Skip to main content
Log in

Investment–consumption–insurance optimisation problem with multiple habit formation and non-exponential discounting

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

This paper is devoted to an investment–consumption and life insurance problem with habit formation and non-exponential discounting. General utility functions are employed to evaluate non-habitual consumption and bequest. Distinct from Liu et al. in (Math. Control Relat. Fields 10:761–783, 2020) for consumption habit and feedback control, we assume that past consumption and bequest amounts have an interaction in formulating their endogenous reference levels, and we seek open-loop controls for both the pre-commitment solution and the time-consistent solution. Since the model coefficients are allowed to be random, we use the stochastic maximum principle to solve our problems. For both the pre-commitment and the time-consistent solution, an analytical expression is obtained via a system of forward-backward stochastic differential equations. Additionally, when the model coefficients are Markovian, we show that our problem for open-loop control can also be reduced to solving a Hamilton–Jacobi–Bellman equation, and then we introduce a transformation method for solving the equation. In particular, we provide a semi-analytical solution with numerical results based on simulations for the constant relative risk aversion (CRRA) utility with hyperbolic discounting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ainslie, G.: Special reward: a behavioral theory of impulsiveness and impulse control. Psychol. Bull. 82, 463–496 (1975)

    Google Scholar 

  2. Alia, I.: A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Math. Control Relat. Fields 9, 541–570 (2019)

    MathSciNet  Google Scholar 

  3. Alonso-Carrera, J., Caballe, J., Raurich, X.: Aspirations, habit formation, and bequest motive. Econ. J. 117, 813–836 (2007)

    Google Scholar 

  4. Auerbach, A.J., Kotlikoff, L.J.: The adequacy of life insurance purchases. J. Financ. Intermed. 1, 215–241 (1991)

    Google Scholar 

  5. Azfar, O.: Rationalizing hyperbolic discounting. J. Econ. Behav. Organ. 38, 245–252 (1999)

    Google Scholar 

  6. Balbus, L., Reffett, K., Wozny, L.: On uniqueness of time-consistent Markov policies for quasi-hyperbolic consumers under uncertainty. J. Econ. Theory 176, 293–310 (2018)

    MathSciNet  Google Scholar 

  7. Bernheim, B.D., Forni, L., Gokhale, J., Kotlikoff, L.J.: The mismatch between life insurance holdings and financial vulnerabilities: evidence from the health and retirement study. Am. Econ. Rev. 93, 354–365 (2003)

    Google Scholar 

  8. Bilsen, S.V., Laeven, R.J.A.: Dynamic consumption and portfolio choice under prospect theory. Insur. Math. Econ. 91, 224–237 (2020)

    MathSciNet  Google Scholar 

  9. Bilsen, S.V., Bovenberg, A.L., Laeven, R.J.A.: Consumption and portfolio choice under internal multiplicative habit formation. J. Financ. Quant. Anal. 55, 2334–2371 (2019)

    Google Scholar 

  10. Bilsen, S.V., Laeven, R.J.A., Nijman, T.E.: Consumption and portfolio choice under loss aversion and endogenous updating of the reference level. Manag. Sci. 66, 3927–3955 (2020)

    Google Scholar 

  11. Björk, T., Khapko, M., Murgoci, A.: On time-inconsistent stochastic control in continuous time. Finance Stoch. 21, 331–360 (2017)

    MathSciNet  Google Scholar 

  12. Björk, T., Khapko, M., Murgoci, A.: Time-Inconsistent Control Theory with Finance Applications. Springer, Cham (2021)

    Google Scholar 

  13. Boyd, R., Richerson, P.: Culture and the Evolutionary Process. University of Chicago Press, Chicago (1985)

    Google Scholar 

  14. Boyle, P., Tan, K.S., Wei, P.Y., Zhuang, S.C.: Annuity and insurance choice under habit formation. Insur. Math. Econ. 105, 211–237 (2022)

    MathSciNet  Google Scholar 

  15. Caballe, J., Moro-Egido, A.I.: Effects of aspirations and habits on the distribution of wealth. Scand. J. Econ. 116, 1012–1043 (2014)

    Google Scholar 

  16. Campbell, R.A.: The demand for life insurance: an application of the economics of uncertainty. J. Finance 35, 1155–1172 (1980)

    Google Scholar 

  17. Cavalli-Sforza, L., Feldman, M.: Cultural Transmission and Evolution: A Quantitative Approach. Princeton University Press, Princeton (1981)

    Google Scholar 

  18. Chen, S., Li, G.B.: Time-inconsistent preferences, consumption, investment and life insurance decisions. Appl. Econ. Lett. 27, 392–399 (2020)

    Google Scholar 

  19. Chetty, R., Szeidl, A.: Consumption commitment and habit formation. Econometrica 84, 855–890 (2016)

    MathSciNet  Google Scholar 

  20. Constantinides, G.M.: Habit formation: a resolution of the equity premium puzzle. J. Polit. Econ. 98, 519–543 (1990)

    Google Scholar 

  21. Detemple, J.B., Karatzas, I.: Non-addictive habits: optimal consumption portfolio policies. J. Econ. Theory 113, 265–285 (2003)

    MathSciNet  Google Scholar 

  22. Detemple, J.B., Zapatero, F.: Asset prices in an exchange economy with habit formation. Econometrica 59, 1633–1657 (1991)

    Google Scholar 

  23. Detemple, J.B., Zapatero, F.: Optimal consumption-portfolio policies with habit formation. Math. Finance 2, 251–274 (1992)

    Google Scholar 

  24. Dynan, K.E., Skinner, J., Zeldes, S.P.: The importance of bequests and life-cycle saving in capital accumulation: a new answer. Am. Econ. Rev. 92, 274–278 (2002)

    Google Scholar 

  25. Ekeland, I., Mbodji, O., Pirvu, T.A.: Time-consistent portfolio management. SIAM J. Financ. Math. 3, 1–32 (2012)

    MathSciNet  Google Scholar 

  26. Englezos, N., Karatzas, I.: Utility maximization with habit formation: dynamic programming and stochastic PDEs. SIAM J. Control Optim. 48, 481–520 (2007)

    MathSciNet  Google Scholar 

  27. Hu, Y., Jin, H.Q., Zhou, X.Y.: Time-inconsistent stochastic linear-quadratic control. SIAM J. Control Optim. 50, 1548–1572 (2012)

    MathSciNet  Google Scholar 

  28. Hu, Y., Jin, H.Q., Zhou, X.Y.: Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium. SIAM J. Control Optim. 52, 1261–1279 (2017)

    MathSciNet  Google Scholar 

  29. Karatzas, I., Lehoczky, J.P., Sethi, S.P., Shreve, S.E.: Explicit solution of a general consumption/investment problem. Math. Oper. Res. 11, 261–294 (1986)

    MathSciNet  Google Scholar 

  30. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Optimal portfolio and consumption decisions for a “small investor” on a finite horizon. SIAM J. Control Optim. 25, 1557–1586 (1987)

    MathSciNet  Google Scholar 

  31. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    Google Scholar 

  32. Kotlikoff, L.J., Summers, L.H.: The role of intergenerational transfers in aggregate capital accumulation. J. Polit. Econ. 89, 706–732 (1981)

    Google Scholar 

  33. Kraft, H., Munk, C., Seifried, F.T., Wagner, S.: Consumption habits and humps. Econ. Theory 64, 305–330 (2017)

    MathSciNet  Google Scholar 

  34. Kraft, H., Seifried, F.T., Steffensen, M.: Consumption-portfolio optimization with recursive utility in incomplete markets. Finance Stoch. 17, 161–196 (2013)

    MathSciNet  Google Scholar 

  35. Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  36. Laibson, D.: Golden eggs and hyperbolic discounting. Q. J. Econ. 112, 443–477 (1997)

    Google Scholar 

  37. Laibson, D.: Life-cycle consumption and hyperbolic discount functions. Eur. Econ. Rev. 42, 861–871 (1998)

    Google Scholar 

  38. Liu, J.Z., Lin, L.Y., Yiu, K.F.C., Wei, J.Q.: Non-exponential discounting portfolio management with habit formation. Math. Control Relat. Fields 10, 761–783 (2020)

    MathSciNet  Google Scholar 

  39. Liu, J.Z., Wang, Y.K., Zhou, M.: Utility maximization with habit formation of interaction. J. Ind. Manag. Optim. 17, 1451–1469 (2021)

    MathSciNet  Google Scholar 

  40. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Google Scholar 

  41. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)

    MathSciNet  Google Scholar 

  42. Muellbauer, J.: Habits, rationality and myopia in the life cycle consumption function. Ann. Econ. Stat. 9, 47–70 (1988)

