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Abstract. We establish the equivalence of competitive industry equilibrium with
a central planner’s decision problem under uncertainty, when investment is irre-
versible. The existence of industry equilibrium is derived, and it is shown that
myopic behavior on the part of small agents is harmless, in the sense that it
leads to the same decisions as full rational expectations do. Our model is set in
continuous time and allows for very general forms of randomness. The methods
are based on the probabilistic approach to singular stochastic control theory and
its connections with optimal stopping problems.
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1. Introduction

The purpose of this paper is to extend, and to provide a solid theoretical founda-
tion for, an important part of the theory of irreversible investment. Our methods
are based on the probabilistic approach to singular stochastic control theory and
its connections with optimal stopping problems.
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The theory of irreversible investment under uncertainty has been developed
extensively in recent years. The approach has ranged from models of a single
investor who faces an exogenous price process, to models of partial equilibrium
where price is endogenous. Important contributions to the theory include Arrow
(1968) who studied the deterministic case (Dixit 1989a,b; Pindyck 1988, 1991;
Leahy 1993; Bertola 1989; Kobila 1991, 1993a, b; Bertola and Caballero 1994).
The various approaches and applications are excellently reviewed and extended
in a recent book by Dixit and Pindyck (1994).

In this paper we focus on a partial equilibrium model of a competitive in-
dustry. Such models have been studiedinter alia by Leahy (1993). In Leahy’s
model the industry is composed of a continuum of infinitesimally small firms
which incur irretrievable costs as they enter or exit. The market-clearing output
price is determined by an inverse demand curve which is driven by a diffusion
process. It is argued that each firm can be myopic as regards future investment
in the industry – i.e., can assume that there will be no such investment at all –
and yet its decisions will be optimal. A similar result was established by Arrow
(1968) in a deterministic setting. Leahy’s argument did not rely on an “invisible
hand” result – i.e. the equivalence of the optimal solution to a social planning
problem and the outcome of a decentralized competitive equilibrium – which has
been a standard device for characterizing competitive industry equilibria since
Lucas and Prescott (1971).

The myopic investor is a strange economic construct in that he models the
economy at large correctly, but entertains irrational beliefs about his own sector.
Yet, the myopia result is very important since it essentially exogenizes the price
process: The price triggers for investment, which are calculated by the myopic
investor who takes aggregate supply and demand as exogenous, are still valid
for fully rational investors who predict future evolution of supply correctly (see
Baldursson (1995) for examples of calculations of competitive and oligopolistic
equilibria which exploit this device).

From the viewpoint of applied probability, the investment problem of the
small investor is a typical optimal stopping problem. Such problems and their
connections to singular stochastic control problems have been studied by analytic
methods, at least since Bather and Chernoff (1966) and Beneš et al. (1980). More
recent contributions are Karatzas (1983) and Chow et al. (1985). In a series of
papers (Karatzas and Shreve 1984, 1985, 1986; Karatzas 1985; Baldursson 1987;
El Karoui and Karatzas 1988, 1991) various facets of these problems were studied
with probabilistic methods. Although the theory in these papers cannot be brought
to bear directly in the setting of models of irreversible investment, the methods
can be, and it is one of the main contributions of this paper to do so.

The basic structure of our argument is as follows: First, in Sect. 2, we intro-
duce the small investor’s problem and establish some basic identities. Then, in
Sect. 3, we use the theory of optimal stopping in continuous time to establish the
existence of a solution to the myopic investor’s problem.

In Sect. 4 we show that there is a duality between a myopic investor’s problem
and an appropriate “social planner’s” problem whose payoff/cost structure is
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obtained by integrating the payoff/cost functions of the small investor’s problem.
An explicit characterization of the socially optimal investment process is given
in terms of the optimal myopic investment strategy.

In Sect. 5 we show that when the small investor expects the socially optimal
investment process to prevail, the myopic investment strategy is also optimal
for him. The optimal time of entry happens to coincide with an increase in the
social optimum. Furthermore, there are no pure profits to be made under the
social optimum, so the small investor is indifferent between entering the industry
or staying out. Therefore, the social optimum is also a rational expectations
equilibrium.

An extension to the case where capital stock is subject to depreciation or
productivity shocks is provided in Sect. 6. Section 7 concludes.

The theory is developed with full mathematical rigor in continuous time under
minimal regularity conditions on the payoff/cost structure. There is no assumption
of a Markovian “demand shock”, which is the usual assumption in the literature
on irreversible investment. The “demand shock” may be infinite-dimensional and
depend in an arbitrary way on the past; it is not allowed to anticipate.

2. The small investor

Consider a small investor who has the option to invest in an industry. The industry
produces a perishable good under decreasing returns to scale with capital as the
only production factor. We assume that the investor takes prices as given and
maximizes expected profits, given a forecast for the future evolution of prices,
or equivalently given an inverse demand function and a forecast of aggregate1

demand and industry supply.
To be more specific, let 0< T < ∞ be a fixed time horizon, (Ω, I,P) a

complete probability space, and{It ; 0≤ t ≤ T} a family of σ-algebras which is
increasing int , It ⊆ Is ⊆ I for t ≤ s, right-continuous, and completed by the
null sets ofP. Theσ-algebraIt represents the information available to agents at
time t .

The industry faces an inverse demand curve which is given by the random
field, p(ω, t , q) : Ω× [0,T]× [0,∞) → [0,∞), wheret is the time variable, and
the random elementω stands for the state of nature (for example, the path of
an aggregate “demand shock”), andq is the demand corresponding to pricep.
Note that the Markovian “demand shock”, which is usually assumed to be the
source of randomness in models of irreversible investment, is here replaced by
the random elementω, which may be infinite-dimensional and may depend on
the entire history of events up to timet .

Assume that the installed capital stock must be fully utilized at each moment,
and select units in such a way that one unit of capital produces one unit of output.

