Skip to main content

Advertisement

Log in

Associations between vitamin D levels and periodontal attachment loss

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Periodontitis is accompanied by attachment loss and alveolar bone resorption. Vitamin D (VD) deficiency was closely associated with bone loss or osteoporosis. The study aims to investigate the potential relationship between different VD levels and severe periodontal attachment loss in American adults.

Methods

A cross-sectional analysis was conducted including 5749 participants in the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2014. The association of periodontal attachment loss progression with total VD, vitamin D3 (VD3), and vitamin D2 (VD2) levels was assessed using multivariable linear regression models, hierarchical regression, fitted smoothing curves, and generalized additive models.

Results

Based on the indicators of 5749 subjects, we found that severe attachment loss tended to occur in the elderly or males and was accompanied by less total VD levels, or VD3 levels, as well as a lower poverty-income ratio (PIR). Total VD (below the inflection point: 111 nmol/L) or VD3 were negatively associated with the progression of attachment loss in each multivariable regression model. In threshold analysis, VD3 is linearly correlated with the progression of attachment loss (β =  − 0.0183, 95% CI: − 0.0230 to − 0.0136). The relationship between VD2 and attachment loss progression was an S-shaped curve (inflection point: 5.07 nmol/L).

Conclusion

Increasing total VD (below 111 nmol/L) and VD3 levels may be beneficial to periodontal health. VD2 levels above 5.07 nmol/L were a risk factor for severe periodontitis.

Clinical relevance

The present study reports that different vitamin D levels may serve as different associations with periodontal attachment loss progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study. Data used for this study are available on the NHANES website: https://wwwn.cdc.gov/nchs/nhanes/.

References

  1. Nazir M, Al-Ansari A, Al-Khalifa K, Alhareky M, Gaffar B, Almas K (2020) Global prevalence of periodontal disease and lack of its surveillance. TheScientificWorldJOURNAL 2020:2146160. https://doi.org/10.1155/2020/2146160

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rodrigues Amorim Adegboye A, Dias Santana D, Teixeira Dos Santos PP, Guedes Cocate P, Benaim C, Trindade de Castro MB, Maia Schlüssel M, Kac G, Lilienthal Heitmann B (2021) Exploratory efficacy of calcium-vitamin D milk fortification and periodontal therapy on maternal oral health and metabolic and inflammatory profile. Nutrients 13(3):783. https://doi.org/10.3390/nu13030783

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kwon T, Lamster IB, Levin L (2021) Current concepts in the management of periodontitis. Int Dent J 71(6):462–476. https://doi.org/10.1111/idj.12630

    Article  PubMed  PubMed Central  Google Scholar 

  4. Herrera D, Sanz M, Kebschull M, Jepsen S, Sculean A, Berglundh T, Papapanou PN, Chapple I, Tonetti MS, EFP Workshop Participants and Methodological Consultant (2022) Treatment of stage IV periodontitis: the EFP S3 level clinical practice guideline. J Clin Periodontol 49(Suppl 24):4–71. https://doi.org/10.1111/jcpe.13639

    Article  PubMed  Google Scholar 

  5. Tak IH, Shin MH, Kweon SS, Nam HS, Cauley JA, Kim OJ, Kim YJ, Chung HJ, Kim OS (2014) The association between periodontal disease, tooth loss and bone mineral density in a Korean population. J Clin Periodontol 41(12):1139–1144. https://doi.org/10.1111/jcpe.12309

    Article  PubMed  Google Scholar 

  6. Alshahrani F, Aljohani N (2013) Vitamin D: deficiency, sufficiency and toxicity. Nutrients 5(9):3605–3616. https://doi.org/10.3390/nu5093605

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reid IR, Bolland MJ, Grey A (2014) Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet (London, England) 383(9912):146–155. https://doi.org/10.1016/S0140-6736(13)61647-5

    Article  PubMed  Google Scholar 

  8. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(6 Suppl):1689S-S1696. https://doi.org/10.1093/ajcn/80.6.1689S

    Article  PubMed  Google Scholar 

  9. Hanel A, Carlberg C (2020) Vitamin D and evolution: pharmacologic implications. Biochem Pharmacol 173:113595. https://doi.org/10.1016/j.bcp.2019.07.024

    Article  Google Scholar 

  10. Bikle D, Christakos S (2020) New aspects of vitamin D metabolism and action - addressing the skin as source and target. Nat Rev Endocrinol 16(4):234–252. https://doi.org/10.1038/s41574-019-0312-5

    Article  PubMed  Google Scholar 

  11. Holick MF (2008) The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol Aspects Med 29(6):361–368. https://doi.org/10.1016/j.mam.2008.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  12. Holick MF (1981) The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J Invest Dermatol 77(1):51–58. https://doi.org/10.1111/1523-1747.ep12479237

