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Abstract. In this paper we consider the valuation of an option with time to
expirationT and pay-off functiong which is a convex function (as is a European
call option), and constant interest rater , in the case where the underlying model
for stock prices (St ) is a purely discontinuous process (hence typically the model
is incomplete). The main result is that, for “most” such models, the range of
the values of the option, using all possible equivalent martingale measures for
the valuation, is the interval (e−rT g(erT S0),S0), this interval being the biggest
interval in which the values must lie, whatever model is used.
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1. Introduction

In a complete financial market any contingent claim is attainable and can be
valued on the basis of the unique equivalent martingale measure (see Harrison
and Pliska (1981) for terminology). The most prominent example of a complete
model is the Black-Scholes model, where stock prices evolve according to a
geometric Brownian motion. Despite of its popularity this model has serious
deficiencies: from the point of view of the distribution of returns as well as
from the point of view of its path properties. If a model is based on daily
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returns of a stock, statistical tests clearly reject the normality assumption made
in the Black-Scholes case. For a more recent empirical study of distributions
using German stock price data see Eberlein and Keller (1995). References to a
number of classical studies of the US-market are given there. Looking at paths
on an intraday time-scale, that is looking at the microstructure of stock price
movements, Fig. 3 of the same paper shows, that a more realistic model should
be a purely discontinuous process instead of a continuous one.

Since the returns are usually defined as increments of log stock prices, that
is as logSt − logSt−1, we choose as a model for stock prices

St = S0 exp(Xt ) (1)

with X = (Xt )t≥0 as the corresponding return process. IfX is a semimartingale
- it is not easy to find a process which is not in this class; fractional Brownian
motions are an example - by Ito’s formula (St ) is the solution of the stochastic
differential equation

dSt = St−

[
dXt +

1
2

d〈Xc〉t +
(
e∆Xt − 1−∆Xt

)]
. (2)

Here Xc denotes the continuous martingale part ofX and∆Xt = Xt − Xt− the
jump at timet (see Jacod and Shiryaev (1987) for terminology). Note that the
simpler equation dS̃t = S̃t−dXt would result in the Doĺeans-Dade exponential

S̃t = S̃0 exp

(
Xt − 1

2
〈Xc〉t

) ∏
0<s≤t

(1 +∆Xs)e−∆Xs .

The returns of this process are not the statistically observable quantities.
In view of the empirical facts mentioned above we are looking for a model

with vanishing continuous martingale partXc, which means that equation (2)
reduces to

dSt = St−
[
dXt +

(
e∆Xt − 1−∆Xt

)]
. (3)

In the following we assume thatX is a Lévy process under some probability
measureP, that is a process with stationary, independent increments starting
at 0. A typical example for such a process whose continuous martingale part
vanishes, is the hyperbolic Lévy motion defined in Eberlein and Keller (1995).

Coming back to the question of contingent claim valuation we have to find
an equivalent martingale measure. Unfortunately under the assumptions made
above, we entered the realm of incomplete models. Instead of a unique equiva-
lent martingale measure typically there is a large class of such measures. This
fact alone would not pose a problem as far as contingent claim valuation is
concerned. Real markets know at least two prices: the bid and the ask price.
It would be satisfactory if the values computed on the basis of the equivalent
martingale measures would span an interval corresponding to the bid-ask spread.
In the following we describe the relevant class of measures and show that the
corresponding values span a much wider interval. In the case of a European call



On the range of options prices 133

option with strikeΓ and time to expirationT and with constant interest rate
r , the values span the whole interval from (S0 − e−rTΓ )+ to S0, which is
an “absolute” interval in which all prices must lie, whatever model is used, for
arbitrage reasons. Similarly, if the pay-off function of an option isg, a function
satisfying the set of assumptions (7) below, the values span the whole interval
from e−rT g(erT S0) to S0.