1 Quantities pertaining to the economy at large are referred to as “aggregate”, as in “aggregate
demand shock”. Those pertaining to the industry are tagged as such, for example “industry
capital stock”.
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Thenp(ω, t , y) is the market-clearing price wheny units of capital are installed.
We impose the following technical assumptions regarding the inverse demand
curve:

p(ω, t , y) is continuous in (t , y) a.s., progressively measurable (2.1)

with respect to{It}, and decreasing iny, ∀t ∈ [0,T] a.s.2

Furthermore,E

[∫ T

0
|p(t , y)|dt

]
<∞ , ∀ 0≤ y <∞ .

We shall assume there is a continuum of infinitesimally small investors. Each
has the option to invest in the industry at some momentt ∈ [0,T). The options
have identical terms: the variable production costs of investors are the same at
each instant.3 They may, however, depend on the installed capital stock and be
subject to random shocks. Denote the per unit variable costs, wheny units of
capital have been installed, byc(ω, t , y) : Ω × [0,T] × [0,∞) → [0,∞). We
impose the following technical assumption regarding the variable cost curve:

c(ω, t , y) is continuous in (t , y) a.s., progressively measurable (2.2)

with respect to{It}, and increasing iny, ∀ t ∈ [0,T] a.s.

Furthermore,E

[∫ T

0
|c(t , y)|dt

]
<∞, ∀ 0≤ y <∞ .

Clearly, the flow ofoperating surplusπ
4≡ p − c is decreasing iny and inherits

the continuity, measurability and integrability properties ofp andc.
The cost of exercising the investment option at timet is γ(ω, t) : Ω×[0,T] →

[0,∞). We assume:

γ(ω, t) is non-negative, continuous int , P-a.s. and adapted to{It} (2.3)

(i.e. γ(t) is measurable w.r.t.{It} for eacht ∈ [0,T]).

Furthermore,E

[
sup

0≤t≤T
γ(t)

]
<∞ .

Finally, g(ω, y) : Ω× [0,∞) → [0,∞) denotes the scrap value of the investment
at the time T; we assume that

g(ω, y) is continuous and decreasing iny a.s. and (2.4)

IT ⊗Borel ([0,∞))–measurable;E[|g(y)|] <∞, ∀ 0≤ y <∞.

The conditions (2.1)–(2.4) are assumed to hold throughout the paper.

2 Progressive measurability ofp is here the property that the mapping (ω, s, y) 7→ p(ω, s, y) :
Ω × [0, t ] × [0,∞) → [0,∞) be measurable w.r.t. the productσ-algebraIt ⊗ Borel ([0, t ]) ⊗
Borel ([0,∞)), for everyt ∈ [0,∞).
3 It is easy to modify the model to allow for different variable costs, but this involves some extra
notation which would obscure our basic argument.
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The small investor’s problem is to choose an investment strategy, or entry
time, τ , to maximize his profits. Such a strategy is simply a mappingτ : Ω →
[0,T] which is such that as time progresses the decision to go ahead with or
to delay investment, say at timet ∈ [0,T), may be made based on information
collected up to timet , but foresight regarding future random shocks is ruled out:
{τ > t} ∈ It . Such a mapping is called astopping timein the terminology of
stochastic processes. In our context,τ = T means that investment has not been
made during [0,T). Denote the collection of stopping times with values in [0,T]
by S0,T .

Let A denote the class of all{It}-adapted stochastic processesξ, with
nondecreasing, left-continuous sample paths and satisfyingξ(0) = 0 a.s.

Suppose that a small investor expects cumulative industry investment, beyond
the initial capital stockY0 = y ≥ 0, to follow the processξ ∈ A. Assume that
capital does not depreciate and that there are no productivity changes, so that
installed capital (=output) is simply given byYt = y + ξt . We shall indicate in
Sect. 6 below, how depreciation and productivity changes affect the basic results
derived for the present simpler case.

Under the above asumptions, the small investor’s expected payoff by using
the entry ruleτ ∈ S0,T is

ν(y; τ |ξ)
4
= E

[∫ T

t
π(t ,Yt )dt + (g(YT )− γ(τ ))1{τ<T}

]
, y > 0, (2.5)

where we omit the argument corresponding to the random element. Thevalue of
the option to enteris

ν∗(y|ξ)
4
= sup
τ∈S0,T

ν(y; τ |ξ) . (2.6)

We callmyopican investor who assumes that there will be no further investment
in the industry, i.e. thatξ ≡ 0 (and thusY ≡ y). The corresponding payoff

m(y; τ )
4
= ν(y; τ |0) = E

[∫ T

τ

π(t , y)dt + (g(y)− γ(τ ))1{τ<T}

]
(2.7)

is well-defined and finite for everyτ ∈ S0,T , and we denote the (apparent) option
value of the investment opportunity under myopia by

m∗(y)
4
= sup
τ∈S0,T

m(y; τ ) ≡ v∗(y|0) . (2.7)′

Note that the correct probability measure is used – the myopia is limited to future
investment in the industry the investor may want to invest in.

It is convenient to define theexpected opportunity costof using a particular
investment strategy:

ρ(y; τ |ξ) = E

[∫ τ

0
π(t ,Yt )dt + γ(τ )1{τ<T} + g(YT )1{τ=T}

]
, y < 0 . (2.8)

Let
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ρ∗(y|ξ)
4
= inf
τ∈S0,T

ρ(y; τ |ξ) , (2.8)′

and also denote the corresponding entities associated with themyopic investor
by

r (y; τ )
4
= ρ(y; τ |0) = E

[∫ τ

0
π(t , y)dt + γ(τ )1{τ<T} + g(y)1{τ=T}

]
r ∗(y)

4
= inf
τ∈S0,T

r (y; τ ) ≡ ρ∗(y|0) .
(2.9)

Note the identities

ρ(y; T|ξ) ≡ ν(y; 0|ξ) + E[γ(0)] ≡ ρ(y; τ |ξ) + ν(y; τ |ξ),

r (y; T) ≡ m(y; T) + E[γ(0)] ≡ r (y; τ ) + m(y; τ ) ,
(2.10)

which are valid for anyτ ∈ S0,T , and hence also

ρ(y; T|ξ) ≡ ν(y; 0|ξ) + E[γ(0)] ≡ ρ∗(y; |ξ) + ν∗(y; |ξ),

r (y; T) ≡ m(y; T) + E[γ(0)] ≡ r ∗(y; τ ) + m∗(y) .
(2.11)

Clearly, maximization ofν and m is equivalent to minimization ofρ and r ,
respectively. Note that, since for anyτ ∈ S0,T andξ ∈ A we have

ν(y; τ |ξ) ≤ m(y; τ ) <∞
ρ(y; τ |ξ) ≤ r (y; τ ) <∞ ,

(2.12)

the investment payoff and risk,ν(y; τ |ξ) andρ(v; τ |ξ), respectively, are always
well-defined, for an arbitraryξ ∈ A, but their value may be minus infinity.

