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Abstract
The non-Markovian nature of rough volatility makes Monte Carlo methods chal-
lenging, and it is in fact a major challenge to develop fast and accurate simula-
tion algorithms. We provide an efficient one for stochastic Volterra processes, based
on an extension of Donsker’s approximation of Brownian motion to the fractional
Brownian case with arbitrary Hurst exponent H ∈ (0, 1). Some of the most relevant
consequences of this ‘rough Donsker (rDonsker) theorem’ are functional weak con-
vergence results in Skorokhod space for discrete approximations of a large class of
rough stochastic volatility models. This justifies the validity of simple and easy-to-
implement Monte Carlo methods, for which we provide detailed numerical recipes.
We test these against the current benchmark hybrid scheme and find remarkable
agreement (for a large range of values of H ). Our rDonsker theorem further pro-
vides a weak convergence proof for the hybrid scheme itself and allows constructing
binomial trees for rough volatility models, the first available scheme (in the rough
volatility context) for early exercise options such as American or Bermudan options.
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1 Introduction

Fractional Brownian motion has a long and famous history in probability, stochastic
analysis and their applications to diverse fields; see Hurst [39], Kolmogorov [44] and
Mandelbrot and Van Ness [52]. Recently, it has experienced a new renaissance in
the form of fractional volatility models in mathematical finance. These were first in-
troduced by Comte and Renault [18] and later studied theoretically by Djehiche and
Eddahbi [20], Alòs et al. [2] and Fukasawa [29], and given financial motivation and
data consistency by Gatheral et al. [32] and Bayer et al. [6]. Since then, a vast litera-
ture has pushed the analysis in many directions (see Bayer et al. [5], Bayer et al. [7],
Bennedsen et al. [11], El Euch and Rosenbaum [24], Forde and Zhang [26], Fuka-
sawa et al. [30], Guennoun et al. [33], Gulisashvili [34], Horvath et al. [38], Jacquier
et al. [41] and Neuman and Rosenbaum [58]), leading to theoretical and practical
challenges to understand and implement these models. One of the main issues, at
least from a practical point of view, is on the numerical side: the absence of Marko-
vianity rules out PDE-based schemes, and simulation is the only possibility. However,
classical simulation methods for fractional Brownian motion (based on Cholesky de-
composition or circulant matrices) are notoriously slow, and faster techniques are
needed. The state-of-the-art so far is the recent hybrid scheme developed by Benned-
sen et al. [10] and its turbocharged version in McCrickerd and Pakkanen [54]. We rise
here to this challenge and propose an alternative tree-based approach, mathematically
rooted in an extension of Donsker’s theorem to rough volatility.

Donsker [21] (and later Lamperti [48]) proved a functional central limit for Brown-
ian motion, thereby providing a theoretical justification of its random walk approx-
imation. Many extensions have been studied in the literature, and we refer the in-
terested reader to Dudley [23, Chap. 10] for an overview. In the fractional case,
Sottinen [66] and Nieminen [59] constructed – following Donsker’s ideas of using
i.i.d. sequences of random variables – an approximating sequence converging to frac-
tional Brownian motion with Hurst parameter H > 1/2. In order to deal with the
non-Markovian behaviour of fractional Brownian motion, Taqqu [67] considered se-
quences of non-i.i.d. random variables, again with the restriction H > 1/2. Unfortu-
nately, these methodologies do not seem to carry over to the ‘rough’ case H < 1/2,
mainly because of the topologies involved. The recent development of rough paths
theory (see Friz and Victoir [28, Sect. 13.4] and Lyons [51]) provided an appropriate
framework to extend Donsker’s results to processes with sample paths of Hölder reg-
ularity strictly smaller than 1/2. For H ∈ (1/3, 1/2), Bardina et al. [3] used rough
paths to show that functional central limit theorems (in the spirit of Donsker) apply.
This in particular suggests that the natural topology to use for fractional Brownian
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motion with H < 1/2 is the topology induced by the Hölder norm of the sample
paths. Indeed, switching the topology from the Skorokhod one used by Donsker to
the (stronger) Hölder topology is the right setting for rough central limit theorems,
as we outline in this paper. Recent results by Bender and Parczewski [9] and Par-
czewski [60, 61] provide convergence for (geometric) fractional Brownian motions
with general H ∈ (0, 1) using Wick calculus, assuming that the approximating se-
quences are Bernoulli random variables. We extend this (Theorem 2.11) to a universal
functional central limit theorem, involving general (discrete or continuous) random
variables as approximating sequences, only requiring finiteness of moments.

We consider a general class of continuous processes with any Hölder regularity,
including fractional Brownian motion with H ∈ (0, 1), truncated Brownian semi-
stationary processes, Gaussian Volterra processes, as well as rough volatility models
recently proposed in the financial literature. The fundamental novelty here is an ap-
proximating sequence capable of simultaneously keeping track of the approximated
rough volatility process (fractional Brownian motion, Brownian semistationary pro-
cess, or any continuous path functional thereof) and of the underlying Brownian mo-
tion. This is crucial in order to take into account the correlation of the two processes,
the so-called leverage effect in financial modelling. While approximations of two-
dimensional (correlated) semimartingales are well understood in the standard case,
the rough case is so far an open problem. Our analysis easily generalises beyond
Brownian drivers to more general semimartingales, emphasising that the subtle, yet
essential, difficulties lie in the passage from the semimartingale setup to the rough
case. This is the first Monte Carlo method available in the literature, specifically tai-
lored to two-dimensional rough systems, based on an approximating sequence for
which we prove a Donsker–Lamperti-type functional central limit theorem (FCLT).
This further provides a pathwise justification of the hybrid scheme by Bennedsen
et al. [10], and allows the use of tree-based schemes, opening the doors to pricing
early-exercise options such as American options. In Sect. 2, we present the class of
models we are considering and state our main results. The proof of the main theo-
rem is developed in Sect. 3 in several steps. We reserve Sect. 4 to applications of the
main result, namely weak convergence of the hybrid scheme, binomial trees as well
as numerical examples. We present simple numerical recipes, providing a pedestrian
alternative to the advanced hybrid schemes in [10, 54], and develop a simple Monte
Carlo scheme with low implementation complexity, for which we provide compar-
ison charts against [10] in terms of accuracy and against [54] in terms of speed.
Reminders on Riemann–Liouville operators and additional technical proofs are post-
poned to the Appendix.

Notations: For the interval I := [0, 1], we denote by C(I) and Cα(I) the spaces of
continuous and α-Hölder-continuous functions on I with Hölder regularity α ∈ (0, 1),
respectively. We also need C1(I) := {f : I → R : f ′ exists and is continuous on I}.
For 0 ≤ α ≤ 1, we define Cα+(I) := {f ∈ Cα(I) : f ≥ 0}. Both definitions imply
bounded first order derivatives on I. We use C, ˜C, ̂C, C1, C2, C, C as strictly positive
real constants which may change from line to line and whose exact values do not
matter.
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2 Weak convergence of rough volatility models

Donsker’s invariance principle, also termed ‘functional central limit theorem’, en-
sures the weak convergence in the Skorokhod space of an approximating sequence
to a Brownian motion. As opposed to the central limit theorem, Donsker’s theorem
is a pathwise statement which ensures that convergence takes place for all times.
This result is particularly important for Monte Carlo methods which aim to approxi-
mate pathwise functionals of a given process (an essential requirement to price path-
dependent financial securities for example). We prove here a version of Donsker’s
result not only in the Skorokhod topology, but also in the stronger Hölder topology,
for a general class of continuous stochastic processes.

2.1 Hölder spaces and fractional operators

For β ∈ (0, 1), the β-Hölder space Cβ(I) with the norm

‖f ‖β := |f |β + ‖f ‖∞ = sup
t,s∈I
t 	=s

|f (t) − f (s)|
|t − s|β + max

t∈I
|f (t)|,

is a non-separable Banach space; see Krylov [45, Chap. 3]. In the spirit of Riemann–
Liouville fractional operators recalled in Appendix A, we introduce generalised frac-
tional operators. For λ ∈ (0, 1) and any α ∈ (−λ, 1 − λ), we define the space
Lα := {g ∈ C2((0, 1]) : | g(u)

uα |, | g′(u)

uα−1 | and | g′′(u)

uα−2 | are bounded}. When α > 0, we
define the function g at the origin to be g(0) = 0 by continuous extension.

Definition 2.1 For any λ ∈ (0, 1) and α ∈ (−λ, 1 − λ), the generalised fractional
operator (GFO) associated to g ∈ Lα is defined on Cλ(I) as

(Gαf )(t) :=
{∫ t

0 (f (s) − f (0)) d
dt

g(t − s)ds, if α ∈ (0, 1 − λ),

d
dt

(
∫ t

0 (f (s) − f (0))g(t − s)ds), if α ∈ (−λ, 0).
(2.1)

We further use the notation G(t) := ∫ t

0 g(u)du for any t ∈ I. Of particular interest
in mathematical finance are the kernels

Riemann–Liouville: g(u) = uα for α ∈ (−1, 1);
Gamma fractional: g(u) = uαeβu for α ∈ (−1, 1), β < 0;
power-law: g(u) = uα(1 + u)β−α for α ∈ (−1, 1), β < −1.

(2.2)

The result below generalises the classical mapping properties of Riemann–Liouville
fractional operators first proved by Hardy and Littlewood [36] and is of fundamental
importance in the rest of our analysis.

Proposition 2.2 For any λ ∈ (0, 1) and α ∈ (−λ, 1 − λ), the operator Gα is continu-
ous from Cλ(I) to Cλ+α(I).
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The proof can be found in Appendix C. This result is analogous to the classi-
cal Schauder estimates, phrased in terms of convolution with a suitable regularising
kernel, as e.g. treated in Friz and Hairer [27, Theorem 14.17] and Broux et al. [15,
Theorem 2.13 and Lemma 2.9], but in settings that are slightly different from ours.

We develop here an approximation scheme for the following system which gen-
eralises the concept of rough volatility introduced in Alòs et al. [2], Fukasawa [29]
and Gatheral et al. [32] in the context of mathematical finance. The process X repre-
sents the dynamics of the logarithm of a stock price process, under a given reference
pricing measure, with

⎧

⎨

⎩

dXt = −1

2
Vtdt +√Vt dBt , X0 = 0,

Vt = �(GαY )(t),

(2.3)

with α ∈ (− 1
2 , 1

2 ) and where Y is the (strong) solution to the stochastic differential
equation

dYt = b(Yt )dt + a(Yt )dWt, Y0 ∈ DY , (2.4)

where DY denotes the state space of Y , usually R or R+. The two Brownian mo-
tions B and W are defined on a common filtered probability space (�,F , (Ft )t∈I,P)

and are correlated by the parameter ρ ∈ [−1, 1], and we introduce ρ := √1 − ρ2. We
further let � be any operator such that for all γ ∈ (0, 1), we have � : Cγ (I) → Cγ

+(I)

with � continuous from (Cγ (I), ‖ · ‖γ ) to itself. This in particular ensures that when-
ever Y ∈ Cλ(I), then V ∈ Cα+λ+ (I), i.e., V is nonnegative and belongs to Cα+λ(I). As
an example, one can consider a so-called Nemyckij operator �(f ) := φ ◦f given by
composition with some φ : R → R+, in which case Drábek [22] has shown that the
operator � is continuous from (Cγ (I), ‖ · ‖γ ) to (Cγ (I), ‖ · ‖γ ) for all γ ∈ (0, 1) if
and only if φ ∈ C1(R). It remains to formulate a precise definition for GαW (Propo-
sition 2.4) and for GαY (Corollary 2.5) to fully specify the system (2.3) and clarify
the existence of solutions.

Assumption 2.3 There exist Cb,Ca > 0 such that for all y ∈ DY ,

|b(y)| ≤ Cb(1 + |y|), |a(y)| ≤ Ca(1 + |y|),

where a and b are continuous functions such that there is a unique strong solu-
tion to (2.4).

Existence of solutions to (2.4) along with Assumption 2.3 need to be checked case
by case beyond standard Lipschitz and linear growth conditions (we provide a show-
case of models in Examples 2.6–2.9 below satisfying existence and pathwise unique-
ness conditions). Not only is the solution to (2.4) continuous, but ( 1

2 − ε)-Hölder-
continuous for any ε ∈ (0, 1

2 ) as a consequence of the Kolmogorov–Čentsov theorem
in Čentsov [16]. Existence and precise meaning of GαY are delicate and treated below.
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2.2 Examples

Before constructing our approximation scheme, let us discuss a few examples of pro-
cesses within our framework. As a first useful application, these generalised fractional
operators provide a (continuous) mapping between a standard Brownian motion and
its fractional counterpart.

