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Abstract
Objectives This study was established to investigate whether the chemokines CXCL1, CCL2, and CCL5 are produced in
periodontal cells and tissues and, if so, whether their levels are regulated by microbial and/or mechanical signals.
Materials and methods The chemokine expression and protein levels in gingival biopsies from patients with and without
periodontitis were analyzed by RT-PCR and immunohistochemistry. The chemokines were also analyzed in gingival biopsies
from rats subjected to experimental periodontitis and/or orthodontic tooth movement. Additionally, chemokine levels were
determined in periodontal fibroblasts exposed to the periodontopathogen Fusobacterium nucleatum and mechanical forces by
RT-PCR and ELISA.
Results Higher CXCL1, CCL2, and CCL5 levels were found in human and rat gingiva from sites of periodontitis as compared
with periodontally healthy sites. In the rat experimental periodontitis model, the bacteria-induced upregulation of these
chemokines was significantly counteracted by orthodontic forces. In vitro, F. nucleatum caused a significant upregulation of
all chemokines at 1 day.When the cells were subjected simultaneously toF. nucleatum andmechanical forces, the upregulation of
chemokines was significantly inhibited. The transcriptional findings were paralleled at protein level.
Conclusions This study provides original evidence in vitro and in vivo that the chemokines CXCL1, CCL2, and CCL5 are
regulated by both microbial and mechanical signals in periodontal cells and tissues. Furthermore, our study revealed that
biomechanical forces can counteract the stimulatory actions of F. nucleatum on these chemokines.
Clinical relevance Mechanical loading might aggravate periodontal infection by compromising the recruitment of immunoin-
flammatory cells.
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Introduction

Periodontitis is a chronic inflammatory disease characterized
by the loss of alveolar bone and clinical attachment [1, 2]. If
untreated, the disease can finally result in tooth loss and there-
fore compromised masticatory performance. Although the
disease is multifactorial, microorganisms located on the tooth
surface and next to the periodontal tissues are a prerequisite
for the initiation and development of periodontitis. Among
these microorganisms, Fusobacterium nucleatum plays a crit-
ical role, because it acts as a bridge bacterium, i.e., it enables
other pathogenic microorganisms to colonize the biofilm [3,
4]. These microorganisms in concert with other risk factors of
periodontitis induce an inflammatory host response which is
mounted to control and finish the microbial attack. The re-
sponse by the host comprises a lot of professional and
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accessory immunoinflammatory cells, which produce a wide
array of inflammatory mediators, matrix-degrading enzymes,
and osteoclast-activating molecules [2].

Chemokines, i.e., chemotactic cytokines, are of utmost im-
portance in inflammatory processes, as they ensure a sufficient
recruitment of immunoinflammatory cells to the site of micro-
bial infection, e.g., gingiva [5]. Therefore, they play a critical
role in chronic inflammatory diseases such as atherosclerosis,
osteoarthritis, rheumatoid arthritis, obesity, and periodontitis
[6–11]. CXCL1, also referred to as GROα, is a strong
chemoattractant for neutrophils which form the first line of
defense in the gingival sulcus. The neutrophils can eliminate
or reduce bacteria through several mechanisms, such as
phagocytosis, extracellular killing by secretion of granule,
and formation of extracellular traps [12, 13]. In contrast to
CXCL1, the chemokines CCL2 and CCL5, also known as
MCP-1 and RANTES, respectively, mainly facilitate the re-
cruitment of monocytes, macrophages, and T lymphocytes,
which are located below the gingival epithelium, where they
form the second line of defense [13]. Therefore, regulation of
the CXCL1, CCL2, and CCL5 production by microorganisms
or other stimuli/stressors will have an enormous impact on
periodontal inflammation and tissue homeostasis.

