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Abstract. The main purpose of the paper is to provide a mathematical back-
ground for the theory of bond markets similar to that available for stock markets.
We suggest two constructions of stochastic integrals with respect to processes
taking values in a space of continuous functions. Such integrals are used to
define the evolution of the value of a portfolio of bonds corresponding to a trad-
ing strategy which is a measure-valued predictable process. The existence of an
equivalent martingale measure is discussed and HIM-type conditions are derived
for a jump-diffusion model. The question of market completeness is considered
as a problem of the range of a certain integral operator. We introduce a concept
of approximate market completeness and show that a market is approximately
complete iff an equivalent martingale measure is unique.
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1 Introduction

In the last few years a remarkable progress has been made in the understanding of
bond market phenomena. The main issues of the theory developed by a humber
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of researchers in tight cooperation with practitioners are the term structure of
interest rates and the pricing of derivative securities (caps, floors, swaptions,
etc.), see, e.g., books [11], [15], papers [1], [7], [9], [10], [16], [18], [19], [22],
[32], [38], and references therein. The standard framework is that of continuous
trading which is based on a stochastic calculus for semimartingales. The great
success of continuous time models for description of stock markets and valuations
of options on stocks strongly influenced research in the term structure of interest
rates. In the majority of papers the dynamics of prices of zero-coupon bonds
with maturity 6 is described by a diffusion proce$s(9), t < 6, whered is
considered as eontinuousparameter. However, only a few works ([2], [5], [28],
[35], and some others) deal with jump-diffusion models in spite of the evidences
in favour of the latter. The subject of the absolute majority of the above references
can be characterized as that obpecial theory of bond marketmathematical
description of price evolution of basic securities and floating interest rates.

The problem of term structure of interests rates is, of course, very important
(and one can even imagine that these key words are synonymous to the math-
ematical theory of bond markets). Given an adequate model for security prices
one can use it for valuation of contingent claims and hedging positions by repli-
cation of a claim by dynamically rebalanced portfolios. Here we come to a very
important difference of all widely accepted models of bond markets from that of
a stock market:

in the continuous-time bond market model there is naturally a continuum of
basic traded securities (zero-coupon bonds parameterized by their matuhities
while in the standard model of a stock market there is normally only a finite
number of securities.

This observation makes clear that a consistent theory must admit hedging
portfolios which may contain an infinite humber and even a continuum of se-
curities. Certainly, this implies the necessity of a rigorous mathematical defini-
tion of such a portfolio. In a stock market witth underlying assets, a vector
¢ = (¢1, ..., pq) representing the quantities of assets of each type kepimt
portfolio can be identified with a linear functional (i.e. with an element of the
dual spacdR?* coinciding withRY); a portfolio valueV, is the actiony, P, of this
functional to the price vectd?, = (P}, ..., P¢) (and this is just a scalar product);
after the work by Harrison and Pliska [17], the most general and widely accepted
model for the dynamics of the latter is a semimartingale while the time-evolution
of a portfolio strategy is described by a predictable process. The classic stochastic
calculus provides all necessary machinery for the model: the integration theory
for semimartingales is tailor-made for mathematical analysis of stock markets.

In the context of a bond markeB; is not a finite-dimensional vector but
a price curve, i.e. an element of some functional vector space; apparently, the
Banach space of continuous functions is adequate to the problem and the idea
of considering the evolution of the price curf®(.) in a such space has been
exploited, e.g., in [7] and [30].

It is natural to extend the definition of a portfolio as a continuous linear
functional; in this case agami = ¢{P; and, by analogy, one could expect that the
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relevant mathematics here is an integration theory with respect to Banach space-
valued semimartigales. Surprisingly, we enter herea incognita the existing
literature on the infinite-dimensional stochastic integration does not meet the
needs of mathematical finance; moreover, it is not clear what should be called a
semimartingale in this case, see Remark on p. 18 in the recent article by Laurent
Schwartz [33].

In the present paper we suggest two approaches to a stochastic integration
which serves as modelling tool of the bond market theory. The first one, given
in Section 2 and inspired by the book ofétivier [29], is based on the concept
of controlled processes as integrators. It is important to note that our integrands
are weakly predictable measure-valued processes; this not only allows us to
avoid problems arising from non-separability of the space of measures in the
total variation topology but also opens a way to practical applications since one
can approximate “theoretical” portfolios by “realistic” strategies involving only
a finite (but arbitrary large) number of securities. We prove in Section 3 that an
asset giving an interest equal to the spot rate (its presence in a “zero-coupon
bond market” is usually justified by some limit procedure) is a portfolio of just
maturing bonds; this portfolio involves a continuum of bonds but instantaneously
it contains only a single one.

In Section 4 it is considered a jump-diffusion model, where the price process
of each single bond (i.e. a “section” of the price curve dynamics) is a rather gen-
eral semimartingale. For this model, including the majority of those discussed
in the literature, we suggest another approach to define the integral for measure-
valued integrands; the integration theory is reduced via Fubini theorems to the
standard stochastic calculus. We prove that, modulo a slight difference in hy-
potheses, the alternative construction results in the same process as the general
one. Since the integration theory in this paper is intended only for financial mod-
elling we are always trying to be on a reasonable level of generality, leaving
possible extensions for the future.

In Section 5 we treat in detail the jump-diffusion model specified through the
dynamics of the forward rate curves. We investigate here the problem of existence
of a martingale measure and derive HIM-type conditions for the coefficients.

Section 6 is devoted to the hedging of contingent claims in a bond market. It
is well-known that in the mathematical theory of security markets the problem of
hedging is closely related to the completeness of a market. There is an informal
principle (seems to have been formulated first by Bensoussan in [3]): to hedge
againstn sources of randomness one neadson-redundant securities besides
the nungraire. According to this principle, there is no completeness in a stock
market model based on &izy process with continuous jump spectrum and hence
with a continuum of sources of randomness which is too much for a market with
a finite number of stocks. The absence of completeness is one of the principal
objections against seemingly more adequate models driven vy jirocess.

Fortunately, in a bond market model where there is, by definition, a continuum
of securities one can construct a hedge using strategies involving a continuum
of assets. Nevertheless, it turns out that, in general, one can hedge (even with
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measure-valued portfolios) in the most favorable situation only a dense subset in
the space of contingent claims. We examine the problem by considering families
of “martingale operators” and their adjoints, “hedging operators”, and relate the
uniqueness of a martingale measure with the injectivity of martingale operators
while the market completeness requires surjectivity of hedging operators. The
latter, being integral operators of the first kind, may have, at best, a dense image
and only in the “degenerate case” of a finitevly measure are surjective (iff the
martingale operators are injective). This reasoning leads to the conclusion that
the fundamental concept the approximate completenessich is equivalent to

the uniqueness of the martingale measure.

In our paper [6] addressed to readers which are mostly interested in the
financial counterpart of the theory (and which deals with technically simpler
models) we provide some more specific results on a market completeness and
the structure of hedgeable claims.

It is worth to note that in stock market models a continuum of derivative se-
curities is also implicitly present, say, call options parameterized by the maturity
time and/or strikes, and, therefore, our approach can also be applied to such se-
curity markets. Moreover, the theory developed here gives a hint why real-world
financial markets generate an enormous amount of various derivative securities:
typically they are not driven by a finite number of sources of randomness and
the risk averse agents, preferring at least an “approximately” complete market
create a corresponding demand.

At last, Appendix contains stochastic versions of the Fubini theorem for
continuous martingales and random measures.

2 Integration with respect to Cr-valued processes

Let (12,.7 ,F = (%), P) be a stochastic basis (filtered probability space) satisfy-
ing the usual conditions, and I& = (P;), t € R., be an adapted process on it
with values in the Banach space of continuous functiGas(with the uniform
norm denoted byl.||) where, if T is a compact subset of [6c], Cr is the space
of all continuous functions, otherwise it&? , the space of continuous functions
converging to zero at infinity.

We denote by~ the predictabler-algebra inf2 x R, generated by all real
left-continuous adapted processes.

Let Mt be the space of signed measure§ aquipped with the total variation
norm|.|lv. Form € Mt andf € Cr put

mf := /f(e)m(de).
T

Let. #4r be thes-algebra generated by the weak topolhgyecall that the space
M+ with the weak topology is separable.
Our aim is to define a stochastic integral
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t
¢ - Py ::/o ¢sdPs (2.1)

for (weakly) predictable measure-valued processeise. for measurable map-
pings
¢: (2 xRy, ) — (M1,.207).

