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Abstract

Objectives The transcription factor c-Fos controls the differentiation of osteoclasts and is expressed in periodontal ligament cells
after mechanical stimulation in vitro. However, it is unclear how c¢-Fos regulates orthodontic tooth movement (OTM) in vivo.
The aim of this study was therefore to analyse OTM in transgenic mice with overexpression of c-Fos.

Materials and methods We employed c¢-Fos transgenic mice (c-Fos tg) and wild-type littermates (WT) in a model of OTM
induced by Nitinol tension springs that were bonded between the left first maxillary molars and the upper incisors. The
unstimulated contralateral side served as an internal control. Mice were analysed by contact radiography, micro-computed
tomography, decalcified histology and histochemistry.

Results Our analysis of the unstimulated side revealed that alveolar bone and root morphology were similar between c-Fos tg and
control mice. However, we observed more osteoclasts in the alveolar bone of c-Fos tg mice as tartrate-resistant acid phosphatase
(TRAP)-positive cells were increased by 40%. After 12 days of OTM, c¢-Fos tg mice exhibited 62% increased tooth movement as
compared with WT mice. Despite the faster tooth movement, c-Fos tg and WT mice displayed the same amount of root
resorption. Importantly, we did not observe orthodontically induced tissue necrosis (i.e. hyalinization) in c-Fos tg mice, while
this was a common finding in WT mice.

Conclusion Overexpression of c-Fos accelerates tooth movement without causing more root resorption.

Clinical relevance Accelerated tooth movement must not result in more root resorption as higher tissue turnover may decrease the
amount of mechanically induced tissue necrosis.

Keywords Orthodontic tooth movement - c-Fos - Mechanical stimulation - Bone remodelling - Root resorption

Introduction

Orthodontic tooth movement (OTM) is a prime example of
mechanically induced bone remodelling. The transduction of
mechanical stimuli into differentiation and activity of bone-
building osteoblasts and bone-degrading osteoclasts is
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regulated by a variety of genetic and epigenetic factors [1].
This explains why the biological response to mechanical
forces can significantly vary from one patient to another [2].
In fact, significant differences have been observed among pa-
tients with regard to the velocity of OTM [3, 4] or the occur-
rence of adverse effects such as root resorption [5]. Since these
differences require a patient-specific management in ortho-
dontic care, there is a clear need towards a deeper understand-
ing of the biological principles of tooth movement.

Recently, genetically modified mice were used to study the
genetic basis of tooth movement [6—11]. Whereas larger ani-
mal models are easier to handle, only mice offer the possibility
to analyse the role of single genes during OTM in vivo. Mouse
models are therefore a valuable approach to decrease the gap
that exists between our knowledge from in vitro studies and
the small list of genes that are actually known to regulate
OTM in vivo.
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Of particular interest in this regard is c-Fos, a member of
the AP-1 transcription factor family. C-fos is activated in os-
teoclast precursors and is required for osteoclast differentia-
tion [12]. Deletion of c-Fos in mice leads to osteopetrosis, a
phenotype characterized by abnormally high bone mass due to
disturbed bone resorption [13, 14]. Conversely, overexpres-
sion of c-Fos in mice leads to the development of
chondrogenic tumours [15]. These tumours are also evident
in the occipital bones of the skull, which ossify through endo-
chondral ossification. However, it is unclear whether c-Fos
overexpression also affects the jaw bones, which ossify
through intramembranous ossification.

Interestingly, c-Fos was also identified as a key
mechanosensor in early gene transcription after mechanical
loading [16]. In fact, numerous in vitro studies have demon-
strated that mechanical forces result in an upregulation of c-
Fos in various cell types including osteocytes [17, 18], osteo-
blasts [19, 20], and periodontal cells [21-23]. In particular,
compression or extension of periodontal ligament cells leads
to an induction of C-FOS on the RNA and protein level
[21-23]. Although these studies clearly suggest that c-Fos
plays a key role in OTM, it remains to be established whether
and how c-Fos controls OTM in vivo.

The aim of this study was therefore to analyse the role of c-
Fos in OTM by using mice with overexpression of ¢-Fos (c-
Fos tg) and control littermates in a mouse model of OTM.

