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Abstract
Objective  To qualitatively and quantitatively assess integrated segmentation of three convolutional neural network (CNN) 
models for the creation of a maxillary virtual patient (MVP) from cone-beam computed tomography (CBCT) images.
Materials and methods  A dataset of 40 CBCT scans acquired with different scanning parameters was selected. Three previ-
ously validated individual CNN models were integrated to achieve a combined segmentation of maxillary complex, maxillary 
sinuses, and upper dentition. Two experts performed a qualitative assessment, scoring-integrated segmentations from 0 to 10 
based on the number of required refinements. Furthermore, experts executed refinements, allowing performance comparison 
between integrated automated segmentation (AS) and refined segmentation (RS) models. Inter-observer consistency of the 
refinements and the time needed to create a full-resolution automatic segmentation were calculated.
Results  From the dataset, 85% scored 7–10, and 15% were within 3–6. The average time required for automated segmentation 
was 1.7 min. Performance metrics indicated an excellent overlap between automatic and refined segmentation with a dice 
similarity coefficient (DSC) of 99.3%. High inter-observer consistency of refinements was observed, with a 95% Hausdorff 
distance (HD) of 0.045 mm.
Conclusion  The integrated CNN models proved to be fast, accurate, and consistent along with a strong interobserver con-
sistency in creating the MVP.
Clinical relevance  The automated segmentation of these structures simultaneously could act as a valuable tool in clinical ortho-
dontics, implant rehabilitation, and any oral or maxillofacial surgical procedures, where visualization of MVP and its relationship 
with surrounding structures is a necessity for reaching an accurate diagnosis and patient-specific treatment planning.
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Introduction

One of the recent trends for diagnostics and pre-surgical 
planning in orthodontics, orthognathic surgery, and oral 
implant placement has been the introduction of simpli-
fied digital workflows [1]. The solid basis of such work-
flows can often be accomplished by three-dimensional 
(3D) imaging, mainly cone-beam computed tomography 
(CBCT), which offers volumetric anatomical data of oro-
facial structures.

Segmentation of the imaging data acquired from CBCT 
is essential for generating 3D models of patient-specific 
anatomical structures, which is a prerequisite for virtual 
treatment planning and 3D manufacturing [1]. However, 
current segmentation techniques, either manual or semi-
automatic, are time-consuming, suffer from human vari-
ability, and are hampered by metal and motion artifacts 
[2]. Besides, segmentation of CBCT images requires more 
time than traditional multi-slice computed tomography 
(MSCT), as MSCT images have a superior contrast reso-
lution and lower noise which facilitate achieving a time-
efficient segmentation [2–4]. Nevertheless, CBCT acts 
as the modality of choice in oral healthcare, considering 
its low cost, relatively lower dose, and increased acces-
sibility [2, 5].

Considering these limitations of CBCT imaging in rela-
tion to segmentation, there is a need for automation of the 
current digital workflows by the application of artificial 
intelligence (AI)-based techniques. Recently, a convolu-
tional neural network (CNN), a class of artificial neural 
networks, has dominated the field of medical image analy-
sis, as it is specialized for processing data with defined, 
grid-like topology, such as two-dimensional (2D) and 
3D images [6, 7]. CNNs have the ability to outperform 
standard image processing algorithms with high compu-
tational speed and correlate with other data such as clini-
cal information or response to therapy. This provides an 
improvement in the quality of image processing and helps 
clinicians to extract and analyze relevant information in a 
concise format [7].

So far, the authors of several studies have focussed on 
the segmentation of individual craniomaxillofacial ana-
tomical structures using CNN models [8–11]. However, 

no evidence exists about the integration of these multiple 
anatomical structures as a single unit. A combination of 
AI models specialized in segmenting different structures 
with variable densities simultaneously could pave the way 
towards the creation of a virtual patient with high perfor-
mance in a time-efficient approach. This virtual patient 
could be applied for digital virtual planning of several 
treatment procedures, not only in general dentistry but also 
in maxillofacial surgery; Ear, Nose, and Throat (ENT); 
neurosurgery; and ophthalmology. Therefore, we aimed 
to assess the qualitative and quantitative performance of 
integrated CNN models of three previously validated indi-
vidual networks for the creation of a segmented maxil-
lary virtual patient (MVP) consisting of maxillary skeletal 
complex, maxillary sinuses, and teeth from CBCT images 
[8, 12, 13]. We hypothesized that the three integrated CNN 
models would reveal a similar performance as the indi-
viduals’ ones, along with a strong interobserver agreement 
in terms of time-efficiency and consistency for creating a 
segmented MVP.”