Let &P be the set of elementary integrands, i.e. of processes

G (@) = D1 rdh g (@, M (2.2)

i=1

wherem e M1, 0<t; <th <... <t < oo, I} €.%.
For ¢ € &£ we set, as usual,

n
¢-Py = Z(m Piiat — MPyadln. (2.3)
i=1

To ensure the path regularity @f - P (in other words, to be adlag) for
elementary integrands we impose Brthe following

Assumption 2.1 The process P is weakly regular: there is a g@f with
P(£21) = 1 such that for anyw € £2; and m e M+ the real function mRw) =
J P.(6, w)m(d8) is right-continuous and with left limits.

To extend the integral to a reasonably large class of integrands we need

Assumption 2.2 There exist a predictable random measeufet, du) = I;(du)dt
given on(R: x U,. 2% ® %4) where (U, %¢) is some Lusin space,;K= 1 +
k([0,t] x U) < o for finite t, and a measurable function

Pp: (2XRyxU XM, Q% Q A1) — (Re, . 7y)

with the following properties:

(@) p(w,t,u,.) is a seminorm oM 1,

(b) p(w,t,u,.) is weakly continuous,

(C) p(w7 t,u, m) < ||m||Vy

(d) for any T € R, there is a constant £such that for any stopping time
7 < T andanyp € &°

E sup|¢ - P|? < CrEK, / / p2(s, u, ¢s)x(ds, du). (2.4)
0 V]

t<r

We shall say that«, p) in the above condition is aontrol pair for P and
that a proces® satisfying Assumption 2.2 is eontrolled process

Clearly, a linear combination of controlled processes is again a controlled
process.
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Let 7 be a bounded stopping time such tiEa? < co. Let us introduce the
linear spacd.2 = L2(p, ) of all predictable processeswith values inMt such
that g, (¢) < oo, whereq, = g,(.; x, p) is a seminorm o2 defined by

2(¢) := EK, ’ 2(s, u, ps)k(ds, du). .
6%(0) EK/O/UP(SU¢)(3 ) (25)

Lemma 2.3 The linear spaces® is dense in  in the topology given by.q

Proof. The inclusion#™® ¢ L2 holds due to Assumption 2.2)( To show that it is
dense, notice that the bd := {m: |m||, < c} is compact in the weak topol-
ogy of M1 (the Banach—Alaoglu theorem) and metrizable. Hence, a measurable
mapping

¢ (2 xR+, 7)) — (Be, A1lp,)

can be approximated in the sense of the weak convergeneé-tneasurable step
functions, i.e. by processes of the folm |5 (w,t)m whereA; are predictable
sets. The propertieb) and €) ensure that the approximating sequence converges
to ¢ in the seminorny;..

Since the real-valued predictable processes

Z a IF, X1t ,ti+1](w’ t)

(which are a generating set for’, see [13]) are dense ib?(,dPdK ™), we
get that the elements ¢f® are dense in the set of norm-bounded predictable
processes in the topology given by and hence in.2. 0O

Let IT, be the vector space of real adapted processes with regular trajectories
equipped with the seminorm.(Y) = (E sup.. |Y:|?)%? (as usual, we identify
indistinguishable processes). It is well-known tliat is complete with respect
to this seminorm.

Thus, the linear mapping — lp ¢ - P defined on#® and taking values
in IT,, which is continuous by (2.4), can be extended to the unique continuous
linear mapping from.2 into I7,.

Standard localization arguments allow us to extend the definition of the inte-
gral ¢ - P to all predictable processessuch that

/t/ p%(s, U, ps)k(ds, du) < co  a.s. (2.6)
0 JU

for all finite t.
Let (x, p’) be another control pair. Ther,(p”) := (s, p+p’) is again a control
pair. Assume that) satisfies (2.6) together with the corresponding relation for
(x, p’) and hence for, p”’) also.
Since the seminorngl,(.; x, p + p’) is stronger tham.(.; x, p), the integral
¢ - P defined using 4, p) coincides with that based omr,(p”’) and, by symmetry,
on (k,p’). Thus, the integral does not depend on the particular choicp, of
and, by similar arguments, on the particular choice:ofhus, the definition of
the integral (which is a class of indistinguishable processes) is independent on
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the particular choice of a control paik,(p). We denote the class of processes
for which the integral in the above sense existsLy(P) (the set of weakly
predictable processes satisfying (2.6)). One can notice that the integRalis
a process which can be approximated uniformly in probability by “elementary”
integrals of the form (2.3).

As usual, for any stopping time we have¢ - P, = ljg 51¢ - Pso.

Some properties of the stochastic integral are summarized in the following

Theorem 2.4 Let ¢ € L2 (P). Then

(a) the proces® - P is a (real) semimartingale and for any stopping timé€2.4)
holds;

(b) the proces$ - P is continuous if P is weakly continuous;

(c) if P is a martingale ther - P is a locally square integrable martingale.

Proof. (a) Inequality (2.4) holds for als € L2(P) by definition.

Let H be a real bounded elementary integrand givenHoy= > &l 4.4
where¢; are.7 -measurable. For the adapted right-continuous pro¥esse - P
we putH - X =3 & (X, — Xy). It follows from (2.4) that

E suplH - X[2 < [H[2EK; / / p2(s, U, és)r(ds, du).
t<r o Ju

We easily infer from this inequality that for a sequence of bounded elementary
integrandsH " uniformly converging to zero the sequence of integtals- X,
tends to zero in probability. Thug is a semimartingale by the Dellacherie—
Bichteler—Mokobodzki theorem, see, [13].
(b) The property is evident for elementary integrands. In the general case the
integral is defined through uniform convergence which preserves continuity.
(c) From the definition it follows that for an elementary integra#fdthe process
#" - P is a martingale and|¢" - P,|? < oo for any 7 such thatEK? < co. If,
moreover,r is such that the right-hand side of (2.4) is finite we conclude, by the
approximation, that the stopped procesP" is a square integrable martingale.

O

Proposition 2.5 Let P;, P, be two controlled processes andoe a process inte-
grable with respect to Pand P, i.e. ¢ € LY(P1) N LY(P,). Theng € L1(P1 + Py)
and¢ - (P1+P2)=¢-Pr+¢-Pa.

Proof. Let (i, p;) be a control pair foP; such that, with terms indexed bythe
relation (2.6) holds. Without loss of generality we can assume Whatnd U,
are distinct. Put) := U; N U, and definep := pily, + p2lu,, & = kily, + kaly,.
Clearly, (,p) is a control pair forP; + P, and sincep satisfies (2.6) the result
holds. O

Remark.The above construction of the stochastic integral goes well without any
changes for an arbitrary Banach space. Certainly, the definition of the control
pair can be modified and generalized in various ways (e.g., one can modify (2.4)
by taking the supremum not over,[f] but over [Q 7[ as was done in [29]). A
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more general integration theory merits a special study which is beyond of the
scope of the present paper.

3 General model of a bond market

1. The forward and spot rates

In the mathematical description of a bond market it is usually assumed that for
fixed 0 € T the proces$;(0), t € [0, 0], gives the dynamics of the default-free
zero-coupon bond (with unit nominal value) maturing at titheevidently, this
process must be strictly positive aRd(d) = 1.

It would be quite natural to impose also the constr&{9) < 1 but, follow-
ing the tradition, we do not persist on this requirement since it excludes some
easily treated models leading to explicit formulae.

In the continuous-time modelling of bond markets (in contrast with that of
stock markets) the straightforward specification of the evolution of asset prices
as a diffusion or jump-diffusion is not convenient. The main methodology is to
start with a model for interest rates; the general opinion now is in favour of the
forward rate though the models based on the spot rate have their own advantages.
We shall follow the same mainstream of ideas adapting it to our approach which
emphasizes the evolution of the whole price curve in the space of continuous
functions in contrast with the traditional point of view that considers as primary
object a family of individual price processes parameterized by bond maturities.

Assumption 3.1 The price curve dynamics is given by a controlled process P
(P¢). There exists a ©valued adapted process= f (t) such that for any € T

H@:em{—/ﬂﬂﬁm%,tgﬁ. (3.1)
t

The random variablé(t, 6) is called theinstantaneous forward spot ratat
time t of the bond maturing af) or simply theforward rate By definition,
r ;.= f(t,t) is theinstantaneous spot rater simply thespot rate(called in the
literature also theshort rate instantaneous riskless ratc.).