Materials and methods
Mice

C-fos transgenic mice (c-Fos tg) were maintained on a
C57BL/6J background and fed a soft rodent diet. The trans-
genic mice overexpress the c-Fos gene under the control of the
glucocorticoid- and heavy metal-inducible human metallo-
thionein promoter, which is ubiquitously expressed [24-27].
Wild-type littermates (WT) served as controls and only fe-
males were used. The orthodontic appliance was applied to
the mice while they were under anaesthesia and at 10 weeks of
age (Fig. 1a). After 12 days of OTM, all mice were euthanized
by CO, inhalation. Animal treatment procedures were ap-
proved by the commission for animal welfare (Behorde fiir
Gesundheit und Verbraucherschutz der Hansestadt Hamburg,
Nr. 121/16).

Orthodontic appliance

All mice were anaesthetized by intraperitoneal injection with
10 ml/kg anaesthetic mixture (40 mg/kg bw ketamine-S,
xylazine 2% 16 mg/kg bw, heparin 40,000 IE/kg bw in
0.9% NaCl). The mice were carefully fixed on a modified
miniature lathe (Unimat 3, Emco, Wiener Neudorf, Austria).
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The cheeks were gently spread with a specially designed car-
riage holder and the upper jaw was carefully fixed to the
operating table using a loop made of suture material (Vicryl,
Ethicon Inc, New Jersey, USA). The incisors of the mandible
were then inserted into the eyelet of an orthodontic rubber
chain (Elasto-Force, Dentaurum, Ispringen, Germany) and
fixed without tension. The tooth surfaces of the first left molar
and both maxillary incisors were etched with 37% phosphoric
acid gel (HS-etchgel 37%, Henry Schein Dental, Langen,
Germany) (Fig. 1a and b). After 30 s, the gel was removed
with microbrushes and the tooth surfaces were cleaned and
dried successively with ethanol and specially prepared paper
tips. Bonding (Scotchbond, 3 m Espe, Neuss, Germany) was
applied and polymerized (Fig. 1b). The spring was placed
with its distal end on the first molar and fixed with a light-
curing composite (Estelite Flow Quick, Tokuyama Dental
Corp., Tokyo, Japan). To activate the spring, the operating
table was moved parallel to the planned force direction until
the desired force of 35 centinewton was reached (tension
gauge, Dentaurum, Ispringen, Germany) [9]. The mesial part
of the spring was then fixed to both maxillary incisors with a
light-curing composite (Estelite Flow Quick, Tokuyama
Dental Corp., Tokyo, Japan) (Fig. 1b and c). After surgery,
mice were transferred to a heat mat and monitored until they
fully recovered from anaesthesia.

Micro-CT and histological analysis

After 12 days of OTM, all mice were euthanized and fixed in
4% PB-buffered formaldehyde for 24 h. The skulls were re-
moved and analysed by contact radiography using a Faxitron
X-ray cabinet (Faxitron X-ray Corp., Wheeling, IL, USA). X-
ray microtomography (CT) of the skulls was performed with
a WCT 40 scanner (Scanco Medical, Bassersdorf,
Switzerland). Images were constructed at a spatial resolution
of 15 um. Exposed surfaces of the roots were highlighted on
pCT images using Photoshop (Photoshop Cs 6, Adobe
Systems Inc., USA). Orthodontic tooth movement and alveo-
lar bone loss were evaluated on p-CT images using Imagel
1.52 (National Institutes of Health, Bethesda, MD, USA).
Orthodontic tooth movement was defined as the shortest dis-
tance between the crowns of the maxillary first and second
molars measured on p-CT cross-sections. Alveolar bone loss
was defined as the area of the exposed root surface measured
on p-CT three-dimensional reconstructions. For histology,
skulls were decalcified for 14 days in Usedecalc (MEDITE
Medical GmbH, Burgdorf, Germany), dehydrated in ascend-
ing alcohol concentrations, and embedded in paraffin. Four-
micrometre-thick sections were cut on a microtome (Supercut
2050, Reichert-Jung, Leica Microsystems GmbH, Wetzlar,
Germany). Slides were deparaffinized in xylene and stained
with toluidine blue (1%, pH 4.5) for 30 min. For TRAP stain-
ing, slides were deparaffinized and stained with TRAP for
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Fig. 1 Overexpression of c-Fos accelerates orthodontic tooth movement in
mice. a Schematic drawing of the OTM model. The Nitinol spring (blue)
was bonded to the incisors and to the left first molar (M1) with a light-curing
composite (red circles). b Photographs of the bonding procedure. The first
molar (red arrow) was dried (upper left panel) and etched (upper right panel)

120 min at 37 °C (50 ml TRAP solution: 5 mg Naphtol-AS-
MX phosphate dissolved in 500 pul dimethyl formamide,
30 mg Fast Red Violet; 40 mM sodium acetate and 10 mM
sodium tartrate as buffer). Histomorphometric quantification
was performed using the Osteo-Measure histomorphometry
system (Osteometrics, Atlanta, GA, USA).

