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Abstract
We study optional projections of G-adapted strict local martingales on a smaller fil-
tration F under changes of equivalent martingale measures. General results are pro-
vided as well as a detailed analysis of two specific examples given by the inverse
Bessel process and a class of stochastic volatility models. This analysis contributes
to clarify the absence of arbitrage opportunities of market models under restricted
information.
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1 Introduction

In this paper, we study optional projections of G-adapted strict local martingales on
a smaller filtration F under changes of equivalent local martingale measures.

It is a well-known fact that when projecting a stochastic process on a filtration
with respect to which it is not adapted, some attributes of its dynamics may change;
see for example Föllmer and Protter [11] and Bielecki et al. [3], where the authors
study the semimartingale characteristics of projections of special semimartingales.
Moreover, some basic properties of the process can be lost. Most notably, the optional
projection of a local martingale may fail to be a local martingale; see for example [11,
Theorem 3.7] and Larsson [25, Corollary 1], where conditions are stated under which
this happens, and Kardaras and Ruf [23] for a study of optional projections of local
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martingale deflators. Optional projections of general semimartingales and stochastic
integrals have been studied in Brémaud and Yor [4].

In the literature, it is a classical problem to investigate financial market models un-
der restricted information, where full information on the asset prices is not available
and agents’ decisions are based on a restricted information flow. This could be due to
a delay in the diffusion of information or to an incomplete data flow, as it may happen
for example when investors only see an asset value when it crosses certain levels; see
Jarrow et al. [19]. In general, this is represented by assuming that trading strategies
are predictable for a filtration which can be smaller than the filtration G generated
by the asset prices. Many of the classical problems in financial mathematics have
been translated to this setting from the classical framework with full information; see
for example Schweizer [29], Frey and Runggaldier [12], Runggaldier and Zaccaria
[28], Callegaro et al. [5] and Fujimoto et al. [13] for studies on risk-minimisation and
expected utility maximisation, respectively, under restricted information.

In Cuchiero et al. [7] and Kabanov and Stricker [21], it is shown that the analy-
sis of characteristics and properties of financial markets under restricted or delayed
information boils down to studying optional projections of the asset prices on the
smaller filtration. In particular, it is shown in both papers how a certain “no-arbitrage”
condition is equivalent to the existence of an equivalent measure Q such that the
Q-optional projection of the asset price on F is a martingale. This setting can be ap-
plied to trading with delay, trading under restricted information, semistatic hedging
and trading under transaction costs.

Our study of optional projections is related to [7] if we consider a more gen-
eral definition of trading strategies. More precisely, in [7], prices are not fully re-
vealed to observers in a large platonic financial market, and trading is possible only
with F-predictable simple strategies such that the resulting wealth or value process is
Lp-integrable for some measure P̃ equivalent to P . We deviate from this definition
and assume more classically that the set of value processes of admissible strategies is
defined as those F-adapted processes for which there exist a local martingale measure
Q for the price process and a G-adapted Q-martingale such that the value process is
bounded from below by that martingale. If the optional projection of the price process
X is a local martingale, it turns out, omitting the details here, that the superhedging
price of a claim c over F-adapted admissible strategies is bounded from below by

sup
Q∈Q

EQ[c],

where Q is the set of P -absolutely continuous probability measures under which the
Q-optional projection of X is a Q-local martingale. Under full information, the mes-
sage of the fundamental hedging duality is that the bound is tight so that “strong du-
ality” holds. Under restricted information, it is an interesting point of further research
to give conditions in this setup when the above “weak duality” holds as a strong one.
This and the related more general indifference pricing formulas go beyond the scope
of the present paper. Nonetheless, the indicated weak duality shows that the question
whether the projection is a local martingale is relevant in the duality theory in pricing
under restricted information. Further relevant applications of optional projections are
provided by the works of Çetin et al. [6], Jarrow et al. [19] and Sezer [30] in the field
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of credit risk modelling: taking inspiration from Jarrow and Protter [16], the authors
characterise reduced form models as optional projections of structural models on a
smaller filtration. In particular, the cash balance of a firm, represented by a process
X = (Xt )t≥0, is adapted to the filtration G of the firm’s management, but not neces-
sarily to the filtration F representing the information available to the market. In this
setting, the price of a zero-coupon bond issued by the firm is the optional projection
of X.

An interesting question to analyse is then if traders with partial information F⊆ G

may perceive different characteristics of the market they observe than individuals
with access to the complete information G, for example for what concerns the exis-
tence of perceived arbitrages.

