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Abstract. A self-contained theory is presented for pricing and hedging LIBOR
and swap derivatives by arbitrage. Appropriate payoff homogeneity and mea-
surability conditions are identified which guarantee that a given payoff can be
attained by a self-financing trading strategy. LIBOR and swap derivatives satisfy
this condition, implying they can be priced and hedged with a finite number
of zero-coupon bonds, even when there is no instantaneous saving bond. No-
tion of locally arbitrage-free price system is introduced and equivalent criteria
established. Stochastic differential equations are derived for term structures of
forward libor and swap rates, and shown to have a unique positive solution when
the percentage volatility function is bounded, implying existence of an arbitrage-
free model with such volatility specification. The construction is explicit for the
lognormal LIBOR and swap “market models”, the former following Musiela
and Rutkowski (1995). Primary examples of LIBOR and swap derivatives are
discussed and appropriate practical models suggested for each.
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1. Introduction

Traditionally, models of interest rate have dealt with continuously compounded,
instantaneous rates. The instantaneous, continuously compounded spot rate and
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forward rates and a continuum of discount factors are constructed and options
are evaluated, using the risk-neutral measure. The latter is arrived at by taking as
numeraire the continuously compounded saving account (bond). Yet, in the actual
market place, the rates applicable to interest-rate derivatives, foremost among
them LIBOR and swap derivatives, are quoted for accrual periods of at least
a month, commonly three or six months, and their calculation is simple rather
than continuously compounded. Moreover, the market quotes liquid caps and
(European) swaptions in terms of implied Black-Scholes volatilities, implicitly
assuming forward LIBOR and swap rates follow lognormal processes with the
quoted volatilities.

The traditional models take a continuum of initial instantaneous forward rates
or discount factors as given, and construct a continuum of processes, making
assumptions either on the dynamics of the instantaneous spot rate (possibly de-
pendent on several state variables) or volatilities of instantaneous forward rates.
(A comprehensive treatment can be found in Musiela and Rutkowski (1997).)
In order to match market quoted prices of caps or European swaptions, they
need to suitably parametrize degrees of freedom in their specified dynamics of
instantaneous spot rate or volatilities of instantaneous forward rates, and then
“calibrate” these parameters to quoted prices by, in general, a multidimensional
and often highly computationally intensive, numerical root search algorithm. The
resultant processes for forward LIBOR or swap rates are analytically intractable,
and generally bear no resemblance to lognormality.

Only recently, arbitrage-free models have appeared that model LIBOR or
swap rates directly as the primary process rather than a secondary process derived
from instantaneous rates. By a direct hedging argument, Neuberger (1990) derived
the industry standard Black-Scholes formula for European swaptions. However,
a term structure of swap rates (or LIBOR rates), which is necessary for modelling
of more complex derivatives, such as Bermudan swaptions, was not developed.

Sandmann and Sondermann (1993, 1994) proposed a lognormal model for the
effective rate and showed that it circumvents certain instabilities (particularly with
Eurodollars) present in lognormal, continuously compounded rate models. This
was further developed within the framework of Heath et al. (1992) by Goldys et
al. (1994) and Musiela (1994). Continuing in this framework, the emphasis was
shifted to LIBOR rates in Miltersen et al. (1995, 1997) and Brace et al. (1997),
where by different techniques a term structure model of lognormal LIBOR rates
was constructed which priced caplets by the industry standard Black-Scholes
formula – and for this reason termed the “market model” by the latter. Such a
model is now automatically calibrated to caplet prices and can be used to evaluate
more complex products like captions and callable capped floating rate notes.

Brace, Gatarek and Musiela’s approach was complicated by the fact that the
LIBOR market model dynamics was specified in the risk-neutral measure, and as
such still relied on the continuously compounded spot rate, which they (implic-
itly) assumed to have finite variation. A satisfactory and transparent construction
was subsequently carried out by Musiela and Rutkowski (1995) in the forward-
risk-adjusted measure (of the final payment). Their “backward induction” was an
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explicit recursive equation for the term structure of forward LIBOR rates with a
lognormal (i.e., deterministic percentage) volatility. In particular, it followed that
prices of all LIBOR derivatives depended only on the finite number of discount
factors that define the LIBOR rates.

Our approach to LIBOR and swap derivatives is largely motivated by Musiela
and Rutkowski (1995). We do not use continuously compounded instantaneous
interest rates, or the risk-neutral measure: LIBOR and swap derivatives are eval-
uated and hedged without them. Key to this is the fact that payoffs of LIBOR
and swap derivatives are homogeneous of degree one in the discount factors that
define these rates1. As such, relative to a zero-coupon bond numeraire (or a linear
combination of them), the payoff is a function only of (the path of) LIBOR and
swap rates. As we will show, under suitably general conditions, such payoffs can
be attained by self-financing trading strategies involving only the finite number
of zero-coupon bonds that define LIBOR rates, even in some situations where
there is no instantaneous saving bond, or the market is incomplete.

The no-arbitrage framework adopted here assumes the existence of astate
price deflator which makes deflated zero-coupon bond prices martingales (in
the actual measure), as in Duffie (1992, Chapter 6). This framework does not
require the instantaneous saving bond. Moreover, the condition is evidently only
on the ratios of zero-coupon bond prices. But, forward LIBOR (and swap) rates
are defined in terms of these ratios, and vice versa. As such, the no-arbitrage
condition naturally translates into a constraint on forward LIBOR (or swap)
rates, an equation which relates the drifts and covariance matrix of the rates.
This leads to the existence of a unique arbitrage-free term structure of forward
LIBOR (or swap) rates from an arbitrary specification of forward LIBOR (or
or swap) volatility function, with an explicit construction in the lognormal case.
LIBOR and swap derivative prices and hedges are then determined, because, as
already mentioned, their payoffs (relative to appropriate numeraires) are specified
directly in terms of LIBOR and swap rates.

The content is as follows. The next section will establish notation, recalls
various mathematical facts and records some preliminary results. We work in a
continuous semimartingale framework. Not depending on the choice of a Brown-
ian motion as a basis, it makes the derivations and formulae more conceptual and
arguably simpler. We will specialize to Ito processes when constructing models
as solutions of stochastic differential equations (SDE).

Section 3 discusses self-financing trading strategies (SFTS). A useful criteria
is established which facilitates several examples. The European swaption (in-
cluding stepup and amortizing varieties) is treated as an instance of the option
to exchange two assets, leading to its market model Black-Scholes formula. A
more general example derives the SFTS (and price) for a “trigger swap.” In this
section we also point out a fact which becomes a theme for the rest of the pa-
per. Suppose we are given a finite number of assets, whose covariance matrix
of instantaneous returns is nonsingular. Then a payoff which is a function of
these asset prices at expiration cannot be attained by a SFTS, unless the payoff
function is homogeneous of degree one in the prices. This is a situation where



296 F. Jamshidian

the market is incomplete, e.g., a European call option on an individual asset
cannot be replicated, unless another asset is a zero-coupon bond maturing at the
option expiration. The reason is that an instantaneous saving bond cannot be
replicated in the non-singular covariance case. Yet homogeneous payoffs, such
as an option to exchange two assets, can be replicated, because a long position
in one asset can be financed by a short position in the other. Thus, as long as the
homogeneity property is satisfied, the existence of an instantaneous saving bond
is an unnecessary restriction.

Section 4 introduces “locally arbitrage-free” (LAF) price systems. This en-
ables to bypass technical integrability conditions, and instead concentrate on
the linear constraint between the drift and covariance matrix that underlines the
essence of the no-arbitrage condition. These constraints are also formulated in
terms of forward LIBOR rates, leading to an SDE, and in the case of the LIBOR
market model to its explicit solution by the “backward induction” technique of
Musiela and Rutkowski (1995). The LAF condition already implies to some ex-
tent that there are no “free lunches.” It also enables deriving prices and hedging
strategies for path-independent payoffs, as solution to a “fundamental differential
equation” expressed in terms of forward LIBOR.

Section 5 strengthens the LAF condition by assuming that the relevant lo-
cal martingales are actually martingales. This enables stronger no-free lunch re-
sults, representation of appropriately measurable payoffs by self-financing trading
strategies, and their valuation by taking expectation. We also prove the existence
of an arbitrage-free term structure of positive forward LIBOR rates, given an ab-
solute forward LIBOR volatility function of linear growth. We use the technique
of change of numeraire as applied for the special case of zero-coupon bonds and
forward risk adjustment in Jamshidian (1987) and El Karoui and Rochet (1989)
(and in connection with exchange rates in Jamshidian (1993)) and described for
general numeraires in, for instance, Babbs and Selby (1993), and more fully in
this connection, by Geman et al. (1995).

In Sect. 6, we introduce a tenor structure and with it the notion of a tenor
adapted self-financing trading strategy. A “spot LIBOR measure” is constructed
which shares many characteristics of the risk neutral measure (e.g., prices are
“discounted along the path before averaging”), yet is well-adapted to LIBOR
and swap derivatives. The SDE for forward LIBOR here resembles the Heath et
al. (1992) ”forward rate restriction” for instantaneous forward rates. They had
to assume a bounded absolute volatility function for otherwise the solution may
explode. But here, a unique positive solution exists when the percentage volatility
is bounded (absolute volatility having linear growth).

Assuming a tenor structure, Sect. 7 finally imposes the unity constraint
(Bi (Ti ) = 1) for zero-coupon bonds at maturity. The existence results are ex-
tended to enforce this constraint. Forward LIBOR rates are uniquely determined
as before as the solution of an SDE. But the numeraire is uniquely determined
only at the tenor dates. Different continuous interpolation of these values give
rise to different arbitrage-free models. However, relative prices of LIBOR and
swap derivatives are independent of the choice of interpolation, as are the prices
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themselves at all tenor dates. Moreover, implementation algorithms need only to
construct the LIBOR process, not any numeraire.

Section 8 extends the results for LIBOR to the term structure of forward swap
rates with a fixed end date. The dynamics of this term structure in the last-maturity
forward-risk-adjusted measure is derived by noting that each forward swap rate
is a martingale in an associated “forward swap measure” whose numeraire is
an annuity. As in the LIBOR case, the SDE has a unique positive solution, and
the swap market model can be constructed explicitly by backward induction.
However, we point out that the lognormal LIBOR and swap market models are
inconsistent with each other.

The next four sections are devoted to applications. We discuss in some detail
some primary examples of LIBOR and swap derivatives, including knockout,
Asian, periodic, and flexible caps in Sect. 9, Bermudan swaptions, captions, and
callable capped floating rate swaps in Sect. 10, LIBOR in arrears and constant
maturity swaps in Sect. 11, and spread options, triggered swaps, index amortizing
swaps, and callable reverse floaters in Sect. 12.

The path-dependent derivatives of Sect. 9 can be accurately evaluated by
constructing random paths of the LIBOR process using either the forward-risk-
adjusted or spot LIBOR dynamics, followed by averaging. By “forward trans-
porting” contingent payoffs, we can actually cast the Bermudan derivatives of
Sect. 10 as ordinary path-dependent options. But since their definition is recursive,
a multitude of conditional expectations have to be computed, for which conven-
tional Monte Carlo simulation is inadequate, unless there are only two (possibly
three) exercise dates. “Bushy trees” are more appropriate, but they have their
own limitations. A simple “non-arbitrage free approximation” is suggested as
a numerically robust alternative. Section 11 deals with “convexity adjustment.”
Interestingly, a related problem arises in statistical genetics, for which a closed-
form solution is now provided. The options of Sect. 12 depend on both caplet and
swaption volatilities. We indicate how to construct a swap market model which
is root-search calibrated to caplet prices. But, since root-search calibration is not
in the spirit of market models, we suggest alternative “improvised models.”

A concluding section elaborates on the policy of adopting different models
for different products.

2. Notation and mathematical preliminaries

Let T > 0, and (Ω,F ,P,Ft ), t ∈ [0,T], be a complete filtered probability
space satisfying the usual hypotheses. The value at timet of a stochastic process
X will be denoted byXt or X(t), as convenient. TheFt conditional expectation
operator is denotedEt , or EP

t . Let

E ≡ {continuous semimartingales on [0,T]} , E+ ≡ {X ∈ E : Xt > 0, ∀t} .
The quadratic covariation process ofX, Y ∈ E is denoted〈X,Y〉. In our conven-
tion, 〈X,Y〉0 = 0 rather thanX0Y0. The quadratic variation〈X〉 ≡ 〈X,X〉, being
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a continuous increasing process, induces pathwise a measured〈X〉 on [0,T],
and d〈X,Y〉 is likewise a signed measure by polarization. Other notations for
d〈X,Y〉 often seen aredX · dY, cov(dX, dY) and〈dX, dY〉. For X ∈ E , and an
appropriate integrandσ, we denote by

∫
σdX the process inE whose value at

time t is the stochastic integral
∫ t

0 σsdXs. In our convention
∫ 0

0 σsdXs is 0 rather
than σ0X0. With these conventions, Ito’s product rule (or integration by parts)
states

XY = X0Y0 +
∫

XdY +
∫

YdX + 〈X,Y〉.

If X,Y ∈ E+, Ito’s lemma applied to log(x) gives

X = X0 e
∫

dX
X − 〈logX〉

2 , 〈logX, logY〉 = 〈
∫

dX
X
,

∫
dY
Y
〉 =

∫
d〈X,Y〉

XY
.