3. The myopic solution

In this section we shall show that there exists a solution to the myopic investor’s
problem, and we shall characterize this solution, under minimal regularity con-
ditions. We rely on the theory of optimal stopping in continuous time (Shiryayev
1978; El Karoui 1981; Karatzas 1993).

For each fixedy > 0 let

Ry(t)
4
=
∫ t

0
π(s, y)ds + γ(t)1{t<T} + g(y)1{t=T} , t ∈ [0,T] (3.1)

and note thatr (y; τ ) = E[Ry(τ )], τ ∈ S0,T . Recall thatπ(ω, t , y) is a.s. continuous

in (t , y), so that the random fieldπL(y)
4
= min

0≤t≤T
π(t , y) is well-defined. We shall

make the regularity assumption

E[πL(y)] > −∞ , y > 0 . (3.2)

We also assume
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γ(T) ≥ g(0) , a.s. (3.3)

While (3.2) is a genuine regularity condition which can probably be relaxed
with further effort, a violation of (3.3) would imply that no optimal investment
time for the myopic investor need exist. This possibility arises whenγ is de-
creasing andπ is non-negative or small in absolute value, so at each time strictly
beforeT profits can be further increased by waiting a little longer (consider the
caseπ ≡ 0, γ(t) = T/(t + T), g ≡ 1).

Recall from (2.4) thatg(ω, y) is decreasing iny, so (3.3) impliesγ(T) ≥ g(y)
a.s. for eachy > 0.

Further, note thatRy(ω, t) is continuous int on [0,T), while by (3.3):

Ry(T)− lim
t↑T

Ry(t) = g(y)− γ(T) ≤ 0 a.s. (3.4)

For eachy > 0, let

Zy(t)
4
= essinf
τ∈St,T

E[Ry(τ )|It ] , 0≤ t ≤ T , (3.5)

whereSt,T
4
={τ ∈ S0,T ; τ ≥ t a.s.}. Given that entry has not taken place prior

to time t , and conditioning on information collected up to that instant,Zy(t) is
the lowest (conditional) expected cost one can incur in the future.

As shown in El Karoui (1981) and Karatzas (1993) (Theorems 2.7 and 3.3
in Chapter 3), the conditions (3.2)–(3.4) and the continuity oft 7→ Ry(γ, t) on
[0,T) are sufficient to establish the following proposition, phrased in the context
of our particular problem.

Proposition 1: Assume that (2.1)–(2.4) and (3.2)–(3.3) hold. Then for any given
y > 0, there exists a submartingale Zy

0 (·), with sample paths which are almost
surely right-continuous on[0,T) and admit left-hand limits everywhere on(0,T],
and is such that

Zy
0 (t) = Zy(t), a.s. for all t ∈ [0,T] . (3.6)

Furthermore, Zy
0 (t) ≤ Ry(t) a.s. for all t ∈ [0,T], and the stopping time

σ(y)
4
= inf{t ∈ [0,T); Zy

0 (t) = Ry(t)} ∧ T (3.7)

is an optimal investment strategy for the myopic investor:

m(y;σ(y)) = m∗(y) . (3.8)

The supermartingale−Zy
0 is usually referred to as theSnell-envelopeof −Ry,

after Snell (1952).
It is intuitively clear that the higher the initial capital stock – and, therefore,

the lower the initial operating surplus – the longer one should wait to enter. This
turns out to be a useful property, so we state and prove it formally.
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Lemma 1: Assume that (2.1)–(2.4) and (3.2)–(3.3) hold. Then the mapping y7→
σ(y) is increasing a.s.

Proof. Define, for eacht ∈ [0,T] and y > 0, by analogy with (2.8), (2.8)′:

u(t , y)
4
= essinf
τ∈St,T

E

[∫ τ

t
π(s, y)ds + γ(τ )1{τ<T} + g(y)1{τ=T}

∣∣∣It

]
, (3.9)

so thatu(0, y) = r ∗(y). Note that fort ∈ [0,T] and y > 0 we have

Zy
0 (t)− Ry(t) = u(t , y)− γ(t)1{t<T} − g(y)1{t=T} , a.s. (3.9)′

Therefore,u(t , y) ≤ γ(t) a.s., fort ∈ [0,T), and

σ(y) = inf{t ∈ [0,T); u(t , y) = γ(t)} ∧ T , a.s. (3.10)

Also note thatu(t , y) is decreasing iny a.s., sinceπ(t , y) and g(y) are. The
conclusion of the lemma follows.

4. The social planning problem

Let us recall the definition ofA, the class of cumulative investment processes
the small investors expect to encounter. We take now the point of view that these
processes correspond to admissible “industry investment policies” available to a
fictitious “social planner”. The expected social surplus corresponding to such an
industry investment policy is given by

J (y; ξ)
4
= E

[∫ T

0
Π(t ,Yt )dt −

∫
[0,T)

γ(t)dξt + G(YT )

]
, (4.1)

whereYt = y +ξt is the corresponding industry capital stock at timet , and where
we have set

U (ω, t , y)
4
=
∫ y

1
p(ω, t , x)dx (flow of consumers’ surplus)

C(ω, t , y)
4
=
∫ y

1
c(ω, t , x)dx (flow of total variable production costs) (4.2)

Π
4≡U − C (flow of social “operating surplus”)

G(ω, y)
4
=
∫ y

1
g(ω, x)dx (scrap value of industry capital stock).