As already noted in Jarrow and Protter [17], traders with limited information may
interpret the presence of a bubble on the price process in the larger filtration as an
arbitrage opportunity. This happens if X is a strict (P,G)-local martingale, oX fails
to be a strict (P,F)-local martingale and in addition, there exists no measure Q ≈ P

under which oX is a local martingale.
The above overview shows that it is important to assess the properties of optional

projections under equivalent local martingale measures. In particular, we study the
relation among the set Mloc of equivalent local martingale measures (ELMMs) for
a process X and the set Mo

loc of measures Q ≈ P such that the optional projection
under Q is a Q-local martingale. We treat in detail two main cases: the inverse Bessel
process and an extension of the stochastic volatility model of Sin [31]. We also give
general results for the optional projection of a G-adapted process on the delayed fil-
tration (Gt−ε)t≥0 with ε > 0. In particular, we prove that the delayed projection of a
strict local martingale is never a local martingale, and that in this setting, the equiv-
alent measure extension problem studied in Larsson [25] admits no solution. This
provides a family of examples showing that the sufficient condition of [25, Corol-
lary 1] is not necessary. In financial applications, delayed information represents the
scenario where investors in the market have access to the information with a given
positive time delay. This setting has been extensively studied in the literature; see e.g.
Guo et al. [14], Hillairet and Jiao [15], Jeanblanc and Lecam [20], Xing and Yiyun
[33] in the setting of credit risk models, Dolinsky and Zouari [10] under model un-
certainty and Bank and Dolinsky [1] in the context of option pricing.

We also provide an invariance theorem about local martingales which are solutions
of a one-dimensional SDE in the natural filtration of an n-dimensional Brownian mo-
tion; see Proposition 4.4. Specifically, we show that under mild conditions, such a
local martingale X has the same law under P as under every Q ∈ Mloc(X). This
result is closely related to the study in Jarrow et al. [18] where the authors provide in-
variance theorems for detecting asset price bubbles. Proposition 4.4 leads to Theorem
4.11 on optional projections on a filtration F that is smaller than the natural filtration
F

X of X. Important applications of Theorem 4.11 are given by delayed information
and by the model of [6], where the market does not see the value of a firm but only
knows when the firm has positive cash balances or when it has negative or zero cash
balances.

The rest of the paper is organised as follows. After setting up the notation in
Sect. 2, we formulate in Sect. 3 the aims of our study as five properties about op-
tional projections of strict local martingales. We also provide a synthetic overview of
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the main results of the paper in the light of these problems and recap when these ques-
tions have positive and when negative answers in the examples we consider along the
paper. In Sect. 4, we give general results about optional projections of local martin-
gales under equivalent local martingale measures. Section 5 is devoted to the inverse
Bessel process, projected on different filtrations, whereas in Sect. 6, we focus on a
class of two-dimensional stochastic volatility models. The novelty here is that we
consider not only a reference measure P , but the whole set of equivalent local mar-
tingale measures.

2 Preliminaries

Consider a probability space (�,F ,P ) equipped with two filtrations G = (Gt )t≥0,
F = (Ft )t≥0. We assume that F ⊆ G and F = G∞. All filtrations considered in the
paper are supposed to be complete and right-continuous (and are made so if neces-
sary). Let X be a nonnegative càdlàg (P,G)-local martingale.

Notation 2.1 We denote by oX the P -optional projection of X on F, i.e., the unique
optional process satisfying

1{τ<∞} oXτ = E[1{τ<∞}Xτ |Fτ ] a.s.

for every F-stopping time τ . We call Q,oX the Q-optional projection of X. If we do
not specify the measure, the optional projection is with respect to P .

We denote by F
X the natural filtration of X. Moreover, if Q is a probability mea-

sure equivalent to P , we define Z∞ := dQ
dP

and denote by FZ, F
X
Z, GZ the càdlàg

processes characterised by

FZt = E[Z∞|Ft ], FX

Zt = E[Z∞|FX
t ], GZt = E[Z∞|Gt ], t ≥ 0, (2.1)

respectively. Moreover, for H = F,FX,G, we define

Mloc(X,H) := {Q ≈ P : X is a (Q,H)-local martingale},
Mtrue(X,H) := {Q ≈ P : X is a true (Q,H)-martingale},
Mstrict(X,H) := {Q ≈ P : X is a strict (Q,H)-local martingale}.