Remark.One can assume th&(t,d) is continuously differentiable ir¥ and
define the forward rate in an equivalent way as

fmmz—immw. (3.2)

0

In almost all known models (quite often implicitly) it is assumed that there
is a traded asset that pays intemgsi.e. the unit of money invested at time zero
in this asset results atin the amount

R1:= exp{ /t rsds}
0

(one can think about a bank account with the floating rgte
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It is convenient to take this asset asanréraire, that is to express all other
values in the units of this particular security. Prices calculated in units of the
numéraire are called thdiscounted pricesin our case the discounting factor is
R:. This means that the discounted price procéss given by the formula

t
Z.(0) := RP,(6) = exp{ - /O rsds}Pt(G). (3.3)

It is instructive to understand a possible reasoning explaining the “existence”
of this nuneraire. Let us split the interval [0] into small subintervalsty, tj+1]
and consider the strategy to invest at time zero a unit amount of money into the
bond maturing at;, at the moment; to reinvest the obtained value (which is
equal toPo‘l(tl—)) into the bond maturing &g, and so on. Clearly, under a mild
condition of equicontinuity, at timé the resulting amount is

N tis1 N
EXp{Z/t f(ti,s)ds} zexp{Zrt‘ (ti+1—ti)},
i=0 t i=0

and it approximates}, 1. In other words, the existence of the asset with the
interestr; means that we are allowed to execute a roll-over strategy on just-
maturing bonds which leads to a portfolio involving a continuum of securities.
Up to now the bond pric®;(f) has been given only fdr < §. To work with
processes defined for dlle R, we putP(¢) = R™'Ry for t > 6. One can think
that after maturity the bond is transferred automatically into the unit of money
in the bank account.
There is another option: reparameterize the model by considéragtime
to maturity.

2. Portfolios of bonds

We define a (feasiblg)ortfolio or trading strategyas a pair ¢, n) where¢ is a
P-integrable predictable measure-valued procgds,a real predictable process
with

/ el < oc (3.4)
for finite t.
The value proces®f such a portfolio is given by
Vi(o, m) = ¢ P + i Gy (3.5)
with 3 :=R~L.

We shall consider agdmissibleonly strategies with value processes bounded
from below.
A portfolio is said to beself-financingif its increments are caused by price
movements only, i.e.
Vi(g,n) =x+¢-Pe+n- 5 (3.6)

wherex is an initial endowment.
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We show now that the roll-over “strategy” of permanent reinvestment of the
whole current valud/;_ in the just maturing bond (without involving the “bank
account”) is an admissible portfolia(n) = (V_6,0) whereV_ = (V;_) and
is a unit mass o concentrated at the poimt and this portfolio gives rise to
an asset with interest rate Formally, this means that the linear equation

V=1+V_§-P (3.7)

has a solution, the solution is unique and coincides witiThe result (under
certain additional hypotheses) is a corollary of the following two lemmas.

Lemma 3.2 The equation
V=1+V_¢-P (3.8)

whereg is a locally bounded predictablél +-valued process, has a unique solu-
tion in the class of locally bounded processes with regular paths.

Proof. Let W be the difference of two solutions. Thal = W_¢ - P. By lo-
calization, we can assume tH&¥|, ¢, andK are bounded by some constant. It
follows from Assumption 2.2 that

E sup|W_¢ - P|?

s<t

t t
< CrEK; / / p3(s, u, W_¢)x(ds, du) < C / E sup|W, |?ls(U )ds.
0 Ju 0

v<s

Thus,W is zero by the Gronwall-Bellman lemmal.

Lemma 3.3 Assume that the following conditions are satisfied:
i) the spot rate r is a regular processddlag);
i) for any finite T we have

limsuplf (t,0) — f(t,t)| =0; (39)
Olt ¢<T

iii) in the control pair (x, p) for the price process P the function p has the
form

P(w,t,u,m) = |mg(w, t, u)| (3.10)

whereg(w, t, 6, u) is bounded by a constant and right-continuous in t.
Then for any continuous process G we have

t
G§-P = / Gefsds. (3.11)
0
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Proof. Standard localization arguments reduce the problem to the case when
G andK are bounded. Let us consider the approximationpafE Gé by the
processes

2(d0) = Gy b, (d0)lyy 4.1 (S) (312)
i=0

with t; =it /n. It is rather obvious that

Py = zn: Gy (P, (tis1) — Py (ti+1)) = zn: Gy (1 —exp { B /tt.+1 . s)dS})

i=0 i=0

n t
=Y Gurutes 1) +o() — [ Gursds (313)
i=0 0

due toi) andii)
On the other hand, making usie) we have:

t
6(6s — o) < CE /O /U (6s — ¢0)g(s. ) Pl<(du)ds

t n
=CE [ [ 3716:0(5.5.u)  Gugfs. s, WPl . (O)s(c)ds — 0. (319
Jo Ju i3

Hence the left-hand side of (3.13) converges in probability to the stochastic
integral¢ - P, and (3.11) holdsld
As a corollary of (3.11) we have that

t
5(5 P = /0 ﬁsrsds = ﬁt -1 (314)

Thus, under the assumptions of Lemma 3.2 the progasshe solution of (3.7)
(which is unique at least in the class of locally bounded processes).

Remark.One may think that the above reasoning is not correct in some sense
since we extended the bond prices after maturity using the prétgssHow-

ever, the approximation (3.12) is chosen in such a way that the corresponding
integral sum does not involve values of the bonds after maturities. Of course, the
arguments can be repeated for the case whinthe time to maturity.

3. Classification of portfolios

Now we consider discounted bond pricg$d) := RP;(#) and discounted values

of a portfolio Vi (¢, n) := RVi(ét, ) which correspond to a choice of the
roll-over strategy as the numaire. ClearlyZ () = 1 fort > 6 andV{?(¢,7) =

i Zy + ;. For a self-financing portfolio we hawé? (¢, n) = X + ¢ - Z. From now

on we shall consider only self-financing strategies. Since in this case the value
process (hence, the procegsis uniquely defined by theé-component we omit

7 in notations.
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For particular models of bond prices one can expect a redundancy of traded
assets. It may happen that a certain value process corresponds to different trad-
ing strategies. It is important to distinguish also portfolios that instantaneously
involve only a finite number of assets. To study different possible situations we
introduce the following definitions.

We say that two trading strategies and ¢’ are equivalentif they have
the same value processés(¢) = V (¢’) (P-a.s.). A strategyp is called ann-
dimensionalf for any t and almost allv the measure(w, t, df) is concentrated
at most inn points of T. We say that a strategyis n-reducibleif there exists an
n-dimensional equivalent strategy but there iskkadimensional strategy witk <
n. The definitions ofcountably dimensionahnd countably reduciblestrategies
follow the above patterns. Some results concerning the problem of reducibility
are given in [6].

4 Jump-diffusion model

1.
In this section we consider more specific integrators by assuming that for every
fixed 6 the real-valued proced3(9) = (P;(d)) is a semimartingale of a rather
general form. This hypothesis leads to a setting which covers the majority of
existing models of bond price processes and provides an important example of
application of the theory developed above. Making use of the imposed particular
structure we suggest as alternative a more explicit construction of the integral
for measure-valued processes and show that it results in the same object.

Let P = (P;) be aCr-valued process such that for afiye T the real process
P(0) = (P:(0)) admits the representation

t t t

P6) =x(O)+ [ as@)dst | @)t [ [ ofsx.6)(u(ds,dx) — (. o)

Jo 0 0 JX 1)
wherew is a Wiener process with values R", u(w,dt,dx) is a &’ @ % -o-
finite integer-valued random measure (adapted to the filtratiaf@), dt, dx) =
Mt (w, X)dx is its compensator (dual predictable projectiory, .&2") is a Lusin
space (in applications, usuall), = R", or X = N, or a finite set)g(.,0) is a
2 ® . %" -measurable functionf’ is the predictabler-algebra inf2 x R.). The
coefficients must be such that all integrals are well-defined and this requirement
is met, of course, by the following

Assumption 4.1 The coefficients of (4.1) are continuouséina(f) and o(6) are
predictable processes with valuesRhand R" such that for finite t

t t
/ llas||ds < oo, / los/|?ds < o0 a.s., (4.2)
0 0

g(.,0) is a’ ® .Z'-measurable real-valued function such that for finite t
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/t/ llg(s,x)||?v(ds,dx) < oo a.s. (4.3)
0 JX

Put A; = t. In the standard notations of the stochastic calculus for semi-
martingales (4.1) can be written as follows:

Pe(0) = x(0) +a(d) - A +o(0) - we +g(0) * (1 — ). (4.4)