Materials and methods

This study was approved by the Research Ethics Commit-
tee of the University Hospitals Leuven (reference number: 
S65708) and was conducted in compliance with the World 
Medical Association Declaration of Helsinki on medical 
research. Patient-specific information was anonymized.

Dataset

The sample size was calculated based on previous compa-
rable studies using a priori power analysis in G* power 3.1, 
with a power of 80% and a significance level of 5%[9, 11]. 
In this way, a total dataset of 40 scans of two devices (20 
Accuitomo 3D; 20 Newtom VGi evo) was selected, consist-
ing of 560 teeth, 80 sinuses, and 40 maxillofacial complexes 
acquired with different scanning parameters (Table 1). Inclu-
sion criteria were scans with permanent dentition, includ-
ing teeth with coronal and/or root fillings. Exclusion criteria 
were patients with a history of maxillofacial trauma, skeletal 
or dental malformation, post-orthognathic surgery patients 

Table 1   CBCT scanning 
parameters of the sample

kVp kilovoltage peak, mA milliampere

kVp mA Voxel size (mm) Field of view (cm)

Newtom VGi evo 
(Cefla, Imola, Italy)

110 3–8 0.2; 0.25; 0.3 24X19; 16X16; 12X8; 10X10

3D Accuitomo 170 
(J. Morita, Kyoto, 
Japan)

90 5 0.25 17X12; 14X10; 10X10; 8X8
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with mini-plates and screws, presence of dental implants, 
and missing teeth in proximity to the sinus floor.

All CBCT images were saved in Digital Imaging and 
Communication in Medicine (DICOM) format and uploaded 
to an online cloud-based platform called Virtual Patient 
Creator (creator.relu.eu, version December 2021, Relu BV, 
Leuven, Belgium), which allowed combined automatic 
segmentation of maxillary complex, maxillary sinuses, and 
teeth, referred to as MVP.

Qualitative assessment

Two dentomaxillofacial radiologists (FNR and NM) clini-
cally evaluated the automatic segmentation of the integrated 
structures by visually observing their corresponding colors 
on orthogonal planes of the CBCT images (Fig. 1). The 
three individual CNN models of maxillofacial complex, 
maxillary sinuses, and teeth have been previously validated, 

where they were proved to be highly accurate, requiring 
only minor refinements (slight over or under segmentation 
in each structure) (Fig. 2). Hence, a score from 0 to 10 
was given for each segmentation based on the number of 
required minor refinements, where 0 represented ten refine-
ments or more, 1 represented 9 refinements, 2 represented 
8 refinements, and successively up to 10 that referred to a 
perfect segmentation without the need for any refinement. 
Inter-observer agreement was assessed for the scoring 
between the two observers. Additionally, needed refine-
ments were performed for assessing the performance of the 
integrated models in comparison to the refined ones, and the 
consistency between observers.

Smart correction tools

Following visual assessment, both observers performed the 
required refinements using the newly developed tools on the 

Fig. 1   3D views and their respective colored segmentations on CBCT 
slices on Virtual Patient Creator (creator.relu.eu, Relu BV, Version 
December 2021): a all structures combined showing the maxillary 

virtual patient, b maxillofacial complex, c maxillary sinuses, and d 
upper dentition

Fig. 2   Borderline definition of the automatic segmentation of integrated structures (version 23.0, Materialise N.V., Leuven, Belgium)
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virtual patient creator platform: normal and smart brushes, 
contour, and livewire tools. The normal brush is a simple 
cylindrical brush, which is used for adding brush strokes 
to refine small inadequacies between multiple image slices. 
The smart brush uses voxel intensities to group them by 
analyzing the voxel’s intensity below the cursor and select-
ing all voxels at a certain depth that have intensities within 
the selected voxel’s tolerance range. Both tools are unidirec-
tional, causing only the slices above or below to be changed. 
Hence, there was no issue of overwriting slices that have 
already been corrected.

