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Abstract
Objectives Due to advancing digitalisation, it is of interest to develop standardised and reproducible fully automated analysis 
methods of cranial structures in order to reduce the workload in diagnosis and treatment planning and to generate objectifiable 
data. The aim of this study was to train and evaluate an algorithm based on deep learning methods for fully automated detec-
tion of craniofacial landmarks in cone-beam computed tomography (CBCT) in terms of accuracy, speed, and reproducibility.
Materials and methods A total of 931 CBCTs were used to train the algorithm. To test the algorithm, 35 landmarks were 
located manually by three experts and automatically by the algorithm in 114 CBCTs. The time and distance between the 
measured values and the ground truth previously determined by an orthodontist were analyzed. Intraindividual variations in 
manual localization of landmarks were determined using 50 CBCTs analyzed twice.
Results The results showed no statistically significant difference between the two measurement methods. Overall, with a 
mean error of 2.73 mm, the AI was 2.12% better and 95% faster than the experts. In the area of bilateral cranial structures, 
the AI was able to achieve better results than the experts on average.
Conclusion The achieved accuracy of automatic landmark detection was in a clinically acceptable range, is comparable in 
precision to manual landmark determination, and requires less time.
Clinical relevance Further enlargement of the database and continued development and optimization of the algorithm may 
lead to ubiquitous fully automated localization and analysis of CBCT datasets in future routine clinical practice.
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Introduction

Artificial intelligence (AI) deals with the understanding and 
imitation of human behavior. The aim is to cope with com-
plex tasks and problems, as well as to automate object and 
word recognition [1].

The literature review shows that many disciplines in 
medicine are increasingly recognizing the benefits of AI 

for optimizing everyday work and are conducting more and 
more research on it [2–4].

Since orthodontists and oral and maxillofacial surgeons 
have a large clinical image database in the form of X-ray 
diagnostics, the use of AI in these specialties is of particu-
larly great interest.

Through cephalometric measurements based on radio-
graphs, oral and maxillofacial surgeons and orthodontists can 
analyze patient-specific jaw and skull geometry to diagnose 
craniofacial deformities, infer norm deviations, plan treatment, 
and simulate the outcome of potential surgery in advance [5–7].

Modern cone-beam computed tomography (CBCT) is a 
newer radiographic technique for imaging three-dimensional 
(3D) reconstructions and slice images.

Due to numerous limitations of two-dimensional (2D) radi-
ographs, such as superimposition and distortion of anatomical 
structures and unequal magnification of bilateral structures, 
CBCT imaging is an increasingly common analytical tool in 
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medicine and dentistry and, thus, a recent alternative for imag-
ing cranial structures [8]. The diagnostic accuracy of CBCTs 
in dentistry has been widely investigated. The literature has 
shown that the detection rate of pathologies was significantly 
higher compared with conventional radiography and that ceph-
alometric evaluation is accurate [9, 10].

A major disadvantage of cephalometric analysis when 
using CBCT images is that positioning anatomical landmarks 
in three slice planes is a more time-consuming procedure than 
conventional lateral cephalometric radiographs. In addition, 
the reproducibility of cephalometric analyses can vary from 
one physician to another and depends on medical expertise and 
the definition of landmarks [8, 11]. Cephalometric landmarks 
imaged by overlays in 2D projections are difficult to determine 
in 3D views.

Therefore, there have been increasing efforts to implement a 
fully automated landmarking system in routine clinical practice 
to assist clinicians by reducing the workload, which can poten-
tially reduce errors and achieve more consistent results [12–21].

One of the central areas of AI is machine learning (ML). 
By repeatedly recognizing certain patterns, corresponding 
algorithms can be developed, and thus, decision-making can 
be made [22].

Deep learning is a particular type of ML that uses artificial 
neural networks and is a method of creating AI [2].

Artificial neural networks are highly interconnected net-
works of computer processors that are inspired by biological 
nervous systems [1]. The performance of convolutional neural 
networks (CNNs) depends on the number and quality of the 
available training datasets [23].

Whereas other fields of medicine have used a few thousand 
training datasets for the development of AI-based algorithms 
for automatic landmark positioning [24], recent research has 
investigated algorithms for automatic localization of cepha-
lometric landmarks using significantly fewer image samples 
[12–21] .

The aim of the present study was to evaluate a novel algo-
rithm regarding its applicability for the task of automatically 
detecting landmarks in large CBCT datasets and the accuracy 
in comparison to manually placed landmarks.