2. Results

Let r denote the constant interest rate. We writeMr for the (possibly empty)
class of measures locally equivalent toP, under whiche−rt St is a martingale,
andM′

r for the subclass of allQ ∈ Mr under whichX is again a Ĺevy process.
As a preliminary result we wish to examine under which conditionsMr or

M′
r are not empty. This will be expressed in terms of the interest rater , the

drift b and the Ĺevy measureF of X underP.
By convention, the drift will be computed with the truncation functionϕ(x) =

x1{|x|≤1}, so that ifµ is the jump measure ofX,

µ(ω, dt, dx) =
∑
s≥0

1{∆Xs(ω)/=0}ε(s,∆Xs(ω))(dt, dx),

and ν(dt, dx) = dtF(dx), underP we may use the canonical representation

Xt = bt +
∫ t

0

∫
ϕ(x)(µ− ν)(ds, dx) +

∫ t

0

∫
(x − ϕ(x))µ(ds, dx). (4)

Introduce also the classYr of functions y : IR→ (0,∞) such that∫ (√
y(x)− 1

)2
F (dx) +

∫
{x>1}(ex − 1)y(x)F (dx) <∞

b − r +
∫

((ex − 1)y(x)− ϕ(x))F (dx) = 0.

 (5)

Proposition 1. If Yr = ∅ thenMr = M′
r = ∅. If Yr /= ∅ then bothMr and

M′
r are non empty, and for each y∈ Yr there is a measure Q∈ M′

r under
which X is a Ĺevy process with drift b′ and Ĺevy measure F′ given by

b′ = b +
∫
ϕ(x)(y(x)− 1)F (dx),

F ′(A) =
∫

A y(x)F (dx).

 (6)

Now let g be the pay-off function of our option. We assume the following
on this function:

g is convex, lim
x→∞

g(x)
x

= 1, 0≤ g(x) < x for all x > 0. (7)
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These assumptions are quite natural. For a European call option with strike
Γ > 0, g(x) = (x − Γ )+.

Under the measureQ ∈ Mr the value of the option is then

γ(Q) = EQ
[
e−rT g(ST )

]
. (8)

We consider the range setsIr = {γ(Q)|Q ∈ Mr } andI ′r = {γ(Q)|Q ∈ M′
r }.

We are naturally interested inIr , but the smaller setI ′r also has some interest
and it will be the key technical ingredient to our proof.

There are obvious bounds onγ(Q): first by the convexity ofg and the bound
(7), the processMt = g(er (T−t)St ) is a Q-submartingale for eachQ ∈ Mr , so
γ(Q) = e−rT EQ[MT ] ≥ e−rT g(erT S0). Second we havee−rT g(ST ) < e−rT ST by
(7), soγ(Q) < S0. Thus

I ′r ⊂ Ir ⊂
[
e−rT g(erT S0),S0

)
. (9)

Our main theorem is as follows:

Theorem 2.Assume that the Ĺevy measure F of the Lévy process X under P has
the following properties:

(i) F ((−∞, a]) > 0 for all a ∈ IR.
(ii) F has no atom and satisfies

∫
[−1,0) |x|F (dx) =

∫
(0,1] xF(dx) = ∞.

ThenMr is not empty, Ir is the full interval
(
e−rT g(erT S0),S0

)
and I′r is

dense in this interval.

Remark 3. It can be shown that under the assumptions considered aboveI ′r
as well is the full interval. This will be proved in a forthcoming paper, where
various assumptions will be discussed.

Remark 4. The above assumptions onF imply that the processX has both
positive and negative jumps, and indeed negative jumps of arbitrary large size;
it also implies that it has infinitely many jumps, and even infinite variation, over
every non void time interval. In fact we can replace (ii) by a weaker property,
more complicated to state, but which proves to be more natural in the proof. For
this, we need the following notation, forz > 0:

δ(z) =
∫

(−∞,−z)
(1− ex)F (dx), δ′(z) =

∫
(z,∞)

(1− e−x)F (dx). (10)

These are two non-increasing right-continuous functions with limit 0 at +∞, and
(ii) above may be replaced by:

(ii’) For any A∈ IR there are two sequences(εn), (ε′n) decreasing to0 such that
δ(εn)− δ′(ε′n) → A.
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Remark 5. The assumptions of Theorem 2 are obviously satisfied by all nonnor-
mal stable processes. More interestingly for our concern, it is shown in Eberlein
and Keller (1995), that the centered symmetric hyperbolic distributions fit finan-
cial data quite well, and in order to get a good model for stock prices one can
chooseX as a hyperbolic Ĺevy motion plus a drift: that is to sayX is given
by (4) with an arbitrary driftb and a Ĺevy measureFζ,δ depending on a shape
parameterζ > 0 and a scale parameterδ > 0. This Ĺevy measure admits a
density w.r.t. Lebesgue measure given by

fζ,δ(x) =
e−|x|ζ/δ

|x| +
1

π2|x|
∫ ∞

0

exp
(
−|x|√2y + (ζ/δ)2

)
y(J 2

1 (δ
√

2y) + Y2
1 (δ

√
2y))

