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Abstract. In the present paper we consider a model for stock prices which is
a generalization of the model behind the Black–Scholes formula for pricing
European call options. We model the log-price as a deterministic linear trend
plus a di�usion process with drift zero and with a di�usion coe�cient (volatil-
ity) which depends in a particular way on the instantaneous stock price. It is
shown that the model possesses a number of properties encountered in empiri-
cal studies of stock prices. In particular the distribution of the adjusted log-price
is hyperbolic rather than normal. The model is rather successfully �tted to two
di�erent stock price data sets. Finally, the question of option pricing based on
our model is discussed and comparison to the Black–Scholes formula is made.
The paper also introduces a simple general way of constructing a zero-drift
di�usion with a given marginal distribution, by which other models that are
potentially useful in mathematical �nance can be developed.
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1 Introduction

It is well documented that the distribution of stock returns typically has heavier
tails than the normal distribution (see e.g. Mandelbrot 1963 and Fama 1965).
In fact the distribution is often well �tted by a hyperbolic distribution, see
Eberlein and Keller (1995) and K�uchler et al. (1994). Moreover, the logarithm
of the stock prices has in empirical studies turned out to have increments
with a very low correlation. The increments are, however, not independent.
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For instance, the squared increments show substantial correlation (see Fama
1965 and Taylor 1986, Chap. 2). Findings in this paper indicate that also the
marginal distribution of this stochastic process can be �tted by a hyperbolic
distribution.
Based on these empirical �ndings, we propose a di�usion process model

for the logarithm of the stock price which, apart from a deterministic linear
trend, is an ergodic process with hyperbolic invariant measure. This ergodic
process is also a local martingale such that most trajectories will appear to
have uncorrelated increments. Our model deviates only from the model behind
the Black–Scholes formula by allowing the di�usion coe�cient (volatility) cor-
responding to the log-price minus a deterministic linear trend to depend on the
state of the process in a particular way.
In Sect. 2 we introduce the model and discuss some of its properties. Esti-

mation of the parameters is discussed in Sect. 3 where data on the stock prices
for two Danish companies are analysed. We use a martingale estimating func-
tion proposed by Bibby (1994), which generalizes earlier work by Bibby and
S�rensen (1995a). We also check graphically how well the model �ts the data.
For this purpose we use residual plots as well as a non-parametric estimator
of the di�usion coe�cient. In Sect. 4 we briey consider pricing of European
call options and compare the result to the classical Black–Scholes formula.

2 The model and its properties

There is empirical evidence (Taylor 1986, Chap. 2) that the logarithm of the
stock price is a process with nearly uncorrelated increments, but that the in-
crements are not independent. This suggests a model for the stock price St of
the form

St = exp (�t + Xt); (2.1)

where

Xt = X0 +
t∫
0
v(Xs)dWs: (2.2)

By Itô’s formula it follows that

dSt = St

{[
� +

1
2
v2(log St − �t)

]
dt + v(log St − �t)dWt

}
: (2.3)

Note that if v(x) is constant, then the model for St is the geometric Brownian
motion used in the derivation of the Black–Scholes formula. The process X is
a stochastically time-transformed Wiener process, so (2.1) is a simple and very
natural generalization of the model used by Black and Scholes. The assumption
that the drift of log St is a linear function of time, �t, is not essential. It is
made for the sake of simplicity and in order to change the geometric Brownian
motion model as little as possible. Everything that is done in the rest of the
paper can also be done when log St is assumed to have a general deterministic
drift.



