Skip to main content

Advertisement

Log in

The activity, distribution, and colocalization of cathepsin K and matrix metalloproteases in intact and eroded dentin

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to assess the activity, distribution, and colocalization of cathepsin K (catK) and matrix metalloproteases (MMPs) in both intact and eroded dentin in vitro.

Materials and methods

Eroded dentin was obtained by consecutive treatment with 5% citric acid (pH = 2.3) for 7 days, while intact dentin remained untreated. Pulverized dentin powder (1.0 g) was extracted from both intact and eroded dentin using 5 mL of 50 mM Tris–HCl buffer (0.2 g/1 mL, pH = 7.4) for 60 h to measure the activity of catK and MMPs spectrofluorometrically. In addition, three 200-μm-thick dentin slices were prepared from intact and eroded dentin for double-labeling immunofluorescence to evaluate the distribution and colocalization of catK and MMPs (MMP-2 and MMP-9). The distribution and colocalization of enzymes were analyzed using inverted confocal laser scanning microscopy (CLSM), with colocalization rates quantified using Leica Application Suite Advanced Fluorescent (LAS AF) software. One-way analysis of variance (ANOVA) was used to analyze the fluorescence data related to enzyme activity (α = 0.05).

Results

The activity of catK and MMPs was significantly increased in eroded dentin compared with intact dentin. After erosive attacks, catK, MMP-2, and MMP-9 were prominently localized in the eroded regions. The colocalization rates of catK with MMP-2 and MMP-9 were 13- and 26-fold higher in eroded dentin, respectively, than in intact dentin.

Conclusions

Erosive attacks amplified the activity of catK and MMPs in dentin while also altering their distribution patterns. Colocalization between catK and MMPs increased following erosive attacks.

Clinical relevance

CatK, MMP-2, and MMP-9 likely play synergistic roles in the pathophysiology of dentin erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, Pashley DH, Tay FR, Mazzoni A (2018) Dentin bonding systems: from dentin collagen structure to bond preservation and clinical applications. Dent Mater 34:78–96. https://doi.org/10.1016/j.dental.2017.11.005

    Article  PubMed  CAS  Google Scholar 

  2. Altinci P, Mutluay M, Tjäderhane L, Tezvergil-Mutluay A (2018) Effect of calcium fluoride on the activity of dentin matrix-bound enzymes. Arch Oral Biol 96:162–168. https://doi.org/10.1016/j.archoralbio.2018.09.006

    Article  PubMed  CAS  Google Scholar 

  3. Buzalaf MA, Charone S, Tjäderhane L (2015) Role of host-derived proteinases in dentine caries and erosion. Caries Res 49(Suppl 1):30–37. https://doi.org/10.1159/000380885

    Article  PubMed  CAS  Google Scholar 

  4. Scaffa PM, Breschi L, Mazzoni A, Vidal CM, Curci R, Apolonio F, Gobbi P, Pashley D, Tjaderhane L, Tersariol IL, Nascimento FD, Carrilho MR (2017) Co-distribution of cysteine cathepsins and matrix metalloproteases in human dentin. Arch Oral Biol 74:101–107. https://doi.org/10.1016/j.archoralbio.2016.11.011

    Article  PubMed  CAS  Google Scholar 

  5. Yang H, Lin XJ, Liu Q, Yu H (2023) Effects of protease inhibitors on dentin erosion: an in situ study. Clin Oral Investig 27:1005–1012. https://doi.org/10.1007/s00784-022-04657-w

    Article  PubMed  Google Scholar 

  6. De Munck J, Van den Steen PE, Mine A, Van Landuyt KL, Poitevin A, Opdenakker G, Van Meerbeek B (2009) Inhibition of enzymatic degradation of adhesive-dentin interfaces. J Dent Res 88:1101–1106. https://doi.org/10.1177/0022034509346952

    Article  PubMed  CAS  Google Scholar 

  7. Cvikl B, Lussi A, Carvalho TS, Moritz A, Gruber R (2018) Stannous chloride and stannous fluoride are inhibitors of matrix metalloproteinases. J Dent 78:51–58. https://doi.org/10.1016/j.jdent.2018.08.002

    Article  PubMed  CAS  Google Scholar 

  8. Panwar P, Butler GS, Jamroz A, Azizi P, Overall CM, Brömme D (2018) Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases. Matrix Biol 65:30–44. https://doi.org/10.1016/j.matbio.2017.06.004

    Article  PubMed  CAS  Google Scholar 

  9. Vidal CM, Tjäderhane L, Scaffa PM, Tersariol IL, Pashley D, Nader HB, Nascimento FD, Carrilho MR (2014) Abundance of MMPs and cysteine cathepsins in caries-affected dentin. J Dent Res 93:269–274. https://doi.org/10.1177/0022034513516979

    Article  PubMed  CAS  Google Scholar 

  10. Tjaderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol IL, Geraldeli S, Tezvergil-Mutluay A, Carrilho MR, Carvalho RM, Tay FR, Pashley DH (2013) Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent Mater 29:116–135. https://doi.org/10.1016/j.dental.2012.08.004