The compensator ofX ∈ E is here denoteduX or uP
X ; it is the unique process of

finite variationuX ∈ E such thatuX (0) = 0 andX − uX is a P-local martingale.
If X > 0, there is an also unique process of finite variationUX ≡ U P

X ∈ E+ such
that UX (0) = 1 andX/UX is a P-local martingale. ForX > 0, the compensator
uX and the multiplicative compensatorUX are related by

uX =
∫

Xd(logUX ), UX = e
∫

duX
X .

For X,Y ∈ E , we get from Ito’s product rule

uXY =
∫

(XduY + YduX ) + 〈X,Y〉. (1)

If X,Y ∈ E+, we have in addition

UXY = UXUY e〈log X,log Y〉 . (2)

We recall some well-known facts about the Girsanov change of measure needed
for the change of numeraire. LetQ be a measure equivalent toP. Denote itsFt

conditional expectation operator byEQ
t . SetMt ≡ Et [dQ/dP]. Then,Mt > 0 is

a P-martingale,M0 = 1, and ifXs is aFs measurable,Q-integrable random vari-
able, thenEQ

t [Xs] = EP
t [XsMs]/Mt , t < s. This implies thatX is a Q-martingale

iff XM is a P-martingale, and by localization,X is a Q-local martingale iffXM
is a P-local martingale. Now, assumeM is continuous. ForX ∈ E , by Ito’s
product rule,

(X − uX − 〈X, logM 〉)M = X0 +
∫

(X − uX − 〈X, logM 〉)dM +
∫

Md(X − uX ) .

The first integral is aP-local martingale becauseM is, and so is the second
integral becauseX − uX is a P-local martingale. So, (X − uX − 〈X, logM 〉)M is
a P-local martingale, implying thatX−uX −〈X, logM 〉 is aQ-local martingale.
Therefore, theQ-compensatoruQ

X of X is
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uQ
X = uP

X + 〈X, logM 〉,
(

Mt ≡ EP
t

[
dQ
dP

])
. (3)

In particular, if X is a P-Brownian motion, thenY ≡ X − 〈X, logM 〉 is a con-
tinuousQ-local martingale satisfying〈Y〉t = 〈X〉t = t ; henceY is a Q-Brownian
motion by Levy’s characterization. (It is known that stochastic integration and
quadratic variation with respect toP andQ coincide.) IfX ∈ E+, the multiplica-
tive Q-compensatorU Q

X of X is similarly given by

U Q
X = U P

X e〈log X,log M 〉 . (4)

For X ∈ E , we consider the following spaceL(X) of stochastic integrands:

L(X) ≡
{

predictable processesσ :
∫ T

0
σ2

sd〈X〉s +
∫ T

0
|σs| |duX (s)| <∞ a.s.

}
.

For σ ∈ L(X), the stochastic integral
∫
σdX is well defined, and is a continuous

semimartingale. It is known thatL(X) and
∫
σdX depend only on the equivalence

class of the measureP. Clearly, for anyX ∈ E , L(X) contains all predictable
processes with a.s. bounded paths on [0,T]. In particular, for anyX ∈ E ,
L(X) contains all adapted processes whose paths are left continuous and have
right limits a.s. For our purposes, the latter would have sufficed and been more
convenient, except for one result (Theorem 5.1) where we need the larger space
L(X).

Lemma 1. Let X , Y∈ E andσ ∈ L(X)∩ L(Y). Thenσ ∈ L(XY), and if Y > 0,
σ ∈ L(X/Y).

Proof. SinceX andY have bounded paths on [0,T], to show
∫
σ2d〈XY〉 <∞,

it suffices by the product rule and the assumptionσ ∈ L(X) ∩ L(Y), to show
that

∫
σ2d〈X,Y〉 < ∞. But, using againσ ∈ L(X) ∩ L(Y), this is a direct

consequence of the Kunita-Watanabe inequality. That
∫ |σ| |duXY| < ∞ now

follows from this, Eq. (1), andσ being inL(X)∩ L(Y). The second statement is
similar. ut

We will deal with vector processes. Set

E n ≡ {(B1, . . . ,Bn) : Bi ∈ E }; E n
+ ≡ {(B1, . . . ,Bn) : Bi ∈ E+} .

We regard elements ofE n as column vectors. ForB ∈ E n, B0 andBt will denote
B(0) andB(t), whereasBi will denote thei -th component ofB. This should not
cause confusion. ForB ∈ E n, set

L(B) ≡ {θ = (θ1, . . . , θn) : θi ∈ L(Bi )}, B ∈ E n .

We regard elements ofL(B) as row vectors. Forθ ∈ L(B),
∫
θdB denotes∑∫

θi dBi , or in differential notation,θdB ≡ ∑
θi dBi . The following simple

result will be important. Interestingly, Eq. (5) and (6) below have the same form
in the stochastic case as in the deterministic case.
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Lemma 2. (a) If ξ ∈ E , B ∈ E n, andθ ∈ L(B) with θi ∈ L(ξ) for all i , then

d

(
ξ

∫
θdB

)
= θd(ξB) +

(∫
θdB− θB

)
dξ . (5)

(b) If B ∈ E n with Bj > 0 for some j , andθ ∈ L(B) with θi ∈ L(Bj ) for all i ,
then

d

(
Bj

∫
θd

B
Bj

)
= θdB +

(∫
θd

B
Bj
− θB

Bj

)
dBj . (6)

Proof. Using the product rule, then Lemma 1 and associativity, then again the
product rule, gives

d

(
ξ

∫
θdB

)
−
(∫

θdB

)
dξ = ξ(θdB) + d

〈
ξ,

∫
θdB

〉
= θ(ξdB + d〈ξ, dB〉) = θ(d(ξB)− Bdξ) .

(b) Follows by applying (a) withξ replaced byBj andB replaced byB/Bj . ut

The next result will be used (in different measures) for construction of forward
LIBOR or swap rates processes, given a covariance function and prescribed initial
forward rates.

Lemma 3. Let wt , be a d-dimensional Brownian motion on(Ω,F ,P,Ft ). Let
scalar functionsµi (t , x) and d-dimensional row-vector valued functionsσi (t , x),
t ∈ [0,T], x ∈ Rm

+ , 1≤ i < m, be measurable, bounded and locally Lipschitz in
x. Then, there exist uniquewt -Ito processes Xi > 0, with a given initial condition
X(0) ∈ Rm

+ , satisfying the SDE dXi = Xiµi (t ,X)dt + Xiσi (t ,X)dw. Moreover, the
solution is square-integrable.

Proof. It suffices to show that the log-transformed SDEdYi = υi (t ,Y)dt +
γi (t ,Y)dw has a unique solution, whereγi (t , y) = σi (t , ey), υi (t , y) = µi (t , ey)−
|γi (t , y)|2/2. But it is easy to see thatγi (t , y) andνi (t , y) are bounded and locally
Lipschitz. The desired result now follows from a standard existence and unique-
ness theorem for solutions of SDEs.2 Moreover, a standard argument shows that
the SDE forX implies E[|Xt |2] < K (1 + |X0|2)exp(Kt) for someK > 0. ut

Corollary 1. Withwt andσi (t ,X) as in Lemma 2, there exists a unique (square-
integrable)wt -Ito process Xi > 0, with a given initial condition X(0) ∈ R

m
+ ,

satisfying the SDE

dXi = −
m∑

j =i +1

Xi Xj σi (t ,X)σj (t ,X)t

1 + Xj
dt + Xiσi (t ,X)dw .

Moreover, the processes Yi ≡ (1 + Xi ) . . . (1 + Xm) are square-integrable martin-
gales, for all i .
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Proof. Since (Xj /(1 + Xj )) and sum and product of bounded, locally Lipschitz
functions are bounded and locally Lipschitz, by Lemma 2 a unique solution
Xi > 0 exists. We claim that

dYi = Yi γi dw, γi (t) ≡
m∑

j =i

Xj (t)σj (t ,Xt )
1 + Xj (t)

.

This is obvious fori = m becauseYm = 1 +Xm, anddXm = Xmσmdw. By (2) and
backward induction

UYi = U(1+Xi )Yi +1 = U(1+Xi )UYi +1exp(〈log (1 +Xi ), logYi +1〉 >)

= exp

(∫
duXi

1 + Xi

)
× 1× exp

(∫
Xiσi

1 + Xi
γt

i +1dt

)
= 1 ,

where the last equality is a direct consequence of the drift ofdXi given by the
SDE and the definition ofγi +1. So, Yi is a local martingale, and has zero drift.
That the dispersion coefficient ofYi is Yi γi follows directly from the product
rule. Finally, sinceγi is a bounded process, it now follows thatYi is a square-
integrable martingale. In fact, by a standard argument, for someK > 0,

E[Yi (t)2] ≤ K (1 + Y2
i (0)) eKt <∞, ∀t , i . ut

3. Self-financing trading strategies (SFTS)

Definition. A pair (θ,B), B ∈ E n, θ ∈ L(B), is called aself-financing trading
strategy (SFTS) if d(θB) = θdB (i.e.,θB = θ0B0 +

∫
θdB). We also sayθ is a

SFTS if B is understood.

In this definition,Bi is thought of as the price of thei -th asset, andθi denotes the
number of shares held in asseti . These assets are considered to be cash securities
without any continuous cash flows, such as stocks, bonds and options. Here, the
Bi do not represent forward or futures prices or exchange rates.3 The quantity
θdX − d(θX) can be thought of as the continual financing needed to maintain
the trading strategy. So, if it vanishes, it means that, except initially at time
0, no money is put into or taken out of the strategy until maturityT. The price
C = θB of an SFTS is always continuous, even whenθ is discontinuous (because
it equalsθ0B0+

∫
θdB). Sometimes,θ may only be defined on a subinterval [0,T∗]

satisfyingd(θB) = θdB. Then, providedBn > 0, we can extendθ to an SFTS by
setting on (T∗,T], θi = 0 for i < n, andθn(t) = θ(T∗)B(T∗)/Bn(T∗). This can
be done also in the cases whereBi are defined only on [0,T∗] for i < n.

We will only study securities which can be replicated by an SFTSθ with
respect to a given price systemB ∈ E n. As such, in this paper, the term “security
price” is synonymous toθB for some SFTSθ. There may exist two distinct
SFTSθ andθ′ with the same payoffs, i.e.,θ(T)B(T) = θ′(T)B(T). In that case,
unless they have the same prices, i.e.,θB = θ′B, there is obviously an arbitrage



302 F. Jamshidian

opportunity. Later we will impose a condition which ensures that such a “law of
one price” will hold, and in fact provides the price as an appropriate expectation
of the payoff.

Theorem 1. If (θ,B) is an SFTS, then so is(θ, ξB) for any ξ ∈ E such that
θi ∈ L(ξ) for all i .

Proof. This follows immediately by substitutingθB−θ0B0 =
∫
θdB in both sides

of Eq. (2.5). ut
Corollary 1. Let B ∈ E n with Bj > 0 for some j . Letθ ∈ L(B) with θi ∈ L(Bj )
for all i . Then(θ,B) is an SFTS if and only if(θ,B/Bj ) is an SFTS, and this holds
if and only if

θj = θj (0) +
∑
i/=j

(
θi (0)

Bi (0)
Bj (0)

− θi
Bi

Bj
+
∫

θi d
Bi

Bj

)
. (1)

Proof. This follows by setting in Theorem 1,ξ = Bj (ξ = 1/Bj ) for the “if”
(“only if”) part. ut

The significance of this result is that we can choose all but a singleθj

arbitrarily, i.e., we can trade in all except thej -th security arbitrarily, while
using thej -th security to appropriately finance the strategy. Also, whenn = 1,
Corollary 1 implies (θ, 1) is an SFTS, soθ is a constant.

We call a price systemB ∈ E n non-degenerateif θ ∈ L(B) and〈∫ θdB〉 = 0
imply θ = 0. An example is when〈Bi ,Bj 〉 is absolutely continuous, and the
n by n matrix d〈Bi ,Bj 〉/dt is nonsingular for all (t , ω). By an instantaneous
saving bond(with respect to a givenB ∈ E n), we mean a nonzero SFTSθ
such that〈θB〉 = 0. Thus, an instantaneous saving bond is a replicable security
whose priceθB has finite variation. Note, an instantaneous saving bond exists
only whenB is degenerate. The following result provides a useful criteria for a
“path-independent” SFTS.

Theorem 2. Let B ∈ E n andθ(t ,B) be a C1 function of n+ 1 real variables. Set
θt = θ(t ,Bt ), ∂θ/∂t = ∂θ/∂t(t ,Bt ), etc. Then(θ,B) is an SFTS if the following
two equations are satisfied∑

j

Bj
∂θj

∂Bi
= 0, ∀i (equivalentlyθi =

∂θB
∂Bi

) , (2)

∂θ

∂t
· B dt +

1
2

∑
i ,j

∂θi

∂Bj
d〈Bi ,Bj 〉 = 0 . (3)

Further, if B ∈ E n
+ and Eq. (2) is satisfied, then for any1 ≤ k ≤ n, Eq. (3) is

equivalent to

∂θ

∂t
· B dt +

1
2

∑
i/=k,j/=k

∂θi

∂Bj
Bi Bj d〈log

Bi

Bk
, log

Bj

Bk
〉 = 0 . (4)
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Conversely, if(θ,B) is an SFTS and B∈ E n is nondegenerate, then (2) and (3)
are satisfied.