We also set

Mo
loc(X,F) := {Q ≈ P : Q,oX is a (Q,F)-local martingale},

Mloc(X,G,F) := {Q ≈ P : X is a (Q,G)-local martingale, GZ is F-adapted},
Mo

loc(X,G,F) := {Q ≈ P : Q,oX is a (Q,F)-local martingale, GZ is F-adapted}.
For a given (Q,G)-Brownian motion B = (Bt )t≥0 and a suitably integrable G-pre-
dictable process α = (αt )t≥0, we denote by Et (

∫
αsdBs) the stochastic exponential at

time t of the process (
∫ u

0 αsdBs)u≥0.
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Remark 2.2 Since X is a nonnegative process, its optional projection always exists by
Dellacherie and Meyer [9, Theorem VI.43].

Remark 2.3 Since we assume F = G∞, the density dQ
dP

of any equivalent probability
measure Q with respect to the original measure P must be G∞-measurable. This
implies that

Mloc(X,G,G) = Mloc(X,G).

3 Overview of the results

The main focus of the paper is to study the following properties:

Mloc(X,G) ∩Mo
loc(X,F) �= ∅; (P1)

Mloc(
oX,F) �= ∅; (P2)

Mstrict(X,G) ∩Mo
loc(X,F) �= ∅; (P3)

Mloc(X,G,F) = Mo
loc(X,G,F); (P4)

⋃

Q∈Mloc(X,G)

Mloc(
Q,oX,F) �= ∅. (P5)

These properties have the following financial interpretations. First, (P2) and (P5) are
related to the study of perceived arbitrage opportunities. In particular, if (P2) holds,
then the P -bubble modelled by X under full information is not perceived as an ar-
bitrage opportunity under partial information, see also Jarrow and Protter [17], and
more generally, when (P5) is satisfied, there exists at least one equivalent proba-
bility measure Q that defines an arbitrage-free market under restricted information.
Moreover, if the optional projection is tradeable, (P1), (P3) and (P4) investigate the
problem of a perceived bubble in the smaller filtration when there is a bubble in the
bigger filtration. If it is not tradeable, the properties are related to pricing formulas
under restricted information, as we explain in the introduction in detail. On the other
hand, (P1) and (P3) address the classical mathematical question of when the optional
projection of a (strict) local martingale on the smaller filtration F remains a (strict)
local martingale; see for example Larsson [25].

It turns out that none of the above properties is equivalent to another, and that
none of them holds for the whole class of nonnegative local martingales and arbitrary
filtrations. In other words, their validity depends on both the process X and the filtra-
tions G and F. This is shown in Sects. 5 and 6. Section 4 provides general results on
local martingales and their optional projections which are of independent interest.

In general, we note that Mstrict(X,G) �= ∅ and hence also Mloc(X,G) �= ∅ when-
ever (as often assumed) P ∈ Mstrict(X,G). Properties (P1)–(P3) and (P5) trivially
hold if oX is an F-local martingale; so the more interesting case is when oX is not a
local martingale. If (P3) or (P4) holds, then (P1) holds as well. Moreover, if (P4) is
satisfied, then P ∈Mo

loc(X,G,F) and so (P2) and (P3) are also satisfied. Finally, (P5)
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is implied by any of the other properties. This can be summarised in the following
scheme:

P4

P3

P1 P2

P5

As already mentioned, reverse implications do not hold in general.
We finish the section by summarising our main results. Note that (P1)–(P3) and

(P5) trivially hold for the inverse Bessel process projected on the filtration generated
by (B1,B2), as the optional projection is again a strict local martingale; see Sect. 5.1.

Property (P1). In Sect. 6, we introduce a stochastic volatility model where X is
a strict local martingale under suitable conditions on the coefficients of its SDE, but
whose optional projection on a specific subfiltration is not a local martingale; see
Theorem 6.11. Property (P1) holds because X admits a true martingale measure; see
Proposition 6.2. On the other hand, (P1) is not true for the inverse Bessel process
projected on a delayed filtration, i.e., on F = (Ft )t≥0 with Ft = Gt−ε and ε > 0; see
Sect. 5.2.