A hyperbolic di�usion model for stock prices 27

By Theorem 2.2 in Engelbert and Schmidt (1985), the equation (2.2) with a
given initial distribution has a weak solution if and only if the function v−2(x)
is locally integrable. According to Theorem 3.2 in the same paper, the solution
is unique in law if and only if v2(x)¿ 0 for all x ∈R. The scale measure of
the solution has the density s(x) = 1 with respect to the Lebesgue measure,
and the speed measure has the density m(x) = v−2(x). For a de�nition and
discussion of the scale measure and speed measure of a di�usion (see Karlin
and Taylor 1981, Chap. 15). Hence

∞∫
0
s(x)dx =

0∫
−∞

s(x)dx =∞;

and if we choose v(x) such that

∞∫
−∞

v−2(x)dx ¡∞;

the di�usion process (2.2) is ergodic with invariant measure proportional to
the speed measure, and Xt converges in distribution to a probability measure
with density proportional to v−2(x) (see e.g. Skorokhod 1989). Hence when t is
su�ciently large, the distribution of Xt is well approximated by the distribution
with density proportional to v−2(x). If X0 has this distribution, Xt will be
stationary and exactly have density proportional to v−2(x) at all times.

Several interesting models can be obtained by choosing v(x) appropriately,
but we shall here concentrate on one particular choice and only briey return
to the general case at the end of this section. Empirical studies have shown
that the distribution of the stock return, log St+�− log St , is far from the normal
distribution. In fact the tails of the distribution tend to be log-linear (when cer-
tain extreme events are excluded), see Eberlein and Keller (1995) and K�uchler
et al. (1994). Also the logarithm of the stock prices tends to have a distribution
with log-linear tails, see the following section. A well-studied distribution with
log-linear tails is the hyperbolic distribution introduced by Barndor�-Nielsen
(1977). This distribution was used in the two papers just mentioned. The den-
sity of the hyperbolic distribution is proportional to

exp
[
−�

√
�2 + (x − �)2 + �(x − �)

]
;

where x varies on the real line and the parameters satisfy the relations
� ¿ |�|= 0, � ¿ 0, and � ∈R. In order to obtain an ergodic di�usion with a
hyperbolic invariant measure, we choose

v2(x) = �2 exp
[
�
√
�2 + (x − �)2 − �(x − �)

]
: (2.4)

With this choice the logarithm of the stock price will be approximately hy-
perbolically distributed after a su�ciently long time. It is hoped that also the
increments, i.e. the stock price returns, are approximately hyperbolic. The dis-
tribution of increments over short intervals is a normal variance-mean mixture
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Fig. 1. A simulated trajectory of the di�usion process given by (2.2) and (2.4) with parameter
values from the Baltica data in Sect. 3

and is hence likely to have heavy tails (see Barndor�-Nielsen et al. 1982).
An increment over a long interval is the di�erence of two almost independent
hyperbolic random variables, which has a distribution that is close to being
hyperbolic. Note that with the speci�cation (2.4) the volatility increases expo-
nentially when the logarithm of the stock price deviates considerably from the
trend given by �t. It is not di�cult to see that the boundaries ±∞ are entrance
boundaries (see Karlin and Taylor 1981, p. 234).
In Fig. 1 one simulated sample path of the di�usion given by (2.2) and

(2.4) is plotted. The time between consecutive simulated points is 1 and the
parameter values are those obtained in Sect. 3 by �tting the model to the
Baltica data (see Table 1). The simulation was done using the order 1.5 strong
Taylor scheme (see Sect. 3).
In Fig. 2 and Fig. 3 histograms of the marginal distribution and of the dis-

tribution of the increments are given. These histograms were calculated from
the sample path shown in Fig. 1 using the computer program HYP (see Bl�sild
and S�rensen 1992). All hyperbolic histograms in this paper are made using
the HYP program. The marginal distribution shows considerable scatter; maybe
because the single observations are far from independent. The increment distri-
bution seems nicely hyperbolic. Here the scatter is less, probably because the
observations are close to being uncorrelated.
The process Xt given by (2.2) and (2.4) can, as mentioned above, be ob-

tained by a stochastic time-transformation of a standard Wiener process. Spec-
i�cally, let B be a standard Wiener process, de�ne Ct by

Ct =
t∫
0
v−2(Bs)ds;
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Fig. 2. The log histogram of the marginal distribution of the di�usion process given by (2.2)
and (2.4) obtained from a simulated sample path. The full-drawn curve is a �tted hyperbolic
density

Fig. 3. The log histogram of the distribution of the increments of the di�usion process given
by (2.2) and (2.4) obtained from a simulated sample path. The full-drawn curve is a �tted
hyperbolic density

and let Tt be the inverse of Ct , i.e.