Note the concavity of the random fieldsU , Π and G in the spatial variabley.
Clearly, the expected benefit of not investing at all is given by

I (y)
4
= J (y; 0) = E

[∫ T

0
Π(t , y)dt + G(y)

]
. (4.3)
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The purpose of this fictitious “social planner” is to choose the (irreversible indus-
try investment) policyξ, in such a way as to maximize expected social surplus.
Thus, he faces a stochastic control problem of the monotone follower type, with
value function given by

V (y)
4
= sup
ξ∈A

J (y; ξ) . (4.3)′

In order to ensure the validity of the definition (4.3)′, we shall assume:

sup
y>0

Π(t , y)+ and sup
y≥0

G(y)+ are integrable onΩ × [0,T]

andΩ, respectively
(4.4)

In this section we shall study the relation of this “social planner’s” optimization
problem (4.3)′ with the small investor’s optimal stopping problem of Sect. 2. The
approach will be based on the methodology of El Karoui and Karatzas (1991).

For any givenξ ∈ A, we consider its right-continuous inverse

τ ξ(x)
4
= inf{t ∈ [0,T); ξt > x} ∧ T , x ≥ 0 . (4.5)

Note thatτ ξ(x) ∈ S0,T for everyx ≥ 0, and that

τ ξ(x) < t ⇔ ξt > x, for 0≤ t ≤ T . (4.6)

In particular, (4.6) leads, via a monotone class argument, to the change-of-
variable formula∫ ∞

0
h(τ ξ(x))1{τξ(x)<T}dx =

∫
[0,T)

h(t)dξt a.s. (4.7)

for any Borel-measurable functionh : [0,T] → [0,∞). Observe also from (4.6)
that we can reproduceξ as the left-continuous inverse ofτ ξ(·):

ξt = sup{x ∈ [0,∞); τ ξ(x) < t} 0≤ t ≤ T . (4.6)′

Lemma 2: Assume that (2.1)–(2.4), (3.2)–(3.3) and (4.4) hold. For any given
y > 0 andξ ∈ A, we have

J (y; ξ)− I (y) =
∫ ∞

y
m(x; τ ξ(x − y))dx , (4.8)

V (y)− I (y) ≤
∫ ∞

y
m∗(x)dx . (4.9)

Proof: We write τ for τ ξ in this proof. From (4.7) we get∫ ∞

y
γ(τ (x − y))1{τ (x−y)<T}dx =

∫
[0,T)

γ(t)dξt a.s. (4.10)

Similarly, from (4.6) and the Fubini theorem we obtain:
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y

∫ T

τ (x−y)
π(t , x)dt dx≡

∫ ∞

y

∫ T

0
π(t , x)1{τ (x−y)<t}dt dx

≡
∫ T

0

∫ ∞

y
π(t , x)1{ξt>x−y}dx dt

≡
∫ T

0
(Π(t , y + ξt )−Π(t , y)) dt

≡
∫ T

0
(Π(t ,Yt )−Π(t , y)) dt . (4.11)

In the same way we obtain,∫ ∞

y
g(x)1{τ (x−y)<T}dx = G(y + ξT )−G(y) = G(YT )−G(y) . (4.12)

Therefore, by (4.10)–(4.12),∫ ∞

y
E

[∫ T

τ (x−y)
π(t , x)dt + (g(x)− γ(τ (x − y)))1{τ (x−y)<T}

]
dx

≡ E

[∫ T

0
Π(t ,Yt )dt −

∫
[0,T)

γ(t)dξt + G(YT )

]
− E

[∫ T

0
Π(t , y)dt + G(y)

]
≡ J (y; ξ)− I (y) .

(4.13)

Equation (4.8) now follows from (2.5) and the definition ofm(y; τ ). The in-
equality (4.9) is easily obtained, by first observing thatm(y; τ ) ≤ m∗(y), and
then taking the supremum overξ ∈ A.

Now, for any giveny > 0, consider the family of stopping times

τy(x)
4
= σ(x + y) , x ∈ [0,∞) , (4.14)

where{σ(z); z > 0} is the family of stopping times defined by (3.7) (see also
(3.10)). Letξ∗y (·) ∈ A be the left-continuous inverse ofτy(·), defined by analogy
with (4.6)′ as

ξ∗y (t)
4
= sup{x ∈ [0,∞); τy(x+) < t}
= sup{z ∈ [y,∞);σ(z+) < t} , 0≤ t ≤ T .

(4.15)

It may aid in the intuitive understanding of this last definition to think of the
continuum of small investors “lined up” to the right ofy indexed by the cor-
responding initial capital stockY0 = z ≥ y. At time t , the aggregate industrial
investmentξ∗y (t) is given by the location of the “marginal”, myopic investor who
is “last” to enter by timet , i.e., who is located furthest to the right of those who
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Fig. 1. With initial capital stockY0 = z the corresponding myopic investor would have entered by
time t . Thereforez ≤ ξ∗y (t), sinceξ∗y (t) is the largest such number

would have entered by timet , according to their myopic strategies (see Fig. 1).
We owe this interpretation to Professor Roy Radner.

We have from (4.3)′, (4.8), (3.8) and (4.9):

V (y)− I (y) ≥ J (y; ξ∗y )− I (y) =
∫ ∞

y
m(x; τy(x − y))dx

=
∫ ∞

y
m(x;σ(x))dx

=
∫ ∞

y
m∗(x)dx

≥ V (y)− I (y) .