    MathSciNet  Google Scholar 

  43. Munk, C.: Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences. J. Econ. Dyn. Control 32, 3560–3589 (2008)

    MathSciNet  Google Scholar 

  44. Richard, S.F.: Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model. J. Financ. Econ. 2, 187–203 (1975)

    Google Scholar 

  45. Schroder, M., Skiadas, C.: An isomorphism between asset pricing models with and without linear habit formation. Rev. Financ. Stud. 15, 1189–1221 (2002)

    Google Scholar 

  46. Shen, Y., Wei, J.: Optimal investment–consumption–insurance with random parameters. Scand. Actuar. J. 2016, 37–62 (2016)

    MathSciNet  Google Scholar 

  47. Waldkirch, A., Ng, S., Cox, D.: Intergenerational linkages in consumption behavior. J. Hum. Resour. 39, 355–381 (2004)

    Google Scholar 

  48. Wang, N., Jin, Z., Siu, T.K., Qiu, M.: Household consumption–investment–insurance decisions with uncertain income and market ambiguity. Scand. Actuar. J. 2021, 832–865 (2021)

    MathSciNet  Google Scholar 

  49. Wei, J.Q.: Time-inconsistent optimal control problems with regime-switching. Math. Control Relat. Fields 7, 585–622 (2017)

    MathSciNet  Google Scholar 

  50. Wei, J.Q., Li, D.P., Zeng, Y.: Robust optimal consumption–investment strategy with non-exponential discounting. J. Ind. Manag. Optim. 16, 207–230 (2020)

    MathSciNet  Google Scholar 

  51. Yong, J.M.: A deterministic linear quadratic time-inconsistent optimal control problem. Math. Control Relat. Fields 1, 83–118 (2011)

    MathSciNet  Google Scholar 

  52. Yong, J.M.: Time-inconsistent optimal control problems and the equilibrium HJB equation. Math. Control Relat. Fields 2, 271–329 (2012)

    MathSciNet  Google Scholar 

  53. Yong, J.M.: Deterministic time-inconsistent optimal control problems – an essentially cooperative approach. Acta Math. Appl. Sin. Engl. Ser. 28, 1–30 (2012)

    MathSciNet  Google Scholar 

  54. Yong, J.M.: Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM J. Control Optim. 51, 2809–2838 (2013)

    MathSciNet  Google Scholar 

  55. Yong, J.M., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    Google Scholar 

  56. Yu, X.: Utility maximization with addictive consumption habit formation in incomplete semimartingale markets. Ann. Appl. Probab. 25, 1383–1419 (2015)

    MathSciNet  Google Scholar 

  57. Yu, X.: Optimal consumption under habit formation in markets with transaction costs and random endowments. Ann. Appl. Probab. 27, 960–1002 (2017)

    MathSciNet  Google Scholar 

  58. Zhao, Q., Shen, Y., Wei, J.Q.: Consumption-investment strategies with non-exponential discounting and logarithmic utility. Eur. J. Oper. Res. 238, 824–835 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We should like to thank the referees for insightful and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingzhen Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant 11771466.

Appendices

Appendix A: Proof of Lemma 4.7

For any fixed \(\bar{u}, u \in \mathcal{U} ( 0, {x}_{0} )\), by the continuity of \(\upsilon \), we obtain

$$\begin{aligned} & \lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon } \bigg| \mathbb{E} \bigg[ \int _{t}^{ t + \varepsilon } {e}^{ - \int _{t}^{s} { \mu }_{v} dv } \bigg( \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } - \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } \bigg) \big( {U}_{1} ( s, \bar{C}_{s} ) - {U}_{1} ( s, {C}_{s} ) \big) ds \bigg| \mathcal{F}_{t} \bigg] \bigg| \\ & \le \bigg( \lim _{\varepsilon \downarrow 0} \sup _{ s \in [ t, t + \varepsilon ] } \bigg| \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } - \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } \bigg| \bigg) \\ & \phantom{=:} \times \bigg( \lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon } \int _{t}^{ t + \varepsilon } \mathbb{E} \big[ | {U}_{1} ( s, \bar{C}_{s} ) | + | {U}_{1} ( s, {C}_{s} ) | \big| \mathcal{F}_{t} \big] ds \bigg) \\ & \le \bigg( \limsup _{ s \downarrow t } \bigg| \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } - \frac{ \upsilon ( t,t ) }{ \upsilon ( t,T ) } \bigg| + \limsup _{ s \downarrow t } \bigg| \frac{ \upsilon ( t,t ) }{ \upsilon ( t,T ) } - \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } \bigg| \bigg) \\ & \phantom{=:} \times \big( | {U}_{1} ( t, \bar{C}_{t} ) | + | {U}_{1} ( t, {C}_{t} ) | \big) \\ & = 0. \end{aligned}$$

Note that the right-continuity of \(\{ \mathbb{E} [ | {U}_{1} ( s, \bar{C}_{s} ) | + | {U}_{1} ( s, {C}_{s} ) | | \mathcal{F}_{t} ] \}_{ s \in [ t,T ] }\) follows from the dominated convergence theorem with the right-continuity of \((C, \bar{C})\) and the condition \(\mathbb{E} [ \sup _{ s \in [ t,T ] } | {U}_{1} ( s, \bar{C}_{s} ) | + \sup _{ s \in [ t,T ] } | {U}_{1} ( s, {C}_{s} ) | | \mathcal{F}_{t} ] < \infty \) from Definition 3.1. In the same manner,

$$\begin{aligned} \lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon } \bigg| \mathbb{E} \bigg[ &\int _{t}^{ t + \varepsilon } {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \bigg( \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } - \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } \bigg) \\ & \phantom{=:} \!\qquad \times {\mu }_{s} \big( {U}_{2} ( s, \bar{B}_{s} ) - {U}_{2} ( s, {B}_{s} ) \big) ds \bigg| \mathcal{F}_{t} \bigg] \bigg| = 0. \end{aligned}$$

It follows that

$$\begin{aligned} & \lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon } \big| \big( J ( t; \bar{u} ) - J ( t; \bar{u}^{ t, \varepsilon , u } ) \big) - \big( \tilde{J} ( t; \bar{u} ) - \tilde{J} ( t; \bar{u}^{ t, \varepsilon , u } ) \big) \big| \\ & \begin{aligned} \le \lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon } \bigg| \mathbb{E} \bigg[ & \int _{t}^{ t + \varepsilon } {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \bigg( \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } - \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } \bigg) \\ & \phantom{\int _{t}^{ t + \varepsilon } } \times \big( {U}_{1} ( s, \bar{C}_{s} ) - {U}_{1} ( s, {C}_{s} ) \big) ds \bigg| \mathcal{F}_{t} \bigg] \bigg| \end{aligned} \\ & \quad \begin{aligned} + \lim _{\varepsilon \downarrow 0} \frac{1}{\varepsilon } \bigg| \mathbb{E} \bigg[ & \int _{t}^{ t + \varepsilon } {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \bigg( \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } - \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } \bigg) \\ & \phantom{=:} \quad \, \times {\mu }_{s} \big( {U}_{2} ( s, \bar{B}_{s} ) - {U}_{2} ( s, {B}_{s} ) \big) ds \bigg| \mathcal{F}_{t} \bigg] \bigg| = 0. \end{aligned} \end{aligned}$$

If \(\bar{u}\) realises the maximum of \(\tilde{J} ( 0; \cdot )\) over \(\mathcal{U} ( 0, {x}_{0} )\), due to the dynamic programming principle, we conclude that \(\tilde{J} ( t; \bar{u} ) \ge \tilde{J} ( t; \bar{u}^{ t, \varepsilon , u } )\) ℙ-a.s. Hence,

$$ \liminf _{ \varepsilon \downarrow 0 } \frac{1}{\varepsilon } \big( J ( t; \bar{u} ) - J ( t; \bar{u}^{ t, \varepsilon , u } ) \big) = \liminf _{ \varepsilon \downarrow 0 } \frac{1}{\varepsilon } \big( \tilde{J} ( t; \bar{u} ) - \tilde{J} ( t; \bar{u}^{ t, \varepsilon , u } ) \big) \ge 0 \qquad \text{$\mathbb{P}$-a.s.}, $$

which means that \(\bar{u}\) is an open-loop Nash equilibrium control for Problem 4.3. □

Appendix B: Proof of (4.4) and (4.5)

We follow the same line of proof as for Yong and Zhou [55, Lemma 3.4.2]. Fix \(t \in [ 0,T )\) and an integer \(k > 0\). To prove (4.4) and (4.5), it suffices to show that there exists a constant \(K > 0\) such that

$$\begin{aligned} \sup _{ s \in [ t,T ] } \mathbb{E} \big[ | {x}_{s} |^{2k} \big| \mathcal{F}_{t} \big] \le K \bigg( & | {x}_{t} |^{2k} + \Big( \int _{t}^{T} \big( \mathbb{E} \big[ | {a}_{s} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } ds \Big)^{2k} \\ & + \Big( \int _{t}^{T} \big( \mathbb{E} \big[ | {b}_{s} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } ds \Big)^{k} \bigg) \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$
(B.1)

for \(d {x}_{s} = ( {A}_{s} {x}_{s} + {a}_{s} ) ds + ( {B}_{s} {x}_{s} + {b}_{s} ) d {W}_{s}\), where

  • \(A\) and \(B\) are \(\mathbb{F}\)-adapted, and \(| {A}_{s} |, | {B}_{s} | \le L\) for a.e. \(s \in [ 0,T ]\), ℙ-a.s.;

  • \(a, b \in \mathbb{L}_{\mathbb{F}}^{2k} ( [ t,T ] \times \Omega ; \mathbb{R} )\).