In addition to detecting cephalometric landmarks in CBCT 
datasets, we were interested in localizing the inferior alveolar 
nerve in the mandibular osteotomy line to minimize one of 
the main risks of mandibular bilateral sagittal split osteotomy 
(BSSO) and inferior alveolar nerve injury [25].

Materials and methods

Software and automatic landmark prediction

The newly developed software from the company Densi-
lia® (Munich, Germany) that can be used for the automatic 

localization of craniofacial landmarks was implemented in 
the programming language Python. With this software, it 
was possible to visualize CBCT datasets and locate land-
marks in three planes (coronal, sagittal and axial) manu-
ally and automatically.

The algorithm we studied is based on deep learning. 
In general, Densilia® uses a three-stage model with volu-
metric segments of different sizes. Each stage is build on 
the same architecture of the 3D U-Net algorithm. At each 
stage, an immense amount of information is collected 
about specific features of the craniofacial points in differ-
ent layers and processed in connection points. At the first 
stage, the original image is represented by a volumetric 
segment of size 128×128×128 voxels and trained for 120 
epochs. In this stage, rough positions of landmarks are first 
determined, which are then localized more precisely in the 
following two refinement stages. For this purpose, in step 
2, the original image is scaled to 256×256×256 voxels and 
a section of 128×128×128 voxels is created around the 
respective rough position of the landmark from stage 1. In 
total, the algorithm is trained for 20 epochs at stage 2. By 
scaling down, the volume extracts are divided into smaller 
and smaller resolutions and the localization becomes more 
and more accurate. In stage 3, a volume of 128×128×128 
voxels around the position of each landmark predicted in 
stage 2 is again extracted from the original CBCT, and 
new predictions are made for the landmarks. The inputs of 
each stage (and the outputs) are different and range from 
a general coarse to a specific accurate localization of the 
craniofacial landmarks. In this way, the maximum output 
of the CNN can be achieved. Better resolution and more 
precise localization of the landmarks than at stage 3 is no 
longer possible.

Dataset

All CBCT datasets used in the current study were acquired 
between 2013 and 2020 in the Department of Oral and 
Maxillofacial Surgery. The CBCT datasets were collected 
retrospectively. Patient data were blinded; only age and 
sex were recorded. The CBCTs of 620 female (59.3%) and 
425 male (40.7%) patients with an average age of 37.1 ± 
19.7 years were analyzed. CBCT scans were acquired in 
DICOM (Digital Imaging and Communications in Medi-
cine) format with the Galileos® Comfort Plus, Dentsply 
Sirona (Bensheim, Germany); the examinations were per-
formed at 5 mA and 98 KV, with an effective radiation 
time of 14 s. The axial slice thicknesses was 0.287 mm 
and 0.250 mm, with isotropic voxels of 512×512×512 and 
616×616×616. The inclusion criteria for the CBCT data-
sets were a large field of view (15.4 cm) and images with 
high morphologic variation and variability. The exclusion 
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criteria were a poor resolution and CBCT images of 
patients with fractures, malformations, and visibly per-
formed previous operations. In total, 156 CBCTs were 
excluded from a pool of 1201 CBCTs because of insuf-
ficient quality in terms of physical and diagnostic image 
quality. The datasets of 1045 CBCTs were split training, 
validation, and test set at a ratio of 8:1:1.

Of the analyzed CBCTs, 89% were used for training and 
validation and 11% for testing the algorithm.

Four independent orthodontists who were experts in 
their field participated in the study and helped train and 
validate the software with 931 (89%) different CBCT 
datasets. The collection and use of data were approved 
by the Institutional Ethics Committee of the Faculty of 
Medicine (EK 217/22).

Landmarks

In the present study, 35 landmarks were selected from the 
hard tissue of the skull in each of the 1045 CBCT images to 
evaluate the manual precision of the experts and software 
for automatic landmark determination.

The landmarks varied in their difficulty of identification 
and represented midsagittal and bilateral anatomical fea-
tures. Seven of the landmarks were located in the median 
plane, while 14 were distributed on the right and left sides 
of the maxilla, mandible, and midface.

The landmarks at different locations had, on average, very 
different localization errors. Therefore, the landmarks were 
divided into three categories:

(1) Landmarks in the midsagittal plane of the skull (median 
landmarks)

(2) Landmarks in the region of the bilateral cranial struc-
tures (bilateral landmarks)

(3) Landmarks in the region of the osteotomy line of a 
bilateral sagittal mandibular split (osteotomy land-
marks)

A detailed description of the landmark definitions is given 
in Table 1.

Testing dataset and ground truth

To test the new software, 114 CBCTs (11%) of the 1045 
CBCTs were randomly selected.