Proposition 2.4 For any α ∈ (− 1
2 , 1

2 ), the equality (GαW)(t) = ∫ t

0 g(t−s)dWs holds
almost surely for all t ∈ I.

Proof Since the paths of Brownian motion are ( 1
2 − ε)-Hölder-continuous for any

ε ∈ (0, 1
2 ), existence (and continuity) of GαW is guaranteed for all α ∈ (− 1

2 , 1
2 ).

When α ∈ (0, 1
2 ), the kernel is smooth and square-integrable, so that Itô’s product

rule yields by Proposition 2.2 (since g(0) = 0 and α > 0) that

(GαW)(t) =
∫ t

0
(Ws − W0)

d

dt
g(t − s)ds

= g(t)(W0 − W0) − g(0)(Wt − W0) +
∫ t

0
g(t − s)dWs

=
∫ t

0
g(t − s)dWs,

and the claim holds. For α ∈ (− 1
2 , 0) and any ε > 0, introduce the operator

(G1+α
ε f )(t) :=

∫ t−ε

0
g(t − s)

(

f (s) − f (0)
)

ds for all t ∈ I,

which satisfies d
dt

limε↓0(G1+α
ε f )(t) = (Gαf ) (t) pointwise. Now for any t ∈ I,

almost surely,

d

dt
(G1+α

ε W)(t) = g(ε)(Wt−ε − W0) − g(t)(W0 − W0) +
∫ t−ε

0
Ws

d

dt
g(t − s)ds

= g(ε)W(0) +
∫ t−ε

0
g(t − s)dWs. (2.5)

Then as ε tends to zero, the right-hand side of (2.5) tends to
∫ t

0 g(t − s)dWs and
furthermore, the convergence is uniform. On the other hand, the equalities

(G1+α
0 W)(t) − (G1+α

0 W)(0) = lim
ε↓0

(

(G1+α
ε W)(t) − (G1+α

ε W)(0)
)

= lim
ε↓0

∫ t

0

(

d

ds
G1+α

ε W

)

(s)ds

=
∫ t

0
lim
ε↓0

(

d

ds
G1+α

ε W

)

(s)ds

=
∫ t

0

(∫ s

0
g(s − u)dWu

)

ds
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hold since convergence is uniform on compacts, and the fundamental theorem of
calculus concludes the proof. �

Minimal changes to the proof of Proposition 2.4 also yield the following result.

Corollary 2.5 If Y solves (2.4), then (GαY )(t) = ∫ t

0 g(t − s)dYs almost surely for all
t ∈ I and α ∈ (− 1

2 , 1
2 ).

Up to a constant multiplicative factor Cα , the (left) fractional Riemann–Liouville
operator (see Appendix A) is identical to the GFO in (2.2) so that the Riemann–
Liouville (or type-II) fractional Brownian motion can be written as CαGαW . Proposi-
tion 2.2 then implies that the Riemann–Liouville operator is continuous from C1/2(I)

to C1/2+α(I) for α ∈ (− 1
2 , 1

2 ). Each kernel in (2.2) gives rise to processes proposed
by Barndorff-Nielsen and Schmiegel [4] for turbulence and financial modelling.

Example 2.6 The rough Bergomi model by Bayer et al. [6] reads

Vt = ξ0(t)E
(

2νCH

∫ t

0
(t − s)αdWs

)

,

with V0, ν, ξ0( · ) > 0, α ∈ (− 1
2 , 1

2 ) and E( · ) is the stochastic exponential. (We re-
mark that this coincides here with the Wick stochastic exponential.) This corresponds
exactly to (2.3) with g(u) = uα , Y = W and

�(ϕ)(t) := ξ0(t) exp
(

2νCH ϕ(t)
)

exp

(

− 2ν2C2
H

∫ t

0
(t − s)2αds

)

.

Example 2.7 A truncated Brownian semistationary (TBSS) process is defined as
∫ t

0 g(t − s)σ (s)dWs for t ∈ I, where σ is (Ft )t∈I-predictable with locally bounded
trajectories and finite second moments, and g : I \ {0} → I is Borel-measurable and
square-integrable. If σ ∈ C1(I), this class falls within the GFO framework.

Example 2.8 Bennedsen et al. [11] added a Gamma kernel to the volatility process,
which yields the truncated Brownian semistationary (Bergomi-type) model

Vt = ξ0(t)E
(

2νCH

∫ t

0
(t − s)αe−β(t−s)dWs

)

,

with β > 0, α ∈ (− 1
2 , 1

2 ). This corresponds to (2.3) with Y = W , Gamma fractional
kernel g(u) = uαe−βu in (2.2) and

�(ϕ)(t) := ξ0(t) exp
(

2νCH ϕ(t)
)

exp

(

− 2ν2C2
H

∫ t

0
(t − s)2αe−2β(t−s)ds

)

.
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Example 2.9 The version of the rough Heston model introduced by Guennoun et
al. [33] reads

Yt = Y0 +
∫ t

0
κ(θ − Ys)ds +

∫ t

0
ξ
√

Ys dWs,

Vt = η +
∫ t

0
(t − s)αdYs,

with Y0, κ , ξ , θ all > 0, 2κθ > ξ2 and η > 0, α ∈ (− 1
2 , 1

2 ). This corresponds
exactly to (2.3) with g(u) = uα , �(ϕ)(t) := η + ϕ(t), and the coefficients of (2.4)
read b(y) = κ(θ − y) and a(y) = ξ

√
y. This model is markedly different from

the rough Heston model introduced by El Euch and Rosenbaum [24] (for which the
characteristic function is known in semiclosed form). Unfortunately, this version of
the rough Heston model is outside of the scope of our invariance principle.

2.3 The approximation scheme

We now move on to the core of the project, namely an approximation scheme for the
system (2.3), (2.4). The basic ingredient to construct approximating sequences will
be suitable families of i.i.d. random variables which satisfy the following assumption.

Assumption 2.10 The family (ξi)i≥1 forms an i.i.d. sequence of centered random
variables with finite moments of all orders and E[ξ2

1 ] = σ 2 > 0.

Given (ζi)i≥1 as in Assumption 2.10, Lamperti’s [49] generalisation of Donsker’s
invariance principle in Donsker [21] tells us that a Brownian motion W can be ap-
proximated weakly in Hölder space (Theorem 3.1) by processes of the form

Wn(t) := 1

σ
√

n

nt�
∑

k=1

ζk + nt − nt�
σ
√

n
ζnt�+1, (2.6)

defined pathwise for any ω ∈ �, n ≥ 1 and t ∈ I. As we show in Sect. 3.2, a
similar construction holds to weakly approximate the process Y from (2.4) in Hölder
space via

Yn(t) := Yn(0) + 1

n

nt�
∑

k=1

b(Y k−1
n ) + nt − nt�

n
b(Y nt�

n )

+ 1

σ
√

n

nt�
∑

k=1

a(Y k−1
n )ζk + nt − nt�

σ
√

n
a(Y nt�

n )ζnt�+1, (2.7)

where Y k
n := Yn(tk) and Tn := {tk = k

n
: k = 0, 1, . . . , n}. Here the ζk corre-

spond to the innovations of the Brownian motion W in (2.4). Similarly, we use ξk

when referring to the innovations of the Brownian B from (2.3) which enter into
the approximations of the log-stock price in (2.8) below. Throughout the paper,
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we assume that the innovations (ξi)i=1,...,nt� and (ζi)i=1,...,nt� come from two se-
quences (ξi)i≥1 and (ζi)i≥1 satisfying Assumption 2.10 and such that ((ξi, ζi))i≥1 is
i.i.d. with corr(ξi, ζi) = ρ for all i ≥ 1. Naturally, the approximations in (2.7) and
in (2.8) below should be understood pathwise, but we omit the ω-dependence in the
notations for clarity.

Regarding the approximation scheme for the process X given by (2.3), we fol-
low a typical route in weak convergence analysis (see Billingsley [13, Sect. 13] and
Ethier and Kurtz [25, Chap. 3]) and establish convergence in the Skorokhod space
(D(I), dD). Here D(I) = D(I;R) denotes the space of R-valued càdlàg functions on
I and dD denotes a metric inducing Skorokhod’s J1-topology. To approximate X in
this space, we then consider the process

Xn(t) := − 1

2n

nt�
∑

k=1

�(GαYn)(tk−1) + 1

σ
√

n

nt�
∑

k=1

√

�(GαYn)(tk−1) ξk. (2.8)

Analogously to (2.7), one could rewrite these as continuous processes via linear inter-
polation; but we note that the interpolating term would decay to zero by Chebyshev’s
inequality. The following result, proved in Sect. 3.4, confirms the functional conver-
gence of the approximating sequence (Xn)n≥1.

Theorem 2.11 The sequence (Xn)n≥1 converges in (D(I), dD) weakly to X.

The construction of the proof allows extending the convergence to the case
where Y is a d-dimensional diffusion without additional work. The proof of the theo-
rem requires a certain number of steps: we start with the convergence of the approx-
imations (Yn) in some Hölder space, which we then translate into convergence of the
sequence (�(GαYn)) by suitable continuity properties of the operations Gα and �, be-
fore finally deducing also the convergence of the corresponding stochastic integrals
for the approximations of (2.3). These steps are carried out in Sects. 3.2–3.4 below.

3 Functional CLT for a family of Hölder-continuous processes

3.1 Weak convergence of Brownian motion in Hölder spaces

Donsker’s classical convergence result was proved under the Skorokhod topology.
We concentrate here on convergence in the Hölder topology, due to Lamperti [49].
The standard convergence result for Brownian motion can be stated as follows.

Theorem 3.1 For λ < 1
2 , the sequence (Wn) in (2.6) converges in (Cλ(I), ‖ · ‖λ)

weakly to a Brownian motion.

The proof relies on finite-dimensional convergence and tightness of the approx-
imating sequence. Not surprisingly, the tightness criterion in [13, Sect. 13] for the
Skorokhod space D(I) and for a Hölder space are different. In fact, the tightness
criterion in a Hölder space is strictly related to the Kolmogorov–Čentsov continuity
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result [16]. Note in passing that the approximating sequence (2.6) is piecewise differ-
entiable in time for each n ≥ 1 even though its limit is obviously not. The proof of
Theorem 3.1 follows from Theorem 3.3 below under Assumption 2.10.

Theorem 3.2 Let Z ∈ Cλ(I) and (Zn)n≥1 be an approximating sequence in the sense
that for any sequence (τk)k≥1 in I, the sequence ((Zn(τk))k≥1)n≥1 converges in dis-
tribution to (Z(τk))k≥1 as n → ∞. Assume further that

E[|Zn(t) − Zn(s)|γ ] ≤ C|t − s|1+β (3.1)

holds for all n ≥ 1, t, s ∈ I and some C, γ , β all > 0 with β
γ

≤ λ. Then (Zn)n≥1

converges in Cμ(I) weakly to Z for μ <
β
γ

≤ λ.

The proof of this theorem relies on results of Račkauskas and Suquet [63], who
prove the convergence in the Hölder space Cλ

0 (I) with the norm ‖f ‖0
λ := |f |λ + |f (0)|

for all functions that satisfy

lim
δ↓0

sup
0<t−s<δ

t,s∈I

|f (t) − f (s)|
(t − s)γ

= 0.

From this point, the proof of Theorem 3.2 is a straightforward consequence because
(Cλ

0 (I), ‖ · ‖0
λ) is a separable closed subspace of (Cλ(I), ‖ · ‖λ) (see Hamadouche [35]

and [63] for details), and one can then use (3.1) to establish tightness as in [49].
Moreover, as the identity map from Cλ

0 (I) into Cλ(I) is continuous, weak conver-
gence in the former implies weak convergence in the latter. To conclude our review
of weak convergence in Hölder spaces, the following theorem due to Račkauskas
and Suquet [63] provides necessary and sufficient conditions ensuring convergence
in Hölder space.