Consequently, with \(A := r + \eta \), \(B \equiv 0\) and \(L = \operatorname*{{\mathrm{ess}\sup}}_{ [ 0,T ] \times \Omega } | r + \eta |\), we obtain

$$ \frac{1}{ {\varepsilon }^{k} } \sup _{ s \in [ t,T ] } \mathbb{E} \big[ | {X}^{(1)}_{s} |^{2k} \big| \mathcal{F}_{t} \big] \le K \bigg( \frac{1}{\varepsilon } \int _{v}^{ v + \varepsilon } \big( \mathbb{E} \big[ | {\Pi }_{s} - \tilde{\Pi }_{s} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } ds \bigg)^{k} $$
(B.2)

and

$$\begin{aligned} & \frac{1}{ {\varepsilon }^{2k} } \sup _{ s \in [ t,T ] } \mathbb{E} \big[ | {X}^{(2)}_{s} |^{2k} \big| \mathcal{F}_{t} \big] \\ & \le K \bigg( \frac{1}{\varepsilon } \int _{v}^{ v + \varepsilon } \big( \mathbb{E} \big[ ( | {\Pi }_{s} - \tilde{\Pi }_{s} | + | {C}_{s} - \tilde{C}_{s} | + | {B}_{s} - \tilde{B}_{s} | )^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } ds \bigg)^{2k} \\ & \quad \times \max \bigg\{ \operatorname*{{\mathrm{ess}\sup}}_{ [ 0,T ] \times \Omega } | \theta |^{2k}, \operatorname*{{\mathrm{ess}\sup}}_{ [ 0,T ] \times \Omega } | \phi |^{2k}, \operatorname*{{\mathrm{ess}\sup}}_{ [ 0,T ] \times \Omega } | \varphi |^{2k} \bigg\} . \end{aligned}$$
(B.3)

Using the assumption that \(( \Pi - \tilde{\Pi } ) |_{ {S}_{\varepsilon } \times \Omega } =:\zeta \in \mathbb{L}^{2k}_{ \mathcal{F}_{v} } ( \Omega ; \mathbb{R} )\), the right-continuity of \(( C,B )\) and the dominated convergence theorem, we obtain (4.4) and (4.5).

Now we show the validity of (B.1). Applying Itô’s rule to \({x}_{s}^{2k}\), we obtain

$$\begin{aligned} \mathbb{E} \big[ | {x}_{s} |^{2k} \big| \mathcal{F}_{t} \big] & = | {x}_{t} |^{2k} + 2k \mathbb{E} \bigg[ \int _{t}^{s} {x}_{v}^{2k-1} ( {A}_{v} {x}_{v} + {a}_{v} ) dv \bigg| \mathcal{F}_{t} \bigg] \\ & \phantom{=:} + k (2k-1) \mathbb{E} \bigg[ \int _{t}^{s} {x}_{v}^{2k-2} ( {B}_{v} {x}_{v} + {b}_{v} )^{2} dv \bigg| \mathcal{F}_{t} \bigg] \\ & \le | {x}_{t} |^{2k} + 2k \mathbb{E} \bigg[ \int _{t}^{s} | {x}_{v} |^{2k-1} ( L | {x}_{v} | + | {a}_{v} | ) dv \bigg| \mathcal{F}_{t} \bigg] \\ & \phantom{=:} + 2k (2k-1) \mathbb{E} \bigg[ \int _{t}^{s} | {x}_{v} |^{2k-2} ( {L}^{2} | {x}_{v} |^{2} + | {b}_{v} |^{2} ) dv \bigg| \mathcal{F}_{t} \bigg] \\ & \le | {x}_{t} |^{2k} + 4 {k}^{2} (L^{2}+1) \mathbb{E} \bigg[ \int _{t}^{s} | {x}_{v} |^{2k} dv \bigg| \mathcal{F}_{t} \bigg] \\ & \phantom{=:} + 2k \mathbb{E} \bigg[ \int _{t}^{s} | {x}_{v} |^{2k-1} | {a}_{v} | dv \bigg| \mathcal{F}_{t} \bigg] \\ & \phantom{=:} + 2k ( 2k-1 ) \mathbb{E} \bigg[ \int _{t}^{s} | {x}_{v} |^{2k-2} | {b}_{v} |^{2} dv \bigg| \mathcal{F}_{t} \bigg] \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

Let \({K}_{0} := 4 {k}^{2} ( L^{2} + 1 ) > 4k \ge 4\). Then

$$\begin{aligned} \mathbb{E} \big[ | {x}_{s} |^{2k} \big| \mathcal{F}_{t} \big] \le | {x}_{t} |^{2k} + {K}_{0} \mathbb{E} \bigg[ \int _{t}^{s} ( & | {x}_{v} |^{2k} + | {x}_{v} |^{2k-1} | {a}_{v} | \\ & \!\!+ | {x}_{v} |^{2k-2} | {b}_{v} |^{2} ) dv \bigg| \mathcal{F}_{t} \bigg] \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$
(B.4)

Applying Young’s and Gronwall’s inequalities, we show the essential boundedness of \(( \mathbb{E} [ | {x}_{s} |^{2k} | \mathcal{F}_{t} ] )_{ s \in [ t,T ] }\) by

$$\begin{aligned} & \mathbb{E} \big[ | {x}_{s} |^{2k} \big| \mathcal{F}_{t} \big] \\ & \le | {x}_{t} |^{2k} + {K}_{0} \mathbb{E} \bigg[ \int _{t}^{s} \bigg( \frac{6k-3}{2k} | {x}_{v} |^{2k} + \frac{1}{2k} | {a}_{v} |^{2k} + \frac{1}{k} | {b}_{v} |^{2k} \bigg) dv \bigg| \mathcal{F}_{t} \bigg] \\ & \le | {x}_{t} |^{2k} {e}^{ \frac{6k-3}{2k} {K}_{0} ( s-t ) } + {K}_{0} \int _{t}^{s} {e}^{ \frac{6k-3}{2k} {K}_{0} ( v-t ) } \mathbb{E} \bigg[ \frac{1}{2k} | {a}_{v} |^{2k} + \frac{1}{k} | {b}_{v} |^{2k} \bigg| \mathcal{F}_{t} \bigg] dv \\ & \le {K}_{0} {e}^{ 3 {K}_{0} T } \bigg( | {x}_{t} |^{2k} + \int _{t}^{T} \mathbb{E} \big[ | {a}_{v} |^{2k} + | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] dv \bigg), \qquad \text{$\mathbb{P}$-a.s., $\forall s \in [ t,T ]$.} \end{aligned}$$