Property (P2). A particular case of the stochastic volatility model introduced in
Sect. 6 gives a strict local martingale N such that oN is not a local martingale, but
Mloc(

oN,F) �= ∅; see Example 6.7. In this setting, (P2) holds. For the optional pro-
jection on the delayed filtration of the process introduced in Example 5.7, (P2) holds
as well. On the other hand, the property does not hold in the case of the inverse Bessel
process projected on the delayed filtration; see Theorem 5.5. It is not satisfied in the
setting of Example 6.9 either.

Property (P3). In Example 6.8, we consider the sum of X from the stochastic
volatility model of Sect. 6 and a suitable strict local martingale adapted to a Brownian
filtration F; this is a strict local martingale whose optional projection on F is not a
local martingale, but such that (P3) is satisfied. On the other hand, Property (P3) is
never satisfied for a delayed filtration; see Proposition 4.12.

Property (P4). This is satisfied by the inverse Bessel process projected on the
filtration generated by (B1,B2); see Theorem 5.2. It does not hold for any of the
examples where (P1) does not hold, e.g. in the case of the inverse Bessel process
projected on a delayed filtration.

Property (P5). This holds in all the considered examples except for the inverse
Bessel process projected on the delayed filtration; see Theorem 5.5. In particular,
Example 6.9 provides a case where (P5) holds and (P2) is not satisfied, whereas in
Example 5.7, (P1) does not hold (and therefore also not (P3) and (P4)), whereas (P5)
does.

We conclude by providing in Table 1 a schematic recap of the validity of proper-
ties (P1)–(P5). If it is not specified whether a property holds or not, it has not been
investigated.
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Table 1 Validity of properties (P1)–(P5) in the examples studies in Sects. 5 and 6

(P1) (P2) (P3) (P4) (P5)

Inverse Bessel on σ(B1,B2) YES YES YES YES YES

Inverse Bessel on delayed F
X NO NO NO NO NO

Inverse Bessel on delayed σ(B1,B2,B3) NO NO NO

Example 5.7 NO YES NO NO YES

Example 6.7 YES YES YES

Example 6.8 YES YES NO YES

Example 6.9 YES NO YES NO YES

Example 6.12 YES NO NO YES

For any of the implications of the scheme above, we give a counterexample for the
inverse implication:

– In Example 6.12, (P1) holds but (P3) does not.
– In Examples 6.8 and 6.12, (P1) holds but (P4) does not.
– In Example 5.7, (P2) holds but (P4) does not.
– In Examples 6.8 and 6.9, (P3) holds but (P4) does not.
– In Example 5.7, (P5) holds but (P1) does not.
– In Example 6.9, (P5) holds but (P2) does not.

Moreover, for every pair of properties which do not share any general implication,
we have examples where the first is satisfied and the second is not, and vice versa.
For instance, in Example 5.7, (P2) is satisfied whereas (P1) and (P3) are not, while
the opposite holds in Example 6.9.

4 General results

We start by providing preliminary results which are used throughout the paper. They
are also of independent interest.

The first result is due to Stricker [32] and is also stated in [11, Theorem 3.6].

Lemma 4.1 Let X = (Xt )t≥0 be a nonnegative G-local martingale adapted to the
filtration F ⊆ G. Then

Mloc(X,G) ⊆ Mloc(X,F).

Lemma 4.2 Let Q be a probability measure equivalent to P such that GZ in (2.1) is
F-adapted. Then Q,oX = oX.

Proof Fix an F-stopping time τ . Recall that FZτ = E[ dQ
dP

|Fτ ]. Since GZ is F-adapt-
ed, we have

GZτ = E[GZτ |Fτ ] = E

[

E

[dQ

dP

∣
∣
∣Gτ

]∣∣
∣
∣Fτ

]

= E

[
dQ

dP

∣
∣
∣
∣Fτ

]

= FZτ ,
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and thus, by the Bayes formula,

1{τ<∞} Q,oXτ = E
Q[1{τ<∞}Xτ |Fτ ] = (FZτ )

−1
E[GZτ1{τ<∞}Xτ |Fτ ]

= E[1{τ<∞}Xτ |Fτ ] = 1{τ<∞} oXτ . �

The following theorem provides a condition under which the Q-optional projec-
tion of X is an F-local martingale under any ELMM Q.

Theorem 4.3 Suppose X admits an F-localising sequence which makes it a bounded
(P,G)-martingale. Then Q,oX is a (Q,F)-local martingale for any Q ∈Mloc(X,G).