Proof. Set C(t ,B) = θB, Ct = C(t ,Bt ), ∂C/∂t = ∂C/∂t(t ,Bt ), etc. Since
∂C/∂Bi = θi +

∑
Bj ∂θj /∂Bi , if (2) holds, then∂C/∂Bi = θi , and∂θi /∂Bj =

∂2C/∂Bi ∂Bj = ∂θj /∂Bi . Hence by Ito’s lemma,dC − ∂C/∂B · dB equals the
left hand side of (3), which, if zero impliesdC = θdB, i.e., θ is an SFTS.
The equivalence of (3) and (4) follows easily from Eq. (2) and the symmetry
of ∂θi /∂Bj . As for the converse, since nowθ ∈ E n, and θ is an SFTS, we
have

∫
Bdθ = −〈B, θ〉. Thus 0 = 〈∫ Bdθ〉 =

∫ ∑
(Bj ∂θj /∂B) · dB, which by

nondegeneracy implies (2). Equation (3) follows as before.ut
Note from the proof that (2) implies∂θi /∂Bj = ∂θj /∂Bi , and plugging this

back into (2), it followsθ(t ,B) (C(t ,B)) is homogeneous of degree zero (one)
in B. In particular, whenB is non-degenerate, all path-independent SFTSθ are
homogeneous of degree 0 in B. By a similar argument one sees that ifB is
non-degenerate and an Ito diffusion, and the payoffC(B(T)) is a function of
B(T), then there is no SFTSθ such thatθTBT = C(B((T)), unless the payoff
is homogeneous of degree 1 inB, in which case the price will be a function
C(t ,B) of B(t) satisfying a PDE provided by (3) or (4).

Example 1: Option to exchange two assets(Margrabe 1978; Geman et al.
1995). LetB = (B1,B2) ∈ E 2

+ . This option has the payoff at timeT > 0 of
max(B1(T) − B2(T), 0). Assuming〈logB1/B2〉 is positive and deterministic, for
t < T, set

θ1(t) = N (h+(t)), θ2(t) = −N (h−(t)) ,

where

V 2(t ,T) = 〈log
B1

B2
〉T − 〈log

B1

B2
〉t , h±(t) =

log (B1(t)/B2(t))
V (t ,T)

± V (t ,T)
2

,

n(x) =
e−x2/2

√
2π

, N (x) =
∫ x

−∞
n(y)dy .

It is standard thatθB approaches max(B1(T) − B2(T), 0) at time T. Also,
(θ,B) is an SFTS. Indeed, from the relationB1n(h+) = B2n(h−), it follows that
the functionC(t ,B) = θB satisfies∂C/∂Bi = θi . Therefore, Eq. (2) in Theorem
2 holds. It remains to show Eq. (4). This follows from

∂C
∂t

dt =

(
B1(n(h+)

∂h+

∂t
− B2n(h−)

∂h−
∂t

)
dt

= B1n(h+)dV = −1
2
∂θ1

∂B1
B2

1 d〈log
B1

B2
〉 .

If B2 is a zero-coupon bond price in this example, i.e.,B2(T) = 1, then the option
is a European call option on the first asset, as in Merton (1973). But, otherwise,
the converse part of Theorem 2 and remarks following it imply that it is not
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possible to replicate a call option on the first asset (by trading inB1 and B2)
because a call option payoff is not homogeneous of degree 1 in (B1,B2).

Example 2: European swaption(Neuberger 1990). LetB ∈ E n
+ , δ ∈ R

n−1
+ ,

K > 0. AssumeB1 > Bn. SetX = B1−Bn, Y = δ1B2 + . . .+δn−1Bn. A European
payer’s swaption with couponK , (fixed) day-count fractionsδ and expirationT
is a security whose payoff at time T is max(0,XT − KYT ). So, it is an option
to exchange “fixed cash flows”KYT for “floating cash flows”X. The pricing
and hedging formulae of Example 1 therefore apply, provided the “forward swap
rate” S ≡ X/Y has deterministic volatility, i.e.,〈log (S)〉 is deterministic. This
is the industry-standard approach. Acaplet is a European swaption withn = 2.
A European swaption can also be considered as an option with strike price 1 on
a forward bond with couponK .

A variation often seen in steep yield curve environments is a “stepup swap-
tion”, where the couponK is nonconstant, depending oni . This can be reduced
to the standard case by replacingδi by δi Ki and settingK = 1. Sometimes one
has a non-constant notional, e.g., an option to enter (or cancel) an amortizing
swap with notionalN ∈ R

n−1
+ . The payoff is again max(0,XT − KYT ), where

now X = N1(B1−B2)+. . .+Nn−1(Bn−1−Bn), andY = N1δ1B2 +. . .+Nn−1δn−Bn.
We can again apply Example 1 if we assume that the “break-even forward swap
rate” S ≡ X/Y has deterministic volatility. These assumptions of deterministic
volatility for different swap ratesS may not be consistent with each other. Yet,
taken individually, they appear to be quite reasonable assumptions – certainly
robust and convenient.

Example 3: Trigger swap. Let B = (B1,B2,B3,B4) ∈ E 4
+ . A trigger swap with

maturity T is a security whose payoff at timeT is B3(T) − B4(T) if B1(T) >
B2(T) and zero otherwise. IfB3 = B1 and B4 = B2, then the trigger swap is
the same as the option to exchange assets 1 and 2. Assuming〈logB1/B2〉 and
〈logB1/B2, logB3/B2〉 are deterministic, fort < T set

θ1(t) =
n(h(t))B3(t)
V (t ,T)B1(t)

, θ2(t) = − n(h(t))B3(t)
V (t ,T)B2(t)

, θ3(t) = N (h(t)) ,

where,

h(t) = h−(t) +

(
〈log

B1

B2
, log

B3

B2
〉T − 〈log

B1

B2
, log

B3

B2
〉t

)
/V (t ,T) .

We claim that (θ,B) is an SFTS and

θt · Bt = B3(t)N (h(t)) → 1B1(T)>B2(T)B3(T) a.s. ast → T .

This then provides the SFTS for the receive leg of the trigger swap, and the pay
leg is given by a similar SFTS withB3 replaced byB4. (A digital option is the
special case of this receive leg withB2(T) = B3(T) = 1.) To establish the claim,
noteθ1B1 + θ2B2 = 0, hence the value of the receive leg isθt Bt = B3(t)N (h(t)).
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Now, if B1(T) > B2(T), then log (B1/B2) is bounded above zero nearT, and
sinceV (t ,T) → 0, we see thath−(t) and henceh(t) approach infinity. Hence,
θB → B3(T). Similarly, if B1(T) < B2(T), then θB → 0. To showθ is self-
financing, we use Theorem 2. SetC(t ,B) = θB = B3N (h). Clearly,∂C/∂Bi = θi

for all i ; hence it remains to show (4) holds. Since∂θ3/∂B3 = 0, Eq. (4) for
k = 2 simply reads

B3
∂N (h(t))

∂t
dt +

1
2
∂θ1

∂B1
B2

1 dV1 1 +
∂θ1

∂B3
B1B3dV1 3 = 0 , Vij ≡ 〈log

Bi

B2
, log

Bj

B2
〉 .

This equation is easily verified by the calculations

∂θ1

∂B1
B2

1 = −n(h)
B3

V

(
1 +

h
V

)
, dV1 1 = −2VdV ,

∂θ1

∂B3
B1B3 = n(h)

B3

V
,

∂h
∂t

dt = −
(

1 +
h−
V

)
dV + d

(
V1 3(T)− V1 3(t)

V

)
= −

(
1 +

h
V

)
dV − dV1 3

V
.

We can rederive the SFTS for an option to exchange two assets by considering a
trigger swap withB3 = B1 andB4 = B2. For the receive (pay) leg,h(t) becomes
the same ash+(t) (h−(t)). Aggregating and using the identityB1n(h+) = B2n(h−),
one getsθ1 = N (h+) andθ2 = −N (h−), as before.

Example 4: SupposeB1, B2, B3 are geometric Brownian motions with respect
to a one-dimensional Brownian motionz(t): dBi /Bi = µi dt + σi dz. Set

θ1 = Θ1 2 , θ2 = Θ2 1−Θ2 3 , θ3 = −Θ3 2 ,

where

Θij (t) ≡ σj Cij (t)
(σj − σi )Bi (t)

, Cij (t) ≡ eµij t , µij ≡ σiµj − σjµi

σi − σj
.

It is easy to see that (θ,B) is an SFTS,θB = C1 2−C2 3, and andθ0B0 = 0. This
is an example of an SFTS with zero initial investment, and a deterministic value
θt Bt thereafter. Unless this value is zero, i.e,µ1 2 = µ2 3, it is clear that there will
be an arbitrage opportunity. Note, the conditionµ1 2 = µ2 3 is equivalent to the
condition (µ1 − µ2)/(σ1 − σ2) = (µ3 − µ2)/(σ3 − σ2).

The trigger swap example illustrates that, regardless of whether or not there
is an arbitrage opportunity among the underlying asset pricesB1, . . . ,B4, the
payoff of a trigger swap can be replicated by dynamic trading. For example, in
the situation of Example 4 withµ1 2 /= µ2 3, the SFTS in Example 3 still replicates
the payoff of the trigger swap, although in this case we can do better by combining
it with the SFTS in Example 4. A bookrunner engaged in structured customers’
business is not normally required to take advantage of arbitrage opportunities.
Normally, his primary task is to preserve the initial revenue of the trade by
hedging. What he needs is a systematic way of deriving the price and the hedge.
Arbitrage-free models not only guarantee absence of “free lunches”, but, perhaps
more importantly, provide a systematic method to arrive at the price and the
replicating SFTS.
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4. Locally arbitrage-free (LAF) price systems

Definition. B ∈ E n is said to belocally arbitrage-free (LAF) if there exists
ξ ∈ E+ (called thestate price deflator) with ξ0 = 1 such thatξBi are P-local
martingales for all i .

In the next section we will strengthen this toξBi being martingales. But, as
we see in this section, the LAF condition already suffices for most of the basic
properties. Note, ifB is LAF, then so isζB for any ζ ∈ E+. So, for B ∈ E n

+ ,
the LAF condition is only a condition on the ratiosBi /Bj . In particular, it does
not depend on the choice of currency. Clearly, it is also invariant under change
of equivalent measure.

Theorem 1. Let B ∈ E n be LAF. Thenξ(θB) is a P-local martingale for all
SFTSθ such thatθi ∈ L(ξ) for all i .

Proof. By Theorem 3.1,ξθB = θ0B0 +
∫
θd(ξB), which is a local martingale

if ξBi are, provided we showθi ∈ L(ξBi ). But θi ∈ L(ξ) by assumption and
θi ∈ L(Bi ) becauseθ is an SFTS. Hence,θi ∈ L(ξBi ) by Lemma 2.1. ut

The LAF condition implies there is no “free lunch” in the weak sense below.

Proposition 1. Let B ∈ E n, C ∈ E , ξ ∈ E+. If C0 = 0, C ≥ 0, and ξC is a
P-local martingale then C= 0.

Proof. SinceξC is a non-negative local martingale, it is a supermartingale. So
E0[ξt Ct ] ≤ ξ0C0 = 0. But ξt Ct ≥ 0. Hence,ξt Ct = 0 andCt = 0 a.s.∀t . Being
continuous,C is indistinguishable from 0. ut

Theorem 2. Let B ∈ E n be LAF and C∈ E be such thatξC is a P-local
martingale. Then

uC +
∫

C
dUξ

Uξ
+ 〈C , logξ〉 = 0 . (1)

If further Bj > 0 for some j , then

uC/Bj
= −〈C

Bj
, logξBj 〉 . (2)

If further C > 0, then the following three equations also hold.

UC e〈log C,logξ〉Uξ = 1 ; (3)

UC = UBj e
−〈log C

Bj
,logξ〉

; (4)

U C
Bj

= e
−〈log C

Bj
,logξBj 〉

. (5)
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Proof. By (2.1), Eq. (1) is equivalent touξC = 0, i.e., to ξC being a local
martingale. In particular, ifB is LAF, then (1) holds forBj . Combining (1) for
Bj with (1) for C , and using (2.1) gives (2). By (2.2), Eq. (3) is equivalent to
UξC = 1, i.e., toξC being a local martingale. Eq. (3) applied toBj and then
combined with (3) itself to eliminateUξ gives (4). Equation (5) follows from
(2). ut

Equations (1)–(5) hold in particular forC = Bi , and by Theorem 1, more
generally for pricesC of SFTSs. Either of these equations forC = Bi completely
characterizes the LAF condition:

Theorem 3. Let B ∈ E n
+ . Then B is LAF if there existsξ ∈ E+ such that, for all

i , either Eq. (1) or Eq. (2) or Eq. (3) or Eq. (4) or Eq. (5) holds for all C= Bi

and some j .

Proof. Eq. (1) is equivalent touξC = 0 by (2.1). So, if (1) holds forC = Bi ,
then ξBi is a local martingale andB is LAF. If Eq. (2) holds for someξ, then
by replacingξ by ξ/UξBj , we may assume that Eq. (2) holds for someξ such
that ξBj is a local martingale, i.e., that (1) holds withC = Bj . Applying (2.1)
to the productBi = (Bi /Bj )Bj , and using (1) forC = Bj and (2) forC = Bi all
terms cancel, showingξBi is a local martingale; soB is LAF. The rest follows
similarly. ut
Remark.If B is LAF andC is the price of an instantaneous saving bond price (so
〈C〉 = 0) then by (3)UC = 1/Uξ, henceC = C0/Uξ. Here, we do not assume that
an instantaneous saving bond necessarily exists (though we allow it). In practice,
B is usually degenerate and it is expected to exist.