Theorem 3.3 (Račkauskas–Suquet [63, Theorem 1]) For λ ∈ (0, 1
2 ), the sequence

(Wn)n≥1 in (2.6) converges in Cλ(I) weakly to a Brownian motion if and only if

E[ξ1] = 0 and lim
t↑∞ t

1
1−2λP[|ξ1| ≥ t] = 0.

Assumption 2.10 ensures the conditions in Theorem 3.3. The following statement
allows us to apply Theorem 3.2 on I and extend the Hölder convergence result via
linear interpolation to a sequence of continuous processes.

Theorem 3.4 Let Z ∈ Cλ(I) and (Zn)n≥1 be an approximation sequence such that
finite-dimensional convergence holds as n → ∞. Moreover, if

E[|Zn(ti) − Zn(tj )|γ ] ≤ C|ti − tj |1+β (3.2)

for any ti , tj ∈ Tn and some β, γ , C all > 0 with β
γ

≤ λ and γ ≥ 1 + β, then the
linearly interpolating sequence

Zn(t) := Zn

(nt�
n

)

+ (nt − nt�)
(

Zn

(nt� + 1

n

)

− Zn

(nt�
n

)

)

satisfies (3.1). In particular, (Zn)n≥1 converges in Cμ(I) weakly to Z for μ <
β
γ

≤ λ.
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Proof It suffices to confirm (3.1) for Z̄n. The final claim then follows from Theo-
rem 3.2. Take t, s ∈ I and suppose first that t − s ≥ 1

n
. Letting Zk

n := Zn(tk) and

Z
k

n := Zn(tk), we can then write

E[|Zn(t) − Zn(s)|γ ] = E[|Znt�
n + (nt − nt�)(Znt�+1

n − Znt�
n )

− Zns�
n − (ns − ns�)(Zns�+1

n − Zns�
n )|γ ]

≤ 3γ−1
E[|Znt�

n − Zns�
n |γ + [nt − nt�]γ |Znt�+1

n − Znt�
n |γ

+ [ns − ns�]γ |Zns�+1
n − Zns�

n |γ ]

≤ C

(

(nt� − ns�
n

)1+β + (nt − nt�)γ
n1+β

+ (ns − ns�)γ
n1+β

)

≤ C(t − s)1+β,

where we used (3.2) and the fact that nt�−ns�
n

≤ 2(t − s), nt − nt� ≤ 1 for t ≥ 0
since t − s ≥ 1

n
.

It remains to consider the case t − s < 1
n

. There are two possible scenarios. If
nt� = ns�, then using γ ≥ 1 + β gives

E[|Zn(t)−Zn(s)|γ ] = E[|(nt−ns)(Znt�+1
n −Znt�

n )|γ ] ≤ C|t − s|γ
n1+β−γ

≤ C(t−s)1+β .

If nt� 	= ns�, then either nt� + 1 = ns� or nt� = ns� + 1. Without loss of
generality, consider the second case. Then

E[|Zn(t) − Zn(s)|γ ] = E[|Zn(t) − Znt�
n + Znt�

n − Zn(s)|γ ]
≤ 2γ−1

E[|Zn(t) − Znt�
n |γ + |Znt�

n − Zn(s)|γ ]
≤ C

(

(t − s)1+β + E[|(nt� − ns)(Znt�
n − Znt�−1

n )|γ ]),

and the result follows as before since t − nt�
n

< |t − s| and |s − nt�
n

| ≤ |t − s|. �

3.2 Weak convergence of Itô diffusions in Hölder spaces

The first important step in our analysis is to extend the Donsker–Lamperti weak con-
vergence from Brownian motion to the Itô diffusion Y in (2.4).

Theorem 3.5 The sequence (Yn)n≥1 in (2.7) converges in (Cλ(I), ‖ · ‖λ) weakly to Y

in (2.4) for all λ < 1
2 ,

Proof Finite-dimensional convergence is a classical result by Kushner [47]; so only
tightness needs to be checked. In particular, using Theorem 3.4, we need only con-
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sider the partition Tn. Thus we get

E[|Y j
n − Y i

n|2p]

= E

[∣

∣

∣

∣

j
∑

k=i+1

1

n
b(Y k−1

n ) + 1

σ
√

n
a(Y k−1

n )ζk

∣

∣

∣

∣

2p]

≤ 22p−1
(

E

[∣

∣

∣

∣

j
∑

k=i+1

1

n
b(Y k−1

n )

∣

∣

∣

∣

2p]

+ E

[∣

∣

∣

∣

j
∑

k=i+1

a(Y k−1
n )ζk

σ
√

n

∣

∣

∣

∣

2p])

≤ 22p−1
(

E

[∣

∣

∣

∣

j
∑

k=i+1

1

n
b(Y k−1

n )

∣

∣

∣

∣

2p]

+ C(p)E

[∣

∣

∣

∣

j
∑

k=i+1

a(Y k−1
n )2ζ 2

k

σ 2n

∣

∣

∣

∣

p])

≤ 22p−1
(

(j − i)2p−1

n2p

j
∑

k=i+1

E[b(Y k−1
n )2p]

+ (j − i)p−1

np
C(p)

E[ζ 2p

1 ]
σ 2p

j
∑

k=i+1

E[a(Y k−1
n )2p]

)

≤ 22p−1 (j − i)p−1

np

j
∑

k=i+1

(

C
2p
b E[(1 + |Y k−1

n |)2p]

+ C(p)
C

2p
a E[ζ 2p

1 ]
σ 2p

E[(1 + |Y k−1
n |)2p]

)

≤ max

(

C
2p
b , C(p)

C
2p
a E[ζ 2p

1 ]
σ 2p

)

22p (j − i)p−1

np

(

(j − i) +
j
∑

k=i+1

E[|Y k−1
n |2p]

)

≤ max

(

C
2p
b , C(p)

C
2p
a E[ζ 2p

1 ]
σ 2p

)

22p exp

( j
∑

k=i+1

22p (j − i)p−1

np

)

(tj − ti )
p

≤ max

(

C
2p
b , C(p)

C
2p
a E[ζ 2p

1 ]
σ 2p

)

22p exp(22p)(tj − ti )
p

=: C(p)(tj − ti )
p,

where we have used the discrete version of the BDG inequality (see Beiglböck and
Siorpaes [8, Theorem 6.3]) in the martingale term

∑j

k=i+1
1

σ
√

n
a(Y k−1

n )ζk with the

constant C(p) := 6p(p − 1)p−1. Indeed, if we consider the discrete-time martin-
gale process (x

i,j
n )u :=∑u

k=1
1

σ
√

n
a(Y k+i−1

n )ζi+k for u ∈ {1, . . . , j − i}, we have

|(xi,j
n )j−i | ≤ maxu∈{1,...,j−i} |(xi,j

n )u|, and the BDG inequality clearly also applies

to |xi,j
j−i |. We also used independence of ζk and Yk−1 and the linear growth of b( · )

and a( · ) from Assumption 2.3, Hölder’s inequality and the discrete version of Gron-
wall’s lemma (see Clark [17]) in the last step. Since E[ζ 2p

k ] is bounded by Assump-
tion 2.10 and the constant C(p) only depends on p, but not on n, the criterion (3.2)
of Theorem 3.4 holds for p > 1 with γ = 2p and β = p − 1. �
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Corollary 3.6 Let (Yn)n≥1 be as in Theorem 3.5 with innovations (ζi)i≥1, and suppose
(Bn)n≥1 is defined by the Donsker approximations (2.6) for some innovations (ξi)i≥1
satisfying Assumption 2.10 such that ((ζi , ξi))i≥1 is i.i.d. with corr(ζi, ξi) = ρ for
all i ≥ 1. Then there is joint weak convergence in (Cλ(I,R2), ‖ · ‖λ) of (Bn, Yn) to
(B, Y ), for all λ < 1

2 , for a standard Brownian motion B such that [B,W ]t = ρt for
t ∈ I, where W is the standard Brownian motion driving the dynamics of the weak
limit Y in (2.4).

Proof Let (ζ⊥
i )i≥1 satisfy Assumption 2.10 and be independent of the innovations

(ζi)i≥1 defining (Y n)n≥1. Then set ξi := ρζi + ρζ⊥
i for i ≥ 1 and let Bn be defined

in terms of (ξi)i≥1. This yields the same finite-dimensional distributions of (Bn, Yn)

as for the general (ξi)i≥1 in the statement of Corollary 3.6. Consider now the drift
vector b(y) = (0, b(y)) and the 2 × 2 diffusion matrix a(y) with rows (ρ, ρ) and
(0, a(y)). Then the result of Kushner [47] applies directly to give finite-dimensional
convergence with the desired limit. Finally, tightness of ((Bn, Yn))n≥1 follows anal-
ogously to the proof of Theorem 3.5, and the claim follows. �

3.3 Invariance principle for rough processes

We have set the ground to extend our results to processes that are not necessarily
( 1

2 − ε)-Hölder-continuous, Markovian or semimartingales. More precisely, we are
interested in α-Hölder-continuous paths with α ∈ (0, 1), such as Riemann–Liouville
fractional Brownian motion or some TBSS processes. A key tool is the continuous
mapping theorem, first proved by Mann and Wald [53], which establishes the preser-
vation of weak convergence under continuous operators.

Theorem 3.7 Let (X , ‖ · ‖X ) and (Y, ‖ · ‖Y ) be two normed spaces and assume that
g : X → Y is a continuous operator. If the sequence (Zn)n≥1 of random variables
converges in (X , ‖·‖X ) weakly to Z, then (g(Zn))n≥1 converges in (Y, ‖·‖Y ) weakly
to g(Z).

Many authors have exploited the combination of Theorems 3.1 and 3.7 to prove
weak convergence; see e.g. Pollard [62, Chap. IV]. This path avoids the lengthy com-
putations of tightness and finite-dimensional convergence in classical proofs. In fact,
Hamadouche [35] already realised that Riemann–Liouville fractional operators are
continuous, so that Theorem 3.7 holds under mapping by Hölder-continuous func-
tions. In contrast, the novelty here is to consider the family of GFOs applied to
Brownian motion together with the extension of Brownian motion to Itô diffusions.

The analogue of Theorem 3.5 for GαY reads as follows.

Theorem 3.8 For (Yn)n≥1 in (2.7) and its weak limit Y in (Cλ(I), ‖ · ‖λ) for λ < 1
2 ,

the representation

(GαYn)(t) =
nt�
∑

i=1

n
(

G(t − ti−1) − G(t − ti )
)

(Y i
n − Y i−1

n )

+ nG(t − tnt�)
(

Yn(t) − Y nt�
n

)

(3.3)
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holds for t ∈ I. Furthermore, this sequence (GαYn)n≥1 converges in (Cα+λ(I), ‖·‖α+λ)

weakly to GαY for any α ∈ (−λ, 1 − λ).

