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Abstract
Objectives  Pain associated with orthodontic tooth movement reportedly reduces periodontal ligament tactile sensation. 
However, the mechanism associated with the central nervous system remains unclear. This study was conducted by measuring 
somatosensory evoked magnetic fields (SEFs) during mechanical stimulation of teeth as they were being moved by separator 
elastics. Findings clarified the effects of pain on periodontal ligament tactile sensation during orthodontic tooth movement.
Materials and Methods  Using magnetoencephalography, SEFs were measured during the application of mechanical stimuli 
to the mandibular right first molars of 23 right-handed healthy participants (0 h). Separator elastics were subsequently 
inserted into the mesial and distal interdental portions of the mandibular right first molars. The same mechanical stimuli 
were applied again 24 h later while the SEFs were measured (24 h). After each SEF measurements, pain was also evaluated 
using the Visual Analog Scale (VAS).
Results  The VAS values were significantly higher at 24 h than at 0 h (p < 0.05). No significant difference in the peak laten-
cies was found between those obtained at 0 h and 24 h, but the intensities around 40.0 ms in the contralateral hemisphere 
were significantly lower at 24 h than at 0 h (p < 0.01).
Conclusions  Pain associated with orthodontic tooth movement might suppress periodontal ligament tactile sensation in the 
primary somatosensory cortex.
Clinical Relevance  Pain associated with orthodontic tooth movement might affect periodontal ligament sensation, conse-
quently causing discomfort during occlusion.

Keywords  Magnetoencephalography · Orthodontic tooth movement · Pain · Somatosensory evoked magnetic fields · 
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Introduction

When the periodontal ligament responds to loads applied 
to the tooth, it produces tactile, pressure, and vibration 
sensations [1–3]. Periodontal ligament sensations are 
extremely sensitive, able to detect even micrometer thick-
ness [4, 5] and playing important roles in detecting food 
mass size and hardness [6] and in adjusting the jaw posi-
tion and bite force [7]. The presence of the periodontal 
ligament is also necessary for moving teeth. When ortho-
dontic forces are applied to the teeth, cytokines such as 
IL-1, IL-6, TNF-α, INF-γ, and M-CSF are released from 
the compression side of periodontal ligament, stimulating 
monocyte-derived macrophages and osteoclasts to promote 
alveolar bone remodeling [8–11]. This remodeling causes 
the tooth to move forward on the side of the compression. 
As the orthodontic force moves the tooth, prostaglandins 
are released. They subsequently bind to the sensory nerve 
endings in the periodontal ligament, resulting in pain. The 
nerve fibers innervating the periodontal ligament recep-
tors are the superior alveolar nerve in the maxilla and the 
inferior alveolar nerve in the mandible, which comprise 
Aβ, Aδ, and C fibers [12]. Actually, Aβ fibers transmit 
tactile sensations, with a 65.0–70.0  m/s transmission 
speed, whereas Aδ and C fibers transmit pain and tem-
perature, with Aδ fibers transmitting at 10.0–15.0 m/s and 
30.0 m/s at the earliest [13, 14]. Action potentials gener-
ated in peripheral nerves by pain stimulation pass through 
the dorsal horn of the spinal cord and then the thalamus. 
They are input to the cortical somatosensory cortex. In 
addition, this action potential can enter the limbic system 
(amygdala, insula, anterior cingulate gyrus, etc.) via the 
thalamus. Alternatively, it can enter the limbic system via 
the brainstem without passing through the thalamus. The 
somatosensory cortex recognizes sensory aspects of pain 
such as the intensity, site of stimulation, and duration, 
whereas the limbic system is reported to recognize emo-
tional and cognitive aspects of pain such as discomfort. 
Information from these two directions is integrated in the 
prefrontal cortex [15]. Such pain reaches a peak after one 
day of orthodontic force loading, eventually disappearing 
after 3–7 days [16].

In recent years, it has become clear that interaction 
exists between human pain and tactile sensations. An ear-
lier study for which acute lower back pain was produced 
temporarily and the two-point discrimination zone of the 
lower back pain site was assessed found tactile acuity to 
be significantly worse than before the pain [17]. Several 
other reports have described that tactile acuity is dulled by 
pain in various parts of the body [18–21]. In fact, regard-
ing oral sensation, when capsaicin was applied to the 
gingiva to induce pain, significantly lower sensitivity to 