The contour tool automatically interpolates the inter-
slice region between upper and lower selected contours. The 
livewire tool is an intelligent version of the contour tool, 
whose main principle of inter-slice interpolation remains the 
same. However, it connects the added points in a path that 
automatically follows the grey values of the image. Conse-
quently, allowing the user to outline contours more quickly 
with a fewer number of points compared to a contour tool. 
Tutorials on how to use these tools are available as supple-
mentary material (online resources 1–4).

Quantitative assessment

Timing

The time required to have a full-resolution automatic seg-
mentation (AS) was measured directly by an automated 
algorithm. As for the refined segmentation (RS), it was 
calculated by summing up the time required for automatic 
segmentation and refinements. Finally, the average time for 
each segmentation technique was calculated.

Automatic versus refined segmentations

The automatic segmentation was compared to the manual 
refined segmentation, and the metrics used to assess its simi-
larity included dice similarity coefficient (DSC), 95% Haus-
dorff distance (HD), and root mean square (RMS) (Table 2). 

The performance of the AI models for MVP segmentation 
was calculated using the following expression, where x is the 
comparison metric of interest (e.g., DSC) between automatic 
and refined segmentation.

The dentition metric was defined as the average overall 
individual tooth types:

Consistency of refined segmentations

The three CNN models have already proven to be 100% consist-
ent at an individual level, hence AI consistency was not further 
investigated. The interobserver consistency of refined segmen-
tations was assessed by overlapping the DICOM and resultant 
STL files of the segmentations performed by each observer. 
Thereafter, corresponding evaluation metrics were calculated.

Statistical analysis

Data were analyzed with IBM SPSS version 28.0.1.0 soft-
ware (Armonk, NY). The weighted Kappa test (95%CI) was 
performed for the inter-observer agreement of the qualita-
tive assessment. For quantitative data, the mean value and 
standard deviation of each evaluation metric were calculated.

Results

Based on the visual assessment, there was no overlap between 
the three structures (Fig. 2). From the entire dataset, 85% 
showed a score of 7 or more by both observers, and 15% were 
within the range of 3–6. Furthermore, there were no cases 
with scores of 0–2 (Fig. 3). In total, 40 scans required minor 

� combined =

⟨x maxillofacial complex⟩ + ⟨x maxillary sinuses⟩ + ⟨x upper dentition⟩

3

�upperdentition =
⟨xtooth11⟩ + ⟨xtooth12⟩ +…

16

Table 2   Overview table of validation metrics used in the quantitative assessment

DSC Dice Similarity Coefficient, 95%HD 95% Hausdorff distance, RMS root mean square, A volumetric data of observer 1, B volumetric data of 
observer 2, TP true positives, TN true negatives, FP false positives, FN false negatives, P95 percentile 95

Metrics Definition Formula

DSC This ratio represents how similar the segmented region is to the ground truth 2|A ∩ B|2 × TP
DSC (A, B) = |A| +|B| = 2 × TP + FP + FN

95% HD Indicator of the maximum difference between the limits of the automatic segmen-
tation and the ground truth

95% HD = P95(min||B − A||2 U min||A − B||)
agAbgB2

RMS Indicator of the imperfection of the fit between the STLs of the surface of interest 
and ground truth in mm

1
RMS = √ = (d2 + d2 + ... d2)
n12n
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corrections, mainly due to mucosal thickening in the sinus, 
closed foramina and canals, small bone discontinuities in the 
palate and maxilla, and bone over-segmentation of zygomatic-
otemporal sutures (Table 3). Figure 4 illustrates some examples 
of the regions requiring refinements. The weighted Kappa test 
showed a strong inter-observer agreement (K = 0.832, 95% CI 
[0.704;0.960]) based on Landis and Koch’s classification [14].

The average timing for the automated segmentation of 40 
cases was 1.7 min, ranging from 1.1 to 2.4 min. The average time 
required for refinements by the first and seconds was 3.4 min (1.2 
to 15 min) and 2.5 min (1.0 to 11 min), respectively.