All 114 CBCTs were analyzed by three of the four experts 
in a random order.

The ground truth (GT) was labeled and based on the 
analysis of the fourth expert, who had more than 6 years of 
clinical and theoretical experience in cephalometry.

All four experts were experienced orthodontists and 
worked independently in their own private office or at a 
university.

To investigate the reproducibility of the manual land-
mark detection and, thus, the intraindividual variation of 
the individual experts, 50 CBCT datasets were unknowingly 
analyzed twice.

Manual landmark identification

Before the viewing sessions, each expert received verbal 
and practical instructions and was trained in the use of five 
CBCT scans, which were not included in the present study.

CBCT datasets were displayed in a three-panel window 
containing sagittal, axial, and coronal multiplanar (MPR) 
views.

Independently and using the software, all four experts 
plotted landmarks using a graphical cursor at three dif-
ferent planes (sagittal, axial, coronal) of a CBCT dataset. 
Each landmark generated three coordinates in the x-, y-, and 
z-axes (Figures 1, 2, and 3).

Image enhancement features, such as zoom in/out and 
changes of brightness and contrast, were available for find-
ing the landmarks more accurately.

Statistical evaluation

Novel AI-based software for automatically locating land-
marks in the CBCT datasets was tested for accuracy, speed, 
and reproducibility of results.

To evaluate the accuracy of the software in automatically 
detecting the landmarks, the GT was compared with the 
coordinates generated by the algorithm and with the mean 
values of three experts.

To compare CBCTs with different resolutions, pixels 
were converted to millimeters (mm).

Here, 0.25 mm was the pixel spacing in images with a 
resolution of 616×616×616, and 0.287 mm was the pixel 
spacing in images with a resolution of 512×512×512.

If multiple labels were available for an image, then only 
the first label was used because using the average of multiple 
labels would artificially reduce the errors and would not be 
representative of the real scenario.

The mean values were calculated for each landmark of 
manual and automatic detection, and the distance to GT was 
measured as an error in three spatial planes. The distance 
of the coordinates from the GT corresponded to the length 
of the shortest vector in space. The coordinates of each 
landmark were analyzed using SciPy (Python-based open-
source software environment) analysis. Because the Shap-
iro-Wilk test did not indicate a normal distribution of the 
data, a comparison between human and machine accuracy 
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at 114 different CBCTs was performed using the Wilcoxon 
matched-pairs signed-rank test. The Wilcoxon matched-
pairs signed-rank test compared the AI with the mean of 

the three experts as paired samples of a non-normally dis-
tributed dataset. For Figure 4, the software GraphPad Prism 
9.4.1 was used.

Table 1  Definition used for 3D landmarks

No. Landmark Abbreviation Definition

1 Nasion n Most anterior located point of the sutura nasofrontalis.
2 Sella s Bone structure on the inner side of the Os sphenoidale, which divides the middle cranial 

fossa in the median plane.
3 Pogonion p Most anterior point of the bony chin in the median plane.
4 A- Point a Most dorsal point of the anterior maxilla.
5 B-Point b Most dorsal point of the anterior mandible.
6 Spina nasalis anterior spa Most anterior located point at the junction of the right and left maxillary bones.
7 Spina nasalis posterior spp Most dorsal located point at the junction of the right and left maxillary bones.
8 Condylus cranial right c_cran_r Most cranial point of the right caput mandibulae.
9 Condylus dorsal right c_dors_r Most dorsal point of the distal contour of the caput mandibulae right.
10 Ramus ascendens dorsal right r_dors_r Most anterior point of the processus angularis at the posterior margin of the ascending 

branch of the mandible on the right, directly below the caput mandible.
11 Tangent point P right tg_p_r Most posterior point of the processus angularis at the posterior margin of the ascending 

branch of the mandible on the right.
12 Tangent point A right tg_a_r Most caudal point of the processus angularis at the lower edge of the horizontal branch 

of the mandible on the right.
13 Menton right m_r Most anterior and inferior midpoint of the chin on the outline of the mandibular sym-

physis right.
14 Foramen mentale right fmen_r Hole located above the apex of the second premolar right. Entry point of the mental 

nerve from the mandibular canal right.
15 Mandibular foramen right fman_r Hole on the inner side of the ascending branch of the mandible right. Entry point of the 