    Article  PubMed  CAS  Google Scholar 

  11. Christensen J, Shastri VP (2015) Matrix-metalloproteinase-9 is cleaved and activated by cathepsin K. BMC Res Notes 8:322. https://doi.org/10.1186/s13104-015-1284-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bafail A, Carrilho MR, Kishen A, Prakki A (2020) Effect of protease inhibitor specificity on dentin matrix properties. J Mech Behav Biomed Mater 109:103861. https://doi.org/10.1016/j.jmbbm.2020.103861

    Article  PubMed  CAS  Google Scholar 

  13. Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, Qvist P, Delmas PD, Foged NT, Delaissé JM (2003) The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res 18:859–867. https://doi.org/10.1359/jbmr.2003.18.5.859

    Article  PubMed  CAS  Google Scholar 

  14. Nascimento FD, Minciotti CL, Geraldeli S, Carrilho MR, Pashley DH, Tay FR, Nader HB, Salo T, Tjaderhane L, Tersariol IL (2011) Cysteine cathepsins in human carious dentin. J Dent Res 90:506–511. https://doi.org/10.1177/0022034510391906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Haeseleer F (2008) Interaction and colocalization of CaBP4 and Unc119 (MRG4) in photoreceptors. Invest Ophthalmol Vis Sci 49:2366–2375. https://doi.org/10.1167/iovs.07-1166

    Article  PubMed  Google Scholar 

  16. Sedgley CM, Molander A, Flannagan SE, Nagel AC, Appelbe OK, Clewell DB, Dahlén G (2005) Virulence, phenotype and genotype characteristics of endodontic Enterococcus spp. Oral Microbiol Immunol 20:10–19. https://doi.org/10.1111/j.1399-302X.2004.00180.x

    Article  PubMed  CAS  Google Scholar 

  17. Marashdeh MQ, Gitalis R, Lévesque C, Finer Y (2019) Endodontic pathogens possess collagenolytic properties that degrade human dentine collagen matrix. Int Endod J 52:416–423. https://doi.org/10.1111/iej.13018

    Article  PubMed  CAS  Google Scholar 

  18. van Strijp AJ, Jansen DC, DeGroot J, ten Cate JM, Everts V (2003) Host-derived proteinases and degradation of dentine collagen in situ. Caries Res 37:58–65. https://doi.org/10.1159/000068223

    Article  PubMed  Google Scholar 

  19. Altinci P, Mutluay M, Tjäderhane L, Tezvergil-Mutluay A (2019) Inhibition of dentin matrix-bound cysteine cathepsins by potassium fluoride. Eur J Oral Sci 127:1–9. https://doi.org/10.1111/eos.12581

    Article  PubMed  CAS  Google Scholar 

  20. Tersariol IL, Geraldeli S, Minciotti CL, Nascimento FD, Paakkonen V, Martins MT, Carrilho MR, Pashley DH, Tay FR, Salo T, Tjaderhane L (2010) Cysteine cathepsins in human dentin-pulp complex. J Endod 36:475–481. https://doi.org/10.1016/j.joen.2009.12.034

    Article  PubMed  Google Scholar 

  21. Tulek A, Saeed M, Mulic A, Stenhagen KR, Utheim TP, Galtung HK, Khuu C, Nirvani M, Kristiansen MS, Sehic A (2018) New animal model of extrinsic dental erosion-erosive effect on the mouse molar teeth. Arch Oral Biol 96:137–145. https://doi.org/10.1016/j.archoralbio.2018.08.013

    Article  PubMed  Google Scholar 

  22. Brunton PA, Kalsi KS, Watts DC, Wilson NH (2000) Resistance of two dentin-bonding agents and a dentin densensitizer to acid erosion in vitro. Dent Mater 16:351–355. https://doi.org/10.1016/s0109-5641(00)00027-0

    Article  PubMed  CAS  Google Scholar 

  23. Aldosari MA, Scaramucci T, Liu SY, Warrick-Polackoff JM, Eckert GJ, Hara AT (2018) Susceptibility of partially desalivated rats to erosive tooth wear by calcium-supplemented beverages. Oral Dis 24:355–362. https://doi.org/10.1111/odi.12740

    Article  PubMed  CAS  Google Scholar 

  24. Hosoya Y, Tay FR (2007) Hardness, elasticity, and ultrastructure of bonded sound and caries-affected primary tooth dentin. J Biomed Mater Res B Appl Biomater 81:135–141. https://doi.org/10.1002/jbm.b.30646

    Article  PubMed  CAS  Google Scholar 

  25. Giacomini MC, Scaffa P, Chaves LP, Vidal C, Machado TN, Honório HM, Tjäderhane L, Wang L (2017) Role of proteolytic enzyme inhibitors on carious and eroded dentin associated with a universal bonding system. Oper Dent 42:e188–e196. https://doi.org/10.2341/16-178-l

    Article  PubMed  CAS  Google Scholar 

  26. Niu LN, Zhang L, Jiao K, Li F, Ding YX, Wang DY, Wang MQ, Tay FR, Chen JH (2011) Localization of MMP-2, MMP-9, TIMP-1, and TIMP-2 in human coronal dentine. J Dent 39:536–542. https://doi.org/10.1016/j.jdent.2011.05.004

