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1. Introduction

A typical problem faced by fund managers is to take an amount of capital and
invest this in various assets, or asset classes, in an optimal way. To do this the
fund manager must first develop a model for the evolution, or prediction, of
the rates of returns on investments in each of these asset classes. A common
procedure is to assert that these rates of return are driven by rates of return
on some observable factors. Which factors are used to explain the evolution of
rates of return of an asset class is often proprietary information for a particular
fund manager. One of the criticisms that could be made of such a framework is
the assumption that these rates of return can be adequately explained in terms
of observable factors. In this paper we propose a model for the rates of return
in terms of observable and non-observable factors; we present algorithms for
the identification for this model, (using filtering and prediction techniques) and
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indicate how to apply this methodology to the (strategic) asset allocation problem
using a mean-variance type utility criterion.

Earlier work in filtering is presented in the classical work [4] of Liptser and
Shiryayev. Previous work on parameter identification for linear, Gaussian models
includes the paper by Anderson et al. [1]. However, this reference discusses only
continuous state systems for which the dimension of the observations is the
same as the dimension of the unobserved state. Parameter estimation for noisily
observed discrete state Markov chains is fully treated in [2]. The present paper
includes an extension of techniques from [2] to hybrid systems, that is, those
with both continuous and discrete state spaces.

2. Mathematical model

A bank typically keeps track of between 30 and 40 different factors. These include
observables such as interest rates, inflation and industrial indices. The observable
factors will be represented byxk ∈ Rn.

In addition we suppose there are unobserved factors which will be represented
by the finite state Markov chainXk ∈ S. We supposeXk is not observed directly.
Its states might represent in some approximate way the psychology of the market,
or the actions of competitors. Therefore, we suppose the state space of the factors
generating the rates of return on asset classes has a decomposition as a hybrid
combination ofRn and a finite set̂S = {s1, s2, . . . , sN} for someN ∈ N.

Note that if Ŝ = {s1, s2, . . . , sN} is any finite set, by considering the in-
dicator functionsIsi : Ŝ → {0, 1}, (Isi (s) = 1 if s = si and 0 other-
wise), there is a canonical bijection of̂S with S = {e1, e2, . . . , eN}. Here, the
ei = (0, 0, . . . , 1, . . . , 0); 1 ≤ i ≤ N are the canonical unit vectors inRN . The
time index of state evolution will be the non-negative integersN = {0, 1, 2, . . .}.
Let {xk}k∈N be a process with state spaceRn and{Xk}k∈N be a process whose
state space we can, without loss of generality, identify withS.

Suppose (Ω,F ,P) is a probability space upon which{wk}k∈N, {bk}k∈N
are independent, identically distributed (i.i.d.) sequences of Gaussian random
variables, with zero means and non-singular covariance matricesΣ andΓ re-
spectively;x0 is normally distributed,X0 is uniformly distributed, independently
of each other and of the sequences{wk}k∈N and {bk}k∈N. Let {Fk}k∈N be
the complete filtration withFk generated by{x0, x1, . . . , xk ,X0,X1, . . . ,Xk} and
{Xk}k∈N the complete filtration withXk generated by{X0,X1, . . . ,Xk}. The
state{xk}k∈N is assumed to satisfy

xk+1 = Axk +wk+1 (1)

that is,{xk}k∈N is a VAR(1) process, [5], andA is an n × n matrix. {Xk}k∈N

is assumed to be aX -Markov chain with state spaceS. The Markov property
implies that

P
(
Xk+1 = ej |Xk

)
= P

(
Xk+1 = ej |Xk

)
.

Write πji = P(Xk+1 = ej |Xk = ei ) andΠ for the N × N matrix (πji ). Then
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E
[
Xk+1|Xk

]
= E

[
Xk+1|Xk

]
= ΠXk .