mechanical stimulation was found than before capsaicin 
application [22]. A pain-inducing study in which capsai-
cin was injected into the periodontal ligament showed the 
mechanical detection threshold of the adjacent gingiva as 
significantly higher [23]. Bucci et al. evaluated changes in 
occlusal contact sensitivity caused by pain associated with 
orthodontic tooth movement, particularly pain induced 
by wearing separator elastics. The separator elastics were 
removed after being worn 24 h in the mesial and distal 
interproximal maxillary first molars. Occlusal tactile acu-
ity was evaluated by having the teeth bite aluminum foil of 
various thicknesses. The results demonstrated that occlusal 
tactile acuity was significantly lower than that before the 
use of separator elastics [5]. Stimulation of brain regions 
associated with the pain response presumably interferes 
with and delays the transmission of tactile stimulation, 
possibly reducing tactile sensation. However, for that ear-
lier study, only subjective evaluations were used to make 
measurements. Moreover, the associated mechanism 
remains unclear.

Therefore, this study specifically applied magnetoenceph-
alography (MEG), a noninvasive functional brain imaging 
measurement, which measures the magnetic field around elec-
trical signals generated in the brain. Unlike electroencephalog-
raphy, MEG is less likely to record components deeper than the 
cortex, making it easier to record cortical components selec-
tively [24]. For the study described herein, MEG is a very suit-
able device for objectively evaluating changes in periodontal 
ligament tactile sensation caused by pain by recording signals 
in the primary somatosensory cortex. Although reports have 
described periodontal ligament tactile sensation evaluated 
using MEG [25, 26], no report has described neuroscientific 
evaluation of the periodontal ligament tactile sensation on 
teeth in which pain results from orthodontic forces.

The working hypothesis examined for this study is that 
pain caused by orthodontic tooth movement decreases the 
signal intensity recorded in the primary somatosensory cor-
tex in response to periodontal ligament tactile stimulation. 
This study, which uses MEG to measure somatosensory 
evoked magnetic fields (SEFs) by periodontal ligament tac-
tile stimulation, was designed to elucidate the effects of pain 
induced by orthodontic tooth movement on periodontal liga-
ment tactile sensation.

Participants and methods

Participants

Of the initial 33 persons approached to participate in the 
study, 23 healthy volunteers (7 women, 16 men, mean age 
23.3 years) participated in the study. Inclusion criteria were 
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(1) 18–35 years old and (2) right-handed. The Edinburgh 
handedness test was used for evaluation to confirm the 
handedness of each. Exclusion criteria were (1) undergoing 
orthodontic treatment, (2) having restoration covering the 
cusp of the mandibular right first molar such as an inlays 
or crown, or (3) having a history of neurological disease. 
This study was approved by the Ethics Committee of the 
Tohoku University Graduate School of Dentistry (protocol 
number: 26–39). Informed consent was obtained from all 
participants. Parental consent was obtained for participants 
who were minors.

Stimulation

Mechanical stimulation was performed on the mandibular 
right first molar and left wrist using a homemade stimulator 
based on the brush stimulator described by Jousmäki et al. 

[27]. The stimulator consists of a resin handle, a silicone 
cap, and two optic fibers (E32-DC200F4R; Omron Corp., 
Kyoto, Japan) (Fig. 1) [26]. The fiber is attached along the 
resin handle. The fiber tip is in the silicone cap attached 
to the end of the resin handle. Mechanical stimulation was 
applied by lightly tapping the occlusal surface of the teeth 
with the silicone cap part. The optic fibers are connected to a 
photoelectric switch (E3X-NA41F 2 M; Omron Corp.): one 
fiber emits red light; the other senses the reflected light. The 
photoelectric switch recognizes the moment at which the 
silicone cap contacts the tooth surface. The reflected light is 
no longer detected as the trigger point.

To measure baseline cortical responses, mechanical 
stimuli were applied 300 times each to the mandibular 
right first molar and left wrist (0 h). The stimulus inten-
sity was approximately 100 g. The stimulation interval was 
0.5–1.0 s. All mechanical stimuli were applied by a single 

Fig. 1   (A) Schematic diagram 
of the periodontal ligament 
stimulator, which consists of a 
resin handle and a silicone cap. 
At the tip of the silicone cap, an 
optical fiber emitter and receiver 
are installed. The optoelectronic 
switch detects the moment 
when the stimulator contacts the 
tooth. The red light is blocked. 
Then the reflected light is no 
longer perceived as a trigger 
(referred from Shimada et al., 
2022). (B) Actual condition of 
a mandibular right first molar 
stimulated using the periodontal 
ligament stimulator



	 Clinical Oral Investigations (2024) 28:36

1 3

36  Page 4 of 9

trained dentist. Therefore, constant force was regarded as 
having been applied. After mechanical stimulation, separator 
elastics were placed on the mesial and distal interproximal 
mandibular right first molar for 24 h. The separator elas-
tics were removed 24 h later. Mechanical stimulation was 
applied again (24 h). As a subjective evaluation method, 
the Visual Analog Scale (VAS) [28] was used to assess pain 
immediately after mechanical stimulation: at 0 h and 24 h. 
The results were compared along with SEFs.