During mastication but especially in orthodontic tooth
movement, teeth and, therefore, the surrounding periodontal
t i ssues are subjected to biomechanical loading.
Biomechanical stimuli are critical for the maintenance, forma-
tion, and remodeling of soft and hard tissues, but it has also
been demonstrated that overloading can lead to inflammation,
proteolysis, and bone resorption [14, 15]. Therefore, like in
periodontitis, chemokine levels are altered in periodontal tis-
sues under biomechanical loading conditions. The potential of
biomechanical forces to regulate inflammation and tissue for-
mation is clinically used in orthodontic therapy, which aims to
correct malposition of teeth.

So far, little is known whether and with what consequence
microbial and biomechanical signals interact on periodontal
cells and tissues. Therefore, this study was established to in-
vestigate whether the chemokines CXCL1, CCL2, and CCL5
are produced in periodontal cells and tissues and, if so, wheth-
er their levels are regulated bymicrobial and/or biomechanical
signals in vitro and in vivo.

Materials and methods

Human gingival biopsies from periodontally healthy
and periodontitis sites

The healthy gingival biopsies and the inflamed gingival tis-
sues were obtained from different patients. Healthy gingiva
(n = 6) became available during wisdom tooth surgery and
tooth extraction procedures for orthodontic indications in the

Department of Oral Surgery, University of Bonn. Inflamed
gingival tissues were obtained from periodontitis patients
(n = 6) during tooth extraction procedures. These teeth had
to be removed for periodontal reasons. Approval of the
Ethics Committee of the University of Bonn was obtained
(#043/11), and written informed consent was provided by
the patients. Exclusion criteria were presence of systemic dis-
eases and/or smoking habits. Gingival sites with a gingival
index = 0 (no clinical inflammation), periodontal probing
depth ≤ 3 mm, no clinical attachment loss, and no radiograph-
ic bone loss were considered periodontally healthy, whereas
gingival sites with a gingival index > 1, periodontal pocket
depth ≥ 5 mm, clinical attachment loss ≥ 3 mm, and radio-
graphic bone loss were considered periodontally diseased
(periodontitis).

Gingival biopsies from rats subjected to experimental
periodontitis and/or orthodontic tooth movement

The animal experiments were performed according to the
ARRIVE (Animal Research: Reporting of In Vivo
Experiments) guidelines and approved by the Ethical
Committee on Animal Experimentation at the School of
Dentistry at Araraquara, São Paulo State University -
UNESP (Protocol Number: 23/2012). Adult Holtzman rats
(n = 32) of 300 g were housed in the animal facility of the
university and provided standard laboratory food and water
ad libitum. The rats were randomly divided into four groups:
a) untreated control, b) periodontitis, c) tooth movement, d)
combination of periodontitis and tooth movement.
Experimental periodontitis was induced by ligatures under
anesthesia with intramuscular injections of ketamine
chlorhydrate 10% (0.08 mL/100 g body weight) and xylazine
chlorhydrate 2% (0.04 mL/100 g body weight), as previously
reported [16–18]. A cotton ligature was tied around the cervi-
cal area of the first molars in the maxilla, and the knot was
placed mesially. In order to perform orthodontic tooth move-
ment, a closed-coil nickel-titanium spring (Sentalloy®, GAC,
Dentsply) providing a relatively constant force of 25 g was
connected between the maxillary first molar and maxillary
central incisor teeth, as previously published [16]. To prevent
displacement of the 0.20-mm steel wire (CrNi, 55.01.208,
Morelli, Brazil), grooves were prepared on the maxillary cen-
tral incisor teeth. Afterwards, the wire in the groove was cov-
ered with a thin layer of composite resin. For placement of the
spring on the maxillary first molars, composite resin was
placed on the occlusal surface and, subsequently, the spring
was positioned over it. The first molars in the lower jaw were
removed to avoid occlusal interferences. Following 5 days of
periodontitis induction, orthodontic tooth movement was ini-
tiated for 1 day and 3 days. Afterwards, 4 animals per group
and time were sacrificed. Subsequently, the gingiva of the
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maxillary first molars was gently harvested for RNA extrac-
tion with subsequent real-time PCR.