DefineMk+1 := Xk+1 −ΠXk . Then

E
[
Mk+1|Xk

]
= E

[
Xk+1 −ΠXk |Xk

]
= 0

so Mk+1 is a martingale increment and

Xk+1 = ΠXk + Mk+1 (2)

is the semimartingale representation of the Markov chain.
This form of dynamics is developed in [2] and [3].
The processxk with dynamics given by (1) will be a model for the ob-

served factors, and the processXk , with dynamics given by (2), will model the
unobserved factors.

Suppose that there arem asset classes in which a fund manager can make
investments. (For strategic asset allocation, the number of asset classes is usu-
ally between 5 and 10 and it includes general groups of assets such as bonds,
manufacturing and energy securities.) Letrk ∈ Rm denote the vector of the rates
of return on them asset classes in thekth period for,k = 1, 2, 3, . . . .

We shall assume that the model for the “true” rates of return, which apply
between timesk − 1 andk, is given by:

rk = Cxk + HXk . (3)

HereC andH arem×n andm×N matrices respectively. However, we shall as-
sume that these rates are observed in Gaussian noise. This means that, if{yk}k∈N
is the sequence of our observations of the rates of return, then

yk = Cxk + HXk + bk . (4)

Let {Yk}k∈N be the complete filtration withYk generated by
{y0, y1, . . . , yk , x0, x1, . . . , xk}, for k ∈ N, and denote bŷXk the conditional ex-
pectation underP of Xk given Yk .

The Markov chainXk is noisily observed through (4) and so we have a
variation of the Hidden Markov Model, HMM, discussed in [3].

Our first task will be to identify this model. This means that we shall provide
best estimates forA, Π,C ,H given the observations of{yk}k∈N and {xk}k∈N.
These estimates will then be used to predict future rates of return. Finally we
shall provide algorithms for allocating funds to the asset classes based on these
predictions.
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3. A measure change

We first consider all processes initially defined in an ‘ideal’ probability space
(Ω,F ,P); under a new probabilityP, to be defined, the dynamics (1), (2) and
(4) will hold.

Suppose that underP {yk}k∈N is an i.i.d. N (0, Γ ) sequence of Gaussian
random variables. Fory ∈ Rm, set

φ(y) = φΓ (y) =
1

(2π)n/2

1
| detΓ |1/2

exp[−1
2

y′Γ−1y]. (5)

With
λ` := φ(y` − Cx̀ − HX`)/φ(y`), ` = 0, 1, . . . (6)

write

Λk =
k∏
`=0

λ`. (7)

Define{Gk}k∈N to be the complete filtration with terms generated by
{x0, . . . , xk , y0, . . . , yk ,X0, . . . ,Xk−1}, and defineP on (Ω,F ) by setting the
restriction of the Radon-Nikodym derivativedP/dP to Gk equal toΛk . One can
check, (see [3], page 61), that on (Ω,F ) underP, {bk}k∈N are i.i.d.N (0, Γ ),
where

bk := yk − Cxk − HXk .

Furthermore, by Bayes’ Theorem ([3], page 23)

E[Xk |Yk ] = E [ΛkXk |Yk ]
/

E [Λk |Yk ]

and
E [Λk |Yk ] = 〈E [ΛkXk |Yk ], 1〉,

where1 = (1, 1, . . . , 1). Here,〈 , 〉 denotes the scalar product inRN .
Write

qk = E [ΛkXk |Yk ].