Proof Let Q ∈ Mloc(X,G) and (τn)n∈N be the assumed localising sequence. Since
Xτn is bounded for every n ∈ N, (τn)n∈N localises X under Q as well, and the result
follows by Föllmer and Protter [11, Theorem 3.7]. �

We now give a result which provides a class of local martingales whose law un-
der P is invariant under a change to any equivalent local martingale measure. Jarrow
et al. [18, Theorem 3.1] provide a similar finding in the context of asset price bubbles
detection.

Proposition 4.4 Let X = (Xt )t≥0 be a (P,G)-local martingale given by

dXt = σ(t,Xt )dWt , t ≥ 0, (4.1)

where W is a one-dimensional (P,G)-Brownian motion and σ : R+ × R+ → R is
such that there exists a unique strong solution to (4.1). Suppose also that σ(t,Xt ) �= 0
a.s. for almost every t ≥ 0. Then X has the same law under P as under any
Q ∈ Mloc(X,G). In particular, if X is a strict (P,G)-local martingale, it is a strict
(Q,G)-local martingale under any Q ∈Mloc(X,G), and if it is a (P,G)-true mar-
tingale, it is a (Q,G)-true martingale under any Q ∈Mloc(X,G).

Proof Fix a probability measure Q ∈ Mloc(X,G). Girsanov’s theorem together with
Lévy’s characterisation of Brownian motion implies that W is a semimartingale under
Q with decomposition

W = WQ + AQ, (4.2)

where WQ is a Q-Brownian motion and AQ is a continuous adapted finite-variation
process. Then the dynamics of X under Q are given by

Xt − X0 = X0 +
∫ t

0
σ(s,Xs)dWs

= X0 +
∫ t

0
σ(s,Xs)dAQ

s +
∫ t

0
σ(s,Xs)dWQ

s , t ≥ 0. (4.3)

Since X is a Q-local martingale by assumption, the finite-variation part on the right-
hand side of (4.3) must be zero, and so the result follows. �
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The next results consider the case when there are no ELMMs defined by a non-
trivial density adapted to F

X .

Proposition 4.5 Let X be a nonnegative (P,G)-local martingale, and suppose that

Mloc(X,FX,FX) = {P }.

Let Q be a probability measure with Q ∈ Mloc(X,G) and GZ the density process
defined in (2.1). Then for any F

X-stopping time τ , we have

E[GZτ |FX
τ ] = 1 a.s.

Proof If Q ∈ Mloc(X,G), then X is a (Q,FX)-local martingale by Lemma 4.1. By
the assumption Mloc(X,FX,FX) = {P }, we have for any F

X-stopping time τ that

1 = FXZτ = E[Z∞|FX
τ ] = E

[
E[Z∞|Gτ ]

∣
∣FX

τ

] = E[GZτ |FX
τ ] a.s. �

Corollary 4.6 Let X be a nonnegative (P,G)-local martingale, and suppose that

Mloc(X,FX,FX) = {P }.

Then either

Mloc(X,G) = Mstrict(X,G)

or

Mloc(X,G) = Mtrue(X,G).

Proof Let Q ∈ Mloc(X,G). Suppose that P ∈Mstrict(X,G). Then there exists t ≥ 0
such that EP [Xt ] < X0. For the same t , we have

EQ[Xt ] = EP [Z∞Xt ] = EP [GZtXt ] = EP
[
XtE

P [GZt |FX
t ]] = EP [Xt ] < X0,

where the last equality follows from Proposition 4.5. Therefore, Q ∈ Mstrict(X,G).
Analogously, it can be seen that if P ∈ Mtrue(X,G), then Q ∈Mtrue(X,G). �

Corollary 4.7 Let X be a nonnegative (P,G)-local martingale and suppose that

Mloc(X,FX,FX) = {P }.

Then for every probability measure Q ∈Mloc(X,G) and every subfiltration F ⊆ FX ,
we have oX = Q,oX.

Proof Let Q ∈ Mloc(X,G). Then for any F-stopping time τ , we have by condition-
ing Z∞ on Gτ that
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EQ[1{τ<∞}Xτ |Fτ ] = (EP [Z∞|Fτ ])−1EP [GZτ1{τ<∞}Xτ |Fτ ]
= (

EP
[
EP [Z∞|FX

τ ]∣∣Fτ

])−1
EP

[
EP [GZτ1{τ<∞}Xτ |FX

τ ]∣∣Fτ

]

= EP
[
1{τ<∞}XτE

P [GZτ |FX
τ ]∣∣Fτ

]

= EP [1{τ<∞}Xτ |Fτ ] a.s.,

where the second equality follows from F ⊆ F
X and the last from Proposition 4.5.