Equations (3)–(5) suggest that the LAF condition is essentially a linear
constraint between the “covariance matrix”d〈logBi , logBj 〉 and the “drifts”
d(logUi ), as made explicit below.

Theorem 4. Let B ∈ E n
+ . Assume that for some pathwise bounded predictable

processesvi j , µi ,

d〈logBi , logBj 〉 = vi j dt, UBi (t) = exp(
∫ t

0
µi (s)ds), i , j = 1, . . . , n .

Then, (i) there exist pathwise bounded predictable processesαj , r , such that

µi = r +
n∑

j =1

vi j αj ∀i ,
n∑

j =1

αj = 0

if and only if (ii) for some (and hence all) k , there exist pathwise bounded pre-
dictable processesαi , i /= k, such that for all i

µi = µk +
∑
j/=k

vi j ,kαj ,
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where

vi j ,k ≡ vi j − vi k − vj k + vk k =
d
dt
〈log

Bi

Bk
, log

Bj

Bk
〉 .

Moreover, if these conditions are satisfied, then B is LAF. In fact,ξBi are P-local
martingales, whereξ is given by the equivalent expressions

ξ = exp

∫ −
∑

j

αj
dBj

Bj
+

1
2

∑
i ,j

αi vi j αj − r

 dt


=

1
Uk

exp

∫ −
∑
j/=k

αj
Bk

Bj
d

Bj

Bk
+

1
2

∑
i ,j/=k

αi vi j ,kαj dt

 .

Proof. If (ii) holds for somek, setαk = −αi − . . . − αk−1 − αk+1 − . . . − αn,
so that

∑
αj = 0, and setr = µk −

∑
vk jαj . Then, it is easy to check that

µi −
∑

vi j αj = r for all i , so that (i) holds. The converse is similar. The last
statement follows from Theorem 3 by verifying thatξ, defined by the first formula
above, satisfies Eq. (3) for allC = Bi . ut
Corollary 1. Let B ∈ E n

+ . Then, for some (and hence all) k , the above n− 1 by
n − 1 matrix v,k = (vi j ,k) is nonsingular if and only if for each(t , ω) there is no
0 /= a ∈ Rn such that

∑
aj =

∑
vi j (t , ω)aj = 0 for all i . In this case, B is LAF;

in fact, there is a uniqueα, with
∑

αj = 0, such that conditions (i) and (ii) in
Theorem 4 are satisfied.

Proof. The equivalence of the stated conditions is an easy argument in linear
algebra, using (vi j ) is a symmetric, positive semidefinite matrix. These conditions
clearly imply the existence of unique processesαj (t , ω) satisfying conditions (i)
and (ii) of Theorem 6 for each (t , ω). But then, as a process,αj (t , ω) is necessarily
predictable and locally bounded, because by (ii), it is obtained from the inverse
matrix of v,k , whose components are continuous functions ofvi j ,k . ut

The corollary basically shows that if the covariance matrixv = (vi j ) has
rank n − 1, thenB is automatically LAF. (In particular, whenn = 2, B is LAF,
providedv1 1,2 /= 0.). If v = (vi j ) is non-singular, thenB is LAF, but ξ is not
unique (“market is incomplete”) and can be chosen to be a local martingale
itself. (Defineξ by the first formula in the Theorem, withα = v−1(µ), so that
r = 0.) Note also, the processξ in the first formula in Theorem 6 satisfies
Uξ(t) = exp(− ∫ t

0 r (s)ds). Hence,r can be interpreted as the instantaneous spot
interest rate, provided 1/Uξ is the price of an SFTS.

All the properties we have encountered are those of the relative pricesBi /Bj .
The “forward LIBOR process” incorporates only these ratios. GivenB ∈ E n

+

and “daycount fractions”δ = (δ1, . . . , δn−1) ∈ Rn−1, δi > 0, define then − 1
dimensional processL = (L1, . . . , Ln−1) ∈ E n−1 by

Li ≡ δ−1
i

(
Bi

Bi +1
− 1

)
. (6)
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This construction is particularly important whenBi represent zero-coupon bond
prices. Nevertheless, its properties below hold in general.

Theorem 5. If B ∈ E n
+ is LAF, thenξBi +1Li are P-local martingales, and

ui ≡ uLi = −〈Li , log (ξBi +1)〉 . (7)

Conversely, B∈ E n
+ is LAF if there existsξ ∈ E+ such that (7) holds for all

i = 1, . . . , n − 1.

Proof. Since ξBi +1Li = ξ(Bi − Bi +1)/δi , we see ifB is LAF then ξBi +1Li are
local martingales. Equation (7) is the same as Eq. (2) withC = Bi , andj = i + 1.
Conversely, (7) implies that (2), and hence (5) holds forC = Bi and j = i + 1,
for all i . Telescoping and using (2.2), then (5) holds for allC = Bi and all j .
The converse now follows from Theorem 3.ut

By definition (6), we haveBi +1 = Bn(1 + δi +1Li +1) . . . (1 + δn−1Ln−1). Substi-
tuting this into (7) we get

uLi + 〈Li , log (ξBn)〉 = −
n−1∑
j =i +1

〈Li , log (1 +δj Lj )〉 = −
∫ n−1∑

j =i +1

δj d〈Li , Lj 〉
1 + δj Lj

. (8)

Conversely, it is clear that if this equation holds for alli , then Eq. (7) also holds
for all i . Theorem 5 therefore implies

Theorem 6. B ∈ E n
+ is LAF iff there existsξ ∈ E+ such that Eq. (8) holds for

all i = 1, . . . , n − 1.

If Li > 0, then by Eq. (2.2), we have similar to Eq. (7) and Eq. (8)

ULi = e−〈log Li ,logξBi +1〉 = e
−〈log Li ,logξBn〉−

∫ ∑n−1

j =i +1

δj d〈Li ,Lj 〉
Li (1+δj Lj ) . (9)

The following result provides the price and SFTS of a path-independent option.

Theorem 7. Let B ∈ E n be LAF, and C∈ E be such thatξC is a P-local
martingale and Ct = C(t ,Bt ) for some C2 function C(t ,B), homogenous of degree
1 in B. Then(∂C/∂B,B) is an SFTS, C= (∂C/∂B) ·B, and dC= (∂C/∂B) ·dB.
Moreover, if Bi > 0 for all i , then C = Bnc(t , Lt ) for some C2 function c(t , L)
such that a.s.,

∂c
∂t

dt −
n−1∑
i =1

n−1∑
j =i +1

∂c
∂Li

δj d〈Li , Lj 〉
1 + δj Lj

+
1
2

n−1∑
i ,j =1

∂2c
∂Li ∂Lj

d〈Li , Lj 〉 = 0 . (10)

Proof. NoteC = ∂C/∂B ·B, becauseC(t ,B) is homogenous of degree 1. Let us
temporarily writeX ≈ Y if X−Y has finite variation. Then by thrice application
of Ito’s formula we have
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d(ξC) ≈ ξdC + Cdξ ≈ ξ
∂C
∂B

· dB + Cdξ

≈ ∂C
∂B

· d(ξB) +

(
C − ∂C

∂B
· B

)
dξ =

∂C
∂B

· d(ξB) .

This shows (∂C/∂B, ξB) is an SFTS; hence by Theorem 2.1 (applied to 1/ξ),
so is (∂C/∂B,B). As for Eq. (10),C(t ,B)/Bn, is homogenous of degree zero,
hence equalsc(t , L) for someC2 function c (with L as in (6)). Applying Ito’s
lemma toc(t , Lt ), and using Eq. (2) and (8) gives (10).ut

The significance of Eq. (10) is that, unlike Eq. (1)–(9), “ξ” no longer appears.
If the “LIBOR covariance matrix”d〈Li , Lj 〉 is a function ofL, then (10) furnishes
a “fundamental differential equation” for the price. As we pointed out in the
previous section, the homogeneity condition above cannot be relaxed whenB
is non-degenerate. This issue will be expanded on in the next section, where a
measurability condition is identified for a payoff to be representable by an SFTS.

A LIBOR market model(with a given daycount fractionδ ∈ Rn−1
+ ) is a LAF

price systemB ∈ E n
+ such thatLi > 0 and〈logLi , logLj 〉 is deterministic for all

1 ≤ i , j ≤ n − 1. The following explicit construction by “backward induction”
is essentially due to Musiela and Rutkowski (1995).

Example 1: LIBOR market model. We are givenδ ∈ Rn−1
+ and bounded, mea-

surable, deterministic functionsΛi j (t), 1 ≤ i , j ≤ n − 1, such that the matrix
Λ(t) = (Λi j (t)) is symmetric and positive-semidefinite. We wish to construct a
LAF B ∈ E n

+ , such thatd〈logLi , logLj 〉 = Λi j dt, with a given initial condi-
tion L(0) ∈ R

n−1
+ . We assume that there is an integerd and n − 1 bounded,

measurableRd valued functionsλ1(t), . . . , λn−1(t) (viewed as row vectors) such
that Λi j = λi · λj (so rank(Λ(t)) ≤ d) and thatFt supports ad-dimensional
P-Brownian motionz(t). Let ξ, Bn ∈ E+ be such thatξ(0) = 1 andξBn is a local
martingale. Fori = n − 1, define

Li = Li (0)exp

(∫
−Λi i

2
dt + λi (d(z − 〈z, logξBi +1〉)

)
, Bi = Bi +1(1 + δi Li ) .

Now, Bn−1 is available, and we can use the above equations fori = n−2 to define
Bn−2, and so on, until allBi are defined. Evidently,d〈logLi , logLj 〉 = Λi j dt. Also
Eq. (7) is clearly satisfied, henceB is LAF by Theorem 5. This solutionB is not
unique. Aside from the freedom in the choice ofξ, Bn, a different decomposition
Λi j = λ′i · λ′j leads to a different solution. For example, ifλ′i (t) = λi (t)A(t)
for somed by d orthogonal matrixA(t , ω), then a different solution obtains by
replacingz in the above recursive formula byz′ =

∫
A(s)dz(s). But, by Levy’s

characterization,z′(t) is anotherd-dimensional Brownian motion; so these two
solutions are essentially the same. We will later amend this construction when
Bi represent zero coupon bonds (to ensureBi (Ti ) = 1).

Assume now thatBj (henceLj ) and ξ are Ito processes with respect to a
d-dimensional (Ft ,P) Brownian motionz(t), following
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dBi

Bi
= µi dt + σi dz,

dξ
ξ

= −r dt − ϕdz, (r , µi ∈ L(t), σi , ϕ ∈ L(z)) . (11)

Thed-dimensional processϕ = −d〈z, logξ〉/dt is called themarket price of risk,
and r (t) = −d(logUξ)/dt represents the instantaneous interest rate, provided
1/Uξ = θB for some SFTSθ. When B is LAF, Eq. (3) and (4) forC = Bi

translate to

µi = r + σiϕ, µi = µj + (σi − σj )ϕ . (12)

Conversely, an Ito processB ∈ E n
+ is LAF, if there is aϕ ∈ L(z) (i.e.

∫ |ϕ|2dt <
∞) such that the second equation in (12) holds. Then,r (t) is defined by the first
equation in (10) for anyi , andξ is defined byξ = exp(

∫ −(r + |ϕ|2/2)dt−ϕdz).
If C ∈ E+ with C = θB for some SFTSθ, then

dC
C

= (r + σCϕ)dt + σC dz, σC =
1
C

∑
i

θi Biσi .

With βi = (σi −σi−1)(1+δi Li )/δi denoting the absolute LIBOR volatility, Eq. (8)
is rewritten as

dLi = −
n−1∑
j =i +1

δj βiβ
t
j

1 + δj Lj
dt + βi dzn, zn ≡ z +

∫
(ϕ− σn)dt . (13)

5. Arbitrage-free price systems

The strengthening below of the LAF condition enables evaluation of contingent
claims by taking expectation of their payoffs, and determination of the replicating
SFTS. It also leads to existence and uniqueness of the forward LIBOR process,
given a LIBOR volatility function of linear growth.

Definition. B ∈ E n is arbitrage-free if there isξ ∈ E+ with ξ0 = 1 such thatξBi

are P-martingales for all i .4

Note, if B is arbitrage-free, then so isB/X for any X ∈ E+.5 So, for B ∈ E n
+ ,

the arbitrage condition is a condition only on the ratiosBi /Bj .

Convention: From now on (for convenience to avoid stating integrability con-
ditions att = 0) we will always assumeF0 consists of null sets and their com-
plements. Hence,F0 measurable random variables are deterministic constants
(members ofR) andE0[X] = E[X].

A LAF B is arbitrage-free ifξBi satisfy certain integrability conditions. We
recall, (i) a local martingaleX is a martingale ifE[supt≤T |Xt |] < ∞, (ii) a
local martingaleX with E[〈X〉T ] < ∞ is a square integrable martingale and
E[〈X〉t ] = E[X2

t ] − X2
0 = var[Xt ], (iii) by Novikov Theorem, a continuous local

martingaleX > 0 is a martingale (and so is
∫

dX/X) if E[exp(〈logX〉T/2)] <∞.
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Theorem 1. Let B ∈ E n be arbitrage-free andθ be an SFTS. ThenξθB is a
square-integrable martingale if∀i either (i) E[

∫
θ2

i d〈ξBi 〉] < ∞, or (ii) ξBi is
square-integrable andθ is bounded.