Human periodontal fibroblasts

Human periodontal ligament fibroblasts were obtained
from periodontally healthy teeth, which became available
during wisdom tooth surgery or tooth extraction proce-
dures for orthodontic indications (see below). Approval
of the Ethics Committee of the University of Bonn was
obtained (#043/11), and written informed consent was pro-
vided by the patients. The periodontal fibroblasts were har-
vested from the middle third of the root surface and cul-
tured in Dulbecco’s minimal essential medium (DMEM,
Invitrogen, Karlsruhe, Germany) supplemented with 10%
fetal bovine serum (FBS, Invitrogen), 100-U/mL penicillin
and 100-μg/mL streptomycin (Invitrogen) at 37 °C in a
humidified atmosphere of 5% CO2. The periodontal fibro-
blasts were used between 3rd and 5th passages. Prior to the
experiments, the FBS concentration was reduced to 1%
and the medium was changed every second day during
the experiments. To simulate periodontal infection
in vitro, cells were exposed to F. nucleatum ATCC 25586
(OD660: 0.05). The bacteria were suspended in phosphate-
buffered saline (OD660 = 1.0, equivalent to 1.2 × 109 bacte-
rial cells/mL) and subjected twice to ultrasonication
(160 W for 15 min). Colony-forming units were deter-
mined before and after ultrasonication of the suspension.
No viable bacteria were found. To mimic orthodontic tooth
movement in vitro, periodontal fibroblasts were subjected
to constant tensile forces (CTS) by using an established
cell strain device for up to 2 days, as previously demon-
strated [19, 20]. Additionally, cells were subjected simul-
taneously to F. nucleatum and CTS. Untreated cells served
as controls.

Scanning electron microscopy photographs

Scanning electron microscopy was performed at the Center of
Electron Microscopy, University Hospital of Jena, Jena
(Germany), to see the attachment of F. nucleatum on peri-
odontal fibroblasts. Cells were cultured on glass slides, and
when a monolayer was formed, cells were exposed to
F. nucleatum ATCC 25586 for 1 h. Afterwards, periodontal
fibroblasts were fixed in 2% glutaraldehyde in cacodylate
buffer for 30 min, washed twice with cacodylate buffer, and
dehydrated using a 10% graded ethanol series. Critical point
drying was performed, and then samples were sputter-coated
with gold. Samples were evaluated using a ZEISS LEO-1530
Gemini (Carl Zeiss NTS GmbH, Oberkochen, Germany)
equipped with a field emission electron gun at 10 keV.

Gene expression of CXCL1, CCL2, and CCL5

Total RNA extraction was carried out by using the RNeasy
Mini Kit (Qiagen, Hilden, Germany) according to manufac-
turer’s protocol. RNA concentration was analyzed by the
NanoDrop ND-2000 (Thermo Fisher Scientific, Wilmington,
DE, USA) spectrophotometer, and 500 ng of total RNA was
reversely transcribed using the iScript™ Select cDNA
Synthesis Kit (Bio-Rad Laboratories, Munich, Germany) at
42 °C for 90 min followed by 85 °C for 5 min as per manu-
facturer’s instructions. The gene expressions of CXCL1,
CCL2, and CCL5 were subsequently determined in triplicate
by using QuantiTect Primers (Qiagen), SYBR Green QPCR
Master Mix (Bio- Rad), and the iCycler iQ™ Real-Time PCR
Detection System (Bio-Rad). Amplification was performed
under the following conditions: initial denaturation at 95 °C
for 5 min, followed by 40 cycles of denaturation at 95 °C for
10 s, and combined annealing/extension at 60 °C for 30 s.
Glyceraldehyde-3- phosphate dehydrogenase was used as a
housekeeping gene, and all data were analyzed by using the
comparative threshold cycle method.