Proof Recall that the sequence (2.7) is piecewise differentiable in time. First, for
α ∈ (0, 1 − λ), note that g(0) = 0 since α > 0 and therefore by integration by parts
(where Yn is piecewise differentiable), for n ≥ 1 and t ∈ I,

(GαYn)(t)

=
∫ t

0
g′(t − s)

(

Yn(s) − Yn(0)
)

ds

=
∫ t

0
g(t − s)

d(Yn(s) − Yn(0))

ds
ds

= 1

σ
√

n

( nt�
∑

i=1

n

∫ ti

ti−1

g(t − s)a(Y i−1
n )ζids + n

∫ t

tnt�
g(t − s)a(Y nt�

n )ζnt�+1ds

)

+ 1

n

(

n

nt�
∑

i=1

∫ ti

ti−1

g(t − s)b(Y i−1
n )ds + n

∫ t

tnt�
g(t − s)b(Y nt�

n )ds

)

=
nt�
∑

i=1

n
(

G(t − ti−1) − G(t − ti )
)

(Y i
n − Y i−1

n )

+ n
(

G(t − tnt�) − G(0)
)(

Yn(t) − Y nt�
n

)

,

and (3.3) follows since G(0) = 0 in the last line. When α ∈ (−λ, 0), using G(0) = 0,
we similarly get
∫ t

0
g(t − s)

(

Yn(s) − Yn(0)
)

ds

=
∫ t

0
G(t − s)

d(Yn(s) − Yn(0))

ds
ds

= 1

σ
√

n

( nt�
∑

i=1

n

∫ ti

ti−1

G(t − s)a(Y i−1
n )ζids + n

∫ t

tnt�
G(t − s)a(Y nt�

n )ζnt�+1ds

)

+ 1

n

(

n

nt�
∑

i=1

∫ ti

ti−1

G(t − s)b(Y i−1
n )ds + n

∫ t

tnt�
G(t − s)b(Y nt�

n )ds

)

= n

( nt�
∑

i=1

(b(Y i−1
n )

n
+ a(Y i−1

n )

σ
√

n
ζi

)

∫ ti

ti−1

G(t − s)ds

+
(b(Y

nt�
n )

n
+ a(Y

nt�
n )

σ
√

n
ζnt�+1

)

∫ t

tnt�
G(t − s)ds

)

= n

( nt�
∑

i=1

(Y i
n − Y i−1

n )

∫ ti

ti−1

G(t − s)ds + (Yn(t) − Y nt�
n

)

∫ t

tnt�
G(t − s)ds

)

,
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and from there it readily follows that

(GαYn)(t) = d

dt

∫ t

0
g(t − s)

(

Yn(s) − Yn(0)
)

ds

=
nt�
∑

i=1

n
(

G(t − ti−1) − G(t − ti )
)

(Y i
n − Y i−1

n )

+ nG(t − tnt�)
(

Yn(t) − Y nt�
n

)

as desired; note that when t = k
n

, the difference quotients pick up an extra term, but
this vanishes in the limit. Finally, the claimed convergence follows analogously to
that in Theorem 3.5 by continuous mapping, along with the fact that Gα is a con-
tinuous operator from (Cλ(I), ‖ · ‖λ) to (Cλ+α(I), ‖ · ‖λ+α) for all λ ∈ (0, 1) and
α ∈ (−λ, 1 − λ). �

Notice here that the mean value theorem implies

(GαYn)(t) =
nt�
∑

i=1

g(t∗i )(Y i
n − Y i−1

n ) + g(t∗nt�+1)
(

Yn(t) − Y nt�
n

)

, (3.4)

where t∗i ∈ [t − ti , t − ti−1] and t∗nt�+1 ∈ [0, t − tnt�] and we use that G(0) = 0.
This expression is closer to the usual left-point forward Euler approximation. For
numerical purposes, (3.4) is much more efficient since the integral G required in (3.3)
is not necessarily available in closed form. Nevertheless, not any arbitrary choice
of t∗i gives the desired convergence from the above argument. We present a suitable
candidate for optimal t∗i in Sect. 4.3.1, which guarantees weak convergence in the
Hölder sense.

As could be expected, the Hurst parameter influences the speed of convergence
of the scheme. We leave a formal proof to further study, but the following argument
provides some intuition about the correct normalising factor. Given g ∈ Lα , we can
write g(u) = uαL(u), where L is a bounded function on I. At time t = ti , take
t∗k = ti − tk + ε

n
for ε ∈ [0, 1]. For α ∈ (−λ, 0), since g ∈ Lα , we can rewrite the

approximation (3.4) as

(GαYn)(ti) = 1

n1/2+α

i
∑

k=1

(i − k + ε)αL(t∗k )(Y k
n − Y k−1

n )
√

n for i = 0, . . . , n.

Here, (i−k+ε)α ≤ εα is bounded in n ≥ 1 as long as ε ∈ (0, 1]; so the normalisation
factor is of the order n−α−1/2. When α ∈ (0, 1 − λ), the approximation (3.4) instead
reads

(GαYn)(ti) = 1√
n

i
∑

k=1

(

ti − tk + ε

n

)α

L(t∗k )(Y k
n − Y k−1

n )
√

n for i = 0, . . . , n,

in which case (ti − tk + ε
n
)α ≤ tαi is bounded in n ≥ 1, and hence the normalisation

factor is of the order n−1/2. This intuition is consistent with the result by Neuenkirch
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and Shalaiko [57] who found the strong rate of convergence of the Euler scheme to
be of the order O(n−H ) for H < 1

2 for fractional Ornstein–Uhlenbeck. So far, our
results hold for α-Hölder-continuous functions; however, for practical purposes, it is
often necessary to constrain the volatility process (Vt )t∈I to remain strictly positive
at all times. The stochastic integral GαY need not be such in general. However, a
simple transformation (e.g. exponential) can easily overcome this fact. The remaining
question is whether the α-Hölder-continuity is preserved after this composition.

Proposition 3.9 Let (Yn)n≥1 be the approximating sequence (2.7) in Cλ(I) for fixed
λ < 1/2. Then (�(GαYn))n≥1 converges in (Cα+λ(I), ‖ · ‖α+λ) weakly to �(GαY )

for all α ∈ (−λ, 1 − λ).

Proof By Theorem 3.8, (GαYn)n≥1 converges in (Cλ+α(I), ‖ · ‖λ+α) weakly to GαY .
Furthermore, with our assumptions, � is continuous from (Cλ+α(I), ‖ · ‖λ+α) to
(Cλ+α(I), ‖ · ‖λ+α). The proposition thus follows from the continuous mapping theo-
rem. The diagram below summarises the steps with λ < 1/2. The double arrows show
weak convergence, and we indicate next to them the topology in which it takes place.

(

Cλ(I), ‖ · ‖λ

) (

Cα+λ(I), ‖ · ‖α+λ

) (

Cα+λ(I), ‖ · ‖α+λ

)

Yn Gα(Yn) �(GαYn)

Y GαY �(GαY )

Gα

Gα

Gα

�

�

�

‖ · ‖λ ‖ · ‖α+λ ‖ · ‖α+λ

�

3.4 Extending the weak convergence to the Skorokhod space and proof of
Theorem 2.11

The Skorokhod space (D(I), dD) of càdlàg functions equipped with the Skorokhod
topology has been widely used to prove weak convergence. It markedly simpli-
fies when we only consider continuous functions (as is the case for our framework
with Hölder-continuous processes). Billingsley [13, Sect. 12] proved that the identity
(D(I) ∩ C(I), dD) = (C(I), ‖ · ‖∞) always holds. This seemingly simple statement
allows us to reduce proofs of weak convergence of continuous processes in the Sko-
rokhod topology to that in the supremum norm, which is usually much simpler. We
start with the following straightforward observation.

Lemma 3.10 For λ ∈ (0, 1), the identity map is continuous from (Cλ(I), ‖ · ‖λ) to
(D(I), dD).
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Proof Since the identity map is linear, it suffices to check that it is bounded. For this
observe that ‖f ‖λ = |f |λ+supt∈I |f (t)| = |f |λ+‖f ‖∞ > ‖f ‖∞, which concludes
the proof since the Skorokhod norm in the space of continuous functions is equivalent
to the supremum norm. �

Applying the continuous mapping theorem twice, first with the generalised frac-
tional operator (Theorem 3.8) and then with the identity map, directly yields the fol-
lowing result.

Theorem 3.11 For any α ∈ (− 1
2 , 1

2 ), the sequence (�(GαYn))n≥1 converges in
(D(I), dD) weakly to �(GαY ). Moreover, the sequence is tight in (C(I), ‖ · ‖∞).

The final step in the proof of our main theorem is to extend the functional weak
convergence to the log-stock price X. For this, we rely on the weak convergence
theory for stochastic integrals due to Jakubowski et al. [42] and further developed by
Kurtz and Protter [46]. Throughout, we write H •N := ∫ HdN and use the notation
H− for the process H−(t) := H(t−) obtained by taking left limits. The next result is
a restatement of [46, Theorem 2.2] in the special case δ = ∞ (in their notation) and
restricted to real-valued processes on I.

Theorem 3.12 For each n ≥ 1, let Nn = Mn + An be an (Fn
t )-semimartingale and

Hn an (Fn
t )-adapted càdlàg process on I. Suppose that for all γ > 0, there are

(Fn
t )-stopping times (τ

γ
n )n≥1 with the property that supn≥1 P[τγ

n ≤ γ ] ≤ 1/γ and
supn≥1 E[[Mn]τγ

n ∧1 + Tτ
γ
n ∧1(An)] < ∞, where Tt denotes the total variation on

[0, t]. If (Hn,Nn)n≥1 converges in (D(I,R2), dD) weakly to (H,N), then N is a
semimartingale in the filtration generated by (H,N) and (Hn,Nn, (Hn)− • Nn)n≥1
converges in (D(I,R3), dD) weakly to (H,N,H− • N).

With this, we can now give the proof of Theorem 2.11 which asserts the func-
tional weak convergence of the approximations (Xn)n≥1 from (2.8) to the desired
log-price X from (2.3).

Proof of Theorem 2.11 We begin by considering, for all n ≥ 1, the particular approx-
imations

Mn(t) := 1

σ
√

n

nt�
∑

i=1

ξi,

for t ∈ I, of the driving Brownian motion B in the dynamics of X. Here the ξi

satisfy Assumption 2.10, and so do the ζi in the construction of Yn from (2.7). While
each pair ξi and ζi are correlated, they form an i.i.d. sequence ((ζi, ξi))i≥1 across the
pairs. In particular, it is straightforward to see that each Mn is a martingale on I for
the filtration (Fn

t ) defined by Fn
t := σ(ζi, ξi : i = 1, . . . , nt�). Moreover, we have

E
[[Mn]t

] = nt� 1

σ 2n
E[ξ2

1 ] = nt�
n

≤ 1
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for t ∈ I and for all n ≥ 1. Consequently, we can simply take τ
γ
n ≡ +∞ for all

γ > 0 and n ≥ 1 to satisfy the required control on the integrators Nn := Mn

in Theorem 3.12. By Ethier and Kurtz [25, Theorem 7.1.4], the Mn converge in
(D(I), dD) weakly to a Brownian motion B. Now fix α ∈ (− 1

2 , 1
2 ) and define

a sequence (Hn)n≥1 of càdlàg processes on I by setting Hn(1) := �(GαYn)(1)

and Hn(t) := �(GαYn)(tk−1) for t ∈ [tk−1, tk) and k = 1, . . . , n. In view of
Theorem 3.11, the Arzelà–Ascoli characterisation of tightness (see [13, Theo-
rem 8.2]) for the space (C(I), ‖ · ‖∞) allows us to conclude that the Hn con-
verge in (D(I), dD) weakly to H := �(GαY ). Furthermore, recalling the defini-
tion of Yn in (2.7), each Hn is adapted to the filtration (Fn

t ) introduced above.
By Corollary 3.6, we readily deduce that there is joint weak convergence in
(D(I), dD) × (D(I), dD) × (D(I), dD) of (Yn,Hn,Mn) to (Y,H,B), where Y sat-
isfies (2.4) for a Brownian motion W with [W,B]t = ρt for all t ∈ I. As noted
in [46], the Skorokhod topology on D(I,R2) is stronger than the product topology
on D(I) × D(I), but here it automatically follows that we have weak convergence in
(D(I,R2), dD) of the pairs (Hn,Mn) to (H,B) by standard properties of the Sko-
rokhod topology (see e.g. [25, Theorem 3.10.2]), since the limiting pair (H,B) is
continuous. Consequently, we are in a position to apply Theorem 3.12. To this end,
observe that

(

(Hn)−•Mn

)

(t) =
nt�
∑

k=1

Hn(tk−)
(

Mn(tk)−Mn(tk−)
) = 1

σ
√

n

nt�
∑

k=1

�(GαYn)(tk−1)ξk,

which is precisely the second term on the right-hand side of (2.8). Therefore, Theo-
rem 3.12 gives that the stochastic integral H •M = √

�(GαY )•B is in (D(I), dD) the
weak limit of the second term on the right-hand side of (2.8). For the first term on the
right-hand side of (2.8), we have − 1

2

∫ ·
0 Hn(s)ds converging weakly to − 1

2

∫ ·
0 H(s)ds

by the continuous mapping theorem, as the integral is a continuous operator from
(D(I), dD) to itself. Since there is weak convergence in (D(I,R2), dD) of the pairs
(Hn, (Hn)− • Mn) to (H,H • B), the sum of the two terms on the right-hand side
of (2.8) are then also weakly convergent in (D(I), dD). Recalling that the limit Y

satisfies (2.4) for a Brownian motion W such that W and B are correlated with pa-
rameter ρ, we hence conclude that X converges in (D(I), dD) weakly to the de-
sired limit. �

4 Applications

4.1 Weak convergence of the hybrid scheme

The hybrid scheme (and its turbocharged version in McCrickerd and Pakka-
nen [54]) introduced by Bennedsen et al. [10] is the current state-of-the-art to
simulate TBSS processes. However, only convergence in mean-square-error was
proved, but not (functional) weak convergence which would justify the use of
the scheme for path-dependent options. Unless otherwise stated, we denote by
Tn := {tk = k

n
: k = 0, 1, . . . , n} the uniform grid on I. We show that the Hölder

convergence also holds for the case g(x) = xα .
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Proposition 4.1 The hybrid scheme sequence (˜GαWn)n≥1 is defined as

˜GαWn(t) := ˜GαWn

(nt�
n

)

+ (nt − nt�)
(

˜GαWn

(nt� + 1

n

)

− ˜GαWn

(nt�
n

)

)

for t ∈ I, where for i = 0, . . . , n and κ ≥ 1,

˜GαWn(ti) :=
(i−κ)∨0
∑

k=1

ξk

∫ tk

tk−1

√
n(ti − s)αds +

∫ ti

0∨ti−κ

(ti − s)αdWs

with ξk := ∫ tk
tk−1

dWs ∼ N (0, 1
n
). It converges in (Cα+1/2, ‖ · ‖α+1/2) weakly to GαW

for α ∈ (− 1
2 , 1

2 ) and κ = 1.