Remark.The definition (4.1) includes as a particular case the process generated
by the Gaussian—Poisson model:

t t mot S
PL(0) = x(0) + /0 ay(0)ds + /O oo(O)duws + > /0 gs(i, 0)(dN! — Nids) (4.5)
i=1

whereN' are independent Poisson processes with intensities

2.
Let ¢ be a predictablé-valued process such that for all finite
t
| toseulds < . (46)
0
t
/ |psos|?ds < oo, 4.7)
0
and
t
| [ 16:atsxvds. 0 < o0 (48)
0 JX
where

6586 = /T 2(6)<(d0)

etc. For¢ satisfying (4.6) — (4.8) we put

t t t
GoP, = /O dsacds+ /0 bsosdug+ /0 /X 659(5,X)(u(ds, dx) — (ds, dx)) (4.9)

where the first integral in the right-hand side is the ordinary Lebesgue integral
and the second and the third ones are the usual stochastic integrals. In abbreviated
notations one can write (4.9) as

poPr:=(ga) - At +(do) - we + (dg) * (1 — V). (4.10)
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Proposition 4.2 (a) Under Assumption 4.1 the proces$dPis controlled and
¢-Pr=¢oP forgpe &P,
(b) If, moreover, for finite t

t
/ |as|?ds < oo (4.12)
0

and ¢ is a predictable process such that (4.6) — (4.8) are fulfilled and also

t
/ |sds < 00 (4.12)
0

fort < cotheng € L3,(P) and¢-P =¢oP.

Proof. (a) Notice that for¢p € £ of the form¢ = Iy, 1,ym we have by the
definitions and the Fubini theorems for ordinary and stochastic integrals (see
Appendix) that

o2 =ie ([ o) may e [ ([ o) e
+Ip/T (/ttz/xg(s,x,e)(u(ds dx) — v(ds, dx)) m(d#)

= |p/tltz </T as(e)m(dé))) o|s+|p/ﬁtz (/T as(e)m(d9)> dws

+Ip/:/x (/T g(s,x,e)m(d0)> (u(ds, dx) — v(ds,dx)) = ¢ o P.

To show thatP is a controlled process it is sufficient to check that each
integral in (4.1) defines a controlled process.

Let ¢ € &P, For any stopping time- we have by the Cauchy—Schwarz
inequality that

e sup( | aas) <Kt [ pits. oo (413)

where .
K2 = 1+/O laslids,  Pa(s, ds) = |ésas] ]3],

and?® is the “pseudoinverse’b® =b~1 for b #0 and @ = 0.
By the Doob inequality

t 2 T t
Esup( / qf)sasde) < 4E / P2(s, ¢s)||os||2ds < 4EKC / Q2(s)dKS
t<r 0 0 0
where .
K¢ = l+/ HUSHZdS, Ps (S, ¢s) = |¢SUS|||‘75||@-
0
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Similarly,
t 2
E ?;‘P( /0 /X ea(s.3)(u(ds. ) — v(ds. d))
< aE / ' / 02(. . 9)[[9(s, )| (ds, dx)
0 X
g T 2
< 4EKS /O /X P2(S. X, d)r(ds, dx)
where

k(ds, dX) = [lg(s, X)[IPv(ds, dx), K¢ := 1+4([0,t] x X),

Py(S, X, ds) = [Bsg(s, X)|[| (s, X)||®.

ThusP is a controlled process.
(b) Notice that, under (4.11), (4.12), one can write instead of (4.13) that for
T<T <o

t 2 T . T "
Esup(/0 qbsasds) STE/0 \¢5a5|2ds§TEKf/0 P2(s, ¢s)dKE

t<r
where
t
Re =1+ [ Jadds
0

In view of Proposition 2.5 it is sufficient to consider the case when there is only
one integral in the representation (4.1) Bf E.g., assume thd® (0) is simply

the integral with respect ta. Let 7 be the minimum ofN > 0 and the hitting
time of the levelN by the process; [|os|/?ds. Then the process satisfying
(4.7) is inL2(p,,K,) and the convergence of integrand’ to ¢ in this space
means exactly that

E / |¢QUS - (bsas‘zds — 0.
0

Hence, for the approximating sequence of elementary integrands we have that
¢"-PT =¢" o PT approach simultaneously- PT andgoPT. 0O

Remark.The definition (4.9) does not require neither continuityPpfand of the
coefficients of (4.1) ird nor the integrability conditions (4.2) — (4.3).
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5 Existence of an equivalent martingale measure for the jump-diffusion
model

1. From forward rates to price curves
Suppose that a bond price process is specified through forward rates, i.e. for
0 Ry

H@=em{—/ﬂaﬁm%,t§9, (5.1)
t

wheref(t,.) is a Cg,-valued adapted process and hence the price curves are
continuously differentiable with

0

f(t.0)=—, P O). (5.2)

Assumption 5.1 The dynamics of the forward rates is given by
df (t, 0) = o(t, O)dt + o(t, 0)dwy +/ o(t, x, 6)(u(dt, dx) — v(dt,dx))  (5.3)
X

wherew is a standard Wiener processRY, u is a ’® . % -o-finite random mea-
sure (one can think that it is the jump measure of a semimartingale) with the con-
tinuous compensatar(dt, dx), the coefficients are continuous nthe functions
a(t,d) and o(t, 6) are ¥ @ .2 .-measurable, and(t,x,0) is & @ . ¥ ® .77+-
measurable.

For all finite t andd >t

0 (4 6 6
/ / la(u, s)|dsdu < oo, / / lo(u, s)|?dsdu < oo, (5.4)
0 t 0 t

and

/9/ /‘9 |6(u, X, )|?dsv(du, dx) < co. (5.5)
o JxJi

It is convenient to extend the definitions of the coefficients by putting them equal
to zero forf < t.

To abbreviate the formulae we shall use sometimes the notatien: — v.
The relation (5.3) means that

t t
a(u,e)dwu+/0 /X(S(u,x,e)u(du,dx).
(5.6)

t
f(t,9)zf(0,9)+/ a(u,e)du+/
0 0
In particular, for the spot ratg :=f (t,t) we have

re :f(O,t)+/0t oz(u,t)du+/ot a(u,t)dwu+/0t/x6(u,x,t)ﬁ(du,dx). (5.7)

Notice that the integrability conditions (5.4) — (5.5) are fulfilled if the coeffi-
cients are bounded fdrand from a bounded set (by a constant depending on
w and the set) and([0,t] x X) < oo for finite t.
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Put )
A() = / at, s)ds, (5.8)
t
0
S(0) = / o(t, S)ds, (5.9)
t
0
D(t797x)=—/ 6(t, x, s)ds. (5.10)
t

The dynamics of the price curve is given by the following

Proposition 5.2 The discounted bond price procesgf on [0, 6] has the form

t t
20) =20 e [ AG)ds+ [ SEdu,

t
+ / / D(s. x, O)i(ds, dx) } (5.11)
0 JX
and satisfies the linear stochastic differential equation
) = a0t sOdu+ [ DX ot b
Z_(9) X
+ / (ePtx9 _ 1 _ D(t, x, 0))(dt, dx) (5.12)
X

with 1
a(0) = A0) + 2\S[(f))lz- (5.13)

Proof. Applying the Fubini theorem and its stochastic versions we get from (5.1)
and (5.6) that

InPy(0) = —/Gf(t,s)ds: —/ef(o,s)ds
t t

—/Ot /tea(u,s)dsdu— /0t /tea(u,s)dsdwu—/ot/x/teé(u,x,s)dsﬁ(du,dx)
:_/:f(o,s)ds_/ot /uea(u,s)dsdu— /0t /uea(u,s)dsohuu
_/Ot/x/ue 5(u, x, s)dsji(du, dx)
+/Otf(0,s,)ds+/ot /ut a(u,S)deU+/ot /ut o(u, s)dscdwy
" /O t /X / " (.. S)dsi(du. dx)

:InPO(G)+/OtAu(9)du+/0tS,(H)dwu+/Ot/xD(u,x,e)ﬁ(du,dx)+/0t rsds
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according to our definitions (5.8) — (5.10) and since the sum of the four integrals
in the left-hand side of the last equality (again by the Fubini theorems) coincides
with the expression for the integrated spot rate

t t S
/f(O,s)ds+/ / a(u, s)duds
0 0 JO
t S t S
+/ / a(u,s)dwuds+/ / /6(u,x,s)ﬁ(du,dx)ds‘
0 Jo 0 JO X

Thus, (5.11) is proved. By the Ito formula we get from (5.11) that

4Z,(6) = Z._ (6) [ A(O)dt + S (B)duy + /X D(t, x, 0)j(dt, dx)

#oISOFd+ [ €00~ 1D x.)(dt )
X
and (5.12) holdsd

2. Absence of arbitrage and dynamics under a martingale measure
As usual, we shall use the notatiéh := P|.74 (the restriction ofP to the o-
algebra%).