Tt = inf{s= 0 : Cs ¿ t}:

Since Ct is strictly increasing and C∞ =∞ almost surely (see Engelbert
and Schmidt 1981), we see that Tt de�nes a stochastic time-transformation. Ac-
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cording to Engelbert and Schmidt (1985)

Xt = BTt

is a weak solution of (2.2). We see that when the value of Bt is in the centre
of the hyperbolic distribution, Xt behaves much like a Brownian motion. When
Bt is in the tail regions however, the process Tt increases very rapidly. Thus
Xt will spend most of its time in the centre of the hyperbolic distribution even
though Bt will spend a lot of time in the tail regions. When Bt is there, Xt
will vary much more rapidly than when Bt is in the centre of the distribution.
A solution of (2.2) is a local martingale. With our speci�cation (2.4) X is,

however, not a martingale. This can be seen from the following lemma.

Lemma 2.1 Suppose M is a process with uncorrelated increments and that
the �rst two moments of Mt do not depend on t. Then either Mt = M0 almost
surely for all t = 0 or Var(Mt) =∞.

Proof : Since M has uncorrelated increments, Var(Mt+s) =Var(Mt+s − Mt)+
Var(Mt). Now Var(Mt+s) =Var(Mt)¡∞ implies Var(Mt+s −Mt) = 0.

In particular a martingale with a constant marginal distribution is either
constant or has in�nite variance. If the distribution of X0 is the hyperbolic
distribution with density proportional to v−2(x), the distribution of Xt will be
the same hyperbolic distribution for all t. Hence if X was a martingale, the
variance of Xt should, according to Lemma 2.1, be in�nite, but the hyperbolic
distribution has �nite variance. Note that X is a new example of a uniformly
integrable local martingale which is not a martingale.
The sample path of X will, in spite of this, typically behave as if X had

uncorrelated increments. This is because X is a local martingale, i.e. there exists
an increasing sequence of stopping times �n such that �n →∞ and such that
Xt∧�n is a martingale for every n= 1. Up to the stopping time �n the process
Xt has uncorrelated increments. Thus a �nite discrete-time sample from Xt will
typically appear to have uncorrelated increments.
There is no doubt that also processes de�ned by (2.2) with v2(x) propor-

tional to the inverse of other density functions than the hyperbolic density will
turn out to be useful as models in mathematical �nance. As long as v2(x)
is chosen proportional to the inverse of a density with �nite second moment,
Lemma 2.1 shows that the corresponding di�usion is not a martingale; only a
local martingale. However, if v2(x) is proportional to the inverse of a density
function with in�nite �rst moment, i.e. if

∞∫
−∞

|x|v−2(x)dx =∞;

then the boundaries ±∞ are natural boundaries for the solution X to (2.2) (see
Karlin and Taylor 1981, p. 234). This implies, by Theorem 3 in Arbib (1965),
that X is a martingale. We see that, for instance, the choice v2(x) = 1 + x2

implies that X is a martingale with Cauchy distributed marginals.
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It might seem preferable to model the stock price process by

dSt = St(� + Xt)dt;

where X solves (2.2) or is some other di�usion process with hyperbolic
marginals. However, such a model would imply a stock price process with
bounded variation on �nite intervals so that there would be a possibility of
arbitrage in the continuous-time option pricing theory (see Harrison and Pliska
1981). It might be argued that one should not take an arbitrage possibility
based on the in�nitesimal structure of a model too seriously, since the struc-
ture at this level does probably not correspond to anything real. However, we
can avoid any such criticism by modelling the stock price process by (2.3) and
(2.4).