dy,

whereJ1 andY1 are the Bessel functions of the first and second kind. By formulae
9.1.7,9 and 9.2.1,2 in Abramowitz and Stegun (1968), the denominator of the
integrand above is asymptotically equivalent to a constant asy → 0 and to
y−1/2 as y → ∞, hencefζ,δ(x) behaves like 1/x2 at the origin: therefore all
assumptions of Theorem 2 are satisfied.
The density of the infinitely divisible distribution on which the hyperbolic Lévy
motion is based, is in the centered symmetric case given by

hypζ,δ(x) =
1

2δK1(ζ)
exp

(
−ζ
√

1 + (
x
δ

)2

)
,

whereK1 denotes the modified Bessel function of the third kind with index 1.
Eberlein and Keller (1995) contains more analytical details on this process as
well as an explicit option pricing formula.

3. Proof of Proposition 1

1) Set S′t = e−rt St , so that S′t = S0eX′
t with X ′

t = Xt − rt . ThenX ′ is
again a Ĺevy process underP, with the same Ĺevy measureF and drift b − r .
Hence, up to replacingb by b − r we can and will assume thatr = 0.

2) Suppose now thatM0 /= ∅ and letQ ∈ M0. Girsanov’s Theorem (Jacod and
Shiryaev (1987), III.3.24) shows thatX is aQ-semimartingale with characteristics
(B, 0, ν) given by

Bt = bt +
∫ t

0 ds
∫
ϕ(x)(Y(s, x)− 1)F (dx)

ν(dt, dx) = Y(t , x)dtF(dx)

 (11)

whereY = Y(ω, s, x) is a positive predictable function. The Hellinger process
h(P,Q) of order 1/2 betweenP and Q has a version given by (cf. Jacod and
Shiryaev (1987), IV.3.28):

ht (P,Q) =
1
2

∫ t

0
ds
∫ (√

Y(s, x)− 1
)2

F (dx) <∞ (P+Q)− a.s. (12)
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so the integral in the first formula (11) makes sense, because
∫

(x2∧1)F (dx) <
∞ and |(Y−1)ϕ| ≤ 2|ϕ||√Y−1|+(

√
Y−1)2. Observe also that (12) implies

that
∫ t

0 ds
∫

(x2 ∧ 1)Y(s, x)F (dx) <∞ (P+Q) − a.s., as it should be, since
Y ≤ 4 + 3(

√
Y − 1)21{Y>4}. Further, if we write by Ito’s formula

eXt = 1 +
∫ t

0
eXs−dXs +

∫ t

0

∫
eXs− (ex − 1− x)µ(ds, dx)

and expressdXs in the first integral in terms of the canonical representation with
respect toQ

Xt = Bt +
∫ t

0

∫
ϕ(x)(µ− ν)(ds, dx) +

∫ t

0

∫
(x − ϕ(x))µ(ds, dx),

theneXt is the sum of a local martingale underQ, plus the following process of
locally bounded variation:

Dt =
∫ t

0
eXs−dBs +

∫ t

0

∫
eXs− (ex − 1− ϕ(x))µ(ds, dx).

Then Dt is also aQ-local martingale iff its Q-compensator is well-defined and
equal to 0 (see Jacod and Shiryaev (1987), Chapter II, fore more details). Ob-
serving that theQ-compensator ofDt is of the same form, withµ replaced by
ν, we see that eXt , hence St = S0eXt as well, is a local martingale underQ
iff we haveQ - a.s. for allt ≥ 0:∫ t

0 ds
∫
{x>1} Y(s, x)(ex − 1)F (dx) < ∞

bt +
∫ t

0 ds
∫

(Y(s, x)(ex − 1)− ϕ(x))F (dx) = 0.

 (13)

Observe that (12) and the first property of (13) imply that the second integral in
(13) exists.

Now, putting together (12) and (13), there clearly exists (ω, s) such that
y(x) = Y(ω, s, x) satisfies (5): henceY0 /= ∅.

3) Conversely assume thaty ∈ Y0. Exactly as above, the measureF ′ defined
by (6) integratesx2 ∧ 1 and (y − 1)ϕ is F -integrable and the first formula (6)
makes sense. Thus there is a measureQ under whichX is a Lévy process with
drift b′ and Ĺevy measureF ′. FurtherQ is locally equivalent toP in virtue of
Theorem IV.4.39 of Jacod and Shiryaev (1987) (in which (ii) is in fact implied
by (v), by the argument above).