Statistics

The statistical analysis of the data as well as their graphic
representation was carried out with the software GraphPad
PRISM (GraphPad Software, San Diego, USA). A two-
sided 7 test was used for statistical testing of independent sam-
ples. ANOVA with Bonferroni post hoc test was used for
multi-group comparisons. P values below 0.05 were consid-
ered statistically significant. All graphs show mean values
with standard deviations.

Results

We first examined the teeth and alveolar bone of c-Fos tg and
WT mice without orthodontic tooth movement (OTM—) using
p-CT imaging (Fig. 2). We observed that tooth morphology,
alveolar bone, and palatal bone of c-Fos tg were similar to
those of controls (Fig. 2a). In fact, quantification of alveolar
bone loss (ABL) and palatal thickness revealed no differences
between c-Fos tg and WT mice (Fig. 2b and c¢). We next
determined the effect of orthodontic tooth movement
(OTM+) in c-Fos and control mice (Fig. 2d, lower panels).
We observed that OTM resulted in a separation of the 1st and

before the mesial end of the spring was bonded (lower left panel). After
activation of the spring with a force of 35 centinewton, the distal end of
the spring was bonded to the incisors (lower right panel). ¢ Contact radiog-
raphy showing the activated nitinol spring

2nd molar crowns, which was significantly wider in c-Fos tg
mice as compared with those of controls. In fact, quantifica-
tion of the shortest distance between the 1st and 2nd molars
revealed 62% increased tooth movement in c-Fos tg mice
(Fig. 2e). Taken together, these first analyses suggest that c-
Fos overexpression increases OTM and that this acceleration
cannot be explained by differences in alveolar bone architec-
ture between c-Fos tg and WT mice.

We therefore next performed a detailed histological analy-
sis of OTM in c-Fos tg and WT mice (Fig. 3). In this regard, it
is important to consider that OTM causes zones of compres-
sion and tension in the periodontal ligament, which have to be
analysed separately (Fig. 3a). Before we looked in more detail
in the histological appearance caused by OTM, we analysed
toluidine-blue stained histological sections of teeth without
OTM from c-Fos tg and WT mice (Fig. 3b). The morphology
and structure of bone and teeth appeared histologically normal
in c-Fos tg mice. We again observed that OTM caused a larger
intercoronal gap in c-Fos tg mice as compared with controls
(Fig. 3¢). This was associated with food impaction causing an
inflammatory epithelial thickening of the gingival papilla
(Suppl. Fig. 1). We next focused on the distal root of the 1st
molar, where the periodontal ligament (PDL) on the distal side
is subjected to tension, whereas the PDL on the mesial side is
subjected to compression (Fig. 3d). Without OTM, we found
only some active bone cells in the PDL of ¢-Fos tg and control
mice (Fig. 3e). The bone surface was mainly covered by non-
active bone-lining cells. In contrast, after OTM numerous
bone-forming osteoblasts were evident in the tensile zone of
both c-Fos tg and control mice (Fig. 3f, upper panels). The
cubic shape and arrangement of the osteoblasts clearly
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Fig. 2 Micro-CT analysis of
alveolar bone, tooth structure and
OTM. a Micro-CT scanning of
maxillary molars from 12-week-
old wild-type (WT) and c-Fos
transgenic (c-Fos tg) mice.
Alveolar bone loss (highlighted in
red) was measured on 3D recon-
structions of teeth that were not
subjected to OTM (upper panels).
Palatal thickness was measured
on cross-sections of the palate
(lower panels). Scale bars = 3
mm. b, ¢ Quantification of the al-
veolar bone loss (b) and palatal
thickness (c) of 12-week-old WT
and c-Fos tg mice. n > 3. *P <
0.05, versus WT. d Cross-
sections based on micro-CT scans
of untreated (OTM—) and treated
(OTM+) maxillary molars of
wild-type (WT) and c-Fos trans-
genic mice (c-Fos tg). The me-
chanical loading created a gap
between the first and second mo-
lar (red arrows). Scale bars = 1
mm. e Quantification of the
smallest distance between the first
and second molar as a surrogate
measurement for OTM in 12-
week-old wild-type (WT) and c-
Fos tg mice. n = 4. *P < 0.05,
versus wild-type