MEG recordings

MEG data were recorded in a magnetically shielded room 
using a whole-head 200-channel MEG system (PQA160C; 
Ricoh Co., Ltd., Tokyo, Japan). The head morphology of 
each subject was digitized using a three-dimensional digi-
tizer (Fast SCAN Cobra; Polhemus Inc., Colchester, VT). 
Individual structural magnetic resonance images obtained 
using a 3 T MR system (Achieva; Philips Healthcare, Best, 
the Netherlands) were co-registered. After the MEG signals 
were recorded from 50.0 ms before stimulation to 300.0 ms 
after the trigger point, they were bandpass filtered from 20 
to 500 Hz, and were digitized at 1000 Hz.

Data analysis

The signal sources and moments corresponding to the peak 
latency were evaluated individually using the signal equiva-
lent current dipole (ECD) model calculated using analysis 
software (MEG Laboratory; Ricoh Co., Ltd.). The ECD 
model, based on Sarvas law [29], assumes a spherical con-
ductor to identify the magnetic signal source. The signal 
source location was evaluated separately in the left and right 
hemispheres. Bilateral hemispheres were analyzed for this 
study. The resulting data were averaged for 300 stimula-
tion data after removing visually obvious noise. Baseline 
levels were set at 4.0–9.0 ms after mechanical stimulation. 
Shimada et al. reported a MEG study showing first waves 
in the primary somatosensory cortex at 41.7 ms ± 5.70 ms 
after mechanical stimulation of the mandibular first molar 
periodontal ligament [26]. In addition, Umino et al. reported 
a study using EEG, which showed correlation between 
the intensity of electrical stimulation of the teeth and the 
slow component of 150–300 ms [30]. Therefore, for this 
study, responses with a signal source in the central sulcus 
in the first wave (early component) were observed at around 
40.0 ms and in the second wave (late component) observed 
between 70 and 300 ms were the target of evaluation. Dipole 
locations were superimposed on MR images; ECDs were in 
the central sulcus. Only responses with goodness-of-fit val-
ues greater than 80% were selected. For statistical analyses, 
unpaired t-tests were used for peak latency and intensity 
between 0 and 24 h. Paired t-tests were used for VAS.

Results

In the primary somatosensory cortex, the early component 
represents periodontal ligament tactile sensation. The late 
component represents periodontal ligament pain sensation. 
The number of early contralateral hemisphere components 
detected during mechanical stimulation of the mandibular 
right first molar at 0 h and 24 h were 11/23 (0 h) and 9/23 
(24 h). Those for the ipsilateral hemisphere early com-
ponents were 4/23 (0 h) and 5/23 (24 h). Those for the 
contralateral hemisphere late components were 7/23 (0 h) 
and 3/23 (24 h). In addition, those for the ipsilateral hemi-
sphere late component were 7/23 (0 h) and 2/23 (24 h). 
The detection rate of the contralateral hemisphere during 
left wrist stimulation was 22/23. The 24 h detections of 
the ipsilateral hemisphere late component were so few (2 
cases) that no test of significance was possible.

The peak latency represents the time from periodontal 
ligament stimulation until the signal is transmitted to the pri-
mary somatosensory cortex. The peak latencies (mean ± SD) 
during mechanical stimulation of the mandibular right first 
molar were 41.5 ± 6.2 ms (0 h) and 41.3 ± 8.5 ms (24 h) for 
the contralateral hemisphere early component, 49.5 ± 3.4 ms 
(0 h) and 48.4 ± 9.6 ms (24 h) for the ipsilateral hemisphere 
early component, 151.6 ± 36.9 ms (0 h) and 119.3 ± 9.7 ms 
(24 h) for the contralateral hemisphere late component, 
113.4 ± 12.9 ms (0 h), 82.0 ± 7.0 ms (24 h) for the ipsilat-
eral hemisphere late component, and 45.6 ± 13.1 ms during 
mechanical stimulation at the left wrist. No significant differ-
ence was found between them (Figs. 2 and 3A).