Protein levels of CXCL1, CCL2, and CCL5

Human gingival biopsies were fixed in 4% paraformaldehyde
(Sigma-Aldrich) for 2 days, dehydrated in an ascending etha-
nol series (AppliChem, Darmstadt, Germany), embedded in
paraffin (McCormick Scientific, Richmond, IL, USA), sec-
tioned at 2.5 μm thickness, mounted onto glass slides (Carl
Roth, Karlsruhe, Germany), and dried at 37 °C overnight.
Following deparaffinization and rehydration, the sections
were rinsed in PBS for 2 min. Afterwards, the endogenous
peroxidase was blocked by using 0.3% methanol
(AppliChem)/H2O2 (Merck Eurolab) solution for 5 min. The
sections were then blocked with goat serum (Dako) for 20min
and incubated with rabbit anti-CXCL1, anti-CCL2, or anti-
CCL5 polyclonal antibody (all Abcam; 1:100) in a humid
chamber at 4 °C overnight. After washing, the sections were
incubated with goat anti-rabbit IgG-HRP secondary antibody
(Dako) at room temperature for 30 min. The peroxidase activ-
ity was visualized with 3.3'-diaminobenzidine chromogen
(Thermo Fisher Scientific). Finally, slides were rinsed and
counterstained with Mayer’s hematoxylin (Merck Eurolab)
for 1 min. The images were taken with an Axioskop 2 micro-
scope and, subsequently, analyzed with the AxioVision 4.7
software.

Protein levels of CXCL1, CCL2, and CCL5 in supernatants
of periodontal fibroblasts at 1 day and 2 days were measured
with a commercially available enzyme-linked immunosorbent
assay (ELISA) kit (LSBio, Seattle, WA, USA) according to
the manufacturer’s protocol. Final absorbance was analyzed
with a microplate reader (PowerWave x, BioTek Instruments,
Winooski, VT, USA) at 450 nm. For data normalization, the
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periodontal fibroblasts were detached after collection of the
supernatants and counted with an automatic cell counter
(Moelab, Hilden, Germany).

Statistical analysis

For statistical analysis, the IBM SPSS Statistics software
(Version 22, IBM SPSS, Chicago, IL, USA) was applied.
Mean values and standard errors of the mean (SEM) were
calculated for quantitative data. In order to test for significant
differences between the groups, the t test, Mann-Whitney U
test, and ANOVA followed by the post-hoc Tukey multiple
comparison tests were applied. Differences between groups
were considered significant at p < 0.05.

Results

Presence of CXCL1, CCL2, and CCL5 in human gingival
biopsies

First, we sought to determine if CXCL1, CCL2, and CCL5 are
expressed in human gingival biopsies. As evidenced by real-
time PCR, significantly (p < 0.05) higher expression levels of
CXCL1, CCL2, and CCL5 were found in the gingiva from
sites of periodontitis as compared with biopsies from peri-
odontally healthy sites (Fig. 1a–c). These findings at transcrip-
tional level were confirmed by immunohistochemistry analy-
sis, which demonstrated a pronounced immunostaining for
CXCL1, CCL2, and CCL5 proteins in the gingiva of peri-
odontitis specimens (Fig. 1d–f). Interestingly, the chemokines
were mainly present in the subepithelial region. By contrast,
clinically healthy gingiva did not show a marked presence of
these chemokines (Fig. 1d–f).