Let \(\delta := 1 / ( 6 {K}_{0} )\) and \({y}_{s} := ( \operatorname*{{\mathrm{ess}\sup}}_{ v \in [ t,s ] } \mathbb{E} [ | {x}_{v} |^{2k} | \mathcal{F}_{t} ] )^{ \frac{1}{2k} }\). For any \(s \in [ t, t + \delta ]\), it follows from (B.4) that

$$\begin{aligned} | {y}_{s} |^{2k} & \le | {y}_{t} |^{2k} + {K}_{0} \bigg( | {y}_{s} |^{2k} \delta + \int _{t}^{s} \big( \mathbb{E} \big[ | {x}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{2k-1}{2k} } \big( \mathbb{E} \big[ | {a}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } dv \\ & \phantom{\le | {y}_{t} |^{2k} + {K}_{0} \bigg( } + \int _{t}^{s} \big( \mathbb{E} \big[ | {x}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{k-1}{k} } \big( \mathbb{E} \big[ | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } dv \bigg) \\ & \le | {y}_{t} |^{2k} + {K}_{0} \bigg( | {y}_{s} |^{2k} \delta + | {y}_{s} |^{2k-1} \int _{t}^{s} \big( \mathbb{E} \big[ | {a}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } dv \\ & \phantom{\le | {y}_{t} |^{2k} + {K}_{0} \bigg( } + | {y}_{s} |^{2k-2} \int _{t}^{s} \big( \mathbb{E} \big[ | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } dv \bigg) \\ & \le | {y}_{t} |^{2k} + \bigg( {K}_{0} \delta + \frac{2k-1}{2k} \frac{1}{ {6}^{ \frac{2k}{2k-1} } } + \frac{k-1}{k} \frac{1}{ {6}^{ \frac{k}{k-1} } } \bigg) | {y}_{s} |^{2k} \\ & \phantom{=:} + \frac{1}{2k} \bigg( 6 {K}_{0} \int _{t}^{s} \!\! \big( \mathbb{E} \big[ | {a}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } dv \bigg)^{2k} + \frac{1}{k} \bigg( 6 {K}_{0} \int _{t}^{s} \!\! \big( \mathbb{E} \big[ | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } dv \bigg)^{k} \\ & \le | {y}_{t} |^{2k} + \frac{1}{2} | {y}_{s} |^{2k} + \frac{1}{2k} ( 6 {K}_{0} )^{2k} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {a}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } dv \bigg)^{2k} \\ & \phantom{=:} + \frac{1}{k} ( 6 {K}_{0} )^{k} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } dv \bigg)^{k} \qquad \text{$\mathbb{P}$-a.s.}, \end{aligned}$$

where the first and third inequalities follow from Hölder’s inequality and Young’s inequality, respectively. Let \({K}_{1} := ( 6 {K}_{0} )^{2k} / k = {24}^{2k} {k}^{4k-1} ( L^{2} + 1 )^{2k}\). Consequently, for \(s \in [ t, t + \delta ]\),

$$\begin{aligned} | {y}_{s} |^{2k} & \le 2 | {y}_{t} |^{2k} + {K}_{1} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {a}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } dv \bigg)^{2k} \\ & \phantom{=:} + {K}_{1} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } dv \bigg)^{k} \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

In the same manner, for \(s \in [ t + \delta , t + 2 \delta ]\), we can obtain

$$\begin{aligned} \mathbb{E} \big[ | {x}_{s} |^{2k} \big| \mathcal{F}_{t} \big] & \le {K}_{0} \mathbb{E} \bigg[ \int _{ t + \delta }^{s} ( | {x}_{v} |^{2k} + | {x}_{v} |^{2k-1} | {a}_{v} | + | {x}_{v} |^{2k-2} | {b}_{v} |^{2} ) dv \bigg| \mathcal{F}_{t} \bigg] \\ & \phantom{=:} + \mathbb{E} \big[ | {x}_{ t + \delta } |^{2k} \big| \mathcal{F}_{t} \big] \qquad \text{$\mathbb{P}$-a.s.}, \end{aligned}$$
$$\begin{aligned} | {y}_{s} |^{2k} & \le | {y}_{ t + \delta } |^{2k} + {K}_{0} \delta | {y}_{s} |^{2k} + {K}_{0} \mathbb{E} \bigg[ \int _{ t + \delta }^{s} \big( | {x}_{v} |^{2k-1} | {a}_{v} | + | {x}_{v} |^{2k-2} | {b}_{v} |^{2} \big) dv \bigg| \mathcal{F}_{t} \bigg] \\ & \le | {y}_{ t + \delta } |^{2k} + \frac{1}{2} | {y}_{s} |^{2k} + \frac{1}{2k} ( 6 {K}_{0} )^{2k} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {a}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } dv \bigg)^{2k} \\ & \phantom{=:} + \frac{1}{k} ( 6 {K}_{0} )^{k} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } dv \bigg)^{k} \qquad \text{$\mathbb{P}$-a.s.}, \end{aligned}$$

and hence

$$\begin{aligned} | {y}_{s} |^{2k} & \le 2 | {y}_{ t + \delta } |^{2k} + {K}_{1} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {a}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } dv \bigg)^{2k} \\ & \phantom{=:} + {K}_{1} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } dv \bigg)^{k} \\ & \le 4 | {y}_{t} |^{2k} + 3 {K}_{1} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {a}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } dv \bigg)^{2k} \\ & \phantom{=:} + 3 {K}_{1} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } dv \bigg)^{k} \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

We can do the same thing on \([ t + 2 \delta , t + 3 \delta ]\) and on \([ t + 3 \delta , t + 4 \delta ]\), and so on. Finally, we end up with

$$\begin{aligned} | {y}_{s} |^{2k} & \le {2}^{N} | {y}_{t} |^{2k} + ( {2}^{N} - 1 ) {K}_{1} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {a}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2k} } dv \bigg)^{2k} \\ & \phantom{=:} + ( {2}^{N} - 1 ) {K}_{1} \bigg( \int _{t}^{T} \big( \mathbb{E} \big[ | {b}_{v} |^{2k} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{k} } dv \bigg)^{k}, \qquad \text{$\mathbb{P}$-a.s., $\forall s \in [ t,T ]$,} \end{aligned}$$

where \(N := \min \{ n \in \mathbb{N}: n \ge 6 {K}_{0} (T-t) \}\) so that \((N-1) \delta < T-t \le N \delta \). Define \(K := {2}^{ 1 + 6k + 24 {k}^{2} ( L^{2} + 1 ) T } {3}^{2k} {k}^{4k-1} ( L^{2} + 1 )^{2k} = {2}^{ 1 + 6 {K}_{0} T } {K}_{1} > {2}^{N} {K}_{1}\). By the definition of \({y}_{s}\), we obtain the desired estimate (B.1).  □

Appendix C: Proof of Lemma 4.8

By the definition of \(J ( t; \cdot )\), we obtain

$$\begin{aligned} & J ( t; \tilde{u}^{ \varepsilon , u } ) - J ( t; \tilde{u} ) \\ & \begin{aligned} = \mathbb{E} \bigg[ & \int _{ {S}_{\varepsilon } } {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } \big( {U}_{1} ( s, {C}_{s} ) + {\mu }_{s} {U}_{2} ( s, {B}_{s} ) \\ & \phantom{\int _{ {S}_{\varepsilon } } {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } \big( } - {U}_{1} ( s, \tilde{C}_{s} ) - {\mu }_{s} {U}_{2} ( s, \tilde{B}_{s} ) \big) ds \\ & + {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \big( {U}_{3} ( T, {X}^{ t,x; \tilde{u}^{ \varepsilon , u } }_{T} ) - {U}_{3} ( T, {X}^{ t,x; \tilde{u} }_{T} ) \big) \bigg| \mathcal{F}_{t} \bigg] \qquad \text{$\mathbb{P}$-a.s.,} \end{aligned} \end{aligned}$$

where

$$\begin{aligned} & {U}_{3} ( T, {X}^{ t,x; \tilde{u}^{ \varepsilon , u } }_{T} ) - {U}_{3} ( T, {X}^{ t,x; \tilde{u} }_{T} ) \\ & = {U}_{3;x} ( T, {X}^{ t,x; \tilde{u} }_{T} ) ( {X}^{(1)}_{T} + {X}^{(2)}_{T} ) + \frac{1}{2} {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) ( {X}^{(1)}_{T} + {X}^{(2)}_{T} )^{2} \\ & \quad + \frac{1}{2} ( {X}^{(1)}_{T} + {X}^{(2)}_{T} )^{3} \int _{0}^{1} {\xi }^{2} {U}_{3;xxx} \big( T, \xi {X}^{ t,x; \tilde{u} }_{T} + ( 1 - \xi ) {X}^{ t,x; \tilde{u}^{ \varepsilon , u } }_{T} \big) d \xi . \end{aligned}$$

By Young’s inequality, (B.2) and (B.3) with \(k = 1,2\), we obtain

$$\begin{aligned} & \mathbb{E} \big[ | {U}_{3;x} ( T, {X}^{ t,x; \tilde{u} }_{T} ) | ( | {X}^{(1)}_{T} | + | {X}^{(2)}_{T} | ) + | {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) | | {X}^{(1)}_{T} |^{2} \big| \mathcal{F}_{t} \big] \\ & \le \mathbb{E} \big[ | {U}_{3;x} ( T, {X}^{ t,x; \tilde{u} }_{T} ) |^{2} \big| \mathcal{F}_{t} \big] + \frac{1}{2} \mathbb{E} \big[ | {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) |^{2} \big| \mathcal{F}_{t} \big] \\ & \quad + \frac{1}{2} \mathbb{E} \big[ | {X}^{(1)}_{T} |^{2} \big| \mathcal{F}_{t} \big] + \frac{1}{2} \mathbb{E} \big[ | {X}^{(2)}_{T} |^{2} \big| \mathcal{F}_{t} \big] + \frac{1}{2} \mathbb{E} \big[ | {X}^{(1)}_{T} |^{4} \big| \mathcal{F}_{t} \big] < \infty \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