Proof Finite-dimensional convergence follows trivially as the target process is cen-
tered Gaussian; thus convergence of the covariance matrices ensures finite-dimen-
sional convergence. To prove weak convergence, we only need to show that the ap-
proximating sequence is tight, by verifying the criteria from Theorem 3.4 as follows.
In Theorem 3.4, we need to show that

E[|˜GαWn(ti) − ˜GαWn(tj )|2p] ≤ C|ti − tj |2pα+p

for all ti , tj ∈ Tn, for p ≥ 1 and some constant C ≥ 0. Without loss of generality,
assume tj < ti and take κ = 1. Define

σ̃ 2 := E[|˜GαWn(ti) − ˜GαWn(tj )|2].
The statement is trivial if j = 0 or i = 1, so we assume otherwise. By the definition
of ˜GαWn(ti) and using the notation � to mean less than or equal with a constant
factor, we can write, since κ = 1,

|˜GαWn(ti) − ˜GαWn(tj )|2

=
∣

∣

∣

∣

√
n

i−1
∑

k=1

ξk

∫ tk

tk−1

(ti − s)αds − √
n

j−1
∑

k=1

ξk

∫ tk

tk−1

(tj − s)αds

+
∫ ti

ti−1

(ti − s)αdWs −
∫ tj

tj−1

(tj − s)αdWs

∣

∣

∣

∣

2

=
∣

∣

∣

∣

√
n

j−1
∑

k=1

ξk

∫ tk

tk−1

(

(ti − s)α − (tj − s)α
)

ds − √
n

i−1
∑

k=j

ξk

∫ tk

tk−1

(ti − s)αds

+
∫ ti

ti−1

(ti − s)αdWs −
∫ tj

tj−1

(tj − s)αdWs

∣

∣

∣

∣

2

�
∣

∣

∣

∣

√
n

j−1
∑

k=1

ξk

∫ tk

tk−1

(

(ti − s)α − (tj − s)α
)

ds

∣

∣

∣

∣

2

+
∣

∣

∣

∣

√
n

i−1
∑

k=j

ξk

∫ tk

tk−1

(ti − s)αds

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∫ ti

ti−1

(ti − s)αdWs −
∫ tj

tj−1

(tj − s)αdWs

∣

∣

∣

∣

2

.



B. Horvath et al.

For the first term, since the sequence (ξk) is i.i.d. ∼ N (0, 1
n
), we can write

E

[∣

∣

∣

∣

√
n

j−1
∑

k=1

ξk

∫ tk

tk−1

(

(ti − s)α − (tj − s)α
)

ds

∣

∣

∣

∣

2]

=
j−1
∑

k=1

∣

∣

∣

∣

∫ tk

tk−1

(

(ti − s)α − (tj − s)α
)

ds

∣

∣

∣

∣

2

≤
j−1
∑

k=1

∣

∣

∣

∣

∫ tk

tk−1

(ti − tj )
αds

∣

∣

∣

∣

2

≤ j − 1

n2
(ti − tj )

2α � (ti − tj )
2α.

For the second term, we have by Jensen’s inequality that

E

[∣

∣

∣

∣

√
n

i−1
∑

k=j

ξk

∫ tk

tk−1

(ti − s)αds

∣

∣

∣

∣

2]

=
i−1
∑

k=j

∣

∣

∣

∣

∫ tk

tk−1

(ti − s)αds

∣

∣

∣

∣

2

≤
i−1
∑

k=j

∫ tk

tk−1

(ti − s)2αds

=
∫ ti−1

tj−1

(ti − s)2αds

= (ti − tj−1)
2α+1 − (ti − ti−1)

2α+1

2α + 1

= 1

2α + 1

(

(

ti − tj + 1

n

)2α+1 − 1

n2α+1

)

� (ti − tj )
2α+1

2α + 1
.
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Finally, for the last term,

E

[∣

∣

∣

∣

∫ ti

ti−1

(ti − s)αdWs −
∫ tj

tj−1

(tj − s)αdWs

∣

∣

∣

∣

2]

= E

[∣

∣

∣

∣

∫ tj

tj−1

(

(ti − s)α − (tj − s)α
)

dWs

+
∫ ti

tj

(ti − s)αdWs −
∫ ti−1

tj−1

(ti − s)αdWs

∣

∣

∣

∣

2]

� E

[∣

∣

∣

∣

∫ tj

tj−1

(

(ti − s)α − (tj − s)α
)

dWs

∣

∣

∣

∣

2]

+ E

[∣

∣

∣

∣

∫ ti

tj

(ti − s)αdWs

∣

∣

∣

∣

2]

+ E

[∣

∣

∣

∣

∫ ti−1

tj−1

(ti − s)αdWs

∣

∣

∣

∣

2]

= C

(∫ tj

tj−1

(

(ti − s)α − (tj − s)α
)2ds +

∫ ti

tj

(ti − s)2αds +
∫ ti−1

tj−1

(ti − s)2αds

)

≤ C

(∫ tj

tj−1

(

(ti − s)α − (tj − s)α
)2

ds + (ti − tj )
2α+1

2α + 1
+ (ti−1 − tj−1)

2α+1

2α + 1

)

≤ C

(∫ tj

tj−1

(ti − tj )
2αds + 2

(ti − tj )
2α+1

2α + 1

)

� (ti − tj )
2α+1.

Thus by standard moment properties of Gaussian random variables (see Boucheron
et al. [14, Theorem 2.1]), we obtain

E[|˜GαWn(ti) − ˜GαWn(tj )|2p] � σ̃ 2p � (ti − tj )
2pα+p,

which gives the desired result. �

We further note that Proposition 4.1 and Theorem 2.11 ensure the weak conver-
gence of the log-stock price for the hybrid scheme as well.

Remark 4.2 Proposition 4.1 may easily be extended to a d-dimensional Brownian mo-
tion W (for example for multifactor volatility models), also providing a weak conver-
gence result for the d-dimensional version of the hybrid scheme recently developed
by Heinrich et al. [37].

4.2 Application to fractional binomial trees

We consider a binomial setting for the Riemann–Liouville fractional Brownian mo-
tion GH−1/2W with g(u) := uH−1/2, H ∈ (0, 1), for which Theorem 3.8 pro-
vides a weakly converging sequence. On the partition Tn and with a Bernoulli se-
quence (ζi)i=1,...,n satisfying P[ζi = 1] = P[ζi = −1] = 1

2 for all i (satisfying the
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assumption of Theorem 2.11), the approximating sequence reads

(GH−1/2Wn)(ti) := 1√
n

i
∑

k=1

ζk(ti − tk−1)
H−1/2 for i = 0, . . . , n.

Figure 1 shows a fractional binomial tree structure for H = 0.75 and H = 0.1. De-
spite being symmetric, such trees cannot be recombining due to the (non-Markovian)
path-dependent nature of the process. It might be possible in principle to modify
the tree at each step to make it recombining, following the procedure developed
in Akyıldırım et al. [1] for Markovian stochastic volatility models. This is not so
straightforward, though, and requires a thorough analysis which we leave for future
research.

Fig. 1 Binomial tree for the
Riemann–Liouville fractional
Brownian motion with n = 5
discretisation points for
H = 0.75 (top) and H = 0.1
(bottom)
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4.3 Monte Carlo

Theorem 2.11 introduces the theoretical foundations for Monte Carlo methods (in
particular for path-dependent options) for rough volatility models. In this section, we
give a general and easy-to-understand recipe to implement the class of rough volatil-
ity models (2.3). For the numerical recipe, we consider the general time partition
T := {ti = iT

n
: i = 0, 1, . . . , n} on [0, T ] with T > 0.

Algorithm 4.3

1) Simulate for j = 1, . . . ,M and i = 1, . . . , n random variables ξj,i , i.i.d., and
ζj,i , i.i.d., all ∼ N (0, 1) and with corr(ξj,i , ζj,i ) = ρ.

2) Simulate M paths of Yn via

Y
j
n (ti) = T

n

i
∑

k=1

b
(

Y
j
n (tk−1)

)+ T√
n

i
∑

k=1

a
(

Y
j
n (tk−1)

)

ζj,k

for i = 1, . . . , n and j = 1, . . . ,M . Here Y
j
n (ti) denotes the j th path Yn evaluated at

the time point ti , which is different from the notation Y
j
n in the theoretical framework

above, but should not create any confusion. We also compute, for i = 1, . . . , n and
j = 1, . . . ,M ,

�Y
j
n (ti) := Y

j
n (ti) − Y

j
n (ti−1).

3) Simulate M paths of the fractional driving process ((GαYn)(t))t∈T using

(GαYn)
j (ti) :=

i
∑

k=1

g(ti−k+1)�Y
j
n (tk) =

i
∑

k=1

g(tk)�Y
j
n (ti−k+1)

for i = 1, . . . , n and j = 1, . . . ,M . The complexity of this step is in general of the or-
der O(n2) (see Appendix B for details). However, it is easily implemented by using dis-
crete convolutions with complexity O(n log n) (see Algorithm B.4 in Appendix B for
details in the implementation). With g :=(g(ti))i=1,...,n and �Y

j
n :=(�Y

j
n (ti))i=1,...,n

for j = 1, . . . ,M , we can write (GαYn)
j (T ) =

√

T
n
(g ∗ �Y

j
n ) for j = 1, . . . ,M ,

where ∗ represents the discrete convolution operator.
4) Use the forward Euler scheme to simulate, for i = 1, . . . , n and j = 1, . . . , M ,

the log-stock process as

Xj(ti) = Xj(ti−1) − 1

2

T

n
�(GαYn)

j (ti−1) +
√

T

n

√

�(GαYn)j (ti−1) ξj,i .

Remark 4.4 1) When Y = W , we may skip Step 2 in Algorithm 4.3 and replace

�Y
j
n (ti) by

√

T
n
ζi,j in Step 3.

2) Step 3 may be replaced by the hybrid scheme from [10] only when Y = W .
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Antithetic variates in Algorithm 4.3 are easy to implement as it suffices to consider
for j = 1, . . . ,M the uncorrelated random vectors ζj := (ζj,1, ζj,2, . . . , ζj,n) and
ξj := (ξj,1, ξj,2, . . . , ξj,n). Then (ρξj+ρζj , ξj ), (ρξj−ρζj , ξj ), (−ρξj − ρζj ,−ξj )

and (−ρξj + ρζj ,−ξj ) for j = 1, . . . ,M constitute the antithetic variates, which
significantly improves the performance of Algorithm 4.3 by reducing memory re-
quirements, reducing variance and accelerating execution by exploiting symmetry of
the antithetic random variables.

4.3.1 Enhancing the performance

A standard practice in Monte Carlo simulation is to match moments of the approxi-
mating sequence with the target process. In particular, when the process is Gaussian,
matching first and second moments suffices. We only illustrate this approximation for
Brownian motion: the left-point approximation (3.4) (with Y = W ) may be modified
to match moments as

(GαW)(ti) ≈ 1

σ
√

n

i
∑

k=1

g(t∗k )ζk for i = 0, . . . , n, (4.1)

where t∗k is chosen optimally. The first two moments of GαW read

E[(GαW)(t)] = 0, Var[(GαW)(t)] =
∫ t

0
g(t − s)2ds.