suggested synthesizing activity. Bone-resorbing osteoclasts
were also evident on the pressure side in both c-Fos tg and
control mice (Fig. 3f, lower panels). We further analysed the
number and distribution of these osteoclasts by tartrate-
resistant acid phosphatase (TRAP) staining (Fig. 4). Without
OTM, we observed more TRAP-positive cells in the PDL of
c-Fos tg as compared with WT (Fig. 4b). These TRAP-
positive cells were distributed around the whole root. In con-
trast, OTM clearly changed the number and distribution of
TRAP-positive cells both in c-Fos tg and WT mice as these
cells were mainly found in areas of the PDL that were sub-
jected to pressure (Fig. 4c and d). We finally quantified the
number of TRAP-positive cells in the PDL of ¢-Fos tg and
WT mice with and without OTM (Fig. 4e). We observed that
without OTM, c-Fos tg mice exhibited 40% more TRAP-
positive cells in the PDL as compared with WT. OTM led to
a significant increase of TRAP-positive cells in both ¢-Fos tg
and WT mice. However, this mechanically induced increase
was less pronounced in the teeth of c-Fos tg mice and the
number of TRAP-positive cells was therefore significantly
lower after OTM in c-Fos tg mice as compared with that of
WT mice. Taken together, our histological analysis suggests
that the acceleration of tooth movement in c-Fos tg mice is not
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mediated by differences in mechanotransduction, but due to a
basal increase of bone resorption.

We finally determined whether this increase of bone re-
sorption is also associated with more root resorption in c-Fos
tg mice. We again focused here on areas in the PDL that were
subjected to orthodontic pressure (Fig. 5a). In comparison
with non-stimulated teeth (OTM—), we could clearly detect
root resorption in both c-Fos tg mice and WT mice (Fig. 5b
and c). Interestingly, the shape of these resorptions differed
between the two root surfaces. Whereas long, extensive re-
sorptions were noticed at the distal root (Fig. Sc, upper
panels), isolated drop-like resorption pits were noticed at the
mesial root (Fig. 5c, lower panels). Quantification of root
resorptions revealed no significant differences between c-
Fos tg mice and WT mice (Fig. 5d—f). Root resorptions are
usually associated with mechanically induced tissue necrosis.
These cell-free, necrotic areas have a glass-like appearance on
histological sections and are therefore termed areas of
hyalinization [28]. Interestingly, these hyalinizations were ev-
ident to a different degree in all WT mice, but in none of the
c-Fos tg mice (Fig. 5c and g). Taken together, our analysis
suggests that the acceleration of OTM in c-Fos tg is not
associated with more root resorption. This may be explained
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Fig. 3 Histological analysis of OTM in c¢-Fos tg and WT mice. a
Schematic drawing of a murine skull (upper panel) and a maxillary first
molar (lower panel) illustrating the forces (green arrow) and moments
(blue circle) induced by OTM. The direction of the force is mesial and
intrusive, which creates different areas of compression (red) and tension
(blue). b, ¢ Toluidine-blue stained histological sections of teeth without
OTM (b) and with OTM (c¢) of 12-week-old WT and c-Fos tg mice.
Lower panels show magnification of the regions outlined by the red
boxes. The intercoronal gaps induced by OTM (black lines) offer a

by the fact that OTM causes less or even no hyalinization in
c-Fos tg mice.

Discussion

This study shows that c-Fos plays an important role in the
genetic control of tooth movement in vivo. We demonstrate
that overexpression of c-Fos accelerates OTM in mice without
producing more side effects such as root resorption. Since c-
Fos overexpression did not affect alveolar bone morphology,
we believe that the acceleration of OTM in c¢-Fos tg mice can
be best explained by a basal increase in bone resorption and
the absence of sterile necrosis (i.e. hyalinization).