    Article  Google Scholar 

  13. Khazai N, Judd SE, Tangpricha V (2008) Calcium and vitamin D: skeletal and extraskeletal health. Curr Rheumatol Rep 10(2):110–117. https://doi.org/10.1007/s11926-008-0020-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fleet JC (2017) The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol Cell Endocrinol 453:36–45. https://doi.org/10.1016/j.mce.2017.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Samuel S, Sitrin MD (2008) Vitamin D’s role in cell proliferation and differentiation. Nutr Rev 66(10 Suppl 2):S116–S124. https://doi.org/10.1111/j.1753-4887.2008.00094.x

    Article  PubMed  Google Scholar 

  16. Peters C, Klein K, Kabelitz D (2022) Vitamin C and Vitamin D-friends or foes in modulating γδ T-cell differentiation? Cell Mol Immunol 19(10):1198–1200. https://doi.org/10.1038/s41423-022-00895-w

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jagelavičienė E, Vaitkevičienė I, Šilingaitė D, Šinkūnaitė E, Daugėlaitė G (2018) The relationship between vitamin D and periodontal pathology. Medicina (Kaunas) 54(3):45. https://doi.org/10.3390/medicina54030045

    Article  PubMed  Google Scholar 

  18. Alzahrani AAH, Alharbi RA, Alzahrani MSA, Sindi MA, Shamlan G, Alzahrani FA, Albanghali MA, Sindi AAA (2021) Association between periodontitis and vitamin D status: a case-control study. Saudi J Biol Sci 28(7):4016–4021. https://doi.org/10.1016/j.sjbs.2021.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  19. Krall EA, Wehler C, Garcia RI, Harris SS, Dawson-Hughes B (2001) Calcium and vitamin D supplements reduce tooth loss in the elderly. Am J Med 111(6):452–456. https://doi.org/10.1016/s0002-9343(01)00899-3

    Article  PubMed  Google Scholar 

  20. Gutierrez Gossweiler A, Martinez-Mier EA (2020) Chapter 6: vitamins and oral health. Monog Oral Sci 28:59–67. https://doi.org/10.1159/000455372

    Article  Google Scholar 

  21. Nebel D, Svensson D, Arosenius K, Larsson E, Jönsson D, Nilsson BO (2015) 1α,25-dihydroxyvitamin D3 promotes osteogenic activity and downregulates proinflammatory cytokine expression in human periodontal ligament cells. J Periodontal Res 50(5):666–673. https://doi.org/10.1111/jre.12249

    Article  PubMed  Google Scholar 

  22. Marian D, Rusu D, Stratul SI, Calniceanu H, Sculean A, Anghel A (2019) Association of vitamin D receptor gene polymorphisms with chronic periodontitis in a population in Western Romania. Oral Health Prev Dent 17(2):157–165. https://doi.org/10.3290/j.ohpd.a39738

    Article  PubMed  Google Scholar 

  23. Wang X, Wang H, Zhang T, Cai L, Kong C, He J (2020) Current knowledge regarding the interaction between oral bone metabolic disorders and diabetes mellitus. Front Endocrinol 11:536. https://doi.org/10.3389/fendo.2020.00536

    Article  Google Scholar 

  24. Botelho J, Lyra P, Proença L, Godinho C, Mendes JJ, Machado V (2020) Relationship between blood and standard biochemistry levels with periodontitis in Parkinson’s disease patients: data from the NHANES 2011–2012. J Per Med 10(3):69. https://doi.org/10.3390/jpm10030069

    Article  Google Scholar 

  25. Tonetti MS, Greenwell H, Kornman KS (2018) Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Clin Periodontol 45(Suppl 20):S149–S161. https://doi.org/10.1111/jcpe.12945

    Article  PubMed  Google Scholar 

  26. Barbe AG, Javadian S, Rott T, Scharfenberg I, Deutscher HCD, Noack MJ, Derman SHM (2020) Objective masticatory efficiency and subjective quality of masticatory function among patients with periodontal disease. J Clin Periodontol 47(11):1344–1353. https://doi.org/10.1111/jcpe.13364

    Article  PubMed  Google Scholar 

  27. Jepsen S, Suvan J, Deschner J (2020) The association of periodontal diseases with metabolic syndrome and obesity. Periodontology 2000 83(1):125–153. https://doi.org/10.1111/prd.12326

    Article  PubMed  Google Scholar 

  28. Sanz M, Del Castillo AM, Jepsen S, Gonzalez-Juanatey JR, D'Aiuto F, Bouchard P, Chapple I, Dietrich T, Gotsman I, Graziani F, Herrera D, Loos B, Madianos P, Michel JB, Perel P, Pieske B, Shapira L, Shechter M, Tonetti M, Vlachopoulos C, ... Wimmer G (2020) Periodontitis and cardiovascular diseases. Consensus Report. Glob Heart 15(1): 1. https://doi.org/10.5334/gh.400