Proof. If E[
∫
θ2

i d〈ξBi 〉] < ∞, then θi ∈ L(ξBi ). Setting C = θB, it fol-
lows as in Theorem 3.1 thatξC = C0 +

∫
θd(ξB). But then E[〈ξC〉] =∑

E[
∫
θi θj d〈ξBi , ξBj 〉] < ∞, implying ξC is a square integrable martingale.

(ii) follows from (i). ut

The above result provides an intuitive interpretation for the state price deflator
ξt (ω) as the price at time zero of a security which at timet pays the infinitesimal
amountdP(ω) if state ω occurs and pays zero otherwise. More precisely, let
A ∈ Ft , and suppose there is a bounded SFTSθ such thatθt Bt = 1A. By the
theorem,ξθB is a martingale, henceθ0B0 = E[ξtθt Bt ] =

∫
A ξt (ω)dP(ω).

The next proposition strengthens the no-free lunch result of the LAF case.
In particular, it implies “the law of one price”: two SFTSs with the same payoff
have the same price.

Proposition 1. Let B ∈ E n, C ∈ E , ξ ∈ E+. AssumeξC is a martingale and
CT ≥ 0 a.s. Then (i) Ct ≥ 0 a.s. for all0≤ t ≤ T , and (ii) if C0 ≤ 0, then Ct = 0
a.s. for all 0≤ t ≤ T .

Proof. Since ξC is a martingale,Ct = Et [ξTCT ]/ξt for all t . Hence,CT ≥ 0
implies Ct ≥ 0, becauseξ > 0. If further C0 ≤ 0, then E[ξTCT ] ≤ 0. But
ξTCT ≥ 0, henceξTCT = 0 andCT = 0 a.s. ut

Let B ∈ E n be arbitrage-free and assumeBi > 0 for somei . SinceMi ≡
ξBi /Bi (0) is a positiveP-martingale withMi (0) = 1, an equivalent measurePi ,
called theBi numeraire measure, is defined bydPi /dP = Mi (T). We denote
its Ft conditional expectation operator byEi

t . If Bj > 0 too, thendPi /dPj =
(Bi (T)/Bj (T))(Bj (0)/Bi (0)). More generally, ifC ∈ E+ is such thatξC is a P-
martingale, then theC numeraire measurePC is defined bydPC/dP = ξTCT/C0.
As in Sect. 2, for a semimartingaleX, ξX is aP (local) martingale iffX/C is aPC

(local) martingale. So,Bj /Bi is a Pi martingale. IfξC andξA areP-martingales
with A > 0, thenC/A is a PA martingale, and hence

Ct =
1
ξt

EP
t [ξTCT ] = Bi (t)Ei

t

[
C(T)
Bi (T)

]
= At E

A
t

[
CT

AT

]
. (1)

Remark 1.Let B ∈ E n
+ be arbitrage-free. If the local martingaleξ/Uξ is ac-

tually a martingale, then the measureQ defined bydQ/dP = ξ(T)/Uξ(T) is
called therisk-neutral measure. In this case,UξBi are Q martingales (because
UξBi (ξ/Uξ) = ξBi areP-martingales). Whether or not a continuous saving bond
exists, we do not assume that the risk-neutral measure exists, because in our
framework, valuation of LIBOR and swap derivatives is not facilitated in this
measure.
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Examples 3.1 and 3.3 revisited. We exhibited SFTS and prices for the op-
tion to exchange two assets and trigger swaps. We can now see where these
formulae came from. The priceC of the exchange option is given byCt =
B2(t)E2

t [max(0,B1(T)/B2(T)− 1]. The pricing formula would follow by a stan-
dard calculation if we show that log (B1/B2) is a Gaussian process in theP2

measure. We need to show that a continuous local martingaleX > 0 is log-
Gaussian if〈logX〉 is deterministic. LetY =

∫
dX/X. Then,Y is a local mar-

tingale, henceYt = Bs(t), for some BrownianB with respect to another filtration,
where s(t) = 〈Y〉t . Since a Brownian motion is Gaussian ands(t) = 〈logX〉t

is deterministic,Y and hence log (X) is Gaussian. Having thus found the price
C, the SFTS is obtained by taking partial derivatives as in Theorem 4.7. For
trigger swaps, a similar expectation is calculated to derive the price, and partial
derivatives are then taken to get the hedge.

We now turn to the problem of determining an SFTSθ that replicates a
given payoff CT . When B is non-degenerate, a replicating SFTS doesnot ex-
ist for a “generic” FT measurableCT . We saw this in Sect. 3 for the path-
independent case. More generally, letB ∈ E n

+ be non-degenerate and satisfy
the absolute continuity assumptions of Theorem 4.4. As remarked there, this
implies thatB is LAF and ξ can be chosen to be a local martingale. Assume
more strongly thatB is arbitrage-free andξ is a martingale. ThenBi are Q-
martingales, whereQ is defined bydQ/dP = ξ(T). Supposeη ∈ L(B) is not
an SFTS, butEQ[

∫
η2

i d〈Bi 〉] < ∞. We claim there is no SFTSθ, such that

EQ[
∫
θ2

i d〈Bi 〉] <∞ andθTBT =
∫ T

0 ηdB. Indeed, otherwise
∫

(η − θ)dB would
vanish atT. But,

∫
(η − θ)dB is a Q-martingale, hence it vanishes identically.

SinceB is non-degenerate, this impliesη = θ, a contradiction. As such, when
B is non-degenerate, the market is incomplete. However, this does not prevent
finding an SFTS whenCT is appropriately measurable.

Theorem 2. Let B ∈ E n be LAF, Bn > 0, and ξBn be a martingale. Assume
that dUξ/dt and all d〈Bi ,Bj 〉/dt exist a.s. and have bounded paths on[0,T],
the matrix d〈Bi /Bn,Bj /Bn〉/dt has a.s. constant rank d, d≤ n − 1, and there
exists a d-dimensional Pn Brownian motionw, such that Bi /Bn are adapted to
the completed filtrationJt generated byw. Let CT be a random variable such
that CT/Bn(T) is JT measurable and Pn integrable. Then there exists an SFTSθ
such that CT = θTBT andθB/Bn is a (Jt ,Pn) martingale.

Proof. By the local martingale representation Theorem,d(B/Bn) = γdw, for
somen−1 by d, Jt (adapted and) predictable matrixγ = (γik ).6 The assumption
implies γ has full rankd and is pathwise bounded a.s. Letψ be the pseudo-
inverse ofγ. Sinceγ has full rank,ψ is a continuous function ofγik , as it is
given by orthogonal projection onto the image ofγ followed by the inverse of
γ on its image. Therefore,ψ too is Jt predictable and has bounded paths. Set
ct ≡ En[CT/Bn(T)|Jt ]. c is a (Jt ,Pn) martingale, so there exists aJt -predictable
processη = (η1, . . . , ηd) such that

∫ |η|2dt <∞ andc = c0 +
∫
ηdw. Setθ ≡ ηψ.

Then
∫ |θ|2dt ≤ (supt |ψ|2)

∫ |η|2dt < ∞ a.s. Sinceψσ = Id ,
∫
θd(B/Bn) =∫

ηdw = c − c0. So, c = c0 +
∫
θd(B/Bn). Extendθ to an n-vector by setting
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θn ≡ c− (θ1B1 + . . . + θn−1Bn−1)/Bn, so thatθB = Bnc = θ0B0 + Bn
∫
θd(B/Bn).

Using this on both sides of Eq. (2.6) (or using Corollary 3.1) givesd(θB) = θdB,
i.e. θ is an SFTS. But to use (2.6), we still need to showθi ∈ L(Bi ) ∩ L(Bn).
In fact, we showθi ∈ L(Bj ) ∀i , j , i.e.,

∫
θ2

i d〈Bj 〉 < ∞, and
∫ |θi | |duj | < ∞

a.s., whereui is the compensator ofBi . The first folows since
∫
θ2

i dt < ∞ and
d〈Bj 〉/dt have bounded paths. a.s. By Kunita-Watanabe inequality,∫

|θi | |d〈Bj , logξ〉| ≤
(∫

θ2
i d〈Bj 〉

)1/2

〈logξ〉1/2 <∞ a.s.

The second now follows from this, Eq. (4.1), and the assumption ondUξ. Since
θB = Bnc, θTBT = Bn(T)cT = CT , and (θB)/Bn is a (Jt ,Pn) martingale. ut

The measurability condition onCT essentially amounts toCT/Bn(T) being
measurable with respect to the sigma algebra generated byBi (s)/Bj (s), or equiv-
alently by theLi (s), s ≤ T. So, the appropriate payoffsCT are those such that
CT/Bn(T) (or, equivalentlyCT/Bj (T) for any j ) is measurable with respect to
the sigma algebra generated byL(s), s ≤ T. This restriction onCT is substan-
tial whenB is non-degenerate. But, otherwise,JT usually coincides withFT , in
which case no restriction is imposed onCT .

From the proof of Theorem 1 and the uniqueness of martingale representation,
one sees that ifd = n−1, then the replicating SFTS is unique. But, ifd < n−1,
then for anyκ such thatκγ = 0, θ + (κ,−(κ1B1 + . . .+κn−1Bn−1)/Bn) is another
replicating SFTS. Nevertheless, their pricesθB will be the same by the law of
one price.

Let B ∈ E n
+ be arbitrage-free. The forward LIBORLi is by its definition an

affine transformation ofBi /Bi +1. Therefore,Li is a Pi +1 martingale, as pointed
out by Brace et al. (1997). Eq. (4.8) and the change of measure formula (2.3)
combine to give thePn compensatorun

i of Li :

un
i ≡ uPn

Li
= −

∫ n−1∑
j =i +1

δj d〈Li , Lj 〉
1 + δj Lj

. (2)

Similarly, when Li > 0, Eq. (4.9) and (2.4) imply that thePn multiplicative
compensatorU n

i of Li is

U n
i ≡ U Pn

Li
= exp

− ∫ n−1∑
j =i +1

δj d〈Li , Lj 〉
Li (1 + δj Lj )

 . (3)

We pose the following problem: given ann − 1 by n − 1 symmetric posi-
tive semidefinite matrix functionΛ(t , L) = (Λij (t , L)) of t ∈ [0,T], L ∈ Rn−1

+ ,
is there an arbitrage-free price systemB such thatLi > 0 and d〈Li , Lj 〉t =
Λij (t , L(t))Li (t)Lj (t)dt? The answer is affirmative providedΛ(t , L) is bounded
and locally Lipschitz inL. For example, whenΛ(t , L) is independent ofL, we
saw in Sect. 4, Example 5, that a solution – the LIBOR market model – can
be explicitly constructed. As in that example, we can expect uniqueness only



LIBOR and swap market models and measures 315

if we pose the problem in terms of the LIBOR “percentage volatility matrix”
λ = λ(t , L), an n − 1 by d matrix satisfyingΛ = λλt .

Theorem 3. Let ξ, Bn ∈ E+ be such thatξ(0) = 1 and ξBn is a P-martingale.
Letw(t) be a d-dimensional(Ft ,Pn) Brownian motion. Let n be an integer and
λi (t , L) be n− 1 d-dimensional vector valued functions on[0,T] ×Rn−1

+ , which
are measurable, bounded, and locally Lipschitz in L. Then there exist unique
wt -Ito processes B1, . . . ,Bn−1, such thatξBi are P-martingales for all i , the
associated LIBOR process L(t) is positive, starts from a given initial condition
L(0) ∈ R

n−1
+ , and satisfies d〈Li , w〉 = λi (t , L)Li dt a.s. (So d〈logLi , logLj 〉 =

λi (t , L)λj (t , L)t dt .)

Proof. If a solution exists, then by Eq. (2)L satisfies the SDE

dLi

Li
= −

n−1∑
j =i +1

δj Lj λi (t , L)λj (t , L)t

1 + δj Lj
dt + λi (t , L)dw . (4)

By Corollary (2.1) (withm = n − 1, measureP replaced byPn, andXi = δi Li ),
this SDE has a unique solution, and moreover, if we setBi = Bn(1 +δi Li ) . . . (1 +
δn−1Ln−1), thenBi /Bn is a Pn martingale. ut

When the forward LIBOR covariance matrix is of the formd〈Li , Lj 〉 =
βij (t , L)(1 + δi Li )(1 + δi Lj )dt, for some bounded, locally Lipschitz functions
βij (t , L), we can show that a solution exits by the same method. But now,Lt may
no longer be positive. An example is the Gaussian model, where〈logBi , logBj 〉
are deterministic. Thend〈Li , Lj 〉 is of the above form with a deterministicβij .
An example where no solution exists is when〈Li 〉 is specified to be determinis-
tic, implying Li is Gaussian inPi +1. But, this cannot happen, because we must
always haveLi > −1/δi .

In Sect. 7 we impose the zero-coupon bond constraint of unity at maturity,
and modify Theorem 3 such thatBn andUξ are part of the solution rather than
given.

6. Spot LIBOR measure

We now introduce additional structure. Atenor structureis a sequence of times

0 < T1 < T2 < . . . < Tn = T .

The tenor structure is usually quarterly or semiannually, and related to the day-
count fractionsδi by δi = Ti +1 − Ti (or 360/365 times that). Fort ≤ Tn, define
the left continuous functioni (t) to be the unique integer such that

Ti (t)−1 < t ≤ Ti (t) .

Let B ∈ E n. We say an SFTSθ is tenor adaptedif θi (t) = 0 for t > Ti . Note,
if B′ ∈ E n and B′

i = Bi on [0,Ti ], then (θ,B′) will also be a tenor adapted
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SFTS, andθB = θB′. For this reason, the behaviour ofBi on (Ti ,T] does not
matter when considering tenor adapted SFTSs. This can be used to extend the
notion of a tenor adapted SFTS (θ,B) to situations whereBi is only defined
on [0,Ti ]: simply extendBi to all of [0,T] in any continuous semimartingale
manner whatsoever.