Then, by a simple modification of the arguments in [3]:

qk+1 = E [Λk+1Xk+1|Yk+1]

=
1

φ(yk+1)
E [Λkφ(yk+1 − Cxk+1 − HXk+1)Xk+1|Yk+1]

=
1

φ(yk+1)

N∑
i =1

E [Λkφ(yk+1 − Cxk+1 − HXk+1)Xk+1〈Xk+1, ei 〉|Yk+1]

=
1

φ(yk+1)

N∑
i =1

φ(yk+1 − Cxk+1 − Hei )E [Λk〈Xk+1, ei 〉|Yk+1]ei

=
N∑

i =1

φ(yk+1 − Cxk+1 − Hei )
φ(yk+1)

E
[ N∑

j =1

Λk〈Xk , ej 〉 〈ΠXk , ei 〉|Yk

]
ei
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=
N∑

i ,j =1

φ(yk+1 − Cxk+1 − Hei )
φ(yk+1)

E [Λ〈Xk , ej 〉 〈ΠXk , ei 〉|Yk ]ei

=
N∑

i ,j =1

φ(yk+1 − Cxk+1 − Hei )
φ(yk+1)

πij E [Λk〈Xk , ej 〉|Yk ]ei

=
N∑

i ,j =1

φ(yk+1 − Cxk+1 − Hei )
φ(yk+1)

πij 〈qk , ej 〉ei .

Alternatively, for thei th component ofqk

qi
k = E [Λk〈Xk , ei 〉|Yk ], i = 1, . . . ,N

we have the recurrence relationship:

qi
k+1 =

N∑
j =1

φ(yk+1 − Cxk+1 − Hei )
φ(yk+1)

πij qj
k , (8)

for i = 1, 2, . . . ,N . If we define the normalized conditional expectationpk by

pi
k = E[〈Xk , ei 〉|Yk ], i = 1, . . . ,N (9)

then

pi
k = qi

k

[ N∑
i =1

qi
k

]−1
. (10)

If the vectorp0 is given, or estimated, then (8) can be initialized with

q0 = E [Λ0X0|Y0]

= E[Λ−1
0 Λ0X0|Yk ]

/
E[Λ−1

0 |Y0]

= p0
/

E[Λ−1
0 |Y0]

where

E[Λ−1
0 |Yk ] = E

[ φ(y0)
φ(y0 − Cx0 − HX0)

|x0, y0

]
=

N∑
i =1

φ(y0)
φ(y0 − Cx0 − Hei )

pi
0. (11)

This discussion leads to the following proposition:

Proposition 1. For given A, Π,C ,H in equations(1), (2), (4)the estimate of the
H.M.M. is given by

X̂k = E[Xk |Yk ] = pk

where the pk are determined by(10).

�



234 R.J. Elliott, J. van der Hoek

Now consider the issue of estimating the coefficient matricesA,C , Π,H .
We estimateA by maximizing an appropriate log-likelihood function. As this is
relatively standard procedure, we only outline the details. To this end suppose that
under probabilityQ, {xk}k∈N is an i.i.d.N (0, Σ) sequence of Gaussian random
variables. Chooseφ = φΣ and define

γA
` := φ(x`−Ax̀ −1)

φ(x`)

ΓA
k :=

∏k
`=1 γ

A
` .

If {Hk}k∈N is the complete filtration withHk the sigma-algebra generated by
{x0, x1, . . . , xk}, defineQA on (Ω,F ) by setting the Radon-Nikodym derivative
dQA/dQ, restricted toHk , equal toΓA

k . Then{wk}k∈N defined by

wk+1 := xk+1 − Axk

will, under QA, be an i.i.d. sequence ofN (0, Σ) Gaussian random variables. For
some interim estimateA1 of A we chooseA = Â to maximimize

log
[ dQA

dQA1
|Hk

]
= − 1

2

k∑
`=1

(x` − Ax̀ −1)′Σ−1(x` − Ax̀ −1) + R

whereR does not depend onA. This leads to

k∑
`=1

x`x
′
`−1 = A

k∑
`=1

x`−1x′`−1

or

Â = Âk =
( k∑

`=1

x`x
′
`−1

)( k∑
`=1

x`−1x′`−1

)−1
. (12)

Here we have used the result that fork ≥ n,
∑k

`=1 x`−1x′`−1 is, almost surely,
invertible [4]. This will be our estimate forA, given observations ofx0, x1, . . . , xk .