In fact, the appearance of hyalinization is considered to be
an important process in OTM [29]. Based on histological
studies, it is assumed that hyalinization is caused by a local
disturbance of blood flow in compressed PDL areas. As oste-
oclast differentiation is impeded in these areas, hyalinization
can therefore slow down OTM. This is clearly in line with our

retention for debris (white asterisk) resulting in a mild gingivitis (red
arrows). Scale bars = 250 um. d Schematic drawing of the maxillary first
molar. The red boxes indicate areas of OTM-induced tension (upper
panel) and pressure (lower panel) around the distal root. e, f Toluidine-
blue stained histological sections of the regions indicated in d of teeth
without OTM (e) and with OTM (f) of the same mice. Osteoblasts (black
arrow) and osteoclasts (white arrows) are clearly evident after OTM.
Scale bars = 50 um

findings in c-Fos tg mice, where we observed 62% faster
OTM and no histological evidence of hyalinization. It remains
to be established whether c-Fos overexpression inhibits the
development of hyalinization, or whether it leads to an earlier
removal of hyalinization. In this regard, it is also important to
mention that c-Fos induces angiogenesis [18]. But regardless
of'this question, we believe that the absence of hyalinization is
one major reason for accelerated OTM in c-Fos tg mice. This
conclusion is further supported by experimental studies show-
ing that surgical interventions to accelerate OTM result in less
hyalinization and faster removal of hyalinized tissue [30, 31].

Another reason for faster OTM in ¢-Fos tg mice could be a
basal increase in bone resorption. In fact, our histological
analysis of the teeth that were not subjected to tooth move-
ment revealed 40% more TRAP-positive cells in the PDL of c-
Fos tg mice as compared with controls. Interestingly, the in-
crease of osteoclastogenesis following OTM was less pro-
nounced in c-Fos tg mice as compared with that in controls.
One explanation for this could be that c-Fos transgenic cells
are less sensitive to mechanical strain. Another possible
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Fig.4 Immunohistochemical staining for osteoclasts in c-Fos tg and WT
mice. a Schematic drawing of the maxillary first molar. The red boxes
indicate areas of OTM-induced pressure at the distal (upper panel) and
mesial (lower panel) root. b, ¢ TRAP-stained decalcified sections of teeth
without OTM (b) and with OTM (c) of 12-week-old WT and c-Fos tg

explanation is that c-Fos can inhibit itself by negative feed-
back via INF-f3 [32]. It remains to be established whether this
mechanism also takes place in PDL cells during OTM. In this
regard, it is also important to mention that the load-induced
expression of c-Fos, as an early response gene, is both rapid
and short lived. Given the time frame of our experiments, it is
clear that our results cannot directly be correlated to previous
in vitro studies analysing the short-term response of c-Fos to
mechanical stress [17-23]. Future studies should address this
question by performing a short-term OTM in c-Fos tg mice
following an immunohistological analysis of target genes.
One important histological observation was the occurrence
of lateral root resorptions, which is a common side effect of
orthodontic therapy [33]. Quantification of this root resorption
in c-Fos tg and control mice using histomorphometry revealed
no significant differences. This is an important finding as it
demonstrates that the acceleration of OTM in c¢-Fos tg mice
does not cause more root resorption. It was interesting to ob-
serve that the shape of lateral root resorption differed with
regard to its location. Whereas root resorptions extended
along almost the entire surface of the distal root, only isolated
drop-like resorption pits were observed at the mesial root. A
possible explanation for this could be that the tissue pressure
induced by OTM differs between the mesial and the distal
root. In fact, the distal surface of the distal root has a concave
shape and the surrounding bone follows the root curvature.
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mice. Red arrows indicate TRAP-positive cells. Scale bars = 200 um. d
Schematic drawing of the maxillary first molar. TRAP-positive cells were
quantified in the area indicated in red. e Quantification of TRAP-positive
cells. n = 4. ***P < 0.001, versus control. ##P < 0.01, versus wild-type

Therefore, OTM presumably creates a homogenous tissue
pressure along the entire root surface. In contrast, the mesial
surface of the mesial root has a convex shape and the sur-
rounding bone does not follow entirely the root curvature,
which means that the PDL is thinner at the root cervix as
compared with the apical part of the root. Therefore, OTM
presumably creates exceeding tissue pressure only in this cer-
vical part. This is line with our findings as we observed only in
this area root resorption and hyalinization. We believe that the
correlation between root resorption and PDL morphology
warrants further studies.