For B ∈ E n
+ , a particular tenor adapted SFTSθ∗ suggests itself: start with 1

dollar at time 0 and buy with it asset 1; at timeT1 sell asset 1 and buy asset 2;
at timeT2 sell asset 2 and buy asset 3, and so on. Formally,

θ∗i (t) ≡ 1{Ti−1<t≤Ti }
B1(0)

i (t)−1∏
j =1

Bj (Tj )
Bj +1(Tj )

, 0 < t ≤ Tn, θ∗i (0) =
δi 1

Bi (0)
.

Note,θ∗ is a left-continuous step function. Clearly, the priceB∗ of this SFTS is
given by

B∗
t ≡ θ∗t Bt =

Bi (t)(t)
B1(0)

i (t)−1∏
j =1

Bj (Tj )
Bj +1(Tj )

=
Bi (t)(t)
B1(0)

i (t)−1∏
j =1

(1 + δj Lj (Tj )) . (1)

If B is LAF, then ξB∗ is a local martingale by Theorem 4.1, and the same
argument as in Theorem 4 gives that Eq. (4.2), (4.4) and (4.5) hold withBj

replaced byB∗. In particular, for alli

UBi = UB∗exp

(
−〈log

Bi

B∗ , logξ〉
)

. (2)

Conversely, ifB ∈ E n
+ and for someξ ∈ E+ the above equation holds for

all i , then, as in Theorem 4.3, one showsB is LAF. Since Bi (t) = Bi +1(1 +
δi (t)Li (t)) . . . (1 + δi Li ), we get from (1) and (4.7)

uLi + 〈Li , log (ξB∗)〉 =
∫ i∑

j =i (t)

δi d〈Li , Lj 〉
1 + δj Lj

. (3)

WhenBi andξ are Ito processes with respect to ad-dimensional (Ft ,P) Brown-
ian motionz(t) as in Eq. (4.11), thendB∗/B∗ = µi (t)dt + σi (t)dz, and Eq. (2) is
equivalent to

µi (t) = µi (t)(t) + (σi (t)− σi (t)(t))ϕ(t) . (4)

Conversely, Ito processB ∈ E n
+ is LAF if for someϕ ∈ L(z) the above equation

holds for alli . With βi (t) denoting the absolute volatility ofLi , Eq. (3) translates
to

dLi =
i∑

j =i (t)

δj βiβ
t
j

1 + δj Lj
dt + βi dz∗, z∗t ≡ zt +

∫ t

0
(ϕ(s)− σi (s)(s))dt . (5)

If B is arbitrage-free (i.e.,ξBi are martingales) thenξB∗ is a martingale,
as follows easily from Eq. (1). TakingB∗ to be the numeraire as in Sect. 5,
we call the corresponding measureP∗ the spot LIBOR measureand denote its
expectation operatorE∗. As in Sect. 5,ξC is a P-(local) martingale iffC/B∗ is
a P∗-(local) martingale. The compensator ofLi in the P∗ measure is given by
(3).
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Theorem 1. Let B ∈ E n
+ be arbitrage-free, then the following equations hold.

E∗
t

 i∏
j =i (t)

1
1 + δj Lj (Tj )

 =
i∏

j =i (t)

1
1 + δj Lj (t)

, t ≤ Ti ; (6)

E∗
t

Li (Ti )
i∏

j =i (t)

1
1 + δj Lj (Tj )

 = Li (t)
i∏

j =i (t)

1
1 + δj Lj (t)

, t ≤ Ti . (7)

Proof. From the definition ofLi in (4.6) we have

Bi +1(t) = Bi (t)(t)
i∏

j =i (t)

1
1 + δj Lj (t)

. (8)

Combining this with Eq. (1) we get

Bi +1(t)
B∗(t)

=
B1(0)∏i (t)−1

j =1 (1 + δj Lj (Tj ))
∏i

j =i (t)(1 + δj Lj (t))
. (9)

Substituting (9) in both sides of the equationEt [Bi +1(Ti )/B∗(Ti )] = Bi +1(t)/B∗(t),
the first product cancels, and we get (6). Equation (7) follows from (6) by sub-
tracting (6) withi − 1 from (6). ut

In the Ito case,z∗(t) defined in Eq. (5) is aP∗ Brownian motion. When
βi (t) = λi (t , L(t))Li (t), for some bounded and locally Lipschitz functionλi (t , L),
then Eq. (5) is an SDE forL. It has a similar form to the SDE (5.4), and by
Lemma 2.3 it has a unique solutionL.7 As in Corollary 2.1 one can show by
induction that the processYi defined by the right hand side of Eq. (9) is aP∗

martingale. So, the solutionL of (5) satisfies Eq. (6).
Equations (6) and (7) resemble familiar formulae for the risk-neutral measure

and instantaneous rates. Another resembling formula is that the priceC of SFTS
(for which ξC areP-martingales) satisfies

C(Ti ) = Bi (Ti )E
∗
Ti

 C(Tk)
Bk(Tk)

k−1∏
j =i

1
1 + δj Lj (Tj )

 , i < k . (10)

This follows directly from Eq. (1) andC/B∗ being aP∗ martingale. The resem-
blance with the risk-neutral formula and instantaneous rates is complete, only
whenBi (Ti ) = Bk(Tk) = 1.
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7. The zero-coupon bond constraint

The primary application of the forward LIBOR processL is when B repre-
sents zero-coupon bonds, i.e.,Bi (Ti ) = 1. Obviously, whenB is arbitrage-free
and satisfies this constraint, thenB still satisfies all properties of arbitrage-free
price systems established so far. What we need to address is theexistenceof an
arbitrage-freeB with a given LIBOR volatility functionβi (t) = λi (t , L(t))Li (t),
safisfying this constraint.

Theorem 1. Let Q be an equivalent measure to P andw(t) be a d-dimensional
(Ft ,Q) Brownian motion. Let n be an integer, B(0) ∈ Rn

+ be such L(0) ∈ Rn−1
+ ,

andλi (t , L) be n− 1 d-dim vector valued functions on[0,T] ×Rn−1
+ , which are

measurable, bounded, and locally Lipschitz in L. Then there exists an arbitrage-
free B∈ E n

+ starting from B(0) such that Bi (Ti ) = 1 for all i , Pn = Q, and associ-
ated forward LIBOR process L is positive and satisfies d〈Li , w〉t = λi (t , Lt )Li (t)dt.

Proof. By Corollary 2.1 the SDE (5.4) has a unique solutionL starting from
L(0), and the processesYi ≡ (1 + δi Li ) . . . (1 + δn−1Ln−1) are Q-martingales.
Let Bn ∈ E+ be any process such thatBn(0) is as given,Bn(Tn) = 1, and
Bn(Ti ) = 1/Yi (Ti ) for i = 1, . . . , n − 1.8 Define Bi = BnYi . Then Bi (Ti ) = 1.
Defineξt = Bn(0)Et [dQ/dP]/Bn(t). Clearly,ξBn is a P-martingale. In fact,ξBi

is a P-martingale for alli becauseBi /Bn areQ-martingales. It is also clear that
Pn = Q. ut

Note from the proof that, to ensureBi (Ti ) = 1, all we have to do is to make
sure thatBn passes through given random variables at 0,T1, . . . ,Tn. (Bn can also
be chosen to be less than 1.) We do not have uniqueness ofB, because any
such interpolation ofBn works. However,L itself, being the solution of (5.4),
is independent of the choice of interpolation. This implies thatBi (Tj ) are also
independent of the choice of interpolation, because whenBi (Ti ) = 1, we have

Bi (Tj ) =
i−1∏
k=j

1
1 + δkLk(Tj )

, j < i .

More generally, letCT be a random variable such thatCT/Bn(T) (or equivalently,
CT/Bj (T) for any j ) is measurable with respect to the sigma algebra generated
by L(t), t ≤ T. Consider an option which will payCT at timeT. The price of this
option is CT = Bn(t)EQ

t [CT/Bn(T)]. SinceL does not depend on the particular
interpolation ofBn, it follows that Ct/Bn(t) is independent of this interpolation
for all t . It now also follows thatCt at t = 0 and at allt = Ti are independent of
the choice of interpolation, becauseBn(Ti ) are so.

Prices of LIBOR and swap derivatives are generally of the above form.
Hence, the non-uniqueness ofBn does not affect their prices. What is more,
pricing algorithms (e.g., simulation, trees, or PDE) need not constructB at all –
all that needs to be constructed is the LIBOR processL.

Another source of non-uniqueness is the arbitrariness in the equivalent mea-
sureQ. (In the Ito case, this is the arbitrariness in the choice of the market price
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of risk ϕ.) Another choice of measure would result in different processes for not
only B, but also for L. However, the price at timet = 0 of an option is independent
of the choice ofQ andw. Indeed, by the uniqueness of weak solutions, the mul-
tidimensional distribution function (i.e., the law) of a weak solutionL to the SDE
(5.4) is independent ofQ andw. Now, if the payoffCT is such thatCT/Bn(T)
is a function ofL(t1), . . . , L(tm), tk ≤ T, then C(0) = Bn(0)EQ[CT/Bn(T)] is
independent ofQ andw.

The construction of Theorem 1 can also be done in the spot LIBOR measure
B∗. Again we are given a Brownian motionz∗ in an equivalent measureQ, and
this time we solve the SDE (6.5). Then we letB∗ be any process inE+ such that
B∗(0) = 1 and

B∗(Ti ) =
1

B1(0)

i−1∏
j =1

(1 + δj Lj (Tj )), i ≤ n − 1 .

We then defineBi +1 by the right hand side of (6.9) timesB∗. We also define
ξt = Et [dQ/dP]/B∗(t). Then P∗ = Q, and ξBi are P-martingales. As before,
prices of LIBOR and swap derivatives att = 0 andt = Ti do not depend on the
choice of interpolationB∗. A particularly simple choice is the linear interpolation
(which impliesB∗ has finite variation, i.e.,σi (t) = 0 for Ti−1 < t ≤ Ti ). This
works because, by the above equation,B∗(Ti +1) is FTi measurable, implying the
linearly interpolatedB∗ is adapted.9 As before, the question of interpolation does
not arise in actual evaluation algorithms anyway, as they only construct ratios,
not any numeraires likeB∗ or Bn.

8. Forward swap measure

Let B ∈ E n
+ , and δ ∈ R

n−1
+ . For eachi ≤ n − 1, consider the SFTS (“the

annuity”) consisting of buying and holdingδj−1 shares of thej -th asset for each
j > i . Its price is given by

Bi ,n ≡
n∑

j =i +1

δj−1Bj , i ≤ n − 1 . (1)

The i -th forward swap rateprocessSi is defined by

Si = Si ,n ≡ Bi − Bn

Bi ,n
. (2)

With empty sums denoting zero and empty products denoting 1, let us set

si j ≡ si j ,n ≡
n−1∑
k=j

δk

k∏
l =i +1

(1 + δl−1Sl ), si ≡ si i , 1≤ i ≤ j ≤ n − 1 . (3)

It is not difficult to show by induction thatBi ,n = Bnsi . This in turn easily
implies10
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un
si
≡ 〈Si , log

Bn

Bi ,n
〉 = −

∫ n−1∑
j =i +1

δj−1si j d〈Si ,Sj 〉
(1 + δj−1Sj )si

. (4)

One can also easily showBi = Bn(1 + Si si ), and this implies

u∗si
≡ 〈Si , log

B∗

Bi ,n
〉 = un

Si
+
∫

si (t)(t)(d〈Si ,Si (t)〉t − Si (t)(t)dun
i (t)(t))

1 + si (t)(t)Si (t)(t)
. (5)

Assume nowB is arbitrage-free. As in Sect. 5,Bi ,n induces a measurePi ,n such
that Bj /Bi ,n are Pi ,n martingales. (NotePn−1,n = Pn.) It follows, Si is a Pi ,n

martingale. Hence, by Eq. (2.3) the compensators ofSi in thePn andP∗ measures
are given respectively by formulae (4) and (5). So, ifSi are Ito processes with
respect to aPn Brownianzn, having absolute volatilityφi , then

dSi = −
n−1∑
j =i +1

δj−1si j φiφ
t
j

(1 + δj−1Sj )si
dt + φi dzn . (6)

If φi are functions oft and S = (S1, . . . ,Sn−1), then this is an SDE forS.
Consider the case whereφi (t) = Si (t)ψi (t ,St ), for some functionsψi (t ,S) which
are measurable, bounded and locally Lipschitz inL. The drift of the SDE (6) then
has these properties too, so by Lemma 2.3 the SDE has unique positive solution
S. Moreover, as in Corollary 2.1, one can show that the processsi is a square-
integrablePn martingale. We can now construct an arbitrage-freeB consistent
with this forward-swap rate as in Theorem 5.3, or, if a tenor structure is given,
as in the previous section to enforceBi (Ti ) = 1. Equation (5) leads to a similar
SDE with respect to aP∗ Brownian motion, which can alternatively be used for
this construction, as in the LIBOR case. For path-independent options, Eq. (4)
(or Eq. (6)) leads to the “fundamental differential equation” as in Theorem 4.7.

When the percentage forward swap volatilityψi (t) is deterministic, the cor-
responding arbitrage-free price systemB can be constructed explicitly by “back-
ward induction” as in Example 4.1. But now, we modify slightly that construction
to enforce the constraintBi (Ti ) = 1.