(4.16)

We are led to the following result:

Theorem 1: Assume that (2.1)–(2.4), (3.2)–(3.3) and (4.4) hold. Then, for any
given y > 0, there exists an optimal investment processξ∗y (·) for the “social
planner’s” problem of (4.3)′, and it is given by (4.15). Furthermore, for all y> 0,

V (y) = I (y) +
∫ ∞

y
m∗(x)dx (4.17)

V ′(y) = r ∗(y) (4.18)

σ(y+) = inf{t ∈ [0,T); ξ∗y (t) > 0} ∧ T . (4.19)

Proof: Equation (4.17), and the optimality ofξ∗y (·) for the problem of (4.3)′,
follow directly from (4.16). The relation (4.18) comes readily from (4.17), (2.11)
and
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I ′(y) = E

[∫ T

0
π(t , y)dt + g(y)

]
= r (y; T) , (4.20)

which is easily verified by consideringI (y± ε)− I (y) for smallε > 0. Equation
(4.19) follows from the definition ofξ∗y (·) and (4.6).

5. Equilibrium

In the preceding section we established and exploited the duality between the
myopic investor’s problem and the social planning problem, to prove the exis-
tence of a socially optimal investment processξ∗y (·). We showed that the social
value of a marginal unit of capital equals the optimal expected opportunity cost
of a myopic investor (cf. relation (4.18)). We characterized the optimal cumula-
tive investmentξ∗y (t) for the “social planner” at timet , as the largest value of
initial investmentY0 = z ≥ y that would make a “myopic” small investor decide
to enter by timet (cf. (4.15)). We also came very close to showing that a myopic
investor atY0 = y should act exactly at the same time as the social planner does
(cf. relation (4.19)).

In this section we take a different approach, similar to that of Karatzas and
Shreve (1984), to establish that, when a small investor atY0 = y > 0 forecasts
the socially optimal investment processξ∗y (·) to prevail, the optimal time of entry
for him is the first timeξ∗y (t) > 0; and that this is, in fact, an optimal entry time
for a myopic investor as well. Furthermore, the value of the option to invest
in the industry is zero with this forecast (i.e. expectingξ∗y (·) as the investment
process), and hence the investor will be indifferent between entering and hold-
ing his capital in bonds. Therefore,ξ∗y (·) is a rational expectations equilibrium
investment process. We summarize these findings in the following theorem.

Theorem 2: Assume that (2.1)–(2.4), (3.2)–(3.3) and (4.4) hold. Then for any
given y> 0:

(i) We have

V ′(y) = r ∗(y) = ρ∗(y|ξ∗y ) . (5.1)

(ii) The entry time

τ∗y
4
= inf{t ∈ [0,T); ξ∗y (t) > 0} ∧ T (5.2)

is optimal both for a “myopic investor” (who forecasts thatξ ≡ 0 will prevail)
and for a “small investor” who forecasts that the “socially optimal” strategy
ξ ≡ ξ∗y (·) will prevail. In other words,ρ∗(y|ξ) = ρ(y, τ∗y |ξ) for both ξ ≡ 0 and
ξ ≡ ξ∗y (·).
(iii) If, in addition, there exists anε0 > 0 such thatν(y + ε0; T|ξ∗y ) > −∞, then

ν∗(y|ξ∗y ) = 0. (5.3)
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In other words, for a small investor who forecasts that the “socially optimal”
strategyξ ≡ ξ∗y (·) will prevail, the value of the option to enter the industry is
zero.

Note thatσ(y+) of Sect. 4 equalsτ∗y (recall (4.19) of Theorem 1). We prove
Theorem 2 in a series of Lemmata.

Lemma 3: Assume that (2.1)–(2.4), (3.2)–(3.3) and (4.4) hold. Then for any
given y> 0 andτ ∈ S0,T, we have

V ′(y) ≤ ρ(y; τ |ξ∗y ) ≤ r (y; τ ) . (5.4)

Proof: Take arbitraryy > ε > 0 and τ ∈ S0,T . Let ξ ≡ ξ∗y , Y ≡ y + ξ,
Y−ε ≡ y − ε + ξ and define

ηt =

{
ξ(t) ; 0≤ t ≤ τ

ξ(t) + ε ; τ < t ≤ T

}
. (5.5)

It is easily seen thatη ∈ A, and that the corresponding state processZ = y−ε+η
follows the path ofY−ε up to timeτ and then switches to the path of the process
Y . The performance associated with (y − ε, η) may be written as

J (y − ε; η) = E

[∫ T

0
Π(t ,Zt )dt −

∫
[0,T)

γ(t)dηt + G(ZT )

]
= E

[∫ τ

0
Π(t ,Y−ε

t )dt +
∫ T

τ

Π(t ,Yt )dt −
∫

[0,T)
γ(t)dξt − εγ(τ )1{τ<T}

+ G(YT )1{τ<T} + G(Y−ε
T )1{τ=T}

]
.

(5.6)

Comparing the expressions (4.1) and (5.6) we obtain

V (y)−V (y − ε) = J (y; ξ)− V (y − ε) ≤ J (y; ξ)− J (y − ε; η)

= E

[∫ τ

0
(Π(t ,Yt )−Π(t ,Y−ε

t ))dt + εγ(τ )1{τ<T}

+ (G(YT )−G(Y−ε
T ))1{τ=T}

]
(5.7)

≤ εE

[∫ τ

0
π(t , y − ε + ξt )dt + γ(τ )1{τ<T} + g(y − ε + ξT )1{τ=T}

]
= ερ(y − ε; τ |ξ)

≤ ε · E

[∫ τ

0
π(t , y − ε)dt + γ(τ )1{τ<T} + g(y − ε)1{τ=T}

]
= ε · r (y − ε; τ )

where we have used the concavity ofΠ(t , ·) and G(·) (or equivalently the de-
crease ofπ(t , ·) and g(·)). Now divide through byε, let ε ↓ 0, and use the
monotone convergence theorem to get the inequalities of (5.4). The second in-
equality follows easily from the monotonicity ofπ(t , ·) andg(·).
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Lemma 4: Assume that (2.1)–(2.4), (3.2)–(3.3) and (4.4) hold. Then, for any
given y> 0, we have

V ′(y) ≥ r (y; τ∗y ) = ρ(y; τ∗y |ξ∗y ) . (5.8)

Proof: Let ξ ≡ ξ∗y . In addition to the stopping timeτ∗y of (5.2) we introduce the
family of stopping times, defined for allε > 0,