nervus alveolaris inferior into the canalis mandibluae right.
16 Canalis mandibularis buccal right cm_bucc_r Most buccal point of the mandibular canal in the osteotomy line on the right.
17 Canalis mandibularis lingual right cm_ling_r Most lingual point of the mandibular canal in the osteotomy line on the right
18 Canalis mandibularis caudal right cm_cau_r Most caudal point of the mandibular canal in the osteotomy line on the right.
19 Osteotomy point buccal right ost_bucc_r Most buccal point of the mandible in the osteotomy line on the right.
20 Osteotomy point lingual right ost_ling_r Most lingual point of the mandible in the osteotomy line on the right.
21 Osteotomy point caudal right ost_cau_r Most caudal point of the mandible in the osteotomy line on the right.
22 Condylus cranial left c_cran_l Most cranial point on the left caput mandibulae.
23 Condylus dorsal left c_dors_l Most dorsal point of the distal contour of the caput mandibulae left.
24 Ramus ascendens dorsal left r_dors_l Most anterior point of the processus angularis at the posterior margin of the ascending 

branch of the mandible on the left, directly below the caput mandible.
25 Tangent point P left tg_p_l Most posterior point of the processus angularis at the posterior margin of the ascending 

branch of the mandible on the left.
26 Tangent point A left tg_a_l Most caudal point of the processus angularis at the lower edge of the horizontal branch 

of the mandible on the left.
27 Menton left m_l Most anterior and inferior midpoint of the chin on the outline of the mandibular sym-

physis left.
28 Foramen mentale left fmen_l Hole located above the apex of the second premolar left. Entry point of the mental nerve 

from the mandibular canal left.
29  Mandibular foramen left fman_l Hole on the inner side of the ascending branch of the mandible left. Entry point of the 

nervus alveolaris inferior into the canalis mandibluae left.
30 Canalis mandibularis buccal left cm_bucc_l Most buccal point of the mandibular canal in the osteotomy line on the left.
31 Canalis mandibularis lingual left cm_ling_l Most lingual point of the mandibular canal in the osteotomy line on the left.
32 Canalis mandibularis caudal left cm_cau_l Most caudal point of the mandibular canal in the osteotomy line on the left.
33 Osteotomy point buccal left ost_bucc_l Most buccal point of the mandible in the osteotomy line on the left.
34 Osteotomy point lingual left ost_ling_l Most lingual point of the mandible in the osteotomy line on the left.
35 Osteotomy point caudal left ost_cau_l Most caudal point of the mandible in the osteotomy line on the left.
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Fig. 1  Sample of a CBCT image with median landmarks in coronal (A), sagittal (B), and axial (C) MPR view; red landmarks: GT; lime, green, 
yellow landmarks: experts 1, 2, 3; blue landmarks: AI

Fig. 2  Sample of a CBCT image with paramedian landmarks in coronal (A), sagittal (B), and axial (C) MPR views; red landmarks: GT; lime, 
green, yellow landmarks: experts 1, 2, 3; blue landmarks: AI

Fig. 3  Sample of CBCT image with localized landmarks in the osteotomy line of the BSSO in coronal (A), sagittal (B), and axial (C) MPR 
views; red landmarks: GT; lime, green, yellow landmarks: experts 1, 2, 3; blue landmarks: AI
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The combined error and normal combined error of the 
algorithm and three experts were determined in millimeters 
and percent.

We analyzed the significance of the results at different 
significance levels of 95%, 99%, 99.9%, and 99.99%. Hence, 
we considered a significant difference if the obtained P-val-
ues were smaller than 0.05, 0.01, 0.001, and 0.0001.

The time required by the experts to manually locate the 
landmarks was measured and compared with the speed of 
the algorithm.

A one-way ANOVA was used to determine the intraspe-
cific variance of each expert and GT. The standard deviation 
(SD) indicated how high the true error of each physician 
could be at a confidence interval (CI) of 99%.

Results

Table 2 shows both the total error in millimeters (mm) of 
the AI and landmarks manually identified by the experts for 
all landmarks combined, as well as the total error for the 
median, bilateral, and osteotomy landmarks.

The total error of all landmarks combined was 2.73 mm 
for the AI and 2.79 mm for the median experts.

The combined error in percentage shows that the experts 
made larger errors compared with the AI in 2.12% of the 
cases. The combined normal error gave a value of +0.8%.

Because the landmarks at different locations had, on aver-
age, very different localization errors, the landmarks were 
divided into three categories.

The mean error for the median points was 1.75 mm for 
the AI and 1.50 mm for the experts.

The median mean error of the osteotomy points was 3.27 
mm for the AI and 2.93 mm for the experts. The mean error 
of the landmarks in the bilateral cranial structures combined 
was 2.75 mm for the AI and 3.24 mm for the experts.