Presence of CXCL1, CCL2, and CCL5 in gingival
biopsies of rats with experimental periodontitis
and/or orthodontic tooth movement

Since the aforementioned analyses revealed that the levels of
all chemokines were increased at sites of periodontitis, we
wondered if biomechanical forces could regulate the
bacteria-induced chemokine expressions. To study the inter-
actions of microbial and biomechanical signals in a controlled
environment, an animal model was used. The rats were sub-
jected to experimental periodontitis and/or orthodontic tooth
movement, untreated rats served as control. As shown in Fig.
2a–c, periodontitis resulted in significantly (p < 0.05) en-
hanced expression levels of CXCL1, CCL2, and CCL5 in
the gingival biopsies. However, when the sites of experimen-
tal periodontitis were also subjected to orthodontic tooth
movement, the gingival levels of all chemokines were signif-
icantly (p < 0.05) lower as compared with the periodontitis

group, demonstrating that the orthodontic forces counteracted
the bacteria-induced upregulation of CXCL1, CCL2, and
CCL5 (Fig. 2a–c).

Regulation of CXCL1, CCL2, and CCL5 by F. nucleatum
and/or biomechanical forces in fibroblasts

Since F. nucleatum is a pathogen which plays a critical role in
both gingivitis and periodontitis, periodontal fibroblasts were
exposed to this bacterium in further in vitro experiments (Fig.
3). As depicted in Fig. 4a, F. nucleatum caused a significant
(p < 0.05) upregulation of CXCL1 in the cells at 1 day, as
analyzed by real-time PCR. However, when these cells were
subjected simultaneously to F. nucleatum and CTS, the
F. nucleatum-induced upregulation of CXCL1 was signifi-
cantly (p < 0.05) inhibited (Fig. 4a). Like CXCL1, CCL2
and CCL5 were significantly (p < 0.05) increased in the pres-
ence of F. nucleatum (Fig. 4 b and c). Furthermore, the upreg-
ulated CCL2 and CCL5 expressions were significantly
(p < 0.05) diminished again, when the fibroblasts were treated
with a combination of F. nucleatum and CTS (Fig. 4 b and c).
As evidenced by ELISA, exposure of the cells with
F. nucleatum also resulted in significantly (p < 0.05) enhanced
protein levels of CXCL1, CCL2, and CCL5. Moreover, appli-
cation of CTS to the cells counteracted the stimulatory action
of F. nucleatum on CXCL1, CCL2, and CCL5 proteins,
confirming and expanding the findings at transcriptional level
(Fig. 4d–f).

Discussion

This study provides original evidence in vitro and in vivo that
the chemokines CXCL1, CCL2, and CCL5 are regulated by
both microbial and biomechanical signals in periodontal cells
and tissues. Furthermore, our study revealed that biomechan-
ical forces can counteract the stimulatory actions of
F. nucleatum on these chemokines. Therefore, biomechanical
loading might aggravate periodontal infection by compromis-
ing the recruitment of immunoinflammatory cells.

Periodontitis is characterized by a chronic inflammation
caused by subgingival microorganisms [2]. The aim of the
inflammatory host response is to eliminate or at least to reduce
the pathogenic bacteria, thereby protecting the periodontal
cells, tissues, and structure. In order to recruit immunoinflam-
matory cells to the site of the microbial attack and tissue de-
struction, chemokines, such as CXCL1, CCL2, and CCL5, are
required. Whereas CXCL1 is a strong chemoattractant for
neutrophils, CCL2 and CCL5 mainly promote the recruitment
of monocytes, macrophages, and lymphocytes [13]. Several
studies have clearly demonstrated that these cell types and
their subsets have defined roles in the battle between the host
and microorganisms in periodontitis [21, 22].
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Our study proves that CXCL1, CCL2, and CCL5 are of
utmost importance in the pathogenesis of periodontal diseases.