3 Data and estimation

In this section we consider some empirical data. We have looked at the daily
stock price for Baltica, which is a Danish insurance company, and Aarhus
Oliefabrik, a large producer of cooking oils. The time-period is from January
3rd, 1983 to April 30th, 1990. The time-unit is trading days, i.e. weekends are
ignored so that Monday follows Friday. We only consider the stock prices on
trading days where Baltica shares and Aarhus Oliefabrik shares respectively
have been traded. Therefore there can be more than one day between two
observations.
If we denote the price of a particular stock at time t ¿ 0 by St , then the

observations are St1 ; : : : ; Stn , where t1; : : : ; tn are the trading days of the stock.
We consider the log-price of a stock adjusted for trend, that is

Xti = log Sti − �ti; i = 1; : : : ; n:

For each stock the slope � is determined by ordinary linear regression. For the
Baltica shares we found the value � = 0:00101, and for the Aarhus Oliefabrik
shares � = 0:00033. Figure 4 shows the adjusted log-price of the Baltica shares.
We want to model the adjusted log-price of the shares considered here

using the hyperbolic di�usion process de�ned as the solution of

dXt = � exp
{
1
2

(
�
√
�2 + (Xt − �)2 − � (Xt − �)

)}
dWt; X0 = x0; (3.1)

see (2.2) and (2.4). We saw from the simulations of the hyperbolic di�usion
that we would expect the marginal density to be close to a hyperbolic density
and the marginal density of the increments of the process to be closer to a
hyperbolic density if the hyperbolic di�usion model is reasonable to describe
the adjusted log-price. Figures 5 and 6 show the log-histograms for the adjusted
log-price and the increments of the adjusted log-price respectively in the case
of the Baltica shares.
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Fig. 4. The trend adjusted log price of the Baltica shares plotted against time

We see from Figs. 5 and 6 that the adjusted log-price of Baltica shares
has a density close to a hyperbolic density and that the increments of the
adjusted log-price of Baltica shares has a density that is closer to a hyperbolic
density. This is what we would expect if the hyperbolic di�usion model is
appropriate.
Several di�usion processes have a hyperbolic stationary distribution. One

other example can be found in K�uchler et al. (1994). The hyperbolic di�usion
process given by the solution of (3.1) is the only one, though, without a
drift. In order to check whether the shape of the di�usion coe�cient for the
hyperbolic di�usion appropriately accounts for the variability in the data studied
in this section, we considered the non-parametric kernel estimator of the squared
di�usion coe�cient v2(x) proposed in Florens-Zmirou (1993). This estimator
is a local quadratic variation estimator of the squared di�usion coe�cient and
is given by

Vn(x) =

∑n
i=1 1{|Xti−1−x|¡h}(Xti − Xti−1 )2∑n
i=11{|Xti−1−x|¡h}(ti − ti−1)

;

where h is the bandwidth to be chosen appropriately.
Figure 7 shows the non-parametric estimator of the squared di�usion co-

e�cient and the squared di�usion coe�cient corresponding to the hyperbolic
di�usion process given by (3.1) for a suitable choice of the parameters in the
case of the Baltica shares. The parameter values used to make the plot of the
squared di�usion coe�cient in Fig. 7 are the ones found by the estimation
method explained below (see Table 1). We see from Fig. 7 that for a band-
width value of h = 0:2 the non-parametric estimate of the squared di�usion
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Fig. 5. The log-histogram for the adjusted log-price of the Baltica shares. The full drawn
curve is a �tted hyperbolic density