The total error in the Wilcoxon rank test, which utilized 
all evaluated landmarks, shows that there was no significant 
difference at the corresponding significance levels between 
the experts and AI (p = 0.71). In detail, none of the three 
experts significantly differed from the AI (expert 1 (p = 
0.92), expert 2 (p = 0.71), expert 3 (p = 0.88)).

Table 3 shows the errors of the three experts for each 
landmark in the median and AI, as well as the SD of both 
measurement methods. The most accurate landmark identi-
fied by the AI and experts was the mental foramen on the 
right side, with a median error of 0.88 mm (SD ± 0.42 mm) 
for the AI and total error of 0.94 mm (SD ± 0.53 mm) for 
the experts. The least accurate landmark identified by the AI 
and experts was the condyle dorsalis point on the left side, 
with a median error of 7.41 mm (SD ± 1.96 mm), which was 
similar to that of the experts who identified a total error of 
9.15 mm (SD ± 6.82 mm).

Fig. 4  Boxplot for the Euclidean distance between the coordinates of 
each landmark in (A) midsagittal plane, (B) bilateral cranial structure, 
(C) osteotomy line with manual and automatic recognition of ground 
truth. The right and left values in (B) and (C) were combined. Box, 
 25th–75th percentile; line in box, median; whiskers, 5–95 percentile; 
statistically significant differences are marked with ****p < 0.0001; 
***p < 0.001; **p < 0.01; *<0.05 ; y-axis: millimeter; x-axis: Abbre-
viations of landmarks explained in Table 1
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Figure 4 illustrates the errors again in a boxplot diagram.
There were a total of seven boxplots, as shown in Fig-

ure 4A, for the medial landmarks, which, for the AI all 
lied within a similar error range between 1.26 mm (SD ± 
0.99 mm) for the Pogonion landmark and 2.29 mm (SD ± 
1.63 mm) for the Sella landmark. The error values of the 
averaged experts were also close, between 1.29 mm (SD 
± 1.15 mm) at landmark Pogonion and 1.86 mm (SD ± 
1.58 mm) at the landmark B-point. The bilateral cranial 
structures are shown in eight boxplots in Figure 4B. The 
error values of the bilateral structures of the right and 
left sides were combined into one value. The error values 
varied widely among both the AI and experts. Although 
the landmark condyle dorsalis showed an error value of 
up to 7.32 mm (SD ± 2.26 mm) in the AI, the experts 
reached an averaged error value of even 9.01 mm (SD ± 
6.74 mm). The landmark with the smallest deviation was 
the mental foramen. The AI achieved an accuracy of up 
to 0.94 mm (SD ± 0.55 mm) and the experts an accuracy 
of 1.51 mm (SD ± 0.82 mm).

In contrast, the landmarks of the osteotomy line (Fig-
ure 4C) again showed more consistent results. Again, the 
values of the left and right sides were each combined as 
one value and, thus, have been presented in six boxplots. 
The error values for the AI ranged from 3.15 mm (SD ± 
2.11 mm) for the canalis mandibularis caudal landmark 
to 3.32 mm (SD ± 2.18 mm) for the canalis mandibularis 
lingual landmark. The experts achieved the best result 
with an error value of 2.73 mm (SD ±2.77 mm), also at 
the landmark canalis mandibularis caudal, and the worst 
result with an error value of 3.00 mm (SD ± 2.85 mm), 
here at the landmark osteotomy point lingual.

As can be seen in Table 4, the experts and GT had 
an intraindividual standard error of the mean (SEM) of 
0.6 mm for expert 1, 0.57 mm for expert 2, 0.6 mm 
for expert 3, and 0.74 mm for GT, while the AI always 
delivered the same result. With a CI of 99%, we can 
assume that the mean error in millimeters was 1.96 mm 
for GT, 1.55 mm for expert 1, 1.47 mm for expert 2, and 
1.97 mm for expert 3.

Using the CI, we calculated the percentage of landmarks 
of each CBCT image, which were better detected by the AI 
than by the three experts.

The AI was more accurate in localizing landmarks than 
manual localization by the three experts in 28.5% of the 
cases, less accurate in 23.1% of the cases, and equal in 48.4% 
of the cases.

Expert 1 took a median of time (t) = 4.8 min, expert 2 t = 
4.3 min, and expert 3 t = 4.0 min to evaluate and manually 
locate the 35 landmarks in each of the three spatial planes 
on the MPR view of a CBCT image, while the AI took 15 s 
to complete a full analysis.