They were upregulated in human gingiva from sites of peri-
odontitis, in inflamed gingiva from rats and also in periodontal

Fig. 1 CXCL1, CCL2, and CCL5 in human gingival biopsies. Gene
expression of CXCL1 (a), CCL2 (b), and CCL5 (c) in human gingival
biopsies from sites of periodontitis (n = 6) as compared with periodontally
healthy sites (n = 6), as analyzed by real-time PCR. Mean values and
SEM, *significant (p < 0.05) difference between groups. CXCL1 (d),

CCL2 (e), and CCL5 (f) proteins in human gingival biopsies from peri-
odontally healthy and inflamed sites, as analyzed by immunohistochem-
istry. Representative histological sections from a periodontally healthy
subject and a periodontitis patient are shown

Fig. 2 CXCL1, CCL2, and CCL5 in rat gingival biopsies. Gene
expression of CXCL1 (a), CCL2 (b), and CCL5 (c) in gingival biopsies
of rats subjected to experimental periodontitis and/or orthodontic tooth

movement, as analyzed by real-time PCR. Untreated rats served as con-
trol. Mean values and SEM (n = 4 animals/group), *significant (p < 0.05)
difference between groups
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fibroblasts exposed to the periodontopathogen F. nucleatum.
These transcriptional results were further supported by find-
ings at protein level, as evidenced by immunohistochemistry
and ELISA. Interestingly, the role of the aforementioned
chemokines has also been addressed by other investigators.
For example, increased CXCL1, CCL2, and CCL5 levels
have been found in gingival crevicular fluid (GCF) from peri-
odontally diseased sites as compared with healthy sites [10,
23, 24]. Moreover, elevated CCL2 levels have been observed
in human gingival tissues affected by periodontitis [25, 26].
These observations concur with our findings, indicating that
periodontal cells and tissues produce enhanced levels of
CXCL1, CCL2, and CCL5 in the presence of periodontal
infection and may therefore contribute to elevated levels of
these chemokines in GCF. Notably, increased serum levels
of CXCL1 and CCL5 have been demonstrated in experimen-
tal periodontitis in mice [6, 27]. Whether the locally produced
levels of CXCL1, CCL2, and CCL5 from the periodontal
tissues contribute to the elevated serum levels of these
chemokines should be further analyzed.

Few studies have also focused on the actions of mechanical
forces on the chemokine production in periodontal cells and
tissues. Periodontal cells subjected to compressive forces for
24 h produced higher CCL2 levels as controls [28]. Increased
CCL2 periodontal tissue levels following mechanical force
application were also observed in animal models [28, 29].
These findings are in contrast to our results, which could be
due to different reasons. For example, their in vivo studies
focused on CCL2 in periodontal ligament of the compression
site, whereas we examined CCL2 in gingiva without restric-
tion to a particular site. In vitro, we subjected periodontal
ligament cells to tensile strain in contrast to compressive
forces. In humans, the effect of mechanical forces on CCL2
and CCL5 has been studied during orthodontic tooth move-
ment and yielded controversial results [30–32]. The regulation
of these chemokines may depend on several parameters, such
as duration, magnitude, and type of force application as well
as the biological material evaluated.

In our study, the bacteria-induced upregulation of CXCL1,
CCL2, and CCL5 was surprisingly counteracted by biome-
chanical forces in vitro and in vivo, suggesting that biome-
chanical loading may compromise a sufficient recruitment of
immunoinflammatory cells in periodontitis. This mechanism
may explain how occlusal overloading may aggravate peri-
odontitis, as it has clearly been shown in animals [33].
Interestingly, CXCL1 and CCL5 promote migration of gingi-
val fibroblasts and CCL5 stimulates proliferation of these cells
[34], indicating that these chemokines affect not only neutro-
phils, monocytes/macrophages, and lymphocytes but also
periodontal cells.