We now provide analogous estimates forC . Again use the measure change,
as in (5), (6), (7), but instead writeP = PC , Λ = ΛC to indicate that we are
focusing on the dependence of these variables of the matrixC .

Given C1, an interim estimate forC , we choosêC to maximize

E1

[
log

dPC

dPC1
|Yk

]
(13)

(see [2], p. 36). HereE1 denotes expectation taken with respect toPC1, given
the observations ofx0, x1, . . . , xk andy0, y1, . . . , yk . The expression in (13) is

E1

{
− 1

2

k∑
`=0

(y` − Cx̀ − HX`)
′Γ−1(y` − Cx̀ − HX`)|Yk

}
+ R̂

where R̂ does not depend onC . Using the notation〈A,B〉 =
∑

ij Aij Bij for
matricesA,B, we can write the expression (13) in the form:
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E1

{
− 1

2

k∑
`=0

[
y′`Γ

−1y` −2〈C , Γ−1y`x′`〉 − 2〈H , Γ−1y`X ′
`〉 + 〈C , Γ−1Cx̀ x′`〉

+〈H , Γ−1HX`X ′
`〉 + 2〈C , Γ−1HX`x′`〉

] |Yk

}
+ R̂.

The first order optimality condition forC yields:

C
k∑
`=0

x`x
′
` + H

k∑
`=0

E1[X`|Yk ]x′` =
k∑
`=0

y`x
′
`. (14)

This implies that

Ĉ = Ĉk =
[ k∑
`=0

y`x
′
` − H

k∑
`=0

E1[X`|Yk ]x′`
][ k∑

`=0

x`x
′
`

]−1
(15)

where we have again used the fact that
∑k

`=0 x`x′` is almost surely invertible if
k ≥ n. In order to computêCk we need

∑k
`=0 E1[X`|Y`]x′`.

Now
∑k

`=1 E1[X`|Y`]x′` = qkx′k +
∑k−1

`=1 E1[X`|Y`]x′`−1. Write

Tk :=
k−1∑
`=0

X`x
′
`

Trs
k :=

k−1∑
`=0

〈X`, er 〉 xs
`

wherex′` = (x′`, x
2
` , . . . , x

n
` ) ∈ Rn.

We need to compute:E1[Trs
k |Yk ].

We proceed as in Elliott [2] using Theorem 5.3 etc. viz.,

E1[Trs
k |Yk ] = E[ΛC1

k Trs
k |Yk ]/E[ΛC1

k |Yk ]

≡ σk(Trs
k )/σk(1)

where
σk(Hk) := E[ΛC1

k Hk |Yk ].

With Hk ≡ Trs
k , for Theorem 5.3 we haveαk = 〈Xk−1, er 〉 xs

k−1, βk = δk = 0.
Then

σk(Trs
k Xk) =

N∑
j =1

Γ j (yk) 〈σk−1(Trs
k−1Xk−1), ej 〉πj

+Γ r (yk) 〈σk−1(Xk−1, er 〉 xs
k−1πr

σk(Xk) =
N∑

j =1

Γ j (yk) 〈σk−1(Xk−1), ej 〉πj

whereπj = Πej , Γ j (yk) is given byφ(yk −Cxk −Hej )/φ(yk), with φ as in (5).
We then have
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σk(Trs
k ) = 〈σk(Trs

k Xk), 1〉
σk(1) = 〈σk(Xk), 1〉

as usual.
Summarizing the results so far we can state the following:

Proposition 2. GivenΠ,H the log-likelihood estimateŝA and Ĉ , given obser-
vations x0, x1, . . . , xk and y0, y1, . . . , yk , are determined by(12) and (15).