τ ε
4
= inf{t ∈ [0,T); Yt ≥ y + ε} ∧ T

= inf{t ∈ [0,T); ξ(t) ≥ ε} ∧ T .
(5.9)

Observe thatτ ε ↓ τ∗ almost surely, asε ↓ 0. For every fixedε > 0 we create
the capital stock processZ ≡ y + ε + η, whereη ∈ A is the investment process

η(t)
4
=

{
0 ; 0 ≤ t ≤ τε

ξ(t)− ε ; τ ε < t ≤ T

}
. (5.10)

The reader will observe thatZ starts aty + ε, stays there until timeτε, and then
switches to the processY , which by then has exceededy + ε:

Zt =

{
y + ε ; 0≤ t ≤ τε

Yt ; τ ε < t ≤ T

}
. (5.11)

The performance (expected surplus) corresponding to this policy is given by

J (y + ε; η) = E

[∫ T

0
Π(t ,Zt )dt −

∫
[0,T)

γ(t)dη(t) + G(ZT )

]
(5.12)

= E

[∫ τε

0
Π(t , y + ε)dt +

∫ T

τε
Π(t ,Yt )dt − γ(τε)η(τ ε+)1{τε<T}

−
∫

(τε,T)
γ(t)dξ(t) + G(y + ε)1{τε=T} + G(YT )1{τε<T}

]
.

SinceJ (y; ξ) = Y(y)we have also

V (y) = E

[∫ τε

0
Π(t ,Yt )dt +

∫ T

τε
Π(t ,Yt )dt (5.13)

−
∫

[0,τε)
γ(t)dξ(t)− γ(τ ε)(ξ(τε+)− ξ(τε))1(τε<T) −

∫
(τε,T)

γ(t)dξ(t)

+G(YT )1{τε=T} + G(YT )1{τε<T}
]
,

and comparing (5.12) with (5.13) we obtain

V (y + ε)− V (y) ≥ J (y + ε; η)− V (y)

= E

[∫ τε

0
(Π(t , y + ε)−Π(t , y + ξ(t)))dt +

∫
[0,τε)

γ(t)dξ(t) (5.14)

+γ(τ ε){ε− ξ(τε)}1{τε<T} + (G(y + ε)−G(y + ξ(T)))1{τε=T}
]
.
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Now the concavity ofΠ(t , ·) yields

Π(t , y + ε)−Π(t , y + ξ(t)) ≥ (ε− ξ(t)) · π(t , y + ε) (5.15)

almost surely, and a similar expression obtains forG. In light of (5.15), the
inequality (5.14) becomes

V (y + ε)− V (y) ≥ J (y + ε; η)− V (y)

= E

[∫ τε

0
(ε− ξ(t)) · π(t , y + ε)dt +

∫
[0,τε)

γ(t)dξ(t) (5.16)

+ γ(τ ε)(ε− ξ(τε))1{τε<T} + (ε− ξ(T)) · g(y + ε)1{τε=T}

]
Interchanging a few terms, we write (5.16) as

V (y + ε)− V (y)
ε

≥ r (y; τ∗) +
6∑

j =1

Ij (ε) (5.17)

where

I1(ε) = E

[∫ τ∗

0
{π(t , y + ε)− π(t , y)}dt

]
,

I2(ε) = E

[∫ τε

τ∗
π(t , y + ε){1− (ξ(t)/ε)}dt

]
,

I3(ε) = E
[{g(y + ε)− g(y)}1{τ∗=T}

]
,

I4(ε) = E
[
g(y + ε){1− (ξ(T)/ε)}1{τ∗<τε=T}

]
,

I5(ε) = E
[
γ(τ ε)1{τε<T} − γ(τ∗)1{τ∗<T}

]
,

I6(ε) =
1
ε

E

[∫
(τ∗,τε)

γ(t)dξ(t)− γ(τε)(ξ(τε)− ξ(τ∗))

]
.

It is not hard to verify that lim
ε↓0

Ij (ε) = 0 for eachj = 1, . . . , 6; one uses the

continuity properties of the functionsπ(t , y), g(y) andγ(t), the regularity condi-
tions (2.1)–(2.4), the fact that{τ∗ < τ ε = T} ↓ /© asε ↓ 0, the definition ofτ ε

which entails 0≤ ξ(t) ≤ ε a.s. on{t < τ ε}, and the dominated and monotone
convergence theorems. Now we letε ↓ 0 in (5.17), to obtain the inequality of
(5.8); the equality in (5.8) is a consequence of the definition (5.2) ofτ∗y .

Lemma 5: Assume that (2.1)–(2.4), (3.2)–(3.3) and (4.4) hold, and that for every
y > 0, there existsε0 = ε0(y) > 0 such that

ν(y + ε0; T|ξ∗y ) > −∞ . (5.18)

Then
V ′(y) ≥ ρ(y; T|ξ∗y ) , for all y > 0 . (5.19)
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Proof: Let y > 0, pick ε0 = ε0(y) > 0 such that (5.18) holds and letε ∈ (0, ε0).
By (4.3)′, the optimality ofξ ≡ ξ∗y for the “social planner’s” problem, and the
concavity ofΠ(t , ·) andG(·), we have:

(V (y + ε)− V (y))/ε ≥ (J (y + ε; ξ)− J (y; ξ))/ε

≥ E

[∫ T

0
π(t , y + ε + ξ(t))dt + g(y + ε + ξ(T))

]
.

(5.20)

Observe that by the continuity and monotonicity ofπ(t , ·) andg(·) we have that,
asε ↓ 0,

π(t , y+ε0 + ξ(t)) ≤ π(t , y + ε + ξ(t)) ↑ π(t , y + ξ(t)) a.s. ∀ t ∈ [0,T]

g(y + ε0 + ξ(T)) ≤ g(y + ε + ξ(T)) ↑ g(y + ξ(T)) a.s. (5.21)

Now we letε ↓ 0 in (5.20) and use (5.21) and the monotone convergence theorem
to obtain the inequality (5.19).