Let ¢ be the set of all probability measuresvith P; ~ P for all finite t and
such that the discounted bond price procass: R P;(6) is a localP-martingale
for everyf € T.

We say that anodel has th&MM-propertyif the set? is nonempty.

We begin with a comment concerning terminology. In the literature on the
term structure of interest rates the EMM-property (or its slight modification) is
quite often referred to as absence of arbitrage. This is rather confusing since it
would be more consistent, as it is usually done in the theory of stock markets, to
separate the “no-arbitrage” or “no-free lunch” properties which have a transparent
economical meaning (impossibility to obtain “profits” without “risk”) from the
more mathematically convenient but difficult to interpret EMM-property. We use
the quotation marks above since the mentioned concepts should be rigorously
defined; one can find different variants in [14] where the problem of no-arbitrage
is solved for a continuous-time market model with a finite number of assets; see
also [26] for an approach based on the notion of a large financial market. Of
course, EMM-property always implies no-arbitrage.

The EMM-property implies that the coefficients of the model are interrelated
and cannot be chosen in an arbitrary way. The following result (generalizing the
well-known observation of Heath—Jarrow—Morton [18] for the diffusion case)
reveals this fact in a remarkably simple way when the model is specified under
a (local) martingale measure.

Proposition 5.3 The probabilityP € ¢ iff the following two conditions hold:

t
/ / (ePEX9 _ 1 D(s, x, 0))v(ds, dx) < oo, (5.14)
0 JX
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t t
/ ag(0)ds + / / (ePEX9 _ 1 D(s, x, 8))v(ds,dx) = 0 (5.15)
0 0 JX

foranyte R..
In the particular case whemn(dt, dx) = A\ (dx)dt, the probabilityP € ¢ iff
(5.14) holds for any &£ R, and

a(0) + /X(eD“vXﬂ) _1-D(tx, 0)A(dX) = 0 (5.16)

(dPdt-a.e.).

Proof. (<) Under (5.14) the representation (5.12) can be rewritten in the follow-
ing way:

dZ((@) = D(t,x,0) _
2. (0) —a{(t‘))dt+3(9)dwt+/x(e t 10u(ct, ) — (e, )

+ / (Pt _ 1 D(t,x, 0))v(dt, dx). (5.17)
X

It follows from (5.15) that the procesZ[(6)] ! Z(6) is a local martingale,
henceZ(0) is also a local martingale, i.€ € .

(=) In this case the proceds := [Z_(0)] *-Z(#) is a local martingale. LetM
be the jump measure dfl and»M be its compensator. By 11.2.29 in [21] we
have thatix| A [x|? * M < oo for finite t. Hence

|e® — 1 AJeP — 12 x 1y = x| A X2+ M < .

Since |D|? *x 11 < oo the property (5.14) holds by virtue of the elementary
inequality
e® —1-D <C(e® -1 Ale° -12+D?

whereC is a constant. Using (5.17) we infer thislt is a local martingale only
if the process given by the left-hand side of (5.15) is indistinguishable from
zero. d

Remark.One can observe that the hypothes{gt, dx) = \;(dx)dt is not a re-
striction since (5.15), actually, implies this structure on the set whehas an
effect on the price curve dynamics. We leave the formal statement to the reader.

3. A jump-diffusion model in the Brace—Musiela parameterization
Quite recently Brace and Musiela [7] (see also [30]) observed that in some aspects
it is more natural to describe the forward rate in the Heath—Jarrow—Morton model
using another parameterization: not in termsnafturity timebut in terms oftime
to maturity In particular, in their version the dynamics of the forward rate curve
under an equivalent martingale measure is given by a very simple stochastic
differential equation in the space of continuous functions.

Assume that th&Cg, -valued adapted proces$t,.) := f(t,t +.) is such that
for any u the scalar procesq., u) admits the representation
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r(t,u)=r(O,u)+ /0t Bs(u)ds+ /Ot Ts(U)dws + /0t /x n(s, X, u)u(ds, dx) (5.18)

where the coefficients satisfy the integrability conditions: for all finite

t t t t
2
/O/O\ﬁs(u)|dsdu< 00, /o/o|rs(u)| dsdu< oo, (5.19)

/t / /t In(s, x, u)|dsv(du, dx) < oco. (5.20)
o JxJo

Proposition 5.4 For the forward rates given by (5.18) the discounted bond price
process £6) on [0, §] satisfies the linear stochastic differential equation

4Z(0) _
Z-(0)

and

[r(t,e —t)—r(t,0)+B(0 —t) + ;\Tt(e —t)]2] dt + T,(8 — t)dwy

+/ H(t,xﬁ—t)ﬁ(dt,dx)+/(eH("X’9_t)—1—H(t,x,0—t))u(dt,dx) (5.21)
X X

where

0
B/(0) = /0 5, (u)du, (5.22)
0
T.(0) = — /O 7 (u)du, (5.23)
0
H(t,x,e):—/ n(t, x, u)du. (5.24)
0

Proof. Put F(0) := Z/(0 +t). From the definitions and the Fubini theorems it
follows that

6 0
InFt(e):—/trsds—/0 r(t,u)du:—/otr(s,O)ds—/O r(0,u)du

0
/Ot /06 B(u)duds— /0t /00 Ts(u)dude/Ot/x/oe (s, X, u)dui(ds, dx).

Applying the Ito formula we easily get the representation

dr(0) _

e R R OB IO LR TOET

+ / (e X9 _ 1)4(dt, dx) + / (e 1 — H(t,x,0)r(dt,dx). (5.25)
X X

Since
OF(6 — 1)
B OX
the equation (5.25) implies (5.21).0
Similarly to Proposition 5.3 we get as a corollary a certain relation between
the coefficients for the case when the basic probability is a martingale measure.

dZ(0) = dF (6 — 1) dt = dFR (0 — t) + Z(O)r (¢, 0 — t)dt,



General theory of bond market 161

Proposition 5.5 Assume that(dt, dx) = \(dx)dt. Then the probabilitye € &
iff

t
/ / (e _ 1 H(t, x, u)) A (dx)dt < oo (5.26)
0 JX

for finite t and u, and

() =r(t.0) - B ~ MOP RO (527)

(dPdt-a.e.) where
Ri(u) := / (€W 1 — H (t, x, u)) A (dx) (5.28)
X

and the functions gu), T;(u), and H(t, x, u) are defined by (5.22) — (5.24).

Remark.The relation (5.27) implies (under a mild integrability assumption) that
r(t,.) is an absolutely continuous function and

8() = aaur(t,.)+ ;Tt(.)/o'ﬂ(v)dm aauRt(.) (5.29)

with 5
puRE == [ €059~ 1t x (0.

One can deduce from (5.18), (5.29) that if the model is specified under a mar-
tingale measure then the dynamics of the forward rate curve is given by the
following stochastic evolution equation

dr(t,.) = [ 2r(t,.) + C(t, )]dt + 7 ()dw + / n(t,x, )iadt, dx),  (5.30)
X

where. 4 :=0/0u,

C(t,):= ;Tt(.)/o‘ 7i(v)dv — /X(eH“va) — Dn(t, X, YA (dX). (5.31)

4. Modeling under the objective probability

For the case whePR is a martingale measure the relations between coefficients

of the model for forward rates are simple and easy to treat. Certainly, the ob-
jective probability need not to be a martingale measure and now we investigate
consequences of the EMM-property for this general case assuming for simplicity
that v(dt, dx) = M\ (dx)dt.

Proposition 5.6 LetP € ¢. Then there exist a predictable processvith values
in R" and a&” ® .%" -measurable function ¥ Y (w, t,x) > 0 with

t
/ |ps|2ds < oo, (5.32)
0
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/ t / (VY (s,x) — 1Y Xs(dx)ds < oo (5.33)
0 JX

for finite t such that:
1) the process

t
Wt 1= wy 7/ (deS (534)
0

is Wiener with respect t&; i
2) the random measui®:= Y v is the P-compensator ofi;
3) the following integrability condition is satisfied:

t
| [0 ~ Dijonang Y 0M@ods <00 (639
0 JX

for finite t ando;
4) it holds that for anyd

a(0) + S(O)¢r + /X[(E'D(t’x’a) — Y (t,x) =D(t, x,0)X(dx) =0  (536)

dPdt-a.e.