The first moment of the approximating sequence (4.1) is always zero, and the second
moment reads

Var

[

1

σ
√

n

j−1
∑

k=1

g(t∗k )ζk

]

= 1

n

j−1
∑

k=1

g(t∗k )2.

Equating theoretical and approximating variances gives 1
n
g(t∗k )2 = ∫ tk

tk−1
g(t − s)2ds

for k = 1, . . . , n, so that the optimal evaluation point can be computed via

g(t∗k ) =
√

n

∫ tk

tk−1

g(t − s)2ds for k = 1, . . . , n. (4.2)

With the optimal evaluation point, the scheme is still a convolution so that Algo-
rithm B.4 in Appendix B can still be used for faster computations. In the Riemann–
Liouville fractional Brownian motion case, g(u) = uH−1/2 and the optimal point can
be computed in closed form as

t∗k =
(

n

2H

(

(t − tk−1)
2H − (t − tk)

2H
)

)1/(2H−1)

for k = 1, . . . , n.
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Proposition 4.5 The moment matching sequence (̂GαWn)n≥1 is defined as

̂GαWn(t) := ̂GαWn

(nt�
n

)

+ (nt − nt�)
(

̂GαWn

(nt� + 1

n

)

− ̂GαWn

(nt�
n

)

)

(4.3)

for t ∈ I, where

̂GαWn(ti) :=
i
∑

k=1

ξk

√

n

∫ tk

tk−1

g(ti − s)2ds (4.4)

with (ξk)k≥1 an i.i.d. family of centered sub-Gaussian random variables satisfying

E[ξ2
k ] = 1

n
(namely, P[|ξk| > x] ≤ Ce−vx2

for all x > 0 and some C, v > 0). Then

weak convergence to GαW holds in (Cα+1/2, ‖ · ‖α+1/2) for α ∈ (− 1
2 , 1

2 ).

Proof Finite-dimensional convergence follows from the central limit theorem as the
target process is centered Gaussian; thus convergence of the covariance matrices is
enough. It then suffices to prove that the approximating sequence is tight in the de-
sired space, which in view of Theorem 3.4 can be deduced by establishing the control

E[|̂GαWn(ti) − ˜GαWn(tj )|2p] ≤ C|ti − tj |2pα+p

for all ti , tj ∈ Tn, for p ≥ 1 and some constant C ≥ 0. We have

σ̃ 2 := E
[(

̂GαWn(ti) − ̂GαWn(tj )
)2]

= E
[(

̂GαWn(ti)
)2]+ E

[(

̂GαWn(tj )
)2]− 2E[̂GαWn(ti)̂GαWn(tj )].

We note that

E
[(

̂GαWn(ti)
)2] =

i
∑

k=1

∣

∣

∣

∣

√

∫ tk

tk−1

g(ti − s)2ds

∣

∣

∣

∣

2

=
∫ ti

0
g(ti −s)2ds = E

[(

GαW(ti)
)2]

,

and by Cauchy–Schwarz, we also have

E[̂GαWn(ti)̂GαWn(tj )] =
ti∧tj
∑

k=1

√

∫ tk

tk−1

g(ti − s)2ds

∫ tk

tk−1

g(tj − s)2ds

≥
∫ ti∧tj

0
g(ti − s)g(tj − s)ds

= E[GαW(ti)GαW(tj )].
We then obtain σ̃ 2 ≤ E[|GαW(ti)−GαW(tj )|2]. Finally, ˜GαWn(ti)−˜GαW(tj ) is sub-
Gaussian as a linear combination of sub-Gaussian random variables, and the Gauss-
ian moment inequality (see Boucheron et al. [14, Theorem 2.1]) with the variance
estimate σ̃ 2 yields

E[|̂GαWn(ti) − ̂GαW(tj )|2p] ≤ E[|GαW(ti) − GαW(tj )|2p] ≤ ˜C|ti − tj |2pα+p.�
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4.3.2 Reducing variance

As Bayer et al. [6] and Bennedsen et al. [10] pointed out, a major drawback in sim-
ulating rough volatility models is the very high variance of the estimators, so that a
large number of simulations are needed to produce a decent price estimate. Never-
theless, the rDonsker scheme admits a very simple conditional expectation technique
which reduces both memory requirements and variance while also admitting anti-
thetic variates. This approach is best suited for calibrating European type options.
We consider FB

t = σ(Bs : s ≤ t) and FW
t = σ(Ws : s ≤ t), the natural fil-

trations generated by the Brownian motions B and W . In particular, the conditional
variance process (Vt |FW

t ) is deterministic. As discussed by Romano and Touzi [64]
and recently adapted to the rBergomi case by McCrickerd and Pakkanen [54], we can
decompose the stock price process as

eXt = E
(

ρ

∫ t

0

√

�(GαY )(s) dWs

)

E
(

ρ

∫ t

0

√

�(GαY )(s) dW⊥
s

)

=: eX
||
t eX⊥

t

and notice that

Xt |(FW
t ∨ FB

0 ) ∼ N
(

X
||
t − ρ2

∫ t

0
�(GαY )(s)ds, ρ2

∫ t

0
�(GαY )(s)ds

)

.

Thus exp(Xt ) becomes lognormal and the Black–Scholes closed-form formulae are
valid here (European, barrier options, maximum, etc.). The advantage of this ap-
proach is that the orthogonal Brownian motion W⊥ is completely unnecessary for
the simulation; hence the generation of random numbers is reduced to a half, yield-
ing proportional memory saving. Not only do we get this, but this simple trick also
reduces the variance of the Monte Carlo estimate; hence fewer simulations are needed
to obtain the same precision. The following algorithm implements this idea, assuming
that Y = W .

Algorithm 4.6 On the equidistant grid T :

1) Simulate i.i.d. random variables ζj,i ∼ N (0, 1) and create antithetic variates
−ζj,i for j = 1, . . . ,M/2, i = 1, . . . , n.

2) Simulate M paths of the fractional driving process GαW using discrete convo-
lution (see Algorithm B.4 in Appendix B for details) to get

(GαW)j (T ) =
√

T

n
(g ∗ ζj ), j = 1, . . . ,M,

and store in memory ρ2
∫ T

0 (GαW)j (s)ds ≈ ρ2 T
n

∑n−1
k=0(GαW)j (tk) =: �j for each

j = 1, . . . ,M .
3) Use the forward Euler scheme to simulate for i = 1, . . . , n, j = 1, . . . ,M the

log-stock process as

Xj(ti) = Xj(ti−1) − ρ2

2

T

n
�(GαW)j (ti−1) + ρ

√

T

n

√

�(GαW)j (ti−1) ζj,i .
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4) Finally, we may compute any option price using the Black–Scholes formula.
For instance, the price of a call option with strike K and maturity T ∈ I would be
given by Cj (K) = exp(Xj (T ))N (d

j

1 ) − KN (d
j

2 ) for j = 1, . . . ,M , with d
j

1,2 given

by d
j

1 := 1√
�j

(Xj (T ) − log K + 1
2�j) and d

j

2 = d
j

1 − √
�j . Thus the output of the

model would be C(K) = 1
M

∑M
k=1 Cj (K).

The algorithm is easily adapted to general diffusions Y as drivers of the volatility
(Algorithm 4.3, Step 2). Algorithm 4.3 is obviously faster than Algorithm 4.6, es-
pecially when using control variates. Nevertheless, with the same number of paths,
Algorithm 4.6 remarkably reduces the Monte Carlo variance, meaning in turn that
fewer simulations are needed, making it very competitive for calibration.

4.4 Numerical example: rough Bergomi model

Figures 2–5 perform a numerical analysis of the Monte Carlo convergence as a func-
tion of n. We observe that the lower H , the larger n needs to be to achieve conver-
gence. However, we also observe that for the Cholesky, rDonsker (naive and moment
match) and hybrid schemes and H ≥ 0.1, with n = 252, we already achieve a pre-
cision of the order 10−4, which is equivalent to a basis point in financial terms. For
H < 0.1, we might require n larger than 252 if precision is required beyond 10−4.
We also observe in Fig. 5 that the naive rDonsker approximation converges extremely
slowly for small H . Additionally, Figs. 6–11 measure the price estimations compared
to the Cholesky method which is taken as benchmark. The hybrid scheme tends to

Fig. 2 Rough Bergomi call option price convergence using the Cholesky method with ξ0 = 0.04, ν = 2.3,
ρ = −0.9, S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates. Absolute error represents the
difference between subsequent approximations, where n represents the time grid size. For n = 252, the
previous discretisation is n = 126
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Fig. 3 Rough Bergomi call option price convergence using the hybrid scheme with ξ0 = 0.04, ν = 2.3,
ρ = −0.9, S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates. Absolute error represents the
difference between subsequent approximations, where n represents the time grid size. For n = 252, the
previous discretisation is n = 126

Fig. 4 Rough Bergomi call option price convergence using rDonsker with moment matching and
ξ0 = 0.04, ν = 2.3, ρ = −0.9, S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates.
Absolute error represents the difference between subsequent approximations, where n represents the time
grid size. For n = 252, the previous discretisation is n = 126
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Fig. 5 Rough Bergomi call option price convergence using rDonsker method with left-point Euler and
ξ0 = 0.04, ν = 2.3, ρ = −0.9, S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates. Absolute
error represents the difference between subsequent approximations, where n represents the time grid size.
For n = 252, the previous discretisation is n = 126

Fig. 6 Rough Bergomi call option price comparison with H = 0.01, ξ0 = 0.04, ν = 2.3, ρ = −0.9,
S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates. Absolute error represents the difference
in price between different simulation schemes
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Fig. 7 Rough Bergomi call option price comparison with H = 0.05, ξ0 = 0.04, ν = 2.3, ρ = −0.9,
S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates. Absolute error represents the difference
in price between different simulation schemes

Fig. 8 Rough Bergomi call option price comparison with H = 0.10, ξ0 = 0.04, ν = 2.3, ρ = −0.9,
S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates. Absolute error represents the difference
in price between different simulation schemes
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Fig. 9 Rough Bergomi call option price comparison with H = 0.2, ξ0 = 0.04, ν = 2.3, ρ = −0.9,
S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates. Absolute error represents the difference
in price between different simulation schemes

Fig. 10 Rough Bergomi call option price comparison with H = 0.3, ξ0 = 0.04, ν = 2.3, ρ = −0.9,
S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates. Absolute error represents the difference
in price between different simulation schemes
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Fig. 11 Rough Bergomi call option price comparison with H = 0.4, ξ0 = 0.04, ν = 2.3, ρ = −0.9,
S0 = 1, T = 1 with 2 × 106 simulations and antithetic variates. Absolute error represents the difference
in price between different simulation schemes

be closer to this benchmark especially for H < 0.1. When H ≥ 0.1, for both
the hybrid scheme and rDonsker moment match, we observe an error less than 10−4

for n ≥ 252. It is noteworthy to mention that the naive rDonsker scheme has sub-
stantially worse convergence (at least an order of magnitude) than the other methods.
We note that the black lines in all figures represent the 99% Monte Carlo standard
deviations; hence errors below that threshold should be interpreted as noise.

4.5 Speed benchmark against Markovian stochastic volatility models

In this section, we benchmark the speed of the rDonsker scheme against the hy-
brid scheme and a classical Markovian stochastic volatility model using 105 sim-
ulations and averaging the speeds over 10 trials. For the former, we simulate the
rBergomi model from Bayer et al. [6], whereas for the latter, we use the classical
Bergomi [12] model using a forward Euler scheme in both volatility and stock price.
All three schemes are implemented in Cython to make the comparison fair and to
obtain speeds comparable to C++. Figure 12 shows that rDonsker is about 2 times
slower than the Markovian case, whereas the hybrid scheme is approximately 2.5
times slower, which is expected from the complexities of the two schemes. However,
it is remarkable that the O(n log n) complexity of the FFT stays almost constant with
the grid size n, and the computational time grows almost linearly as in the Markovian
case. We presume that this is the case since n � 10’000 is relatively small. Figure 12
also shows that rough volatility models can be implemented very efficiently and are
not much slower than classical stochastic volatility models.
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Fig. 12 Computational time benchmark using hybrid scheme, rDonsker and Markovian (forward Euler)
for different grid sizes n. The left-hand figure shows the ratios ‘hybrid scheme / Markovian case’ and
‘rDonsker scheme / Markovian case’, where the Markovian case refers to a classical Euler scheme in a non-
rough setting (i.e., with H = 1

2 ). The right-hand figure shows the computational time of the Markovian
case only, normalised at 1 for n = 300

Table 1 Recommendations for
the use of different numerical
schemes depending on the Hurst
parameter

H > 0.1 H ∈ [0.05, 0.1] H < 0.05

rDonsker choice depends on error sensitivity hybrid scheme

4.6 Implementation guidelines and conclusion

The numerical analysis above suggests some guidelines to implement rough volatility
models driven by TBSS processes of the form GH−1/2Y for some Itô diffusion Y .