The performance metrics (Table 4) indicated an excel-
lent overlap between automatic and refined segmentation 
with a DSC of 99.3% for both observers, implying that 
minimal refinements were required. The RMS value was 

0.289 mm and 0.286 mm, and the 95% HD was 0.210 mm 
and 0.228 mm for each observer, respectively.

Interobserver consistency of refinements (Table  4) 
showed a high DSC of 99.8%. A close to zero 95% HD of 
0.045 was detected with a low RMS value of 0.053. Addi-
tionally, the STL overlap comparison map also observed a 
similar pattern, hence suggesting a substantial agreement 
between both observers.

Discussion

An accurate 3D segmentation of orofacial structures is the 
first essential step in most digital dental workflows. It is cru-
cial for precise delineation and outlining of normal anatomy, 

Fig. 3   Score frequency based on the number of corrections needed given by two observers (n = 80)

Table 3   Types of corrections required according to the structure with their description

Structure refined Correction type Description

Upper dentition Under segmentation Small missing parts in the tooth contour
Over segmentation Not found

Maxillary sinuses Under segmentation Mucosal thickening, and air voids
Over segmentation Overextension in ethmoidal air sinus

Maxillofacial complex Under segmentation Bone discontinuities in the medial wall and back of the maxilla, and in the palate
Over segmentation Closed infraorbital and palatine foramina, nasopalatine canal, and overextension 

of zygomaticotemporal suture

1137Clinical Oral Investigations (2023) 27:1133–1141
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variations, differentiation from accompanied pathological 
lesions, and volumetric estimation of anatomical structures. If 
segmentation of multiple anatomical structures is performed 
simultaneously, it provides a clinician with a complete picture 
and focused approach towards studying the relation with the 
surrounding structures. Therefore, the present study investi-
gated the performance of integrated CNN models for creating 
the MVP consisting of combined automatic segmentation of 
the maxillary complex, sinus, and teeth as a single unit.

For qualitative assessment, since only minor corrections 
were needed, the quality of integration was assessed based 
on the number of refinements and the required time. The 
results showed a strong agreement between both observers. A 
score equal to 7 or more (85% of the dataset) was considered 
a high-quality segmentation, while a score ranging from 3 to 
6 (15% of the dataset) an above-average quality. Segmenta-
tions in Table 3 illustrate the types of required refinements 
per segmented structure. According to previous validation 
studies’ classification [12, 13], minor refinements have no or 
slight clinical relevance, and the present qualitative analysis 

assumes that this clinical impact depends on the number of 
minor refinements needed. In daily practice, the clinical rele-
vance of such refinements might differ depending on the task at 
hand, such as visualization, diagnosis, treatment planning, and 
patient education. Moreover, each type of refinement might 
be more relevant in a specific clinical specialty compared to 
another one. For instance, mucosal sinus thickness is more 
relevant for treatment planning in oral and maxillofacial surgi-
cal procedures involving maxillary sinus floor elevation [15] 
compared to a routine dental examination or patient education.

The quantitative assessment revealed that the sum of 
mean time required for automatic MVP segmentation 
(1.7 min) was slightly higher compared to the sum of the 
previously documented timing for each structure segmen-
tation which totaled 1.3 min (maxillofacial complex: 39.1, 
maxillary sinus: 24.4, all teeth: 13.7 s) [8, 12, 13]. This 
minimal difference could be attributed to some technical 
variabilities, such as nonuser active processes, which impact 
the segmentation time even if the same AI tool is run several 
times, making it a challenge to keep the time constant [16]. 

Fig. 4   3D models and axial sec-
tions of CBCT scans illustrating 
the necessary refinements most 
often detected in qualitative 
analysis. a Mucosal thickening 
in the upper cortical of the right 
maxillary sinus. b MVP in a 
view showing bone discontinu-
ity around palatine foramina. 
c Closed right infraorbital 
foramen in a lateral view of the 
MVP
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Another reason could be the large field of view (FOV) of the 
included sample, which could have increased the processing 
time. The previous studies used fewer testing samples with 
large FOVs because they covered only one region of interest.