Further we have (13) withY(ω, s, x) = y(x), so S is a Q-local martingale.
If we prove thatS is in fact aQ-martingale, we will haveQ ∈ M′

r , and the
theorem will be proved.

SinceS is a nonnegativeQ-local martingale, by Fatou’s Lemma it is also a
Q-supermartingale and it remains to prove thatEQ[eXt ] = 1 for all t . By (5)
and (6) we have

∫
{x>1} exF ′(dx) < ∞. Thus by classical results on infinitely

divisible distributions the variableeXt is integrable and
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EQ[eλXt ] = exp

[
t

(
λb′ +

∫
(eλx − 1− λϕ(x))F ′(dx)

)]
is well-defined for allλ ∈ IC with 0≤ Re(λ) ≤ 1. Taking (6) and the last property
in (5) (with r = 0) into account yields forλ as above:

EQ[eλXt ] = exp

[
t
∫

y(x)(eλx − 1− λ(ex − 1))F (dx)

]
. (14)

Applying this withλ = 1 gives the result.

4. Proof of Theorem 2

1) We will first prove that the setI ′r is dense in the interval defined in (9), under
the assumptions (i) and (ii’) (see Remark 4).

Introduce the functions

f (x) =

{
1 if x < 0

e−x if x ≥ 0,
k(x) = f (x)(ex − 1)− ϕ(x).

k is bounded and behaves likex2/2 near 0, so that α =
∫

k(x)F (dx) is
well-defined. Fixβ > 0. Set A = β − b + r − α and consider the double
sequence (εn, ε

′
n) associated by (ii’) withA. Let vn denote a sequence of positive

numbers which will be fixed later, and setBn = [−n,−εn) ∪ (ε′n,∞) and

yn(x) = f (x)

(
vn1(−∞,−n)(x) +

1
n

1Bn (x) + 1[−εn,ε′n ] (x)

)
.

The first condition in (5) is obviously met byyn, and the second will be iff

b − r − vnδ(n)− 1
n (δ(εn)− δ(n))− ∫[−n,−εn) ϕ(x)F (dx)

+
∫

[−εn,ε′n ] k(x)F (dx) + 1
n δ
′(ε′n)− ∫(ε′n,∞) ϕ(x)F (dx) = 0,

which amounts to saying that

vnδ(n) = b − r + α +
n−1

n

(
δ(εn)−δ′(ε′n)

)
+

δ(n)
n

. (15)

The right-hand side of (15) converges tob − r + α + A = β > 0, so it is
positive for n large enough. By (i) we also haveδ(n) > 0, hence (15) defines
the numbervn > 0. Thenyn belongs toYr , so M′

r /= ∅, and we denote byQn

the measure inM′
r associated with it by Proposition 1.

Observing thatδ(n)/F ((−∞,−n)) → 1, we deduce fromvnδ(n) → β that
vnF ((−∞,−n)) → β as well.

Now we set X ′n
t =

∑
s≤t ∆Xs1{∆Xs<−n} and X ′′n = X−X ′n, which are

two independent Ĺevy processes underQn. Set U ′
n = eX′n

T and U ′′
n = eX′′n

T , so
that ST = S0U ′

nU ′′
n . On the one hand, underQn the processX ′n is a compound

Poisson process with Lévy measure F ′
n(dx) = vnF (dx)1(−∞,−n)(x). Therefore
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we have either X ′n
T < −n and U ′

n < exp(−n), or X ′n
T =0 and U ′

n =1.
Further Qn[U ′

n = 1] = exp(−TvnF ((−∞,−n))). Summarizing these results,
we get:

0 < U ′
n ≤ 1, Qn(U ′

n = 1)→ e−βT , Qn(U ′
n < e−n) → 1−e−βT . (16)

On the other hand, for anyλ ∈ IC with 0≤ Re(λ) ≤ 1, we have by (14) (where
Xt has to be replaced byXt − rt again) and with gλ(x) = eλx − 1− λ(ex − 1):

EQn [eλ(XT−rT )] =

exp
[
T
∫
gλ(x)f (x)

(
vn1(−∞,−n)(x) + 1

n 1[−n,−εn)∪(ε′n,∞)(x) + 1[−εn,ε′n ] (x)
)

F (dx)
]
.