All these histological observations clearly demonstrate the
relevance of genetically modified mice for orthodontic re-
search. Our experimental protocol for the OTM model was
based on previous studies by Taddei et al., Braga et al. and
Andrade et al. [8, 9, 34-36]. According to this protocol, we
bonded the Nitinol spring to the teeth using a light-curing
composite. In contrast, other authors fixed the Nitinol spring
with a wire ligature around the first molar [6, 7, 37, 38].
Although this might be easier to perform, we believe that wire
ligatures have several disadvantages. Firstly, wire ligatures
produce metal artefacts in the micro-CT scanning and these
artefacts are in the interproximal area of interest. Although
metal artefacts were also evident in our micro-CT scans, these
were on the occlusal surface of the first molar and did not
affect our quantification of the micro-CT scans. Secondly,
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Fig. 5 Histological analysis of OTM-induced root resorption and
hyalinization in c-Fos tg and WT mice. a Schematic drawing of the
maxillary first molar. The red boxes indicate areas of OTM-induced pres-
sure at the distal (upper panel) and mesial (lower panel) root. b, ¢
Toluidine-blue stained histological sections of teeth without OTM (b)
and with OTM (c) of 12-week-old WT and ¢-Fos tg mice. Scale bars =
100 um. Whereas lateral resorption at the distal root extends along almost

wire ligatures can create debris niche and cause periodontal
destruction during OTM. Indeed, ligatures around molars are
an established model to induce periodontitis in mice [39].
Unfortunately, this ligature-induced periodontitis can also af-
fect OTM [40]. We also noted gingival inflammation, but this
inflammation was limited to the intercoronal gap and caused
by the OTM and not by the appliance itself. Finally, we be-
lieve that bonding of the wire is less invasive than wire liga-
tures, which can cause mucous tissue injury due to the inter-
dental threading of the wire. Accordingly, our daily weight
control showed that the animals were not exposed to any se-
rious stress. In this regard, it is also important to mention that
our split-mouth designs using the contralateral side as internal
controls significantly reduced the number of experimental an-
imals as compared with other studies [41, 42].

Nevertheless, our study has certain limitations. One limita-
tion is that our study only addresses how overexpression of c-
Fos affects OTM. Of course, it would also be interesting to
analyse whether decreased expression of c-Fos has an effect
on OTM. However, the deletion of ¢c-Fos in mice blocks os-
teoclastic differentiation and the dental phenotype of c-Fos-
deficient mice is therefore characterized by a lack of tooth
eruption and a lack of root formation [12, 43]. It is therefore
not possible to perform OTM in these mice. Another limita-
tion of our study is that c-Fos tg mice are characterized by the
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150007 g gE\ 25000
3
~~ 200007
100007 8
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the entire root surface (white dotted line), lateral resorption at the mesial
root has a drop-like appearance (white arrow). Areas of hyalinization
(black asterisk) were only evident in WT mice. Scale bars = 100 pm. d
Schematic drawing of the maxillary first molar. E-G Quantification of
the resorbed root surface per root surface (RRS/RS), resorbed area and
hyalinized area in the PDL of 12-week-old WT and c-Fos tg mice. n =4

development of chondrogenic bone tumours, which may have
a general effect on bone metabolism [15]. These benign tu-
mours initially occur mainly in the tubular bones of the ex-
tremities, but with increasing age, they can also be found in
the vertebral bodies and ribs [25, 27, 44—48]. It was therefore
important to analyse the alveolar bone of c-Fos tg mice with-
out OTM. We did not observe any of these tumours in the
jaws of c-Fos tg mice. This finding can be explained by the
fact that jaws are formed through intramembranous ossifica-
tion. Furthermore, our quantification of alveolar bone loss and
palatal thickness using p-CT imaging revealed no significant
differences between WT and c-Fos tg mice. This is an impor-
tant finding as it demonstrated that differences in alveolar
bone structure cannot explain the faster OTM in c-Fos tg
mice. Finally, we would like to mention that the number of
animals used for this study is comparatively low and it is
possible that more significant differences would have been
found with a larger sample size.

Conclusion
Our study demonstrates that c-Fos overexpression in mice

accelerates tooth movement due to a basal increase in bone
resorption and the inhibition of mechanically induced tissue
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necrosis. Importantly, the faster OTM in c-Fos tg mice was
not associated with more root resorption. We believe that this
finding is also relevant with regard to surgically accelerated
OTM as it demonstrates that these procedures must not result
in more adverse effects such as root resorption. Future studies
should use genetically modified mice to further analyse the
genetic regulation of OTM.
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