Fig. 6. The log-histogram for the increments of the adjusted log-price of the Baltica shares.
The full-drawn curve is a �tted hyperbolic density

coe�cient is close to the parametric estimate based on the hyperbolic di�usion
process.
Even though the stationary distribution of the hyperbolic di�usion process

given as the solution of (3.1) is known to be hyperbolic, the transition density
is unknown. Therefore, inference about the parameters entering (3.1) cannot be
based on the likelihood function. In Bibby and S�rensen (1995a) it is proposed
that in such cases inference could be based on the martingale estimating func-
tion emerging by compensating the discretized continuous-time score function
to make it a martingale. When a part of the parameter of interest only enters
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Fig. 7. The non-parametric estimator Vn(x) (the jagged curve) of the squared di�usion co-
e�cient (h = 0:2) and the squared di�usion coe�cient (the smooth curve) corresponding to
the hyperbolic di�usion. Both curves are estimated from the Baltica share data

the di�usion coe�cient, the approach of Bibby and S�rensen (1995a) cannot
be applied right away. In Bibby (1994) martingale estimating functions of the
form

Kn(�) =
n∑
i=1

[
gi(Xti−1 ; �)(Xti − Fi(Xti−1 ; �))

+ hi(Xti−1 ; �) ((Xti − Fi(Xti−1 ; �))2 − �i(Xti−1 ; �))
]
;

were considered. Here Fi is the conditional mean and �i is the conditional
variance of Xti given Xti−1 , and � is a vector of model parameters. The functions
gi and hi are of the same dimension as �. For ergodic di�usion processes,
subject to mild regularity conditions on the functions g and h, it was shown in
Bibby (1994) that as the number of observations tends to in�nity there exists –
with a probability tending to one – a solution of the equation Kn(�) = 0 which
is a consistent estimate of � and which is asymptotically normally distributed.

As Xt is a local martingale, there cannot be much information about the
parameters in F , so we will use a martingale estimating function with Fi(x; �)
replaced by x and with �i replaced by the conditional expectation �̃i of (Xti −
Xti−1 )

2 given Xti−1 . Thus unnecessary numerical inaccuracies in the calculation
of F are avoided.
For small �i = ti− ti−1 an approximation to the optimal estimating function

– optimal in the sense of minimizing a distance to the unknown score function
(Godambe and Heyde 1987) – is given by

K̃n(�) =
n∑
i=1

v̇(Xti−1 ; �)
(ti − ti−1)v(Xti−1 ; �)3

(
(Xti − Xti−1 )2 − �̃i(Xti−1 ; �)

)
; (3.2)
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where v is the di�usion coe�cient and a dot denotes di�erentiation with respect
to � (see Bibby and S�rensen 1995b). We will use the martingale estimating
function de�ned by (3.2) to make inference about the parameter �. In this case
� denotes the vector (�; �; �; �; �)T .
In practice the conditional expectation �̃ has to be calculated using simu-

lations. More speci�cally �̃(Xti−1 ; �) is replaced by

1
N

N∑
j=1
(X ( j)ti − Xti−1 )2; i = 1; : : : ; n; (3.3)

where X ( j)ti is the j’th realization of Xti according to, for instance, the strong
Taylor scheme of order 1.5 (see Kloeden and Platen 1992, p. 351). The scheme
is given by

Xti−1+ �ik
m
= Xti−1+ �i (k−1)

m
+ vk−1�W +

1
2
vk−1v′k−1

{
(�W )2 − 1

m

}
+
1
2
v2k−1v

′′
k−1

{
�W

1
m
− �Z

}
+
1
2
vk−1

(
vk−1v′′k−1 + (v

′
k−1)

2){1
3
(�W )2 − 1

m

}
�W;

where
vk−1 = v

(
Xti−1+ �i (k−1)

m
; �
)
; k = 1; : : : ; m;

and where v′k−1 and v
′′
k−1 are de�ned similarly. A prime denotes di�erentiation

with respect to x. Moreover,
√
m�W = U1, 2m3=2�Z = (U1 + U2=

√
3), and U1

and U2 are independent N (0; 1)-distributed random variables.