Reportedly, the intensities of the waveforms around 
60.0 ms observed in the contralateral hemisphere primary 
somatosensory cortex correlate with the tactile stimulation 
strength sensed in the periphery [31, 32]. Primary somatosen-
sory cortex responses around 150.0–300.0 ms correlate with 
pain intensity [30, 33]. The signal intensity during mechani-
cal stimulation of the mandibular right first molar was 
14.0 ± 6.7 nAm (0 h) and 7.9 ± 3.0 nAm (24 h) for the early 
component of the contralateral hemisphere, 7.1 ± 2.6 nAm 
(0 h) and 5.4 ± 2.5 nAm (24 h) for the early component of 
the ipsilateral hemisphere, 9.1 ± 4.2 nAm (0 h) and 6.4 ± 2.3 
nAm (24 h) for the late component of the contralateral hemi-
sphere, 11.8 ± 7.6 nAm (0 h) and 8.0 ± 0.8 nAm (24 h) for the 
ipsilateral hemisphere late component, and 16.5 ± 6.5 nAm 
during mechanical left wrist stimulation. In the contralateral 
hemisphere early component, the signal intensity was signifi-
cantly lower at 24 h than at 0 h (p < 0.05) (Figs. 2 and 3B). 
Otherwise, no significant difference was found.

The VAS during mechanical stimulation of the man-
dibular right first molar was 0.83 ± 1.27 mm (0 h) and 
7.06 ± 8.71 mm (24 h). A significant greater VAS was 
found at 24 h than at 0 h (p < 0.05, Fig. 4).
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Discussion

This report is the first of a study examining the pain effects 
produced by orthodontic tooth movement on periodontal 
ligament tactile sensation. No difference in the peak latency 
of the bilateral hemispheres was observed between 0 and 
24 h. The intensities in the early components of the con-
tralateral hemispheres were significantly lower at 24 h than 
at 0 h. The VAS evaluation found a significantly greater 
subjective degree of pain at 24 h than at 0 h.

Peak latency

Considering transmission rates, the waveforms observed 
around 41.0 ms, which are the early components, are appar-
ently responses by Aβ fibers, whereas the waveforms observed 

between 150.0 and 300.0 ms are regarded as a response by Aδ 
fibers [33]. Results of this study suggest that both Aβ and Aδ 
fibers are stimulated by mechanical stimulation of the peri-
odontal ligament, but in neither hemisphere was a significant 
difference in peak latency found at 24 h compared to 0 h. Tran 
et al. reported a study using MEG indicating that the pres-
ence or absence of hand pain stimulation did not affect the 
peak latency in the response around 30.0 ms detected in the 
primary somatosensory cortex with non-painful stimulation 
[34]. This lack of effect was attributable to saturation of the 
activated Aβ fibers in both non-painful and painful stimula-
tion sessions. In the present study, mechanical stimulation of 
100 g was also applied to the periodontal ligament at 0 h and 
24 h. Because all Aβ fibers were activated in both sessions, it 
is considered that there were no changes in peak latencies with 
or without pain associated with orthodontic tooth movement.

Fig. 2   Somatosensory evoked magnetic fields in the contralateral 
hemisphere during mechanical stimulation of the mandibular right 
first molar of a 20-year-old male participant. The whole-head mag-

netic waveforms, isofield maps, and ECD locations from the upper 
panels: (A) 0 h and (B) 24 h. The amplitude of the waveform around 
40.0 ms at 24 hr is smaller than that at 0 hr
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Comparison of VAS and intensity

Interleukin 1-beta, which regulates bone remodeling, is 
produced when orthodontic forces are applied to the teeth, 
but such forces also induce the secretion of inflammatory 
mediators, which correlates with the intensity of pain pro-
duced during orthodontic treatment. Interleukin 1-beta 
increases most during 24 h after orthodontic forces are 
applied to the teeth [35]. Moreover, pain associated with 
orthodontic tooth movement develops about 2 h after tooth 
movement begins, peaking approximately 24–48 h later, 
and subsiding gradually thereafter [36]. For the evaluation 
of VAS in this study, as explained also in earlier reports, 
the degree of pain was significantly greater 24 h after the 
elastics were applied.

The intensities were significantly lower at 24 h, even 
though the same strength of periodontal ligament mechani-
cal stimulation was applied at both 0 h and 24 h. The results 
presented herein indicate that orthodontic tooth pain reduces 
periodontal ligament tactile sensation. Several reports have 
described studies of pain increasing tactile thresholds. In 
fact, after capsaicin was injected into the forearm, tactile 
thresholds were found to be significantly higher in the 
hyperalgesic region than in the control region when evalu-
ated using von Frey hairs. The mechanism is that primary 
afferent depolarization induced by C fibers cause presyn-
aptic inhibition of low-threshold mechanoreceptors, which 
leads to reduced tactile sensitivity [37]. When acute periph-
eral nociceptive back pain was induced and the two-point 
discrimination zone was measured, tactile sensitivity was 