Since EQn[e
λX′n

T ] = exp
[
T
∫

(eλx − 1)vn1(−∞,−n)(x)F (dx)
]

the independence
betweenX ′n andX ′′n yields

EQn [eλX′′n
T ] = eT(λvnδ(n)+an(λ)+rλ), (17)

where an(λ) =
∫
gλ(x)yn(x)1[−n,∞)(x)F (dx).

The functiongλ is continuous, equivalent tox2(λ2−λ)/2 near 0, bounded
near−∞, and smaller thanCex near +∞. On the other handyn(x) → 0 for all
x /= 0 and yn(x)1[−n,∞)(x) ≤ 1(−∞,0](x)+e−x1(0,∞)(x). Therefore an(λ) → 0
as n → ∞. Thus (17) and vnδ(n) → β imply that EQn [eλX′′n

T ] → eλT(β+r ).
This with λ = 1 + iu whereu ∈ IR yields

EQn [U ′′
n eiuX′′n

T ] → eT(β+r )(1+iu).

Note that the left side is
∫

eiuxdνn(x) where, withµn denoting the law of
X ′′n

T underQn, dνn(x) = exdµn(x) and supn νn(IR) < ∞ by (17) and the
arguments following it. Therefore we get

EQn

[
U ′′

n f
(
X ′′n

T

)] → eT(β+r )f (T(β + r ))

for every bounded continuous functionf and even uniformly inf within the
class of functions satisfying 0≤ f ≤ C0 and |f (x) − f (x′)| ≤ C |x − x′|.
In particular the family of functionsfz(x) = e−xg(zS0ex) for z ∈ [0, 1] is in this
class withC0 = S0 andC = 1 + S0 by (7), and we deduce that

EQn

[
g(S0U ′

nU ′′
n )|U ′

n = z
]

= EQn

[
U ′′

n fz(X ′′n
T )
] → g(zS0eT(β+r ))

uniformly in z ∈ (0, 1]. Now we have γ(Qn) = e−rT EQn

[
g(S0U ′

nU ′′
n )
]
, so the

above fact and (16) show that

γ(Qn) → G(β) := e−T(β+r )g(S0eT(β+r )).

In other words, the closure ofI ′r containsG(β) for everyβ > 0. But G is a
continuous function onIR+, with limit e−rT g(erT S0) at 0 and limit S0 at∞
by (7): thusI ′r is dense in the interval [e−rT g(erT S0),S0].

2) Next we observe that the mapQ  γ(Q) is linear, while the setMr is a
convex set of probability measures, so the setIr is necessarily an interval. In
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view of (9) and of the previous step, it remains to show that the left endpoint
e−rT g(erT S0) does not belong toIr .

Suppose thate−rT g(erT S0) = γ(Q) for some Q ∈ Mr . This means that
if g′(x) = g(erT x) and U = e−rT ST , then EQ[g′(U )] = g′(EQ[U ]). Hence the
convex functiong′ should be linear on the interval (a, a′), wherea and a′ are
the left and right endpoints of the support of the random variableU . Now, the
Lévy measureF charges bothIR+ and IR−, hence the support ofXT under P
extends from−∞ to +∞, and the support ofU = S0 e−rT +XT extends from 0 to
+∞ underP. SinceQ is equivalent toP, the same holds forQ, i.e. a = 0 and
a′ = ∞. That is,g′ andg must be linear onIR+, which contradicts (7).

5. Conclusions

The purely discontinuous processes studied in this paper include processes which
on the level of the microstructure allow more realistic modeling of stock prices
than the usual diffusions. Our result shows that for these incomplete models the
no arbitrage approach alone does not suffice to value contingent claims. The
class of equivalent martingale measures, which provides the candidates for risk
neutral valuation, is by far too large. Additional optimality criteria or preference
assumptions have to be imposed.

Various attempts have been made to choose a particular probability. Föllmer
and Sondermann (1986) emphasize the hedging aspect and look for strategies
which minimize the remaining risk in a sequential sense. Given the initial (his-
torical) probability measure it is natural to look for “closest” elements in the set
of martingale measures. Föllmer and Schweizer (1990) study a minimal martin-
gale measure in the sense that it minimizes relative entropy. From this an optimal
hedging strategy is derived. Variance-optimality is another approach. This means
to choose the martingale measure whose density is minimized in theL 2-sense.
We refer to Schweizer (1996). Also the Esscher transform used by Eberlein and
Keller (1995) to derive explicit option values seems to be a natural choice. Our
main result underlines the importance of research in this direction.
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