Discussion

Despite the significant technical progress of CBCT devices 
in recent years and the ever-increasing amount of image 
material, fully automated analysis of CBCT datasets is still 
in its early stages.

Most of the work described in the literature on the 
development of algorithms for automatic localization 
of landmarks in the head region has been based on 3D 
image registration [15, 17], knowledge-based [16, 19], 

Table 2  Results accuracy artificial intelligence versus experts

AI, artificial intelligence; E1, expert 1; E2, expert 2; E3, expert 3: combined error in mm and % as well as the combined normal error in % of the 
artificial intelligence and the three experts for all landmarks together as well as divided into three categories (median points, osteotomy points, 
other points). Statistically significant differences are marked with ***p < 0.001; **p < 0.01; *p < 0.05

Results accuracy

AI Experts E1 E2 E3

Combined error (mm) 2.73 2.79 2.79 2.79 2.78
Combined error (%) 100% +2.1% +2.4% +2.3% +1.7%

Z=3145 p=0.71 Z=3244 p=0.92 Z=3146 p=0.71 Z=3227 p=0.88
Combined normal error (%) 100% + 0.8% +0.6% +0.8% +1%

Z=3234 p=0.9 Z=3127 p=0.67 Z=3225 p=0.88 Z=3244 p=0.92
Median points (7 points) (mm) 1.75 1.5*** 1.47*** 1.51*** 1.52**

Z=2103 Z=2035 Z=2111 Z=2273
Osteotomy points (12 points) (mm) 3.27 2.93** 2.98** 2.93* 2.89**

Z=2340 Z=2331 Z=2398 Z=2332
Other points (16 points) (mm) 2.75 3.24*** 3.23*** 3.25*** 3.24***

Z=1702 Z=1763 Z=1760 Z=1711
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learning-based [12, 14, 21], or hybrid learning- and 
knowledge-based approaches [18, 20]. The performance 
of an algorithm based on knowledge-based or registration-
based methods can be questioned in the case of severely 
deformed skulls. Although the learning-based image reg-
istration method is sensitive to anatomical variations, the 
knowledge-based method has limitations in detecting the 
landmarks on curved structures. Therefore, in the present 
study, an innovative learning-based algorithm for the fully 
automatic detection of craniofacial landmarks in CBCT 
scans was investigated, presented, and evaluated in terms 
of accuracy, reproducibility, and speed.

The outcome of the learning-based approach correlated 
with the number, accuracy, and variability of the CBCT 
images included in the training set. Although we used 931 
different CBCTs to train and validate the algorithm, compa-
rable studies did not specify the training dataset [14–16, 18, 
21]. Furthermore, studies on the automatic localization of 
landmarks in CBCT datasets have often been limited in their 
representativeness and accuracy because of the representa-
tion of the CBCT images, a small test dataset, and a selective 
choice of landmarks.

Unlike other studies [17], we chose to use a multipla-
nar view to display CBCT images because research by de 
Oliveira et al. showed that using constructed three-dimen-
sional images from CBCT datasets alone can lead to errors 
in landmark location, which appear to be minimized by 
using multiplanar images [10].

With the exception of a recent study by Ghowsi et al. 
[21], which investigated an algorithm using 53 different 
landmarks in 100 CBCT scans, the maximum test dataset 
of comparable studies was 1–30 CBCT scans and 9–21 land-
marks to be identified [12–20], some of which were local-
ized only on the mandible [12] or midsagittal plane of the 
skull [14] and defined differently. In addition, some stud-
ies used the same datasets for training and testing, so their 
results are not necessarily comparable to our study [12, 13, 
17]. The overall mean error of all automatically determined 
landmarks was 2.79 mm, which is well below the clinically 
acceptable error of up to 4 mm reported in previous publica-
tions [26]. It should be noted that this value was based on 
automatic detection of landmarks in 2D lateral radiographs 
and that the limit of acceptable error for 3D radiographs has 
not yet been evaluated [27–30].

Comparing the error of our method to the mean errors of 
the state of the art [12–21], which have ranged from 1.88 
mm (SD ± 1.10 mm) in publications by Neelapu et al. [19] 
to 3.4 mm in Shadidi et al. [15], we have found that the accu-
racy of the landmarks all fell within a similar error range.