Table 1. The parameter estimates for Baltica and Aarhus Oliefabrik
based on the martingale estimating function K̃

� � � � �

Baltica 4.4875 -3.8412 1.1949 7.2915 0.0047
Aarhus Oliefabrik 6.8396 -1.1496 1.1840 5.7512 0.0004

In the estimation procedure the number of repititions was �xed at N = 25.
The number of points between consecutive observation times was �xed at m =
25. The result of the estimation is given in Table 1.
In order to validate the hyperbolic di�usion model in connection with the

stock price data here we calculate the uniform residuals considered by Pedersen
(1994), that is

Ui(�) = F(ti−1; Xti−1 ; ti; Xti ; �); i = 1; : : : ; n

where F is the transition distribution function given by

F(s; x; t; y; �) = P�(Xt 5 y|Xs = x) s ¡ t; x; y ∈ R:
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Fig. 8. A uniform quantile plot of the residuals Ui corresponding to the hyperbolic di�usion
model for the Baltica stock price data. The line is the unit line

Fig. 9. A uniform quantile plot of the residuals Ui corresponding to the hyperbolic di�usion
model for the Aarhus Oliefabrik stock price data. The line is the unit line

Of course the transition distribution function is unknown and so the uni-
form residuals have to be calculated using simulations like for the conditional
variance. If the hyperbolic di�usion model is the true model for the stock price
data then the uniform residuals are independent and uniformly distributed on
the unit interval. Figures 7 and 8 show plots of the uniform residuals against
the quantiles of the uniform distribution on the unit interval for Baltica and
Aarhus Oliefabrik.
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Fig. 10. The estimated j’th autocorrelation for the uniform residuals corresponding to the
Baltica data as a function of j

The plots in Figs. 8 and 9 support that the hyperbolic di�usion model (3.1)
is a rather good model for the stock price data considered here. A test statistic
based on the uniform residuals is given by

X 2 = −2
n∑
i=1
logUi(�):

If the uniform residuals are independent and uniformly distributed on the unit
interval, which is the case if the model is true, we have that X 2 ∼ �2(2n). For
the Baltica shares X 2 = 2722:061, and for the Aarhus Oliefabrik shares X 2 =
2521:559. With n = 1385 for the Baltica data and n = 1305 for the Aarhus
Oliefabrik data neither value of the test statistic give reason to rejecting that the
uniform residuals are independent and uniformly distributed. Figure 10 shows
the estimated autocorrelation function for the uniform residuals corresponding
to the Baltica shares. The con�dence bounds are given by ± 2=√n that would
be appropriate if the uniform residuals were independent and normal. Based
on Fig. 10 we conclude that the uniform residuals appear to be uncorrelated.
The same plot for the Aarhus Oliefabrik shares shows a similar pattern in the
estimated autocorrelation function for the residuals.

4 Option pricing

We consider a �nancial market consisting of a bond with �xed interest rate r
and a stock, the price process St of which is given by (2.3) and (2.4). The
discounted price process S̃ t = e−rtSt solves the equation

dS̃t = S̃ t

{[
� − r + 1

2
v2(log S̃ t − (� − r)t)

]
dt + v(log S̃ t − (� − r)t)dWt

}
:

(4.1)
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Since
t∫
0
�2s ds ¡∞;

P-almost surely, where

�s =
� − r + 1

2v
2(log S̃s − (� − r)s)

v(log S̃s − (� − r)s)
;

it follows from Theorem 3.1 in Hansen (1995) that the market considered here
is complete in the following sense. De�ne

Nt = exp
{
−

t∫
0
�s dWs − 1

2

t∫
0
�2s ds

}
: (4.2)

Then any contingent claim H depending on the values of St for t 5 T and
satisfying E(HNT )¡∞ can be hedged by an admissible self-�nancing trading
strategy. The fair price of H , de�ned as the minimum initial capital needed to
hedge H , is given by

�(H) = E(HNT ): (4.3)