Example 1: Swap market model. Let ψi (t) be n − 1 deterministic, bounded,
measurabled-dimensional vector-valued functions, andzn be a Brownian motion
in an equivalent measureQ. SetSn−1 = Sn−1(0)exp(

∫
ψi dzn−|ψi |2dt/2). Having

inductively defined andSk for k > i , definesij (j ≥ i ) andsi by Eq. (3), and set

Si = Si (0)exp

∫ −|ψi |2
2

−
n−1∑
j =i +1

δj−1sij Sjψiψ
t
j

(1 + δj−1Sj )si

 dt +
∫

ψi dzn

 . (7)

One shows by induction thatsi and Si si are Q martingales for alli . Let
Bn ∈ E+ be any process such thatBn(0) is as given,Bn(Tn) = 1, and
Bn(Ti ) = 1/(1 + Si (Ti )si (Ti )) (and if desired,Bn < 1). Set Bi = Bn(1 + Si si ),
and ξt = Bn(0)Et [dQ/dP]/Bn(t). Then,Bi (Ti ) = 1, andξBi are P martingales
because 1 +Si si areQ martingales, andB is consistent with constructedS. ut
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It is easy to show that the forward LIBOR and swap rates are related by

Si =

∏n−1
j =i (1 + δj Lj )− 1∑n−1

j =i δj
∏n−1

k=j +1(1 + δkLk)
; Li = δ−1

i

(
1 + si Si

1 + si +1Si +1
− 1

)
. (8)

It follows that the LIBOR and swap market models are inconsistent with each
other. (Si and Li cannot simultaneously have deterministic volatilities.) One
chooses one or the other model as appropriate to each particular product.

9. Path-dependent LIBOR derivatives

In this and the following sections, we discuss application of the theory developed
in the previous sections to some primary examples of LIBOR and swap deriva-
tives. We will describe different model choices and implementation algorithms as
appropriate for each option. Throughout,B will be an arbitrage-free price system
in E n

+ . We assume a tenor structure{Ti } is given andBi (Ti ) = 1.
We consider options with payoutsCi at Ti +1 for one or morei , with Ci

measurable with respect to the sigma algebraJi generated byL(t), t ≤ Ti .
For example, a cap with strike rateK has, for eachi , a payout atTi +1 of
δi max(0, Li (ti ) − K ), with ti ≤ Ti . The payout ofCi at Ti +1 is equivalent to
the “forward transported” payout ofCi /Bn(Ti +1) at time T = Tn, if we assume
that instead of cash, an equal amount worth ofTn maturity zero-coupon bonds is
paid atTi +1. Aggregating, we can assume there is a singleJ = Jn−1 measurable
payoff at T. By Theorem 5.2,CT can be attained by an SFTS, and the option
price is Ct = Bn(t)En

t [CT ]. Generating random paths forL(t) (or S(t)), C0 can
be computed by simply taking an average.

An example is aknockout cap. In one variation, capleti gets knocked out
when only the spot LIBORLi (Ti ) at Ti is below (or above) a certain level. This
is path independent, actually a combination of a LIBOR cap and a digital. In the
path-dependent variation, at the first fixingTi such thatLi (Ti ) ≤ K0 all remaining
caplets for futures fixing datesTj , j ≥ i , get knocked out. So the payout at time
Ti +1 is

CTi +1 = δi max(0, Li (Ti )− K ) 1{min(L1(T1),...,Li (Ti ))>K0} .

Another example is anAsian cap, with a single payout at timeT = Tn of

CT = max

(
0,

n−1∑
i =1

δi (Li (Ti )− K )

)
.

Note, unlike currency or equity markets which check for knockout daily or con-
tinuously, in the swap markets the check is done (quarterly) at the fixing datesTi .
An example borrowed from the mortgage market is theperiodic cap, embedded
in a periodically capped floating-rate note, where the floating rate couponKi (for
payment atTi +1) is set at spot LIBOR, subject to it not exceeding the previously
set coupon by a prescribed amountxi . Thus,Ki = min(Li (Ti ),Ki−1 + xi ). A more
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complex structure is aratchetwhereKi = max(min(Li (Ti ) + yi ,Ki−1 + xi ),Ki−1).
Clearly, in both casesKi is a function ofLj (Tj ), j ≤ i . A new structure is the
flexible cap. Here, a numberm < n − 1 is specified, and the cap knocks out as
soon asm of the caplets end up in the money. Forward transporting, in all these
examples the payoutCT is a function of past spot LIBOR fixings:

CT = C(L1(T1), . . . , Ln−1(Tn−1)) .

The present valueC(0) of the option is given by either of the equivalent formulae

C0 = Bn(0)En[C(L1(T1), . . . , Ln−1(Tn−1))] = E∗
[

C(L1(T1), . . . , Ln−1(Tn−1))∏n−1
i =1 (1 + δi Li (Ti ))

]
.

Clearly, these formulae also hold whenCT is expressed as a function of
spot swap ratesSi (Ti ). The first formula “discounts outside the path” and takes
the “forward-risk-adjusted average”, while the second formula “discounts along
the path” and takes the ”spot LIBOR average”. When simulating, both types of
average are just the ordinary average. The difference comes from the choice of
SDE employed to generate random paths: the SDE (5.4) describing the dynamics
in the Pn measure, versus the SDE (6.5) for the dynamics in theP∗ measure. As
shown in Examples 4.1 and 8.1, thePn dynamics can be explicitly constructed
for LIBOR and swap market models. (This can be used to construct explicitly
the P∗ dynamics as well.) This enables the computation of thedt integrals by
the trapezoid rule, rather than by a step function as is usual when dealing with
a general SDE. Our experiments with thePn dynamics have shown that high
accuracy is achieved if the Brownian motion is sampled only quarterly to compute
the dt integrals.

10. Bermudan swaptions

A Ti -start (i ≤ n − 1) receiver swap with couponK is a contract to receive
(fixed) δj K and pay (floating)δj Lj (Tj ) at each timeTj +1, i ≤ j ≤ n−1. Given a
subsequenceTik of start dates, and expirationstk ≤ Tik , k = 1, . . . ,m, aBermudan
receiver swaptionis an option which at each timetk gives the holder the right
to enter aTik -start swap, provided this right has not already been exercised at a
previous timetp, p ≤ k. Whenm = 1, this is a European swaption. Otherwise,
usuallyik = q +k, whereq = n−m−1, i.e., the swaption is exercisable after the
first q “noncall” periodsT1, . . . ,Tq. Often, tk is at the LIBOR fixing date (two
business days beforeTik ). Other times, early notice is to be given, andtk may
be 20 to 40 days beforeTik . Bermudan swaptions frequently arise as embedded
options in cancellable (callable) swaps, which in turn often originate from new
issue swapping or asset packaging of callable bonds.

In order to model such options, one assumes that the holder acts optimally, in
that the swaption will be exercised at timetk if the value at timetk of theTik -start
swap is not less than the swaption value. American options are usually posed as
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optimal stopping problems. But, we can cast the Bermudan swaption in the setting
of an ordinary path-dependent by assuming that if the swaption is exercised attk ,
then instead of actually entering theTik -start swap, the counterparties settle by
the holdor receiving at timetk , Tn-maturity zero-coupon bonds worth the value
at time tk of the Tik -start swap. Obviously, this assumption does not affect the
price and hedge of the Bermudan swaption at timet = 0. TheTik -start swap is
worth Bn(tk)V k at time tk , where

V k =
Bik ,n(tk)
Bn(tk)

(K − Sik (tk)) .

Thus, if the holder exercises attk , he will receive face valueV k of Tn-maturity
zero-coupon bonds, so he will have a payoff ofV k at time T = Tn. Define the
random variablesCm, . . . ,C1 inductively by

Cm = max(V m, 0) ; Ck = 1{V k≥En
tk

[Ck+1]}V k+1{V k<En
tk

[Ck+1]}Ck+1 , k ≤ m−1 .

The optimality assumption implies that the payoff at timeT of the Bermudan
swaption isC1. As such, we formally define a Bermudan swaption to be the
asset which paysC1 at timeT. SinceC1 is J-measurable, by Theorem 5.2 this
payoff can be attained by an SFTS and its price isBn(t)En

t [C1].
Using the recursive relation above, we easily find that the priceC(t) of the

Bermudan swaption is

Ct = Bn(t)En
t [max(V 1,En

t1 [max(V 2, . . .

En
tm−2

[max(V m−1,En
tm−1

[max(V m, 0)])] . . .)])] , t ≤ t1 .

(A similar formula is obtained by usingB∗ as the numeraire.) Another Bermu-
dan product is thecallable capped floating rate swap, in which a counter party
receives LIBOR and pays min(K , LIBOR + spread) at eachTi , and has the right
to cancel this swap at a fixed date (European) or at everyTi after a fixed date
(Bermudan). These arise fromcallable capped floating rate notes, where the is-
suer offers a spread over the market rate in exchange for a cap on the floating
coupon plus a call option. We can formalize their payout structure as above. The
European ones are akin to captions (options on caps), already having a compound
option character.

Numerical evaluation of captions, European callable capped floating rate
swaps, and Bermudan swaption having only two call dates, presents no diffi-
culty. We would use the LIBOR market model for the first two, and the swap
market model for the latter. As shown in Example 3.2, these models price caps
and European swaptions by a closed-form Black-Scholes formula (where, in the
formulae of Example 3.1,T is now to be replaced byt2). Therefore, only a single
unconditional expectation needs to be calculated, and this can be done accurately
by Monte Carlo simulation as described in the previous section. This is valu-
able, as it can be used as a benchmark to attest the accuracy of other numerical
techniques which can handle more call dates.



324 F. Jamshidian

However, application of conventional Monte Carlo simulation to the general
Bermudan case is formidable. The difficulty is the recursive nature of the payoff
and the multitude of conditional expectations. Except for the last conditional
expectation which is available in closed-form, to compute thek-th conditional
expectation, each path up to timetk must branch into several paths, sayNk paths,
to time tk+1 before an average can be taken. This means a total ofN1 . . .Nm−1

paths, a number that explodes very quickly with the number of call datesm.
Some recent Monte Carlo techniques, such as those proposed by Broadie and
Glasserman (1994) appear promising, if they can be adapted to LIBOR and swap
market models.

A more standard approach is using “bushy trees” constructed from a binomial
or multinomial discretization of the underlying Brownian motion, as described
by Heath et al. (1990), and, in the context of the LIBOR market model, by
Gatarek (1996). Here, 10, or possibly even 20, call dates can be incorporated
without difficulty. The problem is that coarse time steps must be taken for long-
dated swaptions, e.g., a semiannual time step for a 10-year Bermudan swaption.
Coarse time steps result in sparse sampling of the distributions for the earlier
call dates. But, it is the earlier call dates that contribute more significantly to
the Bermudan premium. Unequal time steps may remedy this to some extent.
Another possibility is generating, say, 200 antithetical random paths for the first
year, followed by a busy tree along each path. Other tricks may be possible along
these lines, but, we are not aware of any substantiated published account.

The approach we favour most is approximation of the model by a conve-
nient non-arbitrage-free model, and numerical implementation of the latter. The
simplest, and possibly best, candidate is taking the spot swap (or LIBOR) rate
as the state variable, while treating zero-coupon bonds as deterministic for the
purpose of discounting. What makes this attractive is that we know that it al-
ready prices simultaneously alltk-expiry European swaptions consistently with
the market model.

Bermudan swaptions are then evaluated along an ordinary binomial lattice
or grid for the state variable. Without presenting details, we just report that
comparison with the Monte Carlo technique in the case of two exercise dates
indicated surprisingly high accuracy. An approximation by a “Gaussian core”
on a non-bushy multinomial tree has been proposed by Brace (1996). Another
interesting possibility is approximation by a log-Gaussian short-rate model.

11. LIBOR in arrears and CMS convexity adjustment

As we have assumed, LIBOR is fixed at the beginning of the interest accrual
period, and paid at the end. In rare cases, known asLIBOR in Arrears, it is fixed
just before it is paid. This can also apply to caps. Givent ≤ Ti and a payoff
C(Li (t)) for payment atTi , the problem is thus to calculate its present value
Bi (0)Ei [C(Li (t))], and relate it to the usual case. This is done simply by

Cs = Bi (s)Ei
s [C(Li (t))] = Bi +1(s)Ei +1

s [1 + δi Li (t))C(Li (t))] , s ≤ t . (1)
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The main case of interest is whenC(Li (t)) = Li (t), in which case we simply
have

Ei
s [Li (t)] = Ei +1

s

[
Li (t)

1 + δi Li (t)
1 + δi Li (s)

]
= Li (s) +

δi vari +1
s [Li (t)]

1 + δi Li (s)
. (2)

The second term on the right hand side is called a convexity adjustment. In
the LIBOR marketLi (t) is lognormally distributed in thePi +1 measure with
meanLi (s), providing an integral expression for Eq. (1) (which leads to explicit
formulae for in Arrears caps and digitals), and (2) simplifies to

Ei [Li (t)] = Li (0) +
δi L2

i (0)(e〈log Li 〉t − 1)
1 + δi Li (0)

.

The processy = 1− Bi +1/Bi is a Pi martingale, and in the Ito case follows

dy = λi y(1− y)dzi , y ≡ 1− Bi +1

Bi
.