  29. Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, Taylor R (2012) Periodontitis and diabetes: a two-way relationship. Diabetologia 55(1):21–31. https://doi.org/10.1007/s00125-011-2342-y

    Article  PubMed  Google Scholar 

  30. Isola G (2020) The impact of diet, nutrition and nutraceuticals on oral and periodontal health. Nutrients 12(9):2724. https://doi.org/10.3390/nu12092724

    Article  PubMed  PubMed Central  Google Scholar 

  31. Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Almas K (2016) The role of nutrition in periodontal health: an update. Nutrients 8(9):530. https://doi.org/10.3390/nu8090530

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y (2022) Osteoporosis and alveolar bone health in periodontitis niche: a predisposing factors-centered review. Cells 11(21):3380. https://doi.org/10.3390/cells11213380

    Article  PubMed  PubMed Central  Google Scholar 

  33. Laky M, Bertl K, Haririan H, Andrukhov O, Seemann R, Volf I, Assinger A, Gruber R, Moritz A, Rausch-Fan X (2017) Serum levels of 25-hydroxyvitamin D are associated with periodontal disease. Clin Oral Invest 21(5):1553–1558. https://doi.org/10.1007/s00784-016-1965-2

    Article  Google Scholar 

  34. Zhang P, Zhang W, Zhang D, Wang M, Aprecio R, Ji N, Mohamed O, Li Y, Ding Y, Wang Q (2018) 25-Hydroxyvitamin D3 -enhanced PTPN2 positively regulates periodontal inflammation through the JAK/STAT pathway in human oral keratinocytes and a mouse model of type 2 diabetes mellitus. J Periodontal Res 53(3):467–477. https://doi.org/10.1111/jre.12535

    Article  PubMed  Google Scholar 

  35. Olszewska-Czyz I, Firkova E (2022) Vitamin D3 serum levels in periodontitis patients: a case-control study. Medicina (Kaunas) 58(5):585. https://doi.org/10.3390/medicina58050585

    Article  PubMed  Google Scholar 

  36. Balachandar R, Pullakhandam R, Kulkarni B, Sachdev HS (2021) Relative efficacy of vitamin D2 and vitamin D3 in improving vitamin d status: systematic review and meta-analysis. Nutrients 13(10):3328. https://doi.org/10.3390/nu13103328

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tripkovic L, Wilson LR, Hart K, Johnsen S, de Lusignan S, Smith CP, Bucca G, Penson S, Chope G, Elliott R, Hyppönen E, Berry JL, Lanham-New SA (2017) Daily supplementation with 15 μg vitamin D compared with vitamin D to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: a 12-wk randomized, placebo-controlled food-fortification trial. Am J Clin Nutr 106(2):481–490. https://doi.org/10.3945/ajcn.116.13869323

    Article  PubMed  Google Scholar 

  38. JJones KS, Assar S, Harnpanich D, Bouillon R, Lambrechts D, Prentice A, Schoenmakers I (2014) 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype. J Clin Endocrinol Metab 99(9):3373–3381. https://doi.org/10.1210/jc.2014-1714

    Article  Google Scholar 

  39. Holick MF (2017) The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord 18(2):153–165. https://doi.org/10.1007/s11154-017-9424-1

    Article  PubMed  Google Scholar 

  40. Calvo MS, Babu US, Garthoff LH, Woods TO, Dreher M, Hill G, Nagaraja S (2013) Vitamin D2 from light-exposed edible mushrooms is safe, bioavailable and effectively supports bone growth in rats. Osteoporos Int 24(1):197–207. https://doi.org/10.1007/s00198-012-1934-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the CDC for collecting the publicly available NHANES database.

Funding

This work was supported by the Basic and Clinical Cooperative Research Promotion Program of Anhui Medical University (2021xkjT038), the 2022 Disciplinary Construction Project in the School of Dentistry, Anhui Medical University (2022xkfyhz09), and the National Natural Science Foundation of China (82201026).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantial contributions to the conception and design of the study. Xiaoyun Liu collected the data, wrote the manuscript, and revised it critically. Bichong Dai and Menglin Hu assisted Yuanyuan Chuai with data analyses and data interpretation. Hengguo Zhang was involved in designing the study and revising the manuscript critically. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hengguo Zhang.

Ethics declarations

Ethics approval

The studies involving human participants were approved by the institutional review board of the National Center for Health Statistics, CDC, and were conducted in accordance with the Helsinki Declaration of 1975, as revised in 2013. The patients/participants provided their written informed consent to participate in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaoyun Liu, Bichong Dai, and Yuanyuan Chuai are the co-first authors of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 154 KB)

Supplementary file2 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Dai, B., Chuai, Y. et al. Associations between vitamin D levels and periodontal attachment loss. Clin Oral Invest 27, 4727–4733 (2023). https://doi.org/10.1007/s00784-023-05100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05100-4

Keywords

Navigation