Applying Hölder’s inequality, (4.4) and (4.5) with \(k = 2\), we obtain

$$\begin{aligned} & \lim _{ \varepsilon \downarrow 0 } \frac{1}{\varepsilon } \big| \mathbb{E} [ {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) {X}^{(1)}_{T} {X}^{(2)}_{T} | \mathcal{F}_{t} ] \big| \\ & \le \big( \mathbb{E} \big[ | {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) |^{2} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2} } \Big( \limsup _{ \varepsilon \downarrow 0 } \mathbb{E} \big[ | {X}^{(1)}_{T} |^{4} \big| \mathcal{F}_{t} \big] \Big)^{ \frac{1}{4} } \\ & \phantom{=:} \times \bigg( \limsup _{ \varepsilon \downarrow 0 } \frac{1}{ {\varepsilon }^{4} } \mathbb{E} \big[ | {X}^{(2)}_{T} |^{4} \big| \mathcal{F}_{t} \big] \bigg)^{ \frac{1}{4} } \\ & = 0 \qquad \text{$\mathbb{P}$-a.s.}, \end{aligned}$$

and

$$\begin{aligned} & \lim _{ \varepsilon \downarrow 0 } \frac{1}{\varepsilon } \big| \mathbb{E} [ {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) ( {X}^{(2)}_{T} )^{2} | \mathcal{F}_{t} ] \big| \\ & \le \big( \mathbb{E} \big[ | {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) |^{2} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2} } \bigg( \limsup _{ \varepsilon \downarrow 0 } \frac{1}{ {\varepsilon }^{2} } \mathbb{E} \big[ | {X}^{(2)}_{T} |^{4} \big| \mathcal{F}_{t} \big] \bigg)^{ \frac{1}{2} } = 0 \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

Applying the convexity of \({U}_{3;x} ( T, \cdot )\), Hölder’s and Minkowski’s inequalities, (4.4) and (4.5) with \(k = 2\), and the dominated convergence theorem, we have

$$\begin{aligned} & \lim _{ \varepsilon \downarrow 0 } \frac{1}{\varepsilon } \bigg| \mathbb{E} \bigg[ ( {X}^{(1)}_{T} + {X}^{(2)}_{T} )^{3} \int _{0}^{1} { \xi }^{2} {U}_{3;xxx} \big( T, \xi {X}^{ t,x; \tilde{u} }_{T} + ( 1 - \xi ) {X}^{ t,x; \tilde{u}^{ \varepsilon , u } }_{T} \big) d \xi \bigg| \mathcal{F}_{t} \bigg] \bigg| \\ & \begin{aligned} \le \lim _{ \varepsilon \downarrow 0 } \frac{1}{\varepsilon } \mathbb{E} \bigg[ & | {X}^{(1)}_{T} + {X}^{(2)}_{T} |^{2} \\ & \times \Big| ( {X}^{(1)}_{T} + {X}^{(2)}_{T} ) \int _{0}^{1} {U}_{3;xxx} \big( T, \xi {X}^{ t,x; \tilde{u} }_{T} + ( 1 - \xi ) {X}^{ t,x; \tilde{u}^{ \varepsilon , u } }_{T} \big) d \xi \Big| \bigg| \mathcal{F}_{t} \bigg] \end{aligned} \\ & \begin{aligned} \le \lim _{ \varepsilon \downarrow 0 } \bigg( & \frac{1}{\varepsilon } \big( \mathbb{E} \big[ | {X}^{(1)}_{T} + {X}^{(2)}_{T} |^{4} \big| \mathcal{F}_{t} \big] \big)^{ \frac{1}{2} } \\ &\! \times \Big( \mathbb{E} \big[ | {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) - {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u}^{ \varepsilon , u } }_{T} ) |^{2} \big| \mathcal{F}_{t} \big] \Big)^{ \frac{1}{2} } \bigg) \end{aligned} \\ & \le \bigg( \Big( \limsup _{ \varepsilon \downarrow 0 } \frac{1}{ {\varepsilon }^{2} } \mathbb{E} \big[ | {X}^{(1)}_{T} |^{4} \big| \mathcal{F}_{t} \big] \Big)^{ \frac{1}{4} } + \Big( \limsup _{ \varepsilon \downarrow 0 } \frac{1}{ {\varepsilon }^{2} } \mathbb{E} \big[ | {X}^{(2)}_{T} |^{4} \big| \mathcal{F}_{t} \big] \Big)^{ \frac{1}{4} } \bigg)^{2} \\ & \phantom{=:} \times \Big( \mathbb{E} \Big[ \lim _{ \varepsilon \downarrow 0 } | {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) - {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u}^{ \varepsilon , u } }_{T} ) |^{2} \Big| \mathcal{F}_{t} \Big] \Big)^{ \frac{1}{2} } \\ & = 0 \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

Collecting the results, we obtain the first equality in Lemma 4.8.

By Itô’s rule, combining (4.6) and (4.2) yields

$$\begin{aligned} \mathbb{E} \big[ {e}^{ - \int _{t}^{T} {\mu }_{v} dv } {U}_{3;x} ( T, {X}^{ t,x; \tilde{u} }_{T} ) {X}^{(1)}_{T} \big| \mathcal{F}_{t} \big] = \mathbb{E} \bigg[ \int _{ {S}_{\varepsilon } } {e}^{ - \int _{t}^{s} { \mu }_{v} dv } \mathfrak{Y}^{(t)}_{s} ( {\Pi }_{s} - \tilde{\Pi }_{s} ) ds \bigg| \mathcal{F}_{t} \bigg]. \end{aligned}$$

Combining (4.6) and (4.3) yields

$$\begin{aligned} & \mathbb{E} \big[ {e}^{ - \int _{t}^{T} {\mu }_{v} dv } {U}_{3;x} ( T, {X}^{ t,x; \tilde{u} }_{T} ) {X}^{(2)}_{T} \big| \mathcal{F}_{t} \big] \\ & = \mathbb{E} \bigg[ \int _{ {S}_{\varepsilon } } {e}^{ - \int _{t}^{s} {\mu }_{v} dv } {Y}^{(t)}_{s} \big( ( {\Pi }_{s} - \tilde{\Pi }_{s} ) { \theta }_{s} - ( {C}_{s} - \tilde{C}_{s} ) {\phi }_{s} - ( {B}_{s} - \tilde{B}_{s} ) {\varphi }_{s} \big) ds \bigg| \mathcal{F}_{t} \bigg]. \end{aligned}$$

Combining (4.7) and (4.2) yields

$$\begin{aligned} & \mathbb{E} \big[ {e}^{ - \int _{t}^{T} {\mu }_{v} dv } {U}_{3;xx} ( T, {X}^{ t,x; \tilde{u} }_{T} ) ( {X}^{(1)}_{T} )^{2} \big| \mathcal{F}_{t} \big] \\ & = \mathbb{E} \bigg[ \int _{ {S}_{\varepsilon } } {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \big( {Q}^{(t)}_{s} ( {\Pi }_{s} - \tilde{\Pi }_{s} )^{2} + 2 \mathfrak{Q}^{(t)}_{s} {X}^{(1)}_{s} ( {\Pi }_{s} - \tilde{\Pi }_{s} ) \big) ds \bigg| \mathcal{F}_{t} \bigg] \\ & = \mathbb{E} \bigg[ \int _{ {S}_{\varepsilon } } {e}^{ - \int _{t}^{s} {\mu }_{v} dv } {Q}^{(t)}_{s} ( {\Pi }_{s} - \tilde{\Pi }_{s} )^{2} ds \bigg| \mathcal{F}_{t} \bigg] + o ( \varepsilon ), \end{aligned}$$

of which the last equality arises from

$$\begin{aligned} & \lim _{ \varepsilon \downarrow 0 } \frac{1}{\varepsilon } \bigg| \mathbb{E} \bigg[ \int _{ {S}_{\varepsilon } } {e}^{ - \int _{t}^{s} { \mu }_{v} dv } \mathfrak{Q}^{(t)}_{s} {X}^{(1)}_{s} ( {\Pi }_{s} - \tilde{\Pi }_{s} ) ds \bigg| \mathcal{F}_{t} \bigg] \bigg| \\ & \begin{aligned} \le \lim _{ \varepsilon \downarrow 0 } \bigg( & \Big( \int _{ {S}_{ \varepsilon } } \mathbb{E} \big[ | \mathfrak{Q}^{(t)}_{s} |^{2} \big| \mathcal{F}_{t} \big] ds \Big)^{ \frac{1}{2} } \Big( \frac{1}{ {\varepsilon }^{3} } \int _{ {S}_{\varepsilon } } \mathbb{E} \big[ | {X}^{(1)}_{s} |^{4} \big| \mathcal{F}_{t} \big] ds \Big)^{ \frac{1}{4} } \\ & \times \Big( \frac{1}{\varepsilon } \int _{ {S}_{\varepsilon } } \mathbb{E} \big[ | {\Pi }_{s} - \tilde{\Pi }_{s} |^{4} \big| \mathcal{F}_{t} \big] ds \Big)^{ \frac{1}{4} } \bigg) \end{aligned} \\ & \le \bigg( \lim _{ \varepsilon \downarrow 0 } \int _{ {S}_{ \varepsilon } } \mathbb{E} \big[ | \mathfrak{Q}^{(t)}_{s} |^{2} \big| \mathcal{F}_{t} \big] ds \bigg)^{ \frac{1}{2} } \bigg( \limsup _{ \varepsilon \downarrow 0 } \frac{1}{ {\varepsilon }^{2} } \sup _{ s \in [ t,T ] } \mathbb{E} \big[ | {X}^{(1)}_{s} |^{2} \big| \mathcal{F}_{t} \big] \bigg)^{ \frac{1}{4} } ( \mathbb{E} [ {\zeta }^{4} | \mathcal{F}_{t} ] )^{ \frac{1}{4} } \\ & = 0. \end{aligned}$$