Proof. Existence ofp with the property 1) and satisfying (5.32) is given by the
classical Girsanov theorem (see Theorem 111.3.24 in [21] for a general version).
Existence ofY > 0 with the property 2) follows from the Girsanov theorem for
random measures (Theorem 111.3.17 in [21]). SifcandP are locally equivalent
one can choos¥ to be strictly positive. The property (5.33) holds because by
Theorem 1V.3.39 in [21] the process/{Y — 1)?+ v is dominated by the Hellinger
proces(1/2, P,P) which is finiteP-a.s. (and hence-a.s.) according to Theorem
IvV.2.1in [21].

Let 4uM-¢ be the jump measure of the semimartingllle=[Z_(6)] - Z(0)
having the representation (5.12). Notice thvl, = [, (€°®*9) — 1)u({t}, dx)

and
/ / f(t,u) M f(dt, du) = / / f(t,eP©*0 — 1),(dt, dx)
R X

for any positive measurable functidn Evidently, for theP -compensator of
puM-% we have the similar property:

~M ,0 - D(t,x,0)
//Rf(t,u)z/ (dt, du) //Xf(ne 1)Y (t, X)v(dt, dx).

The processM is a special semimartingale with respectRo Hence, by
Proposition 11.2.29 in [21lyy/> 1) * DtM’e < oo for finite t and (5.35) holds.
Now we get from (5.34) that

/: S(O)dws = /Ot S(0)dws + /Ot S(0)psds,

and, furthermore, by simple transformations,
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€° = Dlpsmzy *=€" — Dlpsingy * (u— Y) +(€° — Dlpsinz Y *v,

Dlfpj<1y * (0 — v) = Dlgpj<1y * (1 — YV) + Dlypj<i3 (Y — D) x v,

[(e° — Dl{p<inzy — Dlgpj<ny] * 1
=F s (u—Yv) +[(€® — Dl{p<inzy — Dlgp<yy]Y * v

whereF := (e® — 1)I{D<|n 2y —Dlyp|<1;. The right-hand sides of these identities
are well-defined and give the canonical decompositions with respebt db
special semimartingales. Substitution to (5.12) shows that the predictable process
in the canonical decomposition & with respect toP is equal to

/ [a(6) + SO)pdds + / t / (29 _ 1)y (t,x) — D(t, x, O)](dt, dx).
0 JO X

But it must be zero and we get (5.36).

The above proposition means thatffe ¢ then the “integral” equations
(5.36) for almost all§, t) have a nonempty set of solutions, {f) wherep € R",
Y > 0,VY —1 e L?X,)\). Moreover, one can chose in these sets a certain
measurable selector such that the integrability properties (5.32), (5.33), and (5.35)
are fulfilled.

Remark.lt follows from (5.5) and (5.10) that fof finite we have

/x D(t, x, O) M\ (dx) < oco. (5.37)
In the case when(X) < oo this implies that

/x [D(t, X, 0)| A (dX) < o0 (5.38)

and, thus, one can transform (5.36) to the simpler form

a () — /x D(t, X, O)A(dX) + S (0) ¢ + /x (€PEX _ 1)Y (t, x)A(dx) = 0 (5.39)

which will be used later.

Now we discuss the reciprocal assertion to Proposition 5.6. Starting from
¢ andY > O satisfying the integrability conditions one can define the local
martingalep = (p;) with

Inp; = /‘Psdws /|§Os zds

+/Ot/x|nY(s,x)u(ds, dx)+/0 /X(l—Y(s,x))u(ds, dx). (5.40)

As usual in the Girsanov theory, it may not be a true martingale (even if the
pair (p,Y) originates fromP by Proposition 5.6 !); including this property as
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an additional hypothesis, i.e. assuming that = 1,t € R, we can define the
probability measure®' = piP for finite t. However, a measur® such that
I3§ = f’t still may not exist and one must exclude this unpleasant situation related
to “noncompactness” of the stochastic basis.
We say that a stochastic basisisficiently richif for any family of probabil-
ity measuregP'} with the propertyPt = P for all s < t there exists a measure
P on.7 such that! = P;.
Since under the probability measuPewhich is locally equivalent t® with
the density process, the procesZ (6) can be written as follows:

4z(6) = Z_(6) {atw) - /x D(s. X, )M (d) + S (O

+ / (€0 _ 1)y (s, x))\t(dx)} dt+
X

+Z,_(0)S(0)ddx + Z—(6) /x (€2 — 1)(u(dt, dx) — p(dt, dx)),  (5.41)

the arguments above lead to the following

Proposition 5.7 Suppose that the stochastic basis is sufficiently rich and that the
measurable functiong and Y(t, x) > 0 satisfy (5.32), (5.37), (5.35), (5.36), and
Epr = 1 for all finite t. Then the seV is nonempty.

RemarkTo avoid the condition on the stochastic basis (which is not very esthetic)
one can work with a set of density processes or “martingale densities” (see [6])
imposing instead the more restrictive assumption that, = 1 (thenZ’ will
contain a probability which is absolutely continuous with resped®)to

6 Uniqueness of the martingale measure and market completeness

1.

Now we study the relation between uniqueness of the martingale measure (this
means that the seé¥ is a singleton) and market completeness. The model is the
same as in Section 5 but the following additional hypotheses will be assumed
throughout the end of the section:

Assumption 6.1 (Predictable representation property.) Any local martingale M
with respect td® has the form

My = Mo + /0 pedug + /0 t /X (s, x)(u(ds, dx) — (ds,dx)) (6.1

wherey is a predictable proces#; is a & @ .# -measurable function, and

t
/O lps[?ds < oo, (6.2)
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w2(s, x)
/ / 1+[0(s,x (ds,dx)<oo (6.3)

for finite t.

Let the filtrationF be generated by and . Then there are two important
and well-known cases when the predictable representation property holds:
(a) i is a Poisson random measure, i/eis deterministic;
(b) 1 is the measure associated with a multivariate point process in the sense of
[20] (or [21] with an extra requirement tha{[0,t] x X) < oo for finite t) and
n =0 (no Wiener process).

It turns out that in the latter case the representation property holds for arbitrary
n. To prove this, one can use the criteria Theorem [11.4.29 of [21] and, arguing
with the conditional distributions ofi given w =y, show the uniqueness of a
measure oz, such thatw is a Wiener process and hasrv as compensator.

Notice that the predictable representation property is preserved under a locally
absolute continuous change of the probability measure, see Ch. Il of [21] for an
extended discussion.

Now all density processes have the form given by (5.40) (hence, they are
uniquely defined by the Girsanov transformation parameteasd Y) and one
can combine Propositions 5.6 and 5.7 in the following

Proposition 6.2 Suppose that Assumption 6.1 is fulfilled and the stochastic basis
is sufficiently rich. Thew # () iff there are measurable functiogsand Y(t, x) >
0 satisfying (5.32), (5.37), (5.35), (5.36), anghE= 1 for all finite t.
Under the measur® defined by the density processthe properties 1) and
2) of Proposition 5.6 hold.

2. Martingale operators and uniqueness of the martingale measure
One can observe that the existence results involve “space-time” integrability
conditions and also “instantaneous identities” (5.36) or (5.39). Regarding the
latter as integral equations it is easy to formulate the uniqueness results in terms
of injectiveness of the corresponding operators.

We investigate the problem under

Assumption 6.3(a) The process(X) is finite.
(b) For almost allw, t and N there exists\dw, t) < oo such thaiD (w, t, x, 8)| <
cn(w,t) forall x € X andd < N.

Let us consider the family of continuous linear operators
T4 W) 1 R" x LYX,. 27, \(w, dx)) — Cg, (6.4)
defined by
T5EW) 1 (9, Y) = S(w, t, o+ / Y ()P ) — Dx(w,dx).  (6.5)
E

We shall refer to72" as “the martingale operators”.
In view of Proposition 5.6 the following result is almost evident.
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Proposition 6.4 Under Assumptions 6.1 and 6.3 suppose that (). Then? is
a singleton iff dPdt-a.e.
Ker.7(w) = 0. (6.6)

Corollary 6.5 Suppose that the model coefficients, T), o(t, T), 6(t,x, T), and
At(dx) are deterministic and the martingale measure Q is unique. Then the Gir-
sanov transformation parametegsand Y are deterministic functions, i.e. under
Q the proces§V is a Wiener process with drift andis a Poisson measure.