Whenλi (t) is deterministic, this process is described in Karlin and Taylor (1981,
Chap. 15.15) as a model of gene frequency fluctuations. Using (1), we can cal-
culate its probability transition function

p(s, x, t , y) =
(1− x)e−

(
log y(1−x)

x(1−y)

)
+v2

i (s,t)/2)2/(2v2
i (s,t))

√
2πy(1− y)2vi (s, t)

, v2
i (s, t) ≡

∫ t

s
|λi (u)|2du .

A more important convexity adjustment is associated with theconstant maturity
swap (CMS). In this swap at each payment dateTi +1 spot LIBOR Li (Ti ) is
received and an amount equal to the spot swap rateSi (Ti ), for a fixed length swap
is paid. We therefore wish to calculateEi +1[Si (t)]. Since bothSi and Bi +1/Bi ,n

arePi ,n martingales, we obtain from the definition of covariance

Ei +1
s [Si (t)] =

Bi ,n(s)
Bi +1(s)

Ei ,n
s

[
Si (t)

Bi +1(t)
Bi ,n(t)

]
= Si (s) +

Bi ,n(s)
Bi +1(s)

covi ,n
s

[
Si (t),

Bi +1(t)
Bi ,n(t)

]
(3)

Hence, the covariance term above is the CMS convexity adjustment. Note, for
s = 0 it also equalsEi ,n[〈Si ,Bi +1/Bi ,n〉t ]. RecallingBi +1/Bn = (1 +si +1Si +1) with
si as in (8.3), another expression is

Ei +1
s [Si (t)] =

Bn(s)
Bi +1(s)

En
s [Si (t)(1 + Si +1(t)si +1(t))] . (4)

Unlike LIBOR in arrears, neither (3) nor (4) have a closed-form solution, even
in the market models. However, (4) can easily be calculated by Monte Carlo
simulation of thePn dynamics of the swap market given by Eq. (8.7). (The
LIBOR market model can also be used, but it is more natural to utilize swaption
volatilities here.) It may also be possible to use an approximation based on
Eq. (3). If the volatility of Bi +1/Bn were deterministic, thenBi +1/Bn would be
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a log-Gaussian process in thePi ,n measure, because it is a martingale there.
Obviously, this assumption is inconsistent withSi (t) also having deterministic
volatility. But, if we accept it as an approximation, then Eq. (3) is the covariance
of two lognormal random variables, which can be easily calculated.

Another convexity adjustment arises from what is sometimes calledextended
LIBOR. Here, the floating paymentLi (Ti ), instead of being paid atTi +1, is paid
at a later dateTj , and we calculateEj [Li (Ti )]. Now the convexity adjustment
will be negative. Again, there is no closed-form solution, but valuation can be
done easily by Monte Carlo simulation of the LIBOR market model.

12. Options depending on both LIBOR and swap rates

The products discussed so far have been basically either a LIBOR/cap product
or a swap/swaption product, but not both. But some products explicitly involve
both. An example is thespread option, a series of payoffs of the form max(Si (t)−
Li (t)− K , 0), whereK can be zero, positive or negative. Another is theLIBOR
trigger swap. A start dateTi , end dateTn, strikeK and couponKs are specified,
and if Li (Ti ) ≥ K , then counterparties enter aTi -start swap with couponKs

and end dateTn. In another variation the swap is triggered at the firstj ≥ i
such thatLj (Tj ) ≥ K . The most important product in this category is theindex
amortizing swap. It is an interest-rate swap with a stochastic decreasing notional
modelled after mortgage prepayment functions. The basic idea is that if rates fall,
the notional is reduced. A range of LIBOR rates and corresponding percentage
amounts are specified by which percentage the notional drops from its previous
level at everyTi for which LIBOR Li (Ti ) is within one of the ranges. There are
other variations, including a longer rate for the index and the index amortizing
cap.

In order to incorporate both caplet and swaptions volatilities for valuation
of these products, we need to construct a swap (or LIBOR) market model that
is root-search calibrated to caplets (swaptions) prices. This can be done as fol-
lows. We assume that Black-model caplet volatilities, and hence pricesCi (0) are
available for all expirationsTi . For example, they are derived by appropriate
interpolation of market quoted cap volatilities. Similarly, we assume allTi -start
swaption volatilitiesvi are available. Start with a 2-factor swap market model,
and letψi 1 andψi 2 be the two components of (percentage) volatility ofSi , taken
to be independent oft . Then,vi = (ψ2

i 1 +ψ2
i 2)1/2. We can find another equation by

a backward induction. Fori = n−1, the caplet and swaption coincide, so we ar-
bitrary fix the one degree of freedom, e.g., by settingψn−1,1 = vn−1, ψn−1,2 = 0.
Having inductively determinedψj 1 andψj 2 for j > i , begin with an initial guess
for ψi 1 (e.g., useψi +1,1). This determinesψi 2 via vi . Use these to construct paths
Sj , j ≥ i , according to Eq. (8.7). By Eq. (8.8), we can express theTn payoff of
the Ti caplet in terms ofSj , j ≥ i . We iterateψi 1 until Ci (0)/Bn(0) equals the
average of the payoff over all paths.

The above construction is feasible numerically. Once completed, then the
above options can be computed by Monte Carlo simulation. However, calibrating



LIBOR and swap market models and measures 327

market models by root search seems to defeat their very purpose. Moreover,
unless the input cap and swaption volatilities are highly coherent, the solution
may be unstable or not exist at all. Also, it does not incorporate directly given
correlations between forward LIBOR and swap rates. For these reasons, we think
some practical improvisation is called for.

We begin with the spread option. Its price isBi +1(0)Ei +1[max(Si (t)− Li (t)−
K , 0)]. The improvisation we suggest is to assume that for alli both Li (t) and
Si (t) arePi +1 lognormal, although we know this is at odds with the no-arbitrage
principle. Then, forK = 0, we have a robust Margrabe/Black-Scholes formula
for the price. For positive (negative)K , conditioning onLi (Si ), we get an integral
involving the Black-Scholes formula, which can be quickly integrated numeri-
cally. ForEi +1[Si (t)], one should incorporate the CMS convexity adjustment, but
Ei +1[Li (t)] remainsLi (0).

Consider now the LIBOR-trigger swap. Since the events{Li (t) > K} and
{Bi (t) > (1 + δi K )Bi +1(t)} are the same, a LIBOR trigger swap is a portfolio of
trigger swaps as in Example 3.3. But the pricing formula there assumesBi have
deterministic volatilities, which is applicable to the Gaussian model, but not to
market models. However, the example still provides a formula forE[1X>Y Z ] with
X, Y andZ jointly lognormal, on which we can base our improvisation. Indeed,
the price of the trigger swap isBi ,n(0)Ei ,n[1Li (t)>K (Si (t)−KS)]. Therefore, if we
assume that bothSi (t) andLi (t) arePi ,n lognormally distributed, we can at once
write down a simple Black-Scholes type formula.

For index amortizing swaps an improvisation consistent with the preceding
two would basically regard the spot ratesLi (Ti ) andSi (Ti ) as jointly lognormal
state variables, while treating discount factors deterministically. But, since Monte
Carlo simulation is still to be used, one may as well use the “proper” calibrated
market model constructed above if the solution is adequately stable.

Finally, let us mentioncallable reverse floaters, which fits into none of the
categories discussed so far. These are (European or Bermudan) callable notes
whose coupon paid atTi +1 is max(K − Li (Ti ), 0). The swap version is more
general: one pays max(K − Li (Ti ),K ′), receivesLi (Ti ), and has the right to
cancel. WhenK − K ′ is much larger thanLi (0) (e.g., twice as large), this is
essentially a swaption with a coupon of (K − K ′)/2 and twice the notional. In
this case, which is fortunately the usual case, it can be priced using the swap
market model. However, in general, this product exhibits both cap and swaption
characteristics, but unlike the above examples, they cannot be “separated”. We
have not yet come up with a sensible improvisation for this product in general.

13. Conclusion

The general theory that we described is consistent and reasonably elegant, but
it does not provide a perfect solution to all the issues and product range that
practitioners are faced with day-to-day. For one thing, we ignored transaction
costs, default risk, and process jumps. To be sure, there are theories that address
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these.11 But, the problem is not just theoretical imperfections. The very principle
of arbitrage by dynamic trading can be questioned as a practical proposition.
This had significant bearing on our attitude to modelling, and leads us to treat
the theory only as a guide, making sensible improvisations when useful.

We started out based firmly on the principle of no-arbitrage, but when it
came to actual securities, we violated it by recommending mutually inconsistent
models for different securities, some of which were not even arbitrage-free. We
defend this stance on the grounds that all option models are at best rough approx-
imations of reality, from their assumption on the market mechanism (frictionless
and perfect markets, continuous trading, infinitely divisible prices, etc.) to their
statistical specifications (number of factors, distribution, estimated parameters,
etc.). Assumptions and approximations are to be judged by their reasonableness
and usefulness, and this depends on the product and the trading environment.

For example, according to the theory, the event that the underlying price
ends up right at the option strike has zero probability. This is innocuous for most
options. But for an at the money digital or trigger swap near expiration, it is the
event of most concern to traders. Model choice also depends on the purpose of
the trade. Market makers in LIBOR and swap derivatives are normally interested
in preserving the initial margin by hedging all market risk. It is therefore impor-
tant for their valuation to be calibrated to liquid caps and European swaptions,
which serve as natural hedge instruments. However, for proprietary trading, one
intends to keep certain exposures unhedged, and, it may therefore be better to use
more stationary and equilibrium-like models, which imply what cap and swaption
prices (or even, the rates themselves) should be in the first place.

The bottom line is that model choice should reflect the intended hedge instru-
ments. For different products the model should be adjusted to keep this depen-
dency as intimate and robust as possible. It is better to use well-adapted but mu-
tually inconsistent models for different products, than to use a uniform model ill
adapted to all. Traders use the Black-Scholes formula to inconsistently price both
an option on S&P500 and options on the individual stocks. It would certainly be
foolhardy to attempt to arbitrage this inconsistency by using a 500-factor option
model for the index. Likewise, quarterly and semiannual tenor LIBOR market
models are inconsistent, and both are inconsistent with the swap market model.
But this engenders no more practical arbitrage opportunity than does the S&P500
option. The assumption that quarterly volatility is deterministic is no more em-
pirically compelling than semiannual LIBOR volatility being deterministic. One
considers using one in favour of another only because it is more convenient and
natural to the product in question.

Endnotes

1. A function f (x1, . . . , xn) is homogeneous of degreem if f (x1, . . . , xn) = αmf (αx1, . . . αxn) for
all α > 0.

2. A function f (t , x) is locally Lipschitz inx if ∀ integern, ∃Kn > 0 s.t. if |x| < n and |y| < n,
then |f (t , x)− f (t , y)| ≤ Kn|x − y|, ∀t . Some textbooks assume the global Lipschitz condition
for existence, but it is known that the local condition together with linear growth suffices.
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3. Examples of SFTS involving forward and futures contracts can be found in Cox et al. (1981),
and including exchanges rates, in Jamshidian (1994).

4. The term “arbitrage-free model” is usually reserved for models that do not admit “free lunches”
in an appropriate sense. This is then related to the existence of an equivalent martingale measure
(See Harrison and Pliska (1981), and for recent general results in this direction, Delbaen and
Schachermayer (1997).). However, this relationship is not the central topic of this paper, and the
less usual terminology adopted here is more convenient for our purposes.

5. Indeed, setB′ = B/X, andξ′ = ξX/X(0). Thenξ′B′
i = ξBi /X(0) is aP-martingale. In particular,

if X represents a foreign a currency, so thatB′ is the price system in the units of the foreign
currency, we see thatξ′ = ξX/X(0) represents a state price deflator with respect to the foreign
economy. The relative prices are however independent of the currency:B′

i /B′
j = Bi /Bj . So is

the i -th numeraire measurePi defined bydPi /dP = Mi (T), whereMi ≡ ξBi /Bi (0), because
M ′

i ≡ ξ′B′
i /B′

i (0) = Mi .
6. We note that for ad-dim processσ adapted toJt with

∫
|σ|2dt < ∞,

∫
J
σdw =

∫
σdw,

where
∫
J

denote stochastic integration with respect toJt . Consequently also covariation with

respect to the two filtrations coincide for (Jt , wt ) Ito processes. And these are also the same for
the measuresP andPn. So, we need not distinguish between the four possible combinations.

7. Equation (5) is the discrete tenor version of the “forward-rate drift restriction” in Heath et al.
(1992). In the continuous tenor limit, the sum is replaced by an integral andδj in the numerator
is replaced bydT. But the denominator then becomes 1, and because of this, when the absolute
forward rate volatilityβi−1 has linear growth, the drift term will have quadratic growth (as
opposed to linear growth in the discrete tenor case), and the solution explodes.

8. We could similarly construct an arbitrage-freeB such thatBi (Ti ) = bi for any givenFTi mea-
surable random variablesbi , by choosingBn such thatBn(Ti ) = bi /Yi (Ti ).

9. The linear interpolation was also mentioned by the referee, whom I thank.
10. Here we have assumed 1 +δi−1Si > 0, which will be the case if for exampleBi ≥ Bn or

δn−1 ≥ δi−1. Otherwise, we can still write down the same formula, but in a more complex
form.

11. Some recent papers on these topics are: Cvitanic and Karatzas (1996) on transaction costs; Björk
et al. (1997) on jumps; Duffle and Singleton (1994) on defaultable interest rates. The latter’s
framework indicates that market models may still be applicable in the presence of default risk,
provided LIBOR and swap rates represent default-free rates plus a default spread.
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