Collecting the above equalities, we obtain

$$\begin{aligned} & J \big( t; \tilde{u}^{ \varepsilon , u} \big) - J ( t; \tilde{u} ) \\ & \begin{aligned} = \mathbb{E} \bigg[ \int _{ {S}_{\varepsilon } } \bigg( & \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } \big( {U}_{1} ( s, {C}_{s} ) + {\mu }_{s} {U}_{2} ( s, {B}_{s} ) - {U}_{1} ( s, \tilde{C}_{s} ) - {\mu }_{s} {U}_{2} ( s, \tilde{B}_{s} ) \big) \\ & + {Y}^{(t)}_{s} \big( ( {\Pi }_{s} - \tilde{\Pi }_{s} ) {\theta }_{s} - ( {C}_{s} - \tilde{C}_{s} ) {\phi }_{s} - ( {B}_{s} - \tilde{B}_{s} ) {\varphi }_{s} \big) \\ & + \mathfrak{Y}^{(t)}_{s} ( {\Pi }_{s} - \tilde{\Pi }_{s} ) + \frac{1}{2} {Q}^{(t)}_{s} ( {\Pi }_{s} - \tilde{\Pi }_{s} )^{2} \bigg) {e}^{ - \int _{t}^{s} {\mu }_{v} dv } ds \bigg| \mathcal{F}_{t} \bigg] + o ( \varepsilon ). \end{aligned} \end{aligned}$$

Hence, the second equality in Lemma 4.8 follows.  □

Appendix D: Proof of Theorem 4.9

Since (4.8) holds and \({U}_{1} ( s, \cdot )\) and \({U}_{2} ( s, \cdot )\) are strictly concave, the equivalence between (4.9) and the combination of (4.10)–(4.12) can be shown by considering the first-order conditions. We prove the connection between (4.9) and a \(( t,x )\)-pre-commitment control as follows.

The “only if” part is from a perturbation argument. Let \({S}_{\varepsilon } = [ s, s + \varepsilon )\) with a sufficiently small \(\varepsilon > 0\) for fixed \(s \in [ t,T )\). By Lemma 4.8, for any spike modification \(\tilde{u}^{\varepsilon , u}\) of the pre-commitment control \(\tilde{u}\), using \(( \Pi - \tilde{\Pi } ) |_{ {S}_{\varepsilon } \times \Omega } =:\zeta \in \mathbb{L}^{4}_{ \mathcal{F}_{s} } ( \Omega ; \mathbb{R} )\), dividing both sides of \(J ( t; \tilde{u}^{\varepsilon , u} ) - J ( t; \tilde{u} ) \le 0\) by \(\varepsilon \) and letting \(\varepsilon \) tend to 0, we obtain

$$\begin{aligned} \mathbb{E} \bigg[ \bigg( & \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } \big( {U}_{1} ( s, {C}_{s} ) + {\mu }_{s} {U}_{2} ( s, {B}_{s} ) - {U}_{1} ( s, \tilde{C}_{s} ) - {\mu }_{s} {U}_{2} ( s, \tilde{B}_{s} ) \big) \\ & + {Y}^{(t)}_{s} \big( ( {\Pi }_{s} - \tilde{\Pi }_{s} ) {\theta }_{s} - ( {C}_{s} - \tilde{C}_{s} ) {\phi }_{s} - ( {B}_{s} - \tilde{B}_{s} ) {\varphi }_{s} \big) \\ & + \mathfrak{Y}^{(t)}_{s} ( {\Pi }_{s} - \tilde{\Pi }_{s} ) + \frac{1}{2} {Q}^{(t)}_{s} ( {\Pi }_{s} - \tilde{\Pi }_{s} )^{2} \bigg) {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \bigg| \mathcal{F}_{t} \bigg] \le 0 \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

Consequently,

$$\begin{aligned} \mathbb{E} \big[ \big( & \mathbb{H} ( t, s, {X}^{ t,x; \tilde{u} }_{s}, {\Pi }_{s}, {C}_{s}, {B}_{s}, {Y}^{(t)}_{s}, {Q}^{(t)}_{s} ) \\ & - \mathbb{H} ( t, s, {X}^{ t,x; \tilde{u} }_{s}, \tilde{\Pi }_{s}, \tilde{C}_{s}, \tilde{B}_{s}, {Y}^{(t)}_{s}, {Q}^{(t)}_{s} ) \\ & + ( \mathfrak{Y}^{(t)}_{s} - {Q}^{(t)}_{s} \tilde{\Pi }_{s} ) ( { \Pi }_{s} - \tilde{\Pi }_{s} ) \big) {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \big] \le 0. \end{aligned}$$

For any \(A \in \mathcal{F}_{s}\) and \(( \Pi , C, B ) \in \mathbb{R}^{3}\) in a neighbourhood of \(( \tilde{\Pi }_{s}, \tilde{C}_{s}, \tilde{B}_{s} )\), we let \(( {\Pi }_{s}, {C}_{s}, {B}_{s} ) = ( \Pi , C, B ) {\mathbf{1}}_{A} + ( \tilde{\Pi }_{s}, \tilde{C}_{s}, \tilde{B}_{s} ) {\mathbf{1}}_{\Omega \setminus A}\). Then

$$\begin{aligned} \mathbb{E} \big[ \big( & \mathbb{H} ( t, s, {X}^{ t,x; \tilde{u} }_{s}, \Pi , C, B, {Y}^{(t)}_{s}, {Q}^{(t)}_{s} ) \\ & - \mathbb{H} ( t, s, {X}^{ t,x; \tilde{u} }_{s}, \tilde{\Pi }_{s}, \tilde{C}_{s}, \tilde{B}_{s}, {Y}^{(t)}_{s}, {Q}^{(t)}_{s} ) \\ & + ( \mathfrak{Y}^{(t)}_{s} - {Q}^{(t)}_{s} \tilde{\Pi }_{s} ) ( { \Pi } - \tilde{\Pi }_{s} ) \big) {e}^{ - \int _{t}^{s} {\mu }_{v} dv } {\mathbf{1}}_{A} \big] \le 0. \end{aligned}$$

Because \(A \in \mathcal{F}_{s}\) is arbitrary, it follows that

$$\begin{aligned} & \mathbb{H} ( t, s, {X}^{ t,x; \tilde{u} }_{s}, \tilde{\Pi }_{s}, \tilde{C}_{s}, \tilde{B}_{s}, {Y}^{(t)}_{s}, {Q}^{(t)}_{s} ) + ( \mathfrak{Y}^{(t)}_{s} - {Q}^{(t)}_{s} \tilde{\Pi }_{s} \big) \tilde{\Pi }_{s} \\ & \ge \mathbb{H} ( t, s, {X}^{ t,x; \tilde{u} }_{s}, \Pi , C, B, {Y}^{(t)}_{s}, {Q}^{(t)}_{s} ) + ( \mathfrak{Y}^{(t)}_{s} - {Q}^{(t)}_{s} \tilde{\Pi }_{s} ) \Pi \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

Since the right-hand side of the above inequality is strictly concave in \(( \Pi , C, B )\), the local maximiser \(( \tilde{\Pi }_{s}, \tilde{C}_{s}, \tilde{B}_{s} )\) is also the global maximiser. Notably, when \({u}_{s} = \tilde{u}_{s}\), the inequality holds as an equality. Thus (4.9) follows.