�

OnceC has been estimated, we can estimateΠ,H using the HMM method-
ology of [3]. In fact settingzk = yk − Cxk we can estimateΠ,H with the
observations

zk = HXk + bk (16)

using the procedures of [3], pages 68-70.
Thus, estimates of the model parameters can be made in the order:A,C , Π,H ,

and then updated in this order given new observations. An issue for further in-
vestigation is the estimation ofN . We expect that estimates ofN will be smaller
for the casen ≥ 1.

4. Asset allocation

Suppose we have a vectorrk+1 ∈ Rm of rates of return given by (3). We wish to
determine at timek a vectorw ∈ Rm with w′1 = 1, 1 = (1, 1, . . . , 1)′ which
maximizes

J (w) = νE[w′rk+1|Yk ] − var [w′rk+1|Yk ], (17)

for someν > 0. This expresses the utility of the rate of return of a portfolio in
which wealth is distributed among them asset classes in ratios expressed byw.
Writing X̂k = E[Xk |Yk ] we can estimate this objective function and compute the
optimalw. Note such a choicew = wk makes{wk}k∈N a predictable sequence
of decision variables. In fact

J (w) = νE[w′rk+1|Yk ] − E[(w′rk+1)2|Yk ]

+(E[w′rk+1|Yk ])2

= νw′ r̂k+1 +w′ r̂k+1r̂ ′k+1w

−w′E[rk+1r ′k+1|Yk ]w (18)

wherer̂k+1 = E[rk+1|Yk ] = CAxk +HΠX̂k , andX̂k = E[Xk |Yk ]. Now by (1), (2)

E[rk+1r ′k+1|Yk ] = E[CAxkx′kA′C ′ + Cwk+1w
′
k+1C ′ + HΠXkX ′

kΠ
′H ′

+HMk+1M ′
k+1H ′ + 2CAxkX ′

kΠ
′H ′|Yk ] (19)

where we have usedE[wk+1|Yk ] = 0 ∈ Rn,
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E[Mk+1|Yk ] = 0 ∈ RN and E[wk+1M ′
k+1|Yk ] = 0 ∈ Rn×N .

Furthermore,XkX ′
k = diagXk , E[wk+1w

′
k+1|Yk ] = D , andE[Mk+1M ′

k+1|Yk ] =
diagΠX̂k −Π diagX̂kΠ

′, (see [3], page 20). Consequently,

E[rk+1r ′k+1|Yk ] = CAxkx′kA′C ′ + CDC′ + HΠ[diagX̂k ]Π ′H ′

+H [diagΠX̂k ]H ′ + 2CAxkX̂ ′
xΠ

′H ′. (20)

Noting

(w′ r̂k+1)2 = w′ r̂k+1r̂ ′k+1w

= CAxkx′kA′C ′ + HΠX̂kX̂ ′
kΠ

′H ′

+2CAxkX̂ ′
kΠ

′H ′,

then

J (w) = w′K − w′Vw

where

K = ν r̂k+1 = ν[CAxk + HΠX̂k ] (21)

and

V = CDC′ + H (diagΠX̂k)H ′

+HΠE[(Xk − X̂k)(Xk − X̂k)′|Yk ]Π ′H ′. (22)

We can assume thatC has rankm, andCDC′ is positive definite (asD is). The
other terms inV are non-negative definite soV is positive definite and hence
invertible. The maximum ofJ (w), subject tow′ ·1 = 1, is given by the first order
(Kuhn-Tucker) conditions:

K − 2Vw + λ1 = 0 (23)

w′ · 1 = 1 (24)

for some Lagrange multiplerλ. Solving (23) and (24) we obtain

w =
1
2

V−1[K + λ1], (25)

with

λ = [2− K ′V−11]/(1′V−11). (26)

This solves the one-period asset allocation problem. In subsequent periods, we
have the option to update estimates forΠ,A,C ,H . We can updateK = Kk and
V = Vk , (given by (21) and (22)), in terms of updates onX̂k = pk , (see (10)),
since

E[(Xk − X̂k)(Xk − X̂k)′|Yk ] = diagX̂k − (X̂k)2.
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