Regarding empirical estimates, Gatheral et al. [32] suggest that H ≈ 0.15.
Bennedsen et al. [11] give an exhaustive analysis of more than 2000 equities for
which H ∈ [0.05, 0.2]. On the pricing side, Bayer et al. [6] and Jacquier et al. [40]
found that calibration yields H ∈ [0.05, 0.10]. Finally, Livieri et al. [50] found evi-
dence in options data that H ≈ 0.3. Despite the diverse ranges found so far, there is
a common agreement that H < 1

2 . Table 1 provides recommendations about when to
use which numerical scheme depending on the value of the Hurst parameter.

Remark 4.7 The rough Heston model by Guennoun et al. [33] is out of the scope of
the hybrid scheme. Moreover, any process of the form GαY for some Itô diffusion Y

under Assumption 2.3 is in general out of the scope of the hybrid scheme. This only
leaves the choice of using the rDonsker scheme, for which reasonable accuracy is
obtained at least for Hölder regularities greater than 0.05.

4.7 Bushy trees and binomial markets

Binomial trees have attracted a lot of attention from both academics and practitioners,
as their apparent simplicity provides easy intuition about the dynamics of a given as-
set. Not only this, but they are by construction arbitrage-free and allow finding prices
of path-dependent options, together with their hedging strategy. In particular, early
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exercise options, in particular Bermudan or American options, are usually priced
using trees as opposed to Monte Carlo methods. The convergence stated in Theo-
rem 2.11 lays the theoretical foundations to construct fractional binomial trees (note
that Bernoulli random variables satisfy the conditions of the theorem). Figure 1 al-
ready showed binomial trees for fractional Brownian motion, but we ultimately need
trees describing the dynamics of the stock price.

4.7.1 A binary market

We invoke Theorem 2.11 with the independent sequences (ζi)i=1,...,n, (ζ⊥
i )i=1,...,n

such that P[ζi = 1] = P[ζ⊥
i = 1] = P[ζi = 1] = P[ζ⊥

i = −1] = 1
2 for all i. We

further define on T for any i = 1, . . . , n the quantities

Bn(ti) =
√

T

n

i
∑

k=1

(ρζk + ρζ⊥
k ),

Yn(ti) = T

n

i
∑

k=1

b
(

Yn(tk−1)
)+

√

T

n

i
∑

k=1

σ
(

Yn(tk−1)
)

ζk,

the approximating sequences to B and Y in (2.3). The approximation for X is then
given by

Xn(ti) = Xn(ti−1) − 1

2

T

n

i
∑

k=1

�(GαYn)(tk) +
√

T

n

i
∑

k=1

√

�(GαYn)(tk) (ρζk + ρζ⊥
k ).

In order to construct the tree, we have to consider all possible permutations of the ran-
dom vectors (ζi)i=1,...,n and (ζ⊥

i )i=1,...,n. Since each random variable only takes two
values, this adds up to 4n possible combinations; hence the ‘bushy tree’ terminology.
When ρ ∈ {−1, 1}, the magnitude is reduced to 2n.

4.8 American options in rough volatility models

There is so far no available scheme for American options (or any early-exercise
options for that matter) under rough volatility models, but the fractional trees con-
structed above provide a framework to do so. In the Black–Scholes model, American
options can be priced using binomial trees by backward induction. A key ingredient
is the Snell envelope and the following representation.

Definition 4.8 Let (X(t))t∈I be an (Ft )t∈I-adapted process. The Snell envelope J
of X with respect to (Ft )t∈I is defined as J (X)(t) := esssup

τ∈ĨtE[X(τ)|Ft ] for all

t ∈ I, where Ĩt denotes the set of stopping times with values in [t, 1] ⊆ I.

Definition 4.9 For a log-strike k and price process S, write C(t) := e−rt (S(t) − ek)+
and P(t) := e−rt (ek −S(t))+. Then the discounted time-t prices of an American call
and put with log-strike k and maturity T are given by, respectively,

e−rtCa
t (k, T ) = J (C)(t), e−rtP a

t (k, T ) = J (P )(t).
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Preservation of weak convergence under the Snell envelope map is due to Muli-
nacci and Pratelli [55], who proved that convergence takes place in the Skorokhod
topology provided that the Snell envelope is continuous. In our setting, the scheme
for American options is justified by the following result. Recall that a filtration is said
to be immersed in a larger filtration if all local martingales in the smaller filtration are
also local martingales in the larger filtration.

Theorem 4.10 Let V and X in (2.3) be such that E[supt∈I eXt ] < ∞ and the nat-
ural filtration of X is immersed in the natural filtration of (B,W) from (2.3) and
(2.4). With the sequence (Xn)n≥1 converging in (D(I), dD) weakly to X, as per The-
orem 2.11, assume additionally that (Xn)n≥1 satisfies the conditions of Mulinacci
and Pratelli [55, Theorem 3.5]. Let S = eX and Sn = eXn . If for each n ≥ 1, Cn and
Pn are defined as in Definition 4.9 for the price process Sn, then (Sn,J (Cn),J (Pn))

converges in (D(I;R3), dD) weakly to (S,J (C),J (P )), where the Snell envelopes
are defined with respect to the natural filtrations of the corresponding price processes.

Proof By the continuous mapping theorem, the weak convergence of (Xn) implies
that (Sn, Cn, Pn) converges in (D(I;R3), dD) weakly to (S, C, P ). Because C and P

are continuous and E[supt∈I eXt ] < ∞, it follows from Karatzas and Shreve [43,
Theorem D.13] that for both J (C) and J (P ), the predictable finite-variation part
of the Doob–Meyer decomposition is continuous. Moreover, the assumption that the
natural filtration of X is immersed in that of (W,B) implies that also the martingale
part is continuous. Therefore J (C) and J (P ) are continuous processes. In view of
the additional assumptions, the claim now follows from [55, Theorem 5.5]. �

Mulinacci and Pratelli [55] also gave explicit conditions for weak convergence to
be preserved in the Markovian case. It is trivial to see that the pricing of American
options in the rough tree scheme coincides with the classical backward induction pro-
cedure. We consider a continuously compounded interest rate r and dividend yield d .

Algorithm 4.11 On the equidistant grid T :

1) Construct the binomial tree using the explicit construction in Sect. 4.7.1 and
obtain (S

j
t )t∈T ,j=1,...,4n .

2) The backward recursion for the American option price with payoff function
h( · ) is given by˜htN := h(StN ) and

˜hti := e(d−r)/n
E[˜hti+1 |Fti ] ∨ h(Sti ) for i = N − 1, . . . , 0,

where E[ · |Fti ] = 1
4 (˜h++

ti+1
+ ˜h+−

ti+1
+ ˜h−+

ti+1
+ ˜h−−

ti+1
) and ˜h±±

ti
represents the out-

come (ζi, ζ
⊥
i ) = (±1,±1) for the driving binomials, following the construction in

Sect. 4.7.1.
3) Finally,˜h0 is the price of the American option at the inception of the contract.

The main computational cost of the scheme is the construction of the tree in
Step 1). Once the tree is constructed, computing American prices for different op-
tions is a fast routine.
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4.8.1 Numerical example: rough Bergomi model

We note that, as proved by Gassiat [31, Theorem 1.1(1)], the price process in the
rough Bergomi model is a true martingale when ρ ≤ 0. We construct a rough volatil-

Fig. 13 rBergomi trees for different values of H , with (ν, ρ, ξ0) = (1, −1, 0.04) and 5 time steps

Fig. 14 rBergomi trees for different values of H , with (ν, ρ, ξ0) = (1, 1, 0.04) and 5 time steps
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ity tree for the rough Bergomi model (introduced in [6]) and check the accuracy of the
scheme. Figures 13 and 14 show the fractional trees for different values of H and for
ρ ∈ {−1, 1}. Both pictures show a markedly different behaviour, but as a common
property, we observe that as H tends to 1/2, the tree structure somehow becomes
simpler.

4.8.2 European options

Figure 15 displays volatility smiles obtained using the tree scheme. Even though the
time steps are not sufficient for small H , the fit remarkably improves when H ≥ 0.15,
and always remains inside the 95% confidence interval with respect to the hybrid
scheme. Moreover, the moment-matching approach from Sect. 4.3.1 shows a better
accuracy than the standard rDonsker scheme when H ≤ 0.1. In Fig. 16, a detailed
error analysis corroborates these observations: the relative error is smaller than 3%
for H ≥ 0.15.

Fig. 15 Implied volatility smiles with varying H , (ν, ρ, ξ0) = (1, −1, 0.04) and 24 time steps
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Fig. 16 Error analysis for the rDonsker moment-match tree for different values of H , with
(ν, ρ, ξ0) = (1, −1, 0.04) and 24 time steps

4.8.3 American options

In the context of American options, there is no benchmark to compare our result.
However, the accurate results found in the previous section (at least for H ≥ 0.15)
justify the use of trees to price American options. Figure 17 shows the output of
American and European put prices with interest rates equal to r = 5%. Interestingly,
the rougher the process (the smaller H ), the larger the difference between in-the-
money European and American options.
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Fig. 17 American and European put prices in the rough Bergomi model for different values of H and
(ν, ρ, ξ0) = (1, −1, 0.04) with 26 time steps

Appendix A: Riemann–Liouville operators

We review here fractional operators and their mapping properties. We follow closely
the excellent monograph by Samko et al. [65, Chap. 1], as well as some classical
results by Hardy and Littlewood [36]. However, we introduce a modification in their
definition, so that the condition f (0) = 0 is not necessary as opposed to the original
definition in [36].

A.1 Riemann–Liouville fractional operators

Definition A.1 For λ ∈ (0, 1), α ∈ (−λ, 1 −λ), the left Riemann–Liouville fractional
operator is defined on Cλ(I) as

(Iαf )(t) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
�(α)

∫ t

0
f (s)−f (0)

(t−s)1−α ds for α ∈ (0, 1 − λ),

( d
dt

I 1+αf )(t)

= 1
�(1+α)

d
dt

(
∫ t

0 (t − s)α(f (s) − f (0))ds) for α ∈ (−λ, 0).

(A.1)
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Theorem A.2 For any f ∈ Cλ(I) with λ ∈ (0, 1) and α ∈ (−λ, 1 − λ), we have
Iαf ∈ Cλ+α(I). In particular, there exists C > 0 such that |(Iαf )(t)| ≤ Ctα+λ for
any t ∈ I.

Proof We first consider α > 0. Then using the definition and f ∈ Cλ(I), we obtain

|(Iαf )(t)| = 1

�(α)

∣

∣

∣

∣

∫ t

0

f (u) − f (0)

(t − u)1−α
du|

≤ |f |λ
�(α)

∫ t

0

uλdu

(t − u)1−α

≤ �(2 + λ)|f |λ
(1 + λ)�(α + λ + 1)

tα+λ,

which proves the estimate for |Iαf |. Next we prove that Iαf ∈ Cλ+α(I). For this,
introduce φ(t) := f (t) − f (0) and consider t, t + h ∈ I with h > 0. Then

(Iαf )(t + h) − (Iαf )(t)

= 1

�(α)

(∫ t

−h

φ(t − u)

(u + h)1−α
du −

∫ t

0

φ(t − u)

u1−α
du

)

= φ(t)

�(1 + α)

(

(t + h)α − tα
)+ 1

�(α)

∫ 0

−h

φ(t − u) − φ(t)

(u + h)1−α
du

+ 1

�(α)

∫ t

0

(

(u + h)α−1 − uα−1)(φ(t − u) − φ(t)
)

du

=: J1 + J2 + J3. (A.2)

We first consider J1. If h > t , then

|J1| ≤ |f |λ
�(1 + α)

tλ
(

(t + h)α − tα
) ≤ Chλ+α.