In terms of the “if” part, let us proceed with the concavity of \({U}_{3} ( T, \cdot )\). For any \(u \in \mathcal{U} ( t,x )\),

$$ {U}_{3} ( T, {X}^{t,x;u}_{T} ) \le {U}_{3} ( T, {X}^{ t,x; \hat{u} }_{T} ) + {U}_{3;x} ( T, {X}^{ t,x; \hat{u} }_{T} ) ( {X}^{t,x;u}_{T} - {X}^{ t,x; \hat{u} }_{T} ). $$

Combining the BSDE (4.6) with \({X}^{t,x;u}_{t} - {X}^{ t,x; \hat{u} }_{t} = 0\) and

$$\begin{aligned} d ( {X}^{t,x;u}_{s} - {X}^{ t,x; \hat{u} }_{s} ) = \big( & ( {X}^{t,x;u}_{s} - {X}^{ t,x; \hat{u} }_{s} ) ( {r}_{s} + {\eta }_{s} ) + ( {\Pi }_{s} - \hat{\Pi }_{s} ) {\theta }_{s} \\ & - ( {C}_{s} - \hat{C}_{s} ) {\phi }_{s} - ( {B}_{s} - \hat{B}_{s} ) { \varphi }_{s} \big) ds + ( {\Pi }_{s} - \hat{\Pi }_{s} ) d {W}_{s}, \end{aligned}$$

we obtain

$$\begin{aligned} & \mathbb{E} \big[ {e}^{ - \int _{t}^{T} {\mu }_{v} dv } {U}_{3;x} ( T, {X}^{ t,x; \hat{u} }_{T} ) ( {X}^{t,x;u}_{T} - {X}^{ t,x; \hat{u} }_{T} ) \big| \mathcal{F}_{t} \big] \\ & \begin{aligned} = \mathbb{E} \bigg[ \int _{t}^{T} {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \Big( & {Y}^{(t)}_{s} \big( ( {\Pi }_{s} - \hat{\Pi }_{s} ) {\theta }_{s} - ( {C}_{s} - \hat{C}_{s} ) {\phi }_{s} - ( {B}_{s} - \hat{B}_{s} ) { \varphi }_{s} \big) \\ & + \mathfrak{Y}^{(t)}_{s} ( {\Pi }_{s} - \hat{\Pi }_{s} ) \Big) ds \bigg| \mathcal{F}_{t} \bigg] \end{aligned} \\ & \begin{aligned} \le - \mathbb{E} \bigg[ \int _{t}^{T} {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } \big( & {U}_{1} ( s, {C}_{s} ) + {\mu }_{s} {U}_{2} ( s, {B}_{s} ) \\ & - {U}_{1} ( s, \hat{C}_{s} ) - {\mu }_{s} {U}_{2} ( s, \hat{B}_{s} ) \big) ds \bigg| \mathcal{F}_{t} \bigg] \qquad \text{$\mathbb{P}$-a.s.} \end{aligned} \end{aligned}$$

of which the inequality is derived from (4.9), or the equivalent statement that

$$\begin{aligned} 0 & \ge {Y}^{(t)}_{s} \big( ( {\Pi }_{s} - \hat{\Pi }_{s} ) {\theta }_{s} - ( {C}_{s} - \hat{C}_{s} ) {\phi }_{s} - ( {B}_{s} - \hat{B}_{s} ) { \varphi }_{s} \big) \\ & \quad + \mathfrak{Y}^{(t)}_{s} ( {\Pi }_{s} - \hat{\Pi }_{s} ) + \frac{1}{2} {Q}^{(t)}_{s} ( {\Pi }_{s} - \hat{\Pi }_{s} )^{2} \\ & \quad + \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } \big( {U}_{1} ( s, {C}_{s} ) + {\mu }_{s} {U}_{2} ( s, {B}_{s} ) - {U}_{1} ( s, \hat{C}_{s} ) - {\mu }_{s} {U}_{2} ( s, \hat{B}_{s} ) \big) \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

Hence we have

$$\begin{aligned} J ( t;u ) &= \mathbb{E} \bigg[ \int _{t}^{T} {e}^{ - \int _{t}^{s} { \mu }_{v} dv } \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } \big( {U}_{1} ( s, {C}_{s} ) + {\mu }_{s} {U}_{2} ( s, {B}_{s} ) \big) ds \\ & \phantom{= \mathbb{E} \bigg[} + {e}^{ - \int _{t}^{T} {\mu }_{v} dv } {U}_{3} \big( T, {X}^{t,x;u}_{T} \big) \bigg| \mathcal{F}_{t} \bigg] \\ & \le \mathbb{E} \bigg[ \int _{t}^{T} {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \frac{ \upsilon ( t,s ) }{ \upsilon ( t,T ) } \big( {U}_{1} ( s, \hat{C}_{s} ) + {\mu }_{s} {U}_{2} ( s, \hat{B}_{s} ) \big) ds \\ & \phantom{= \mathbb{E} \bigg[} + {e}^{ - \int _{t}^{T} {\mu }_{v} dv } {U}_{3} ( T, {X}^{ t,x; \hat{u} }_{T} ) \bigg| \mathcal{F}_{t} \bigg] \\ &= J ( t; \hat{u} ) \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

 □

Appendix E: Concavity of the value function

First, \(V ( T,x ) = {U}_{3} ( T,x )\), which is strictly concave in \(x\). In the following discussion, we consider \(t \in [ 0,T )\), \({x}_{1}, {x}_{2} \in \mathbb{R}_{+}\) and \({\lambda }_{1}, {\lambda }_{2} \in ( 0,1 )\) satisfying \({\lambda }_{1} + {\lambda }_{2} = 1\). For any \({u}^{(k)} = ( {\Pi }^{(k)}, {C}^{(k)}, {B}^{(k)} ) \in \mathcal{U} ( t, {x}_{k} )\), \(k=1,2\), it follows from (3.4) that

$$ {X}^{ t, {\lambda }_{1} {x}_{1} + {\lambda }_{2} {x}_{2}; {\lambda }_{1} {u}^{(1)} + {\lambda }_{2} {u}^{(2)} } = {\lambda }_{1} {X}^{ t, {x}_{1}; {u}^{(1)} } + {\lambda }_{2} {X}^{ t, {x}_{2}; {u}^{(2)} }. $$

Moreover, it can be easily verified that

$$ {\lambda }_{1} {u}^{(1)} + {\lambda }_{2} {u}^{(2)} \in \mathbb{L}^{4}_{ \mathbb{F}} ( [ t,T ] \times \Omega ; \mathbb{R} ) \times \mathbb{L}^{1}_{ \mathbb{F}} ( [ t,T ] \times \Omega ; \mathbb{R}_{+} ) \times \mathbb{L}^{1}_{\mathbb{F}} ( [ t,T ] \times \Omega ; \mathbb{R}_{+} ), $$
$$\begin{aligned} \mathbb{E} \Big[ \sup _{ s \in [ t,T ] } | {\lambda }_{1} {C}^{(1)}_{s} + {\lambda }_{2} {C}^{(2)}_{s} |^{4} \Big| \mathcal{F}_{t} \Big] & \le 8 \mathbb{E} \Big[ {\lambda }_{1}^{4} \sup _{ s \in [ t,T ] } | {C}^{(1)}_{s} |^{4} + {\lambda }_{2}^{4} \sup _{ s \in [ t,T ] } | {C}^{(2)}_{s} |^{4} \Big| \mathcal{F}_{t} \Big] \\ &< \infty \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

and

$$\begin{aligned} & \mathbb{E} \Big[ \sup _{ s \in [ t,T ] } | {U}_{1} ( s, {\lambda }_{1} {C}^{(1)}_{s} + {\lambda }_{2} {C}^{(2)}_{s} ) | \Big| \mathcal{F}_{t} \Big] \\ & \le \mathbb{E} \Big[ \sup _{ s \in [ t,T ] } | {U}_{1} ( s, {C}^{(1)}_{s} \vee {C}^{(2)}_{s} ) | \vee \sup _{ s \in [ t,T ] } | {U}_{1} ( s, {C}^{(1)}_{s} \wedge {C}^{(2)}_{s} ) | \Big| \mathcal{F}_{t} \Big] \\ & \le \mathbb{E} \Big[ \sup _{ s \in [ t,T ] } | {U}_{1} ( s, {C}^{(1)}_{s} ) | \Big| \mathcal{F}_{t} \Big] + \mathbb{E} \Big[ \sup _{ s \in [ t,T ] } | {U}_{1} ( s, {C}^{(2)}_{s} ) | \Big| \mathcal{F}_{t} \Big] < \infty \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