Because we found in our results that landmarks at differ-
ent locations of the skull, on average, had very different error 
values, we not only examined the overall accuracy and the 
individual accuracy of each landmark, but we also divided 

Table 3  Overall performance of AI (artificial intelligence) and 
experts: mean absolute error (mm) of all landmarks with SD

Landmarks Mean AI SD AI (±) Mean experts SD experts (±)

n 2.13 2.53 1.44 1.07
s 2.29 1.63 1.83 1.00
p 1.26 0.99 1.29 1.15
a 1.88 3.42 1.34 0.88
b 1.56 1.40 1.86 1.58
spa 1.47 1.20 1.36 0.83
spp 1.70 2.30 1.35 1.08
c_cran_r 1.55 1.10 1.77 1.24
c_dors_r 7.23 2.56 8.87 6.66
r_dors_r 2.08 1.23 2.61 1.59
tg_p_r 2.02 1.40 2.14 1.48
tg_a_r 3.53 2.42 4.14 2.73
m_r 2.77 1.90 3.53 2.75
fmen_r 0.88 0.42 0.94 0.53
fman_r 1.54 0.98 1.62 1.05
cm_bucc_r 3.00 2.20 2.64 2.72
cm_ling_r 3.16 2.32 2.75 2.79
cm_cau_r 3.05 2.09 2.48 2.60
ost_bucc_r 3.14 2.27 2.74 2.71
ost_ling_r 3.12 2.34 2.75 2.70
ost_cau_r 3.14 2.19 2.75 2.69
c_cran_l 1.55 0.99 1.72 1.04
c_dors_l 7.41 1.96 9.15 6.82
r_dors_l 2.08 1.43 2.49 1.62
tg_p_l 2.21 1.57 2.36 1.74
tg_a_l 3.40 2.37 4.10 2.71
m_l 2.80 1.88 3.36 2.55
fmen_l 1.01 0.69 1.14 1.11
fman_l 1.97 1.67 1.95 1.28
cm_bucc_l 3.52 2.23 3.11 3.02
cm_ling_l 3.49 2.05 3.21 3.04
cm_cau_l 3.25 2.13 2.99 2.95
ost_bucc_l 3.49 2.10 3.26 3.06
ost_ling_l 3.40 2.00 3.26 3.01
ost_cau_l 3.46 2.19 3.24 2.97

Table 4  Intravariability of artificial intelligence, ground truth, and 
experts

SEM, standard error of the mean; CI 99%, confidence interval 99%; 
and CI 99.9%, confidence interval 99.9% of AI (artificial intelli-
gence), GT (ground truth), and three experts (E1, E2, E3)

Dataset SEM CI 99% CI 99.9%

AI ± 0 mm 0 mm 0 mm
GT ± 0.76 mm 1.96 mm 2.5 mm
E1 ± 0.60 mm 1.55 mm 1.97 mm
E2 ± 0.57 mm 1.47 mm 1.88 mm
E3 ± 0.60 mm 1.55 mm 1.97 mm
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them into three categories (median landmarks, bilateral land-
marks, and osteotomy landmarks).

On average, the error value for median landmarks was 
1.5 mm smaller than the error of the landmarks in bilateral 
cranial structures, which may be attributed to landmarks 
more difficult to define and localize. The median landmarks 
achieved a localization accuracy of 1.75 mm on average, 
which can be considered clinically correct according to the 
literature [26].

The literature has mainly described studies dealing with 
cephalometric landmarks.

We also investigated landmarks in the osteotomy line of 
a bilateral sagittal split of the mandible based on Obwegeser 
Dal-Pont, modified from Hunsuck Epker [31].

To reduce the risk of intraoperative iatrogenic damage 
to the inferior alveolar nerve in BSSO, it is critical for the 
surgeon to know the location of the nerve in the osteotomy 
line in the planning phase of dysgnathia surgery. With our 
study, we have pioneered a method for this. Although AI 
performed better in detecting landmarks in the midsagittal 
plane of the skull and bilateral cranial structures compared 
with experts, it showed a worse result in detecting landmarks 
in the osteotomy line of a bilateral sagittal mandibular split.

In general, the experts’ errors depended on individual 
experience, perceptual abilities, and differences in the 
effort required to localize landmarks [8, 32]. It is these three 
parameters that play an even greater role in the localization 
of landmarks on a defined but imaginary line, as they are 
considered very difficult to evaluate.

Due to the difficulty of localization, osteotomy landmarks 
have a high standard deviation. When the AI is trained with 
high variance data, there may be inaccuracies in the AI’s 
identification of these points.