�

We now recall the equivalent measure extension problem of Larsson [25], together
with the most important results relating this to the optional projection of strict local
martingales. In the setting introduced in Sect. 2, define first the G-stopping times

τn := inf{t ≥ 0 : Xt ≥ n} ∧ n, τ := lim
n→∞ τn, (4.4)

and note that Gτ− = ∨
n≥1 Gτn . The Föllmer measure Q0 is defined on Gτ− as the

probability measure that coincides with Qn on Gτn for each n ≥ 1, where Qn ≈ P is
defined on Gτn by dQn = XτndP . For more details, see [25, Sect. 2]. The measure Q0
is only defined on Gτ−. Larsson [25, Problem 1], also known as the equivalent mea-
sure extension problem, deals with the issue of extending Q0 to G∞. We formulate
this problem below.

Problem 4.8 Consider the probability space (�,F ,P ) equipped with two filtrations
F = (Ft )t≥0, G = (Gt )t≥0 with F ⊆ G, and let X be a strictly positive (P,G)-local
martingale. Given the probability measure Q0 introduced above, find a probability
measure Q on G∞ such that

1. Q = Q0 on Gτ−;
2. the restrictions of P and Q to Ft are equivalent for each t ≥ 0.

The existence of a solution to this so-called equivalent measure extension problem
is connected with the behaviour of the optional projection of X on F by the following
result, which is [25, Corollary 1].

Corollary 4.9 Let X be a strictly positive, strict G-local martingale. If oX is an
F-local martingale, then the equivalent measure extension problem has no solution.

We now provide a result about optional projections under equivalent local martin-
gale measures on a filtration F ⊆ F

X . We start with a lemma.

Lemma 4.10 Let X be a strictly positive G-local martingale. Suppose that the equiv-
alent measure extension problem admits a solution for P , F and G with F ⊆ F

X .
Then it also admits a solution for P , F and F

X .

Proof Note first that X is an F
X-local martingale by Lemma 4.1. Let Q be a solution

of the equivalent measure extension problem for P , F and G. Also let Q0 and QX
0

be the Föllmer measures on Gτ− and FX
τ−, respectively. By construction, we have
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that QX
0 coincides with Q0 on FX

τ−. This implies that Q is also an extension of QX
0

and equivalent to P on Ft for every t ≥ 0. Then Q is a solution for the equivalent
measure extension problem for P , F and F

X . �

Theorem 4.11 Let X be a strictly positive, strict (P,G)-local martingale. Consider a
probability measure P̃ ∈ Mstrict(X,G) and suppose that X has the same law under P

as under P̃ . Also assume that the equivalent measure extension problem admits a

solution for P , F and G, and that F ⊆ F
X . Then the P̃ -optional projection P̃ ,oX of

X on F is not a (P̃ ,F)-local martingale.

Proof By Lemma 4.10, the equivalent measure extension problem admits a solution
for P , F and F

X . Consider now the construction of the Föllmer measure as above.
The stopping times from (4.3) have by the assumption the same law under P as under
P̃ , and as dQn = XτndP and dQ̃n = XτndP̃ , the measures Qn and Q̃n coincide on
FX

τn
. Therefore the equivalent measure extension problem also admits a solution for

P̃ , F and FX . By Theorem 4.9, it follows that the P̃ -optional projection of X on F is
not a (P̃ ,F)-local martingale. �

Note that Proposition 4.4 implies that Theorem 4.11 can be applied to all processes
with dynamics as in (4.1). An important application when F ⊆ F

X is the delayed
information setting.

We conclude the section with a general result about optional projections on a de-
layed filtration. Such a finding also provides a counterexample to the converse impli-
cation of Theorem 4.9; see Proposition 4.14.

Proposition 4.12 Let X be a nonnegative strict (Q,G)-local martingale and take
Ft = Gt−h, t ≥ 0, for a given h > 0. Then Q,oX is not a Q-local martingale.

Proof We prove the claim by contradiction. Let (τn)n∈N be a localising sequence of
F-stopping times for Q,oX. Then Föllmer and Protter [11, Theorem 3.7] show that
such a sequence also localises X in G. Since X is a strict (Q,G)-local martingale,
there exists t ∈ [h,∞) such that δt := Q[Bt ] > 0 with

Bt := {Xt−h > EQ[Xt |Gt−h]}.