Fig. 3   (A) Latencies (ms) and 
(B) intensities (nAm) for the 
mandibular right first molars 
and left wrists: EC, early com-
ponent of contralateral hemi-
sphere; EI, early component 
of ipsilateral hemisphere; LC, 
late component of contralateral 
hemisphere; LI, late compo-
nent of ipsilateral hemisphere. 
No significant difference was 
found between the latencies of 
0 h and 24 h for the respective 
components. The intensities 
of the waveforms observed in 
the contralateral hemisphere 
at 40.0 ms (early components) 
were significantly lower at 24 h 
than at 0 h (*p < 0.01)
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markedly reduced in the back pain-induced group compared 
to the control group. That study concluded that, although all 
subjects in the back pain-induced group received the same 
amount of saline solution in the lower back, their subjec-
tive pain experiences varied. The peripheral nociceptor 
mechanism was not the only mechanism causing changes in 
tactile sensation [17]. For this study, constant mechanical 
stimulation was also applied, but large variation was found 
in the perception of tooth pain, as assessed using the VAS. 
The pain was markedly more intense after insertion of the 
separator elastics, but the individual participants’ percep-
tions of the pain varied greatly. Therefore, it is still not pos-
sible to explain this mechanism based solely on peripheral 
nociceptors.

Bucci et al. studied how pain and periodontal ligament 
stretching caused by tooth movement affect periodontal liga-
ment tactile sensation [5]. Occlusal tactile acuity during occlu-
sion was measured before insertion of the separator elastics, 
24 h after insertion of the elastics between the mesial and distal 
maxillary first molars, and 7 days later. The results demon-
strated that the tactile thresholds of occlusion of 24-μm and 
32-μm-thick aluminum foil were significantly higher at 24 h 
after insertion of the separator elastics, when the pain peak 
was reached, than they were before insertion of the separator 
elastics. Results demonstrated that the tactile sensation of the 
periodontal ligament is dulled by pain caused by orthodontic 
tooth movement and by pain caused in other parts of the body. 
This phenomenon has been regarded as involving a "touch gate" 
[38] that works similarly to the gate control theory of pain [39]: 
pain diminishes the tactile sensation. Tran et al. reported, when 
non-painful stimulation was applied to the wrist, that the wave-
form observed at 30.0 ms in the primary somatosensory cortex 

originated in area 3b. In humans, pain information transmitted 
through Aδ fibers reaches primary somatosensory cortex 1, 
suggesting that the inhibition of tactile sensation results from 
inhibitory interneurons connecting cortex 1 and 3b [34]. Osaki 
et al. used mice to examine how painful and tactile information 
is processed in the primary somatosensory cortex [40]. The 
results demonstrated that layer 5 neurons in the dysgranular 
region (the region which mainly processes pain sensation) were 
inactivated by tactile stimulation, whereas the neurons of layer 
2/3 in the barrel region (the region that processes touch sensa-
tion), were inactivated by nociceptive stimulation. Periodontal 
ligament tactile sensation might also interact in the primary 
somatosensory cortex with pain caused by orthodontic tooth 
movement, leading to the suppression of tactile sensation. The 
phenomenon of suppression of periodontal ligament tactile sen-
sation by pain associated with orthodontic tooth movement is 
likely to involve the primary somatosensory cortex, but details 
of the related mechanisms require further investigation.

Discomfort associated with eating during orthodontic 
treatment is often associated with the foreign body sensa-
tion of the appliance or pain during biting [41, 42]. More-
over, in addition to these factors, tooth hypersensitivity 
might be a contributing factor. Using MEG for this study, 
we objectively evaluated the effects of pain associated with 
orthodontic tooth movement on periodontal ligament tactile 
sensation, which provided us insight into the mechanism of 
interaction between pain and tactile sensation in the human 
central nervous system that had not been elucidated in earlier 
studies. These findings are expected to lead to future insights 
into the development of new orthodontic treatment methods 
able to reduce or eliminate the oral discomfort which invari-
ably occurs during orthodontic treatment.

Fig. 4   VAS (mm) values dur-
ing mechanical stimulation of 
mandibular right first molars. 
The value for 24 h was signifi-
cantly greater than that for 0 h 
(**p < 0.05)
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Conclusion

Results of this study suggest that pain associated with ortho-
dontic tooth movement suppresses periodontal ligament tac-
tile sensation in the central nervous system. Moreover, SEFs 
were demonstrated to be useful for the objective assessment 
of periodontal ligament tactile sensation.
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