Proof of Theorem 2:By Lemmata 3 and 4, we have

r (y; τ∗y ) = ρ(y; τ∗y |ξ∗y ) ≤ V ′(y) ≤ ρ(y; τ |ξ∗y ) ≤ r (y; τ ) ; ∀ y > 0 , τ ∈ S0,T .
(5.22)

Read (5.22) withτ = τ∗y , and recall (4.18), to obtain (5.1) and part (ii) of
Theorem 2.

Under the added assumption (5.18), Lemma 3 (withτ = T) and Lemma 5
yield

V ′(y) = ρ(y; T|ξ∗y ) . (5.23)

Hence, by (5.23), (5.1) and (2.11),

ν∗(y|ξ∗y ) = ρ(y; T|ξ∗y )− ρ∗(y|ξ∗y ) ≡ 0 . (5.24)

This proves part (iii) of Theorem 2.

6. Capital stock dynamics

Suppose that instead of the simple capital stock equationY ≡ y + ξ we have,
corresponding to any given cumulative investment processξ ∈ A and any initial
capital stocky ∈ [0,∞), the productive capital stock process{Yt}0≤t≤T defined
as the unique solution of the stochastic differential equation

dYt = −δ(t)Yt dt + a(t)Yt dWt + dξt ; 0≤ t ≤ T ,

Y0 = y .
(6.1)

Here, W = {Wt}0≤t≤T is a standard Brownian motion process on (Ω, I,P;
{It}) and δ(·) and a(·) are bounded by finite constants, uniformly in (t , ω),
and progressively measurable with respect to{It}. The processδ(·) in the drift
coefficient may be interpreted as the rate of depreciation, and the proportional
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diffusion coefficient,a(·), as the “standard deviation” per unit time of an exoge-
nous “productivity shock”. Extending the results of the previous sections to this
more general case is straightforward, but for completeness we provide the details
below.

An explicit formula forYt is given by

Yt = e−D(t)Mt

{
y +

∫
[0,t)

eDsM−1
s dξs

}
, (6.2)

where we have used the notation

Dt
4
=
∫ t

0
δ(s)ds ; 0≤ t ≤ T (6.3)

Mt
4
= exp

(∫ t

0
a(s)dWs − 1

2

∫ t

0
a2(s)ds

)
; 0≤ t ≤ T . (6.4)

The “myopic investor’s” solution of (6.1) is given by takingξ ≡ 0 in (6.2), i.e.

Xt
4
= ye−Dt Mt . (6.5)

Consider the following extension of the definition of the small investor’s expected
payoff (2.5), where depreciation and productivity changes have been accounted
for:

νd(y; τ |ξ)
4
= E

[∫ T

τ

e−Dt Mtπ(t ,Yt )dt + (e−DT MTg(YT )− e−Dτ Mτγ(τ ))1{τ<T}

]
;

y > 0, τ ∈ S0,T , ξ ∈ A, 4 (6.6)

and the corresponding expected opportunity cost:

ρd(y; τ |ξ)
4
= E

[∫ τ

0
e−Dt Mtπ(t ,Yt )dt + e−Dτ Mτγ(τ )1{τ<T} + e−DT MTg(YT )1{τ=T}

]
;

y > 0, τ ∈ S0,T , ξ ∈ A . (6.7)

Of course (6.6) and (6.7) agree with (2.5) and (2.8), respectively, whenδ ≡ a ≡
0, or equivalently,e−Dt ≡ Mt ≡ 1. Note that

ρd(y; τ |ξ) =E

[∫ τ

0
π̃(t , y + ξ̃t )dt + γ̃(τ )1{τ<T} + g̃(y + ξ̃T )1{τ=T}

]
,

y > 0, τ ∈ S0,T , ξ ∈ A ; (6.8)

where, fory ≥ 0, t > 0,

4 Strictly speaking, the “right” form of the payoff is

ν̂d (y; τ |ξ)
4
= E

[∫ T

τ

e−Dτ,t Mτ,tπ(t ,Yt )dt + (e−Dτ,T Mτ,Tg(YT )− γ(τ ))1{τ<T}

]
,

whereDs,t =
∫ t

s
δ(u)du andMs,t = Mt/Ms, but the two formulations are seen to be equivalent by

considering the associated dynamic programming equations.
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π̃(t , y)
4
= e−Dt Mtπ(t , e−Dt Mt · y) ,

g̃(y)
4
= e−Dt Mtg(e−Dt Mt · y) ,

γ̃(t)
4
= e−Dt Mtγ(t) ,

ξ̃t
4
=
∫

[0,T)
eDsM−1

s dξs .

(6.9)

Define, fory > 0, τ ∈ S0,T , ξ ∈ A,

ν̃(y; τ |ξ)
4
= E

[∫ T

τ

π̃(t , y + ξt )dt − γ̃(τ )1{τ<T} + g̃(y + ξT )1{τ<T}

]
,

ρ̃(y; τ |ξ)
4
= E

[∫ T

0
π̃(t , y + ξt )dt + γ̃(τ )1{τ<T} + g̃(y + ξT )1{τ=T}

]
.

(6.10)

It is then obvious that

νd(y; τ |ξ) ≡ ν̃(y; τ |ξ̃) ,

ρd(y; τ |ξ) ≡ ρ̃(y; τ |ξ̃) , (6.11)

and since, forξ ≡ 0, we haveξ̃ ≡ ξ, we have

md(y; τ )
4
= νd(y; τ |0) = ν̃(y; τ |0)

4
= m̃(y; τ ) ,

rd(y; τ )
4
= ρd(y; τ |0) = ρ̃(y; τ |0)

4
= r̃ (y; τ ) ,

(6.12)

where the second definition in each line goes from right to left. Therefore, in the
myopic investor’s case the problem of selecting an investment strategyτ ∈ S0,T

to attain the optimum payoffm∗
d (y)