    Article  PubMed  CAS  Google Scholar 

  27. Mazzoni A, Mannello F, Tay FR, Tonti GA, Papa S, Mazzotti G, Di Lenarda R, Pashley DH, Breschi L (2007) Zymographic analysis and characterization of MMP-2 and -9 forms in human sound dentin. J Dent Res 86:436–440. https://doi.org/10.1177/154405910708600509

    Article  PubMed  CAS  Google Scholar 

  28. Liu Z, Li F, Zhang L, Yu H, Yu F, Chen J (2017) The effect of active components from citrus fruits on dentin MMPs. Arch Oral Biol 83:111–117. https://doi.org/10.1016/j.archoralbio.2017.07.006

    Article  PubMed  CAS  Google Scholar 

  29. Sienkiewicz W, Kuchinka J, Dudek A, Nowak E, Kaleczyc J, Radzimirska M, Szczurkowski A (2023) Morphology and immunohistochemical characteristics of the otic ganglion in the chinchilla (Chinchilla laniger Molina). Folia Histochem Cytobiol 61:17–25. https://doi.org/10.5603/FHC.a2023.0001

    Article  PubMed  CAS  Google Scholar 

  30. Chan AS, Tran TTK, Hsu YH, Liu SYS, Kroon J (2020) A systematic review of dietary acids and habits on dental erosion in adolescents. Int J Paediatr Dent 30:713–733. https://doi.org/10.1111/ipd.12643

    Article  PubMed  Google Scholar 

  31. Magalhães AC, Wiegand A, Rios D, Honório HM, Buzalaf MA (2009) Insights into preventive measures for dental erosion. J Appl Oral Sci 17:75–86. https://doi.org/10.1590/s1678-77572009000200002

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zarella BL, Cardoso CA, Pelá VT, Kato MT, Tjäderhane L, Buzalaf MA (2015) The role of matrix metalloproteinases and cysteine-cathepsins on the progression of dentine erosion. Arch Oral Biol 60:1340–1345. https://doi.org/10.1016/j.archoralbio.2015.06.011

    Article  PubMed  CAS  Google Scholar 

  33. Ansari MY, Haqqi TM (2021) Assessing chondrocyte status by immunofluorescence-mediated localization of parkin relative to mitochondria. Methods Mol Biol 2245:215–224. https://doi.org/10.1007/978-1-0716-1119-7_15

    Article  PubMed  CAS  Google Scholar 

  34. Mazzoni A, Pashley DH, Tay FR, Gobbi P, Orsini G, Ruggeri A Jr, Carrilho M, Tjäderhane L, Di Lenarda R, Breschi L (2009) Immunohistochemical identification of MMP-2 and MMP-9 in human dentin: correlative FEI-SEM/TEM analysis. J Biomed Mater Res A 88:697–703. https://doi.org/10.1002/jbm.a.31920

    Article  PubMed  CAS  Google Scholar 

  35. Ramírez-Bommer C, Gulabivala K, Ng YL, Young A (2018) Estimated depth of apatite and collagen degradation in human dentine by sequential exposure to sodium hypochlorite and EDTA: a quantitative FTIR study. Int Endod J 51:469–478. https://doi.org/10.1111/iej.12864

    Article  PubMed  Google Scholar 

  36. Lin PY, Lyu HC, Hsu CY, Chang CS, Kao FJ (2010) Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy. Biomed Opt Express 2:149–158. https://doi.org/10.1364/boe.2.000149

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hwang SJ, Burette A, Rustioni A, Valtschanoff JG (2004) Vanilloid receptor VR1-positive primary afferents are glutamatergic and contact spinal neurons that co-express neurokinin receptor NK1 and glutamate receptors. J Neurocytol 33:321–329. https://doi.org/10.1023/B:NEUR.0000044193.31523.a1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ling Lin from the Public Technology Service Center of Fujian Medical University for technical assistance.

Funding

This research project was supported by the Fujian Provincial Health Technology Project (2022CXA042) and the Fujian Provincial Special Financial Funds (2023CZZX01).

Author information

Authors and Affiliations

Authors

Contributions

Xiu-jiao Lin and Xin-wen Tong wrote the original draft and performed the data curation. Yi-ying Chen performed the formal analysis and the investigation. Zhi-hong Huang prepared the materials and performed the investigation. Hao Yu conceptualized and supervised the study and reviewed and edited the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hao Yu.

Ethics declarations

Ethical approval

All procedures performed in the present study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Ethical approval for the study was granted by the Ethics Committee of the School and Hospital of Stomatology, Fujian Medical University (Approval no. 2022CXA042).

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Tong, X., Chen, Y. et al. The activity, distribution, and colocalization of cathepsin K and matrix metalloproteases in intact and eroded dentin. Clin Oral Invest 28, 1 (2024). https://doi.org/10.1007/s00784-023-05393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-023-05393-5

Keywords

Navigation