On the other hand, when 0 < h < t , since (1 + u)α − 1 ≤ αu for u > 0, we get

|J1| ≤ |f |λ
�(1 + α)

tλ+α

∣

∣

∣

∣

(

1 + h

t

)α

− 1

∣

∣

∣

∣

≤ Chtλ+α−1 ≤ Chλ+α.

For J2, since f ∈ Cλ(I), we can write

|J2| ≤ |f |λ
�(α)

∫ 0

−h

|u|λ
(u + h)1−α

≤ Chλ+α.

Finally,

|J3| ≤ |f |λ
�(α)

∫ t

0
uλ
(

uα−1 − (u + h)α−1)du

= |f |λ
�(α)

hλ+α

∫ t/h

0
uλ
(

uα−1 − (u + 1)α−1)du.
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Hence if t ≤ h, then |J3| ≤ Chλ+α . Likewise, if t > h and λ + α < 1, then
|J3| ≤ Chλ+α since

|uα−1 − (u + 1)α−1| = uα−1
(

1 −
(

1 + 1

u

)α−1
)

≤ Cuα−2.

Thus we have shown that Iαf satisfies the (λ + α)-Hölder condition and belongs
to Cλ+α(I) in the case where α > 0. The conclusion for α < 0 follows by taking
g(u) := uα in the proof of Proposition 2.2 in Appendix C. �

Corollary A.3 For any λ ∈ (0, 1) and α ∈ (−λ, 1 − λ), Iα is a continuous operator
from Cλ(I) to Cλ+α(I).

Proof Clearly, Iα is a linear operator. From Theorem A.2, ‖Iαf ‖α+λ ≤ C‖f ‖λ since
|f |λ ≤ ‖f ‖λ. Therefore Iα is also bounded and hence continuous. �

Appendix B: Discrete convolution

Definition B.1 For a, b ∈ R
n, the discrete convolution operator ∗ : Rn × R

n → R
n

is defined as

(a ∗ b)i :=
i
∑

m=0

ambi−m, i = 0, . . . , n − 1.

When simulating GαW on the uniform partition T , the scheme (Algorithm 4.3,
Step 3) reads

(GαW)j (ti) =
i
∑

k=1

g(tk)ζj,k−i+1 for i = 1, . . . , n,

which has the form of the discrete convolution in Definition B.1. Rewritten in matrix
form,

⎛

⎜

⎜

⎜

⎝

g(t1) 0 . . . 0
g(t2) g(t1) . . . 0

...
...

. . . 0
g(tn) g(tn−1) . . . g(t1)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎝

ζ1
...

ζn

⎞

⎟

⎠
,

it is clear that this operation yields a complexity of the order O(n2), which can be
improved drastically.

Definition B.2 For a sequence c := (c0, c1, . . . , cn−1) ∈ C
n, the discrete Fourier

transform (DFT) is given by

̂f (c)[j ] :=
n−1
∑

k=0

ck exp

(

− 2iπjk

n

)

for j = 0, . . . , n − 1,
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and the inverse DFT of c is given by

f (c)[k] := 1

n

n−1
∑

j=0

cj exp

(

2iπjk

n

)

for k = 0, . . . , n − 1.

In general, both transforms require a computational effort of the order O(n2),
but the fast Fourier transform (FFT) algorithm by Cooley and Tukey [19] exploits
the symmetry and periodicity of complex exponentials of the DFT and reduces the
complexity of both transforms to O(n log n).

Theorem B.3 For a, b ∈ R
n, the identity (a ∗ b) = f (̂f (a) • ̂f (b)) holds, where • is

the pointwise multiplication.

This implies that the complexity of the discrete convolution reduces to O(n log n)

by FFT.

Algorithm B.4 On the equidistant grid T = {ti = iT
n

: i = 0, 1, . . . , n}:
1) Draw i.i.d. random variables ζj,i ∼ N (0, 1) for j = 1, . . . ,M , i = 1, . . . , n.
2) Define g := (g(ti))i=1,...,n and ζj := (ζj,i)i=1,...,n for j = 1, . . . ,M .
3) Using the FFT, compute ϕj := ̂f (g) • ̂f (ζj ) for j = 1, . . . ,M .

4) Simulate M paths of GαW , using the FFT, as (GαW)j (T ) =
√

T
n
f (ϕj ) for

j = 1, . . . ,M .

In Step 2 in Algorithm B.4, we may replace the evaluation points g by any optimal
evaluation point (g(t∗i ))ni=1 as in (4.2). Many packages offer a direct implementation
of the discrete convolution such as numpy.convolve in Python. The user then
only needs to pass the arguments g and ξj , and Steps 3 and 4 in Algorithm B.4 are
computed automatically (using efficient FFT techniques) by the function. Although
the FFT step is the heaviest computation in the simulation of rough volatility models,
the actual time grid T is not especially large (n � 1000). Hence the fastest FFT for
very large n is not essential as the implementation is run on smaller time grids. In this
aspect, we find that numpy.convolve is a very competitive implementation.

Appendix C: Proof of Proposition 2.2

In this section, we present a proof of Proposition 2.2. We first consider the case
α ∈ (−λ, 0) with 0 < λ ≤ 1. Fix f ∈ Cλ(I) and g ∈ Lα . As our first step, we
derive a useful representation akin to Samko et al. [65, Eq. (13.1)], but for the opera-
tor Gα associated to g, which amounts to Gαf (0) = 0 and

Gαf (t) = (f (t) − f (0)
)

g(t) −
∫ t

0

(

f (t) − f (s)
) d

dt
g(t − s)ds (C.1)

for t ∈ (0, 1] (note that g(0) need not be defined, but the assumptions on f and g

yield Gαf (0) = 0 by its definition in (2.1)). To show that (C.1) holds, we look at
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the difference quotients for the definition of Gαf in (2.1). For any t ∈ [0, 1) and any
small enough h > 0, a bit of rewriting leads to the equality

∫ t+h

0

(

f (s) − f (0)
)

g(t + h − s)ds −
∫ t

0

(

f (s) − f (0)
)

g(t − s)ds

=
∫ t

0

(

f (s) − f (t)
)(

g(t + h − s) − g(t − s)
)

ds

+ (f (t) − f (0)
)

(∫ t+h

0
g(t + h − s)ds −

∫ t

0
g(t − s)ds

)

+
∫ t+h

t

(

f (s) − f (t)
)

g(t + h − s)ds. (C.2)

In the second term on the right-hand side of (C.2), a change of variables gives

(

f (t)−f (0)
)

(∫ t+h

0
g(t+h−s)ds−

∫ t

0
g(t−s)ds

)

= (f (t)−f (0)
)

∫ 0

−h

g(t−r)dr.

Looking at the third term on the right-hand side of (C.2), using the assumptions
f ∈ Cλ and g ∈ Lα for the given λ and α, we get
∣

∣

∣

∣

∫ t+h

t

(

f (s) − f (t)
)

g(t + h − s)ds

∣

∣

∣

∣

≤
∫ t+h

t

C1h
λC2h

αds ≤ C0h
1+λ+α = o(h)

as h tends to zero, since λ + α ∈ (0, 1). As for the first term, we have
∣

∣

∣

∣

(

f (t) − f (s)
)g(t + h − s) − g(t − s)

h

∣

∣

∣

∣

≤ C1|t − s|λ
h

∫ t−s+h

t−s

g′(r)dr

≤ C1(t − s)λC2|t − s|α−1

= C0(t − s)λ+α−1

for all s ∈ (0, t), h > 0, where λ + α − 1 ∈ (−1, 0); so the right-hand side is
in L1([0, t]) and we can apply the dominated convergence theorem. Specifically, di-
viding by h in (C.2) and sending h to zero, we obtain (C.1) in the limit by using
dominated convergence on the first term, Lebesgue’s differentiation theorem on the
second, and noting that the third term vanishes.

Having established (C.1), we use it to obtain the desired Hölder estimates. We be-
gin with the first term on the right-hand side of (C.1). Let φ(t) := (f (t) − f (0))g(t)

for t ∈ I, where we note that |(f (t)−f (0))g(t)| ≤ Ctλ+α with λ+α ∈ (0, 1) so that
φ(0) = 0 is well defined. Rewriting and using the assumptions f ∈ Cλ and g ∈ Lα

for the given λ and α, we get for every t ∈ I and h ∈ (0, 1 − t] that

|φ(t + h) − φ(t)| ≤ |f (t) − f (0)|
∫ t+h

t

|g′(r)|dr + |g(t + h)||f (t + h) − f (t)|

≤ C|f |λtλ+α(t + h)α
(

(t + h)−α − t−α
)+ C|f |λhλ+α

≤ C′|f |λhλ+α (C.3)
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where the last inequality follows by elementary considerations as in the arguments in
Muskhelishvili [56, Chap. 1, Sect. 6, item 5]. The case h ∈ [−t, 0] is analogous.

For the second term on the right-hand side of (C.1), we can follow a procedure
similar to the proof of Samko et al. [65, Lemma 13.1]. Defining

ϕ(t) :=
∫ t

0

(

f (t) − f (s)
) d

dt
g(t − s)ds =

∫ t

0

(

f (t) − f (t − r)
) d

dr
g(r)dr

and rewriting things, we arrive for any t ∈ I and h ∈ [−t, 1 − t] at

ϕ(t + h) − ϕ(t) =
∫ t

0

(

f (t) − f (t − r)
)(

g′(r + h) − g′(r)
)

dr

−
∫ t

0

(

f (t) − f (t − r)
)

g′(r + h)dr

+
∫ t

−h

(

f (t + h) − f (t − u)
)

g′(u + h)du

=
∫ t

0

(

f (t) − f (t − r)
)(

g′(r + h) − g′(r)
)

dr

−
∫ t

0

(

f (t + h) − f (t)
)

g′(r + h)dr

+
∫ 0

−h

(

f (t + h) − f (t − u)
)

g′(u + h)du

=: I1 + I2 + I3. (C.4)

Without loss of generality, we assume h > 0. For the first integral, a change of
variables gives

|I1| ≤ |f |λ
∫ t

0
rλ

∫ r+h

r

|g′′(u)|dudr

≤ C|f |λ
∫ t

0
rλ
(

rα−1 − (r + h)α−1)dr

= C|f |λhλ+α−1
∫ t

0

(

r

h

)λ(( r

h

)α−1 −
( r

h
+ 1
)α−1

)

dr

= C|f |λhλ+α

∫ t/h

0
uα+λ−1

(

1 −
(

1 + 1

u

)α−1
)

du

≤ C|f |λhλ+α

(∫ 1

0
uλ+α−1du + (1 − α)

∫ ∞

1
uλ+α−2du

)

,

where λ + α ∈ (0, 1); so the final two terms on the right-hand side are finite. In the
final line, we have used that the mapping y �→ −(1 + y)α−1 + (α − 1)y is concave
with a maximum value of −1 at y = 0.
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As regards the two remaining integrals I2 and I3, we see immediately that

|I2| ≤ C|f |λhλ

∫ ∞

0
(r + h)α−1dr = C

|α| |f |λhλ+α,

|I3| ≤ C|f |λ
∫ 0

−h

(u + h)λ+α−1du = C

|λ + α| |f |λhλ+α.

By linearity, the desired continuity of the operator Gα : Cλ(I) → Cλ+α(I) for
α ∈ (−λ, 0) now follows from (C.1), (C.3) and the three above estimates for (C.4).

It remains to consider α ∈ (0, 1 − λ). As before, recall 0 < λ ≤ 1 and fix
f ∈ Cλ(I) along with g ∈ Lα . Unlike above, s �→ d

dt
g(t − s) is now integrable

on I which makes things go through more easily; in particular, we can work directly
with the definition of Gαf in (2.1), applying arguments analogous to (C.4). The case
g(u) = uα is already covered by the proof of Theorem A.2. For a general g ∈ Gα ,
we can retrace those same steps except that in (A.2) and the subsequent estimates for
J1, J2 and J3, we must now invoke our control on g and its derivatives (similarly to
how we did it above for (C.4) and the subsequent estimates of I1, I2 and I3). This
completes the proof of Proposition 2.2. �
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