper-activated visual 
network.

Our study has several limitations. First, our sample size 
was limited, and we only have single site data which con-
taining ADHD and HC, therefore, we cannot replicate the 
classification study because of the lack of another independ-
ent dataset. However, we have tried our best to reduce the 
over-fitting and improve the stability of the results [64–66], 
namely, when conducting SVM-RFE analysis, we used a 
nested fivefold cross-validation. Second, marginal group 

difference was observed in handedness between ADHD and 
HC, which may leave possible effect on the results. However, 
the effect of handedness on ADHD is controversial. Some 
empirical studies have found evidence for a higher preva-
lence of atypical handedness in individuals with ADHD 
compared to neurotypical individuals [67, 68]. While other 
studies failed to establish such an association [69, 70]. Over-
all speaking, this work suggests EEG microstates could be 
a potential imaging biomarker for ADHD identification or 
subtype discrimination. In the future work, we would like 
to include more longitudinal data to predict the treatment 
outcome of subtypes, which would be an important extend 
for the current study.
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