Although it was easy to obtain human gingival biopsies
from sites of periodontitis and periodontal health, gingival
tissues from sites affected by both periodontitis and orthodon-
tic forces become hardly available. Therefore, an animal mod-
el was chosen to study the interaction of periodontitis and
biomechanical/orthodontic forces. In this model, periodontitis
was induced by cotton ligatures around the maxillary first
molars, which promoted the accumulation of a complex bac-
terial biofilm and bone resorption, as previously shown [16].
Extrapolating data from rats to humans has to be done with
caution. However, a study by Hyde et al. on the characteriza-
tion of the rat oral microbiome has demonstrated that there are
sufficient similarities in oral microbiome structure and physi-
ological effects to justify the use of rat models, even if there
are limitations [35]. We also wanted to study the interactions
between microbial and mechanical signals at cellular levels
and therefore exposed periodontal fibroblast to both
F. nucleatum and CTS, which was applied by the use of an
established cell strain device. However, during orthodontic
tooth movement and mastication, periodontal tissues are sub-
jected to complex mechanical loading. Whether compressive,
hydrostatic, and shear forces as well as their combinations
exert similar regulatory effects on CXCL1, CCL2, and

Fig. 3 F. nucleatum and periodontal fibroblast, as depicted by scanning
electron microscopy
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CCL5, as observed for tensile strain in the present investiga-
tion, needs to be elucidated in further studies. The magnitude
of the applied tensile force was physiologically relevant and
also chosen in our previous studies.

In our in vitro experiments, the periodontal fibroblasts were
treated with F. nucleatum, because this Gram-negative, anaer-
obic periodontopathogen serves as a bridge between early and
late colonizers during biofilm formation, can invade host cells,
and has a proven etiological role in gingivitis and periodontitis
[3, 4, 36]. Nevertheless, periodontitis not only is caused by a

single bacterium but also is a highly complex biofilm [37].
Future studies should therefore focus on the regulatory actions
of other pathogenic microorganisms and their combinations
on CXCL1, CCL2, and CCL5.

Since F. nucleatum is strongly involved in periodontal dis-
eases, this microorganism was used to simulate periodontal
infection in our in vitro study. Nevertheless, Porphyromonas
gingivalis is another important and well-studied
periodontopathogen. Intriguingly, P. gingivalis and
Escherichia coli have also been shown to enhance CXCL1,

Fig. 4 CXCL1, CCL2, and CCL5 in human periodontal fibroblasts. Gene
expression of CXCL1 (a), CCL2 (b), and CCL5 (c) in human periodontal
fibroblasts exposed to F. nucleatum and/or constant tensile strain (CTS) at
1 day, as analyzed by real-time PCR. Protein levels of CXCL1 (d), CCL2

(e), and CCL5 (f) in supernatants of human periodontal fibroblasts ex-
posed to F. nucleatum and/or constant tensile strain (CTS) at 1 day and
2 days, as analyzed by ELISA. Mean values and SEM (n = 9/group),
*significant (p < 0.05) difference between groups
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CCL2, and CCL5 expressions in human periodontal cells
[38–42]. By demonstrating that these chemokines are upreg-
ulated in response to microbial stimuli, these studies support
our in vitro findings. In our experiments, a suspension of
F. nucleatum, which was exposed to intensive ultrasonication
before application, was used. Therefore, it can be assumed that
the suspension mainly contained disrupted cell wall particles
with a high amount of lipopolysaccharides.

Future studies should also unravel the interactions between
the microbial and mechanical signals at receptor level and
within the cells. In addition, it would be intriguing to know
if microbial and mechanical signals also interact on the regu-
lation of chemokine receptors in periodontal cells and tissues.
Moreover, periodontal cells with a fibroblast-like phenotype
were used in our in vitro experiments. However, if other peri-
odontal cell phenotypes, such as osteoblasts and
cementoblasts, exert similar effects on CXCL1, CCL2, and
CCL5 remains to be studied.

Conclusions

In summary, our in vitro and in vivo investigations have
shown that the chemokines CXCL1, CCL2, and CCL5 are
regulated by both bacterial and mechanical signals in peri-
odontal cells and tissues. Additionally, our study revealed that
biomechanical forces can inhibit the stimulatory actions of
F. nucleatum on CXCL1, CCL2, and CCL5. Therefore, bio-
mechanical loading may aggravate periodontal infection by
compromising the critical recruitment of immunoinflammato-
ry cells.
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