The process N is the Dolean-Dade exponential of the local martingale − ∫ t0 �s
dWs and is hence itself a local martingale. Since a non-negative local martingale
is a supermartingale (by Fatou’s Lemma), we see that E(Nt)5 1, for all t = 0.
We assume that our probability space is rich enough that a probability measure
P̃ exists under which S̃ solves the stochastic di�erential equation

dZt = Ztv(log Zt − (� − r)t)dW̃t ; (4.4)

where W̃ is a Wiener process under P̃. Under P̃ the process Z∗t = exp ((r − �)t)
Zt solves the equation

dZ∗t = Z
∗
t

{
(r − �)dt + v(log Z∗t )dW̃t

}
; (4.5)

and for Z∗ the boundary zero of the state-space is attainable. It is, more pre-
cisely, a regular boundary if �+ � ¿ 1 and an exit boundary if �+ �5 1. It
follows that Z∗t can hit the boundary zero before the maturity time T with a
positive probability. Since exp (−|� − r|T )5 exp ((� − r)t)5 exp (|� − r|T )
for t ∈ [0; T ], the same is true of the solution to (4.4). From these consid-
erations it follows that P̃ cannot be equivalent to P. However, by Theorem
2.1 in Rydberg (1996) the measures P̃ and P are equivalent on the �-�eld of
events before the stopping time �n = inf {t : Zt 5 n−1} for every n= 1. They
are therefore also equivalent up to T ∧ �n, and the Radon-Nikodym derivative
is NT∧�n . Hence for all n= 1 the fair price of H is

�(H) = E
(
1{�n5T}HNT

)
+ E

(
1{�n¿T}HNT

)
= E

(
1{�n5T}HNT

)
+ Ẽ

(
1{�n¿T}H

)
;
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Fig. 11. The ratio of the option price (4.5) obtained using the hyperbolic di�usion model
to the option price using the Black–Scholes model as a function of the stock price at time
zero. The dotted curves are plus-minus twice the sample standard error

where Ẽ denotes expectation under P̃. By the monotone convergence theorem

�(H) = Ẽ
(
1{�¿T}H

)
; (4.6)

where � = limn→∞ �n = inf {t : Zt = 0}. Here we have used that a solution of
(4.1) is strictly positive such that P(�5 T ) = 0. Note that E(NT ) = P̃(� ¿ T )
which is smaller than one. Of the 50000 simulated trajectories discussed below
we found in all cases that � ¿ T , so E(NT ) must be very close to one in most
situations occuring in practice. In particular, we have proved that the price of
a European call option with exercise price q ¿ 0 and time of maturity T is

� = E
(
1{�¿T}

(
ZT − e−rT q

)+)
: (4.7)

The price (4.7) can easily be calculated numerically by simulating a large
number of trajectories of the process Z , for instance by the order 1.5 strong
Taylor scheme. If Z (i) denotes the i’th simulation, the price is approximately
equal to

P̂ =
1
N

N∑
i=1

(
Z (i)t − e−rtq

)+
; (4.8)

where all trajectories that become non-positive are discarded. In the 50000
simulations mentioned below no trajectories had to be discarded. The same
method can be used to calculate the price of other European contingent claims.
Direct numerical determination of the right-hand side of (4.3) is very much
more complicated and time-consuming.



40 B.M. Bibby, M. S�rensen

We consider the special case where the daily interest rate is r = 0:0002,
the time of maturity is T = 100, and the exercise price is q = 400. The param-
eters entering the hyperbolic di�usion process model for the stock price were
set to the parameter estimates obtained for the Baltica shares, (see Table 1).
The instantaneous volatility in the Black–Scoles formula was set to 0.02 based
on the usual quadratic variation estimator and the Baltica data. Figure 11 shows
the ratio of the option price given by (4.7) to the option price given by
the Black–Scholes formula as a function of the stock price at time zero. We
have also included 95%-con�dence bands for the estimated curve. In this case
N = 50000.
The plot in Fig. 11 shows that the option price determined from the hyper-

bolic di�usion model by (4.7) is very close to the option price determined from
the Black–Scholes model. This illustrates the robustness of the Black–Scholes
formula to model assumptions.
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