We did not investigate the clinical accuracy of automated 
segmentation, which has previously been reported to have a 
high DSC score (maxillary complex: 92.6%, maxillary sinus: 
98.4%, teeth: 90%), when compared to the reference ground 
truth generated by skilled human operators using a manual or 
semi-automatic approach. Rather, the relevant performance 
of the combined structural segmentation was compared to 
the manually refined one. The findings showed no change 
in performance following post-integration. A DSC score of 
99.3% was observed compared to refined segmentation for 

both observers, hence implying high segmentation quality 
even for the scans requiring many refinements. Addition-
ally, the interobserver consistency showed almost perfect 
overlap with a DSC of 99.8%, indicating that the integrated 
model could provide an automated ground that increases 
consistency between observers overcoming high observer 
variability in other segmentation techniques.

The presented CNN model overcame the issue of 
manual threshold selection required with semi-automatic 
approaches. Moreover, the main benefit of the model is the 
simultaneous segmentation of anatomical structures with 
different densities using a single platform, as shown in the 
coronal slice of Fig. 1a. This type of combined segmen-
tation is not possible with the available semi-automatic 

Table 4   Evaluation metrics for comparison between automatic and refined segmentations

Metric Descriptive

analysis

AS vs RS

(Observer 1)

AS vs RS

(Observer 2)

Inter-observer

consistency

DSC Mean

SD

Min

Max

0.993

0.021

0.976

0.997

0.993

0.023

0.976

0.999

0.998

0.003

0.996

0.999

95%HD (mm) Mean

SD

Min

Max

0.210

1.004

0.000

1.004

0.228

1.006

0.000

1.006

0.045

0.067

0.000

0.067

RMS (mm) Mean

SD

Min

Max

0.289 

0.462

0.167

0.629

0.286 

0.467

0.167

0.634

0.053

0.099

0.000

0.099

STL comparison

AS: Automatic segmentation, RS: Refined segmentation, SD: Standard deviation, DSC: Dice Similarity Coefficient, 95%HD: Hausdorff Distance, and 

RMS: root mean square. 

1139Clinical Oral Investigations (2023) 27:1133–1141



1 3

segmentation software programs, where each structure has 
a different threshold requiring manual adjustment separately 
by the operator [17]. Clinically, this integrated segmenta-
tion could be a valuable tool in clinical orthodontics and 
maxillofacial surgical procedures, such as implant planning, 
bone grafting, and orthognathic and reconstructive surgery 
[18–21], where visualization of MVP and its relationship 
with surrounding structures is a necessity for reaching an 
accurate diagnosis and patient-specific treatment planning.

An additional advantage of the proposed approach was that 
no third-party software was required to refine the automated 
segmentations, which was not the case in the previous individ-
ual CNN model-based validation studies. As newly developed 
tools have been employed on the platform, which also let the 
clinicians directly refine the segmentations. However, lack of 
data heterogeneity remains a limitation, and there is a need to 
incorporate data from other CBCT devices with varying scan-
ning parameters to justify the generalizability of the tool. In the 
near future, we plan to integrate other validated individual ana-
tomical regions, such as the mandible, inferior alveolar canal, 
and pharyngeal airway [9–11]. It is also expected to expand the 
tool’s ability by integrating data from intra-oral scanners and 
facial scanners for the creation of a complete virtual patient, 
which could enhance the delivery of personalized dental care 
[22]. Furthermore, additional CBCT scans from various insti-
tutions, CBCT scanner brands, and the variability of patient 
anatomy and pathology should be integrated in the near future 
to increase the generalizability further. The application of AI 
tools and personalized data in clinical and research fields could 
support positive clinical protocols changes, help create predic-
tive population models [23], and act as a visual educational tool 
for both clinicians and patients.

Conclusion

The three integrated CNN models proved to be fast and 
accurate for simultaneous segmentation of maxillary ana-
tomical structures with different densities. Both the quali-
tative and the quantitative assessments revealed a strong 
interobserver consistency. The integrated MVP could act as 
a feasible tool for visualization, diagnostics, and treatment 
planning in daily clinical practice.
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