4
= supτ∈S0,T

m(y; τ ), reduces to the myopic
investor’s problem we have treated in Sects. 2 and 3, whereδ(·) and a(·) were
identically zero, but withπ, g, andγ replaced by ˜π, g̃ and γ̃, repectively. Let
R̃y(t) be defined as in (3.1), withπ, g, andγ replaced by ˜π, g̃ andγ̃, repectively.
Then we immediately obtain the extension of Proposition 1 to the present, more
general, case:

Proposition 2: Assume that (2.1)–(2.4) and (3.2)–(3.3) hold withπ, g, and γ
replaced byπ̃, g̃ and γ̃, repectively. Then there exists a submartingaleZ̃y

0 (·), with
sample paths which are almost surely right-continous and admit left-hand limits,
and is such that

Z̃y
0 (t) = essinf

τ∈St,T

E
[
R̃y(τ )|It

]
, a.s. for all t ∈ [0,T] . (6.13)

Furthermore,Z̃y
0 (t) ≤ R̃y(t) a.s. for all t ∈ [0,T], and the stopping time

σ̃(y)
4
= inf

{
t ∈ [0,T]; Z̃y

0 (t) = R̃y(t)
}

(6.14)

is an optimal investment strategy for the myopic investor:
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md(y; σ̃(y)) = m∗
d (y) . (6.15)

Now consider the social planning problem of Sect. 4 with the capital stock
dynamics given by (6.1). The expected social surplus is defined as in (4.1):

Jd(y; ξ)
4
= E

[∫ T

0
Π(t ,Yt )dt −

∫
[0,T)

γ(t)dξt + G(YT )

]
, (6.16)

whereY(t), 0≤ t ≤ T is now given by (6.2). Define

Π̃(t , y)
4
= Π(t , e−Dt Mt · y) ≡

∫ y

1
π̃(t , x)dx ,

G̃(y)
4
= G(e−DT Mt · y) ≡

∫ y

1
g̃(x)dx , (6.17)

and assume (4.4) holds. Then we have,

Jd(y; ξ) = J̃ (y; ξ̃) , (6.18)

where, fory > 0 andη ∈ A:

J̃ (y; η)
4
=

[∫ T

0
Π̃(t , y + ηt )dt −

∫
[0,T)

γ̃(t)dηt + G̃(y + ηT )

]
. (6.19)

Observe that the mappingξ 7→ ξ̃: A → A is one-to-one and onto with the
inverse given byη 7→ ∫

[0,t) e−DsMsdηs. Hence, it is clear that given an optimal

process, sayη∗y ∈ A, for the social planner’s problem associated withJ̃ (y; ·),
an application of the inverse ofξ 7→ ξ̃ to η∗y will produce an optimal process,
say ξ∗d,y ∈ A, to the social planner’s problem associated withJd(y; ·). From
Proposition 2 and the discussion preceding it it is clear that an optimal process
for the former problem is given by

η∗y (t)
4
= sup{z ∈ [y,∞); σ̃(z+) < t} , 0≤ t ≤ T (6.20)

(cf. (4.15)). Denote the value function of the latter problem by

Vd(y)
4
= sup
ξ∈A

Jd(y; ξ) . (6.21)

Let Id(y)
4
= Jd(y; 0) = E

[∫ T
0 Π(t ,Xt )dt + G(Xt )

]
(cf. (6.5)) and

ξ∗d,y(t)
4
=
∫

[0,t)
e−DsMsdη∗s , 0≤ t ≤ T . (6.22)

The following extensions of Theorems 1 and 2 follow easily, now that this
notation is in place:
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Theorem 3: Assume that (4.4) holds and that (2.1)–(2.4), (3.2)–(3.3) hold withπ,
g, andγ replaced byπ̃, g̃ and γ̃, respectively. Then, for all y> 0, there exists an
optimal investment processξ∗d,y(·) for the “social planner’s” problem of (6.21),
and it is given by (6.22). Furthermore, for all y> 0,

Vd(y) = Id(y) +
∫ ∞

y
m∗

d (x)dx (6.23)

V ′
d(y) = r ∗d (y)

4
= inf
τ∈S0,T

rd(y; τ ) (6.24)

σ̃(y+) = inf{t ∈ [0,T); ξ∗d,y(t) > 0} ∧ T (6.25)

Theorem 4: Assume that (4.4) holds and that (2.1)– (2.4), (3.2)–(3.3) hold with
π, g, andγ replaced byπ̃, g̃ and γ̃, repectively. Then for any given y> 0:
(i) We have

V ′
d(y) = r ∗d (y) = ρ∗d(y|ξ∗d,y)

4
= inf
τ∈S0,T

ρd(y; τ |ξ∗d,y) . (6.26)

(ii) The entry time

τ∗d,y
4
= inf{t ∈ [0,T); ξ∗d,y(t) > 0} ∧ T (6.27)

is optimal both for a “myopic investor” (who forecasts thatξ ≡ 0 will prevail)
and for a “small investor” who forecasts that the “socially optimal” strategy
ξ ≡ ξ∗d,y(·) will prevail.

(iii) If, in addition, there exists anε0 > 0 such thatνd(y +ε0; T|ξ∗d,y) > −∞, then

ν∗(y|ξ∗d,y)
4
= sup
τ∈S0,T

νd(y; τ |ξ∗d,y) = 0. (6.28)

7. Concluding remarks

The results above can be extended to the case of finite resources, i.e. the case
where there is an upper bound on the amount of cumulative investmentξ. This
extension is straightforward when there is no depreciation of capital stock and its
productivity does not change, i.e. in the setting of Sects. 2–5 above. The interested
reader is referred to Karatzas (1985) and El Karoui and Karatzas (1988) for the
analogous treatment of a related finite-fuel stochastic control problem.

In the setting of Sect. 6 and with finite resources, when capital stock depreci-
ates or is subject to productivity changes, an externality seems to arise unless the
resource bound is subject to the same dynamics as the capital stock. The small
investor’s problem and the social planner’s problem are then no longer equiv-
alent, unless the small investor’s problem is modified to take this into account.
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Furthermore, myopia is no longer optimal. Rigorous treatment of this problem
must await further study.
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