Proof. The operators7Z; do not depend ofs and hence (outside the exclusive
dPdt-null set) the values of the Girsanov transformation parameters correspond-
ing to a fixedt but differentw must satisfy thesameequation (5.39) which has

a unique solution by (6.6). O

Notice that the operators?;(w) are integral operators of the first kind.

Corollary 6.6 Suppose, in addition to the hypotheses of Corollary 6.5, that
alt,T) =a(T—t),o(t, T) = o(T—1),86(t,x, T) = 6(T —t,x), andA(t, dx) = A(dX).
Then the Girsanov transformation parameteraind Y do not depend also on t,
i.e. under the unique measure ¢ the processV is a Wiener process with a
constant drift andu is a Poisson measure invariant under time translations.

The definition (6.5), being very simple, fits well the above claims. However,
it has a certain drawback because it involves the s@xcewith the unpleasant
dual. As we shall see below, it is rather natural to modify a bit the definition of
the martingale operators and impose the following constraint on the model:

Assumption 6.7 There exists a positive predictable process=C;(w) such that
for almost all(w, t) its sections Gw,.) : T — R, are bounded functions,

Z_ ()Pt —1 < C ae,

and
Glim Z_(0)S(0) =0, elim Z_(0)(ePt) — 1) =0, (6.7)

Let CF% be the space of continuous functions Bn converging to zero at
infinity. Notice thatCF?j = Mg,, the space of measures & with finite total
variation.

The formula

TLEW) (0, Y) = Zi_(w, )S(w, t, Jp+Zi_(w,.) /X Y (x)(eP @) — 1)\ (w, dx)

(6.8)
defines a family of linear operators

THE (W) RY x L2(X, . 2", Ae(w, dx)) — C3 . (6.9)

In other words, 7% (w) is the product of the operato#;(w) and the operator
Z(w) of multiplication by the functiorz; _(w,.), so, one can write tha#;* =
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Zy.7%. Clearly, the above results hold also wili#” substituted byZz# but the
modified definition allows to exploit a duality arising in the problem of market
completeness.

3. Hedging operators and market completeness

Using financial terminology, we say that lmounded (contingent) T-clain¥
(which is just a random variabl& € L°°(.%%) is hedgeable(or replicable
if there is abounded discounted value process” such that= = V7, i.e. there
exist a strategy) and an initial endowment such that= = x + ¢ o Zr and the
integral ¢ o Z7 is bounded on [OT].

The bond market is said to lmempletdf all boundedT -claims are hedgeable
for every T € R, and approximately completd for any boundedT-claim =
there exists a sequence of hedgedblelaims =" converging to= in L?(Q) for
someQ € O.

We deliberately restrict ourselves to bounded claims in the above definitions
since the space™ (as well asL?) is invariant under an equivalent change of
probability measure (recall that convergence in probability can be expressed in
terms of convergence a.s. of subsequences). We may thus assume from now
on to the end of this subsection (mainly for notational convenience) that the
model is specifiedunder a martingale measure i.e. P € ¢/, and, moreover,
this is exactly the measure which is involved in the definition of the approximate
completeness.

Remark Notice that integrability assumptions under a martingale measure, made
in the definitions of completeness on claims to be hedged (which one can observe
in the literature), are rather awkward and even inconsistent in the context of the
problem considered here that deals with propertieg/of

We consider the family

FLE (W) 1 MR, — R" x LA(X,. 2", A(w, dx)) (6.10)
of hedgingoperators acting on measures in the following way:

Jo” Zi—(w, 0)S (w, f)m(d0)
THEH (W) M- . (6.112)
Io° Zi—(w, 0)(eP@ -9 — 1)m(do)

Evidently, the operatogZ2*(w) is adjoint t0.74% (w).
We recall that, due to Assumption 6.1, for aByc L?(.77, P) the martingale
M; = E(=Z].%), t < T, admits the predictable representation

M = Mo + /0 t psdws + /0 t /X @ (s, X)(u(ds, dx) — v(ds, dx)) (6.12)

with Mg = EZ and, since it is square integrable, it follows easily that

.
E/ lps|?ds < oo, (6.13)
0
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.
2
E /O /x w2(s, X)v(ds, dx) < . (6.14)

The coefficients of this representation are uniquely defined. More preciSely,
(v, W) is a continuous linear mapping frod(.7 , P) ontoL?(=, dPdt) x L2(®
2, dPA (dx)dt).

Proposition 6.8 The claim= € L*(%7) is hedgeable iff there exists a pre-
dictable measure-valued process=h h(t,df) which satisfies the integrability

2
/
0

dt < oo, (6.15)

/R Z,(0)S(O)h(t, do)

T 2
E / / / Zi—(0)(€PW 9 — Dh(t,do)| v(dt,dx) < oo, (6.16)
0 JXI|J/Rs
and solves o0, T] (dPdt-a.e.) the equation
FPh=| " (6.17)
t () |- '

Proof. SinceP € ¢ we have by Propositions 5.2 and 5.3 that

dz(0) = Z—(0)S(0)dwt + Z—(0) / (€0 — 1)(u(ds, dx) — v(ds, dX)).
X (6.18)
Thus, the discounted value procés$ is of the form

VZ =x+ /O t ( /R ZS(H)SS(Q)h(&dQ)) dws

t
D(w,s,x,0) _ B
*/0 /X ( /R Zs-(0)(e 1)h(s,d9)) (u(ds, dx) — v(ds, dx)) (6.19)

Comparison of (6.12) and (6.19) yields the resultd
As a corollary, we get
Proposition 6.9

1. The martingale measure is unique iff the mappigg& are injective (a.e.).
2. The market is complete iff the mappings“* are surjective (a.e.).

The proof of a natural extension of the second assertion which we give below
involves a measurable selection technique. The operat@r (w) is a mapping
to R" x L2(X,.2Z", \t(w,dx)) and “cI” means the closure in this space.

Proposition 6.10 The following conditions are equivalent.

(i) The market is approximately complete.
(i) cl(Im.ZZ%* (W) = R" x L3(X,. %", \(w,dx)) (a.e.).



General theory of bond market 169

Proof. (i) < (ii) Let = be a bounded discounted contingéclaim to be
approximated. Fog > 0 put

FE(t,m) = [ 75754 m) — pe 2+ | 74755 m) — ()] Z 00

where we use superscripts to denote the first and the second “coordinates” in
(6.11). Recall that balls iMg, are metrizable compacts, henc®¥|(,,. ZR,)

is a Lusin space as a countable union of Polish spaces. The furkctiobeing
Z’-measurable iny{,t) and continuous imm, is jointly measurable. Thus, the
set-valued mapping

(w,t) = {m e Mg, : Fé(w,t,m) <e}

has a7’ ® Mr,-measurable graph and, by assumption, non-empty values (a.e.).
Therefore, it admits as’-measurable a.e.-selecto(t,dd) (see, e.g., [13]),
which “almost” solves the problem. Indeed, for the value procéé¢hc) =

EZ= +h® o Z corresponding to the stratedy (d6) = I (0)m*(t, dd) we have

.
E|VTZ(h5)75|2§E/ F(t,m?)dt <eT —0, ¢—0.
0

However, the construction is not accomplished since these strategies generate a
value processes which are not bounded (and even admissible). Notice that the
predictable proces§; from Assumption 6.7 is locally bounded, i.e. there exists

a sequence of stopping times 7 co a.s. and such tha; < n for t < o,. Put

h=n(t, ) = Wl ey <np t<on) -

Clearly, E|VZ(h=") — VZ(h®)|? — 0 asn — oo. By Assumption 6.7, we have
that

/ zt_(e)(eD@vthﬂ)—1)h8’”(t,d9)‘g C:h="(t,dd) < n.
+ R+

Hence, the value process correspondinghtd has the bounded jumps. Let
hen o= h="l ,.; Where oy, is the exit time ofVZ4(hs") from [-n,n]. Then
VTZ(EE’”) is a sequence of headgeable claims converging?ito V#(h). This

leads to the desired goal.

(i) = (ii) Assume that the market is approximately complete, i.e. an arbitrary
boundedT-claim can be approached by a sequence of hedgeable claims con-
verging inL2. Then there exists a countable set= { =/} of bounded hedgeable
random variables dense in the Hilbert sphée7 ) and closed under linear com-
binations with rational coefficients; lepl( ¥/) be the coefficients in the integral
representation of’ given by (6.12). We continue with the cases 0; the argu-
ments can be extended easily for the general case but, in fact, there is no need
in this: one can identify the product space in the right-hand sidé o#vith L?

over an extension dE by n extra points. Of course, we may assume that for all
(w,t) one hag|¥"||,+ < oo where|.||,+ and (, .). are, respectively, the norm
and the scalar product I?(X,. 2", \(w, dx)). Let us denote by, ; the closure
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in this norm of the se{¥"(w,t)}, which is, evidently, a linear subspace, and by
Hit its orthogonal complement.