By a similar argument, we can obtain

$$\begin{aligned} \mathbb{E} \Big[ & \sup _{ s \in [ t,T ] } | {U}_{1} ( s, {\lambda }_{1} {C}^{(1)}_{s} + {\lambda }_{2} {C}^{(2)}_{s} ) | + \sup _{ s \in [ t,T ] } | {U}_{2} ( s, {\lambda }_{1} {B}^{(1)}_{s} + {\lambda }_{2} {B}^{(2)}_{s} ) | \\ & + | {U}_{3} ( T, {X}^{ t, {\lambda }_{1} {x}_{1} + {\lambda }_{2} {x}_{2}; {\lambda }_{1} {u}^{(1)} + {\lambda }_{2} {u}^{(2)} }_{T} ) | + | {U}_{3;x} ( T, {X}^{ t, {\lambda }_{1} {x}_{1} + {\lambda }_{2} {x}_{2}; { \lambda }_{1} {u}^{(1)} + {\lambda }_{2} {u}^{(2)} }_{T} ) |^{2} \\ & + | {U}_{3;xx} ( T, {X}^{ t, {\lambda }_{1} {x}_{1} + {\lambda }_{2} {x}_{2}; {\lambda }_{1} {u}^{(1)} + {\lambda }_{2} {u}^{(2)} }_{T} ) |^{2} + \sup _{ s \in [ t,T ] } | {\lambda }_{1} {\Pi }^{(1)}_{s} + { \lambda }_{2} {\Pi }^{(2)}_{s} |^{4} \\ & + \sup _{ s \in [ t,T ] } | {\lambda }_{1} {C}^{(1)}_{s} + { \lambda }_{2} {C}^{(2)}_{s} |^{4} + \sup _{ s \in [ t,T ] } | { \lambda }_{1} {B}^{(1)}_{s} + {\lambda }_{2} {B}^{(2)}_{s} |^{4} \Big| \mathcal{F}_{t} \Big] < \infty \qquad \text{$\mathbb{P}$-a.s.} \end{aligned}$$

According to Definition 3.1, \({\lambda }_{1} {u}^{(1)} + {\lambda }_{2} {u}^{(2)} \in \mathcal{U} ( t, {\lambda }_{1} {x}_{1} + {\lambda }_{2} {x}_{2} )\). We assumed that \({u}^{(1)}\) (resp. \({u}^{(2)}\)) realises the maximum of the right-hand side of (4.31) with \(x = {x}_{1}\) (resp. \(x = {x}_{2}\)). Due to the strict concavity of the utility functions,

$$\begin{aligned} & {\lambda }_{1} V ( t, {x}_{1} ) + {\lambda }_{2} V ( t, {x}_{2} ) \\ & \begin{aligned} = \mathbb{E} \bigg[ & \int _{t}^{T} {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } \big( {\lambda }_{1} {U}_{1} ( s, {C}^{(1)}_{s} ) + {\lambda }_{2} {U}_{1} ( s, {C}^{(2)}_{s} ) \big) ds \\ & + \int _{t}^{T} {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } {\mu }_{s} \big( { \lambda }_{1} {U}_{2} ( s, {B}^{(1)}_{s} ) + {\lambda }_{2} {U}_{2} ( s, {B}^{(2)}_{s} ) \big) ds \\ & + {e}^{ - \int _{t}^{T} {\mu }_{v} dv } \big( {\lambda }_{1} {U}_{3} ( T, {X}^{ t, {x}_{1}; {u}^{(1)} }_{T} ) + {\lambda }_{2} {U}_{3} ( T, {X}^{ t, {x}_{2}; {u}^{(2)} }_{T} ) \big) \bigg| \mathcal{F}_{t} \bigg] \end{aligned} \\ & \begin{aligned} < \mathbb{E} \bigg[ & \int _{t}^{T} {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } {U}_{1} ( s, { \lambda }_{1} {C}^{(1)}_{s} + {\lambda }_{2} {C}^{(2)}_{s} ) ds \\ & + \int _{t}^{T} {e}^{ - \int _{t}^{s} {\mu }_{v} dv } \frac{ \upsilon ( s,s ) }{ \upsilon ( s,T ) } {\mu }_{s} {U}_{2} ( s, { \lambda }_{1} {B}^{(1)}_{s} + {\lambda }_{2} {B}^{(2)}_{s} ) ds \\ & + {e}^{ - \int _{t}^{T} {\mu }_{v} dv } {U}_{3} ( T, {X}^{ t, { \lambda }_{1} {x}_{1} + {\lambda }_{2} {x}_{2}; {\lambda }_{1} {u}^{(1)} + {\lambda }_{2} {u}^{(2)} }_{T} ) \bigg| \mathcal{F}_{t} \bigg] \end{aligned} \\ & \le V ( t, {\lambda }_{1} {x}_{1} + {\lambda }_{2} {x}_{2} ). \end{aligned}$$

 □

Appendix F: Proof of Theorem 5.1

If \(( {\mathrm{{Tr}}} ( X ) )^{2} \ne 4 \det X \), we just need to prove that

$$ X = \big( X - {\mathrm{diag}}( {\chi }_{2}, {\chi }_{1} ) \big)^{-1} {\mathrm{diag}}( {\chi }_{1}, {\chi }_{2} ) \big( X - {\mathrm{diag}}( {\chi }_{2}, {\chi }_{1} ) \big). $$

Let \(X^{*}\) denote the adjugate matrix of \(X\), i.e., \({X}^{*} X =( \det X) {\mathrm{diag}}( 1,1 )\). Then we have \(( X - { \chi }_{k} {\mathrm{diag}}( 1,1 ) ) ( {X}^{*} - {\chi }_{k} {\mathrm{diag}}( 1,1 ) ) = 0\) according to the eigenvalue equation. This implies that the \(k\)th column of \({X}^{*} - {\mathrm{diag}}( {\chi }_{1}, {\chi }_{2} )\) gives an eigenvector corresponding to the eigenvalue \({\chi }_{k}\). Notably, since \(\det ( X - {\mathrm{diag}}( {\chi }, {\chi }_{1} ) ) = 0\) as a linear equation for \(\chi \) admits a unique solution \(\chi = {\chi }_{1} \ne {\chi }_{2}\), we have

$$ \det \big( {X}^{*} - {\mathrm{diag}}( {\chi }_{1}, {\chi }_{2} ) \big) = \det \big( X - {\mathrm{diag}}( {\chi }_{2}, {\chi }_{1} )\big) \ne 0. $$

Hence

$$\begin{aligned} X & = \big( X^{*} - {\mathrm{diag}}( {\chi }_{1}, {\chi }_{2} ) \big) { \mathrm{diag}}( {\chi }_{1}, {\chi }_{2} ) \big( X^{*} - {\mathrm{diag}}( { \chi }_{1}, {\chi }_{2} ) \big)^{-1} \\ & = \big( X - {\mathrm{diag}}( {\chi }_{2}, {\chi }_{1} ) \big)^{-1} {\mathrm{diag}}( {\chi }_{1}, {\chi }_{2} ) \big( X - {\mathrm{diag}}( {\chi }_{2}, {\chi }_{1} ) \big). \end{aligned}$$

If \(( {\mathrm{{Tr}}} ( X ) )^{2} = 4 \det X \) and \({\chi }_{0} = \frac{1}{2} {\mathrm{{Tr}}} ( X )\), the Hamilton–Cayley theorem gives \({X}^{2} - 2 {\chi }_{0} X + {\chi }_{0}^{2} {\mathrm{diag}}( 1,1 ) = 0\). It follows that

$$\begin{aligned} & \frac{d}{dt} \Big( {e}^{ t {\chi }_{0} } {\mathrm{diag}}( 1,1 ) + t {e}^{ t {\chi }_{0} } \big( X - {\chi }_{0} {\mathrm{diag}}( 1,1 ) \big) \Big) \\ &= {e}^{ t {\chi }_{0} } X + t {e}^{ t {\chi }_{0} } \big( {\chi }_{0} X - {\chi }_{0}^{2} {\mathrm{diag}}( 1,1 ) \big) \\ &= \Big( {e}^{ t {\chi }_{0} } {\mathrm{diag}}( 1,1 ) + t {e}^{ t {\chi }_{0} } \big( X - {\chi }_{0} {\mathrm{diag}}( 1,1 ) \big) \Big) X. \end{aligned}$$

Hence we conclude that \(\mathfrak{E} ( t; X ) = {e}^{ t {\chi }_{0} } {\mathrm{diag}}( 1,1 ) + t {e}^{ t {\chi }_{0} } ( X - {\chi }_{0} {\mathrm{diag}}( 1,1 ) )\).  □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, J. & Siu, T.K. Investment–consumption–insurance optimisation problem with multiple habit formation and non-exponential discounting. Finance Stoch 28, 161–214 (2024). https://doi.org/10.1007/s00780-023-00510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-023-00510-4

Keywords

Mathematics Subject Classification (2020)

JEL Classification

Navigation