In automatic generation, the landmark with the lowest 
error was the mental foramen, with an overall average error 
of 0.87 mm (SD ± 0.42 mm). This landmark can be accu-
rately defined anatomically, allowing for less individual 
interpretation. The landmarks with the largest errors were 
mainly located in the mandibular region. One explanation 
for this could be that the mandible was statistically one of 
the most morphologically variable cranial bones [31]. The 
landmark condyle dorsalis shows that experts do not fully 
agree on the localization of landmarks. The SD was very 
high for the experts at ± 6.74 mm, while the AI gave a more 
consistent result, with a SD of only ± 2.26 mm, without any 
significance. As noted by Gupta et al., the identification of 
the mandibular condyle can be difficult because of its unique 
contour and shape, and landmarks located on a long, wide 
anatomical surface or on a protrusion of a curvature are sub-
jective and difficult to find [16].

A single analysis of the 114 CBCT images by each of the 
three experts allowed for only a relative evaluation of each 
expert’s performance and a comparison with the AI. If the 

analysis of a CBCT dataset by the same expert was repeated 
several times, the variables would appear in the analysis. 
Although some studies in the literature only considered the 
error score obtained, our study has also examined the indi-
vidual errors of each expert. By calculating the intraindi-
vidual variance of each expert, not only was the error value 
of the expert, but also the error of the AI, put into perspec-
tive. SEM and CI indicated how high the “true error” of the 
expert’s performance could be based on the available data. 
On average, the experts showed an intraindividual variance 
with a SEM of up to 0.6 mm, while the AI allowed an invari-
ant analysis of the structures.

One of the major difficulties in superimposing CBCT 
images to monitor progress in treatment was to reliably 
reproduce the reference planes [33]. By using an automatic 
analysis based on objectifiable criteria, the reference planes 
can be consistently recognized. This may lead to a more reli-
able treatment prognosis and better control of the progress 
of treatment.

The manual localization of landmarks requires a lot of 
time, leading to clinicians’ visual tiredness. The automatic 
algorithm found the 35 landmarks on average were 95% 
faster than the experts, hence providing a reduction in clini-
cal workload.

Another clinically relevant topic is that many clinicians 
are overloaded with the amount of additional information 
provided by 3D diagnostics compared with 2D diagnostics, 
presenting them with major challenges in analysis and treat-
ment planning. Automating the analysis of 3D diagnostics 
opens up a wide field of diagnostics and makes them more 
accessible to clinicians, favoring the shift from 2D to 3D 
imaging in everyday clinical practice.

Although the algorithm evaluated in the current study has 
provided a valuable method for fully automated localization 
of craniofacial landmarks on CBCT images, the study has 
potential for discussion regarding methodology. The GT on 
which the algorithm was tested was based on the knowledge 
of a single orthodontist derived from human anatomy. At this 
stage, there is no technology that can accurately determine 
the position of the landmark. Until then, we must rely on the 
human eye of an expert as the gold standard. One possibility 
would be to retest the algorithm using the averaged values of 
several experts. However, this would require an enormous 
amount of organization and time because several experts 
would have to label the entire dataset in a consilium.

Previous studies have found that the accuracy of an AI-based 
algorithm correlates with the size of the dataset. The larger the 
amount of data, the more accurate the algorithm [32].

Based on our experience from previous studies, the 
amount of data that we used in the present study was 
just above the threshold to allow for sufficiently effec-
tive AI training. This finding was more pronounced for 
landmarks at the edge of the image, as the AI had more 
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difficulties to detect landmarks in these areas. However, 
there is no well-defined threshold for sufficient accu-
racy, as this does not only depend on the amount of 
data, but also the quality of the ground truth data as 
well as the required accuracy for the intended purpose. 
The recruitment of large-volume CBCT datasets was 
not straightforward because of the limited use of CBCT 
scans in routine clinical practice. Standard routine diag-
nostics still include 2D lateral radiographs because these 
are associated with a lower radiation dose to the patient, 
which is especially a major concern in pediatric patients. 
CBCT is recommended as a complementary diagnostic 
method for certain indications that facilitate treatment 
planning based on 3D imaging [8]. Consideration should 
be given to adding datasets from different international 
centers to both expand the training, validation, and test-
ing set and test the algorithm on skull morphologies of 
different ethnicities.

Conclusion

Except for a few landmarks, the presented learning-
based algorithm generated clinically acceptable mean 
error distances and, thus, can lead to a validation and, if 
necessary, correction of the individually made assess-
ment based on objective criteria. The system-immanent 
comparison with the existing database increased repro-
ducibility and, thus, can possibly lead to more reliable 
and faster diagnoses in the future, though further devel-
opment is necessary.

We believe that the investigated algorithm has the 
potential to advance the fully automated analysis of crani-
ofacial landmarks in CBCT images.
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