It is easy to show that there exists/A®.# -measurable functio® such that
[¥]lws = 1if Hy # 0. Indeed, le{l (i)} be a sequence of indicator functions
generating#" and

k(w,t) := inf{i inf 1) — W (w1, )|y > o}.

Put ¥(w,t,x) := I (k(w,t),x) if k(w,t) < oo and ¥(w,t,x) := O otherwise.
Clearly, ¥ meets the necessary measurability requirements. Furthermore, there is
7™ which is measurable in the same way and such that all the sedtibfs t)
are representatives of the projectionsidfv, t) onto H.+ (one can orthogonal-
ize {Wl (w,t)} preserving measurability and notice that in this case the Fourier
coefficients are obviously predictable). Normalizing the differetice o™ we
get¥ with the required properties.

The function? defines by (6.12) witiVlo = 0 a random variabl®M; € L?(.77)
which is orthogonal, by construction, to &l . If (i) does not hold theMy is
nontrivial. This leads to an apparent contradiction

By experience from the theory of financial markets with finitely many assets
one could expect that the market is complete if and only if the martingale measure
is unique, but in our infinite dimensional setting this is no longer true. Due to
the duality relation (Kez)* = cl(Im.7%*) we obtain instead from the above
assertion

Theorem 6.11 The market is approximately complete iff the martingale measure
is unique.

Remark.For the above theorem, Assumption 6.3 (a), is not, of course, very
pleasant since it, actually, means that the efalways assumed to be non-
empty) contains a measure under which the compensator has such a property.
However, it automatically holds in the important case wheis a multivariate

point process with absolutely continuous compensator. We believe that Theorem
6.11 can be extended to a much more general setting.

For a model when all measurasg(dx) are concentrated in a finite number of
points (in particular, when the mark spax¥es finite) and the hedging problem is
reduced to a finite-dimensional system of equations (for eact)), the duality
relation is simply (Ker7z)* = Im.72*, so in this case we have

Corollary 6.12 Suppose that the measuragdx) are concentrated in a finite
number of points (a.e.). Then the bond market is complete iff the martingale mea-
sure is unique.

In general, the “principle” that uniqueness@fis equivalent to completeness
of the market fails: the set of hedgeable claims may be a strict subset in the set of
all claimsL*>°(.7%). Clearly, this is the case whdh is smooth inx and bounded
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(so, the image contains only continuous functions); typical§;?* is a compact
operator and, hence, has no bounded inverse.

Thus, models with an infinite mark space introduce some completely new
features into the theory, and we also encounter some new problems when it
comes to the numerical computation of hedging portfolios. Namely, the hedging
equations (6.17) are, in general, ill-posed in the sense of Hadamard, i.e. the
inverse of. 7%* restricted to Im74%* may not be bounded. Hence, a small
perturbation of the right-hand side (e.g., due to a small round-off error) gives rise
to large fluctuations in the solution. Thus, a simple approximation scheme for the
calculation of a concrete hedge may lead to great numerical errors. Fortunately,
the literature provides a number of methods to get stable solutions of ill-posed
problems.

7 Conclusions

A consistent theory of the zero-coupon bond markets can be based on a setting
where the price curve is considered as a point in the Banach space of continuous
functions and its evolution is described by a random process in this space. In
such an approach a portfolio strategy at a fixed time is identified with a linear
functional which is an element of the conjugate space, i.e. a measure on maturi-
ties. The dynamics of a strategy is given by a weakly predictable measure-valued
process.

The needed mathematical tool is a stochastic integration with resp€&xt to
valued processes for which our paper suggests a certain general recipe. As a
justification of the general framework, we prove that the asset paying an interest
corresponding to the short term interest rate is the value process of a roll-over
strategy consisting in permanent reinvestment in just maturing bonds. Tradition-
ally, the existence of such an asset in a bond market is an auxiliary hypothesis
explained by heuristic arguments.

The integration theory has a more explicit structure for models where the
dynamics of any bond, i.e. evolution of each point of the price curve, is given
by a jump-diffusion model. In this case, one can use a construction involving
standard finite-dimensional integrals. Starting the modelling from the description
of the forward rate dynamics we derive HIM-type conditions for the existence
of an equivalent martingale measure.

The formal definition of a portfolio strategy allows to define other economi-
cally meaningful properties of a bond market, in particular, market completeness.
For a model with a finite Bvy measure we show that the completeness is equiv-
alent to the uniqueness of the equivalent martingale measure, a relation which is
well-known for stock market models. However, in the case of an infingeyL
measure this is no longer true; it happens that the uniqueness of the equiva-
lent martingale measure is a property that holds iff the market is approximately
complete, i.e. every contingent claim can be approached in a certain sense by a
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sequence of hedgeable claims. This result is deduced from duality considerations
leading, moreover, to the conclusion that the hedging problem is ill-posed.

It is worth mentioning that the results of this paper open the door to a sys-
tematic use of models driven byelry processes that give better statistical fitting
of real-world financial data but lead to theoretical difficulties related to absence
of completeness. Moreover, the idea of measure-valued portfolios seems to be
useful also in the context of stock markets augmented by an infinite number of
derivative securities or bonds.

One can observe that a number of questions are only briefly touched here
and we foresee further mathematical developments within the framework of the
considered approach.

A Appendix

Stochastic Fubini theorems
We give formulations of the stochastic Fubini theorems which are used in the
present paper. The proofs for integrals with respect to a martingale can be found
in the textbook [31], the case of random measures is treated in the same way.
Let M be a continuous real martingalg, = p(dt,dx) a & ® .% -o-finite
integer-valued adapted random measure with compensatorv(dt, dx), and
m a measure onT(,.%%r) with the finite total variationy|. LetH = H(w,t,0)
and¥ =¥ (w,t,x,0) be, correspondinglyy” ® .7r-measurable and” @ . %" ®
.#r-measurable functions. We denote By and¥? their 6-sections, i.eH? :
(w,t) — H(w,t,0); as usual/? is the notation for the optionat-algebra;mH
(or m(H) in ambiguous cases) stands for the integral with respeat tom(d6).
As in the ordinary Fubini theorem, there is a statement concerning measura-
bility; since in the stochastic case the integral is defined up Reraill set, the
problem, in fact, is that of existence of suitably measurable versions.

Proposition A.1 (a) Assume that for eachthe integral(H %)% - (M ), is finite for
finite t. Then there exists afY’ ® .Zr-measurable function (v, t,6) such that
for eachd the process U is a version of the stochastic integral®H M .

(b) Assume that for each the integral (¥?)? x 1, is finite for finite t. Then
there exists an” @ .7r-measurable function Y, t, §) such that for eacld the
process V is a version of the stochastic integréf (1 — v).

By virtue of these assertions the notatid#é - M and¥? « (1 — v) always
mean the suitable measurable versions of the integrals.

Proposition A.2 (a) Suppose that for finite t

(MH?) - (M), := /0t (/T H2(t,9)m(d6’)) d(M); < oco. (A1)

Then the process (Al - M) is indistinguishable fronfmH) - M.
(b) Suppose that for finite t
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t
(MP?) * 1 ;:/ / (/ !Pz(t,x,e)m(de)) v(dt, dx) < oco.
0 JX T
Then the process (& « (1 — v)) is indistinguishable from @& « (1 — v).

CommentsThe measurability result has been proved in great generality in [36].
The interchangeability of the integrals under the assumptions above is almost
a folklore (for this and other versions see [31] with the literature therein and
also [37]; the book [12] contains an extension to Hilbert space-valued Wiener
processes) although it is not easy to give a precise reference except [27] for
the case of random measures. We do not consider ramifications of this result
which are delicate and still of current interest. Actually, the stochastic Fubini
theorem is rather unfortunate: even the usually reliable source [20] contains an
erroneous formulation in Theorem 5.44 (see p. 161 in [31] for a counterexample
and further remarks). The most general results are given in the recent deep study
[27] where the problem is treated in the framework of vector integration theory
(independently, the same approach to the stochastic Fubini theorem is used in
the paper [4] submitted, however, much later).
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1 In the language of probability theory: i.e. generated by all mappings mf
where fe Cy; in the language of functional analysis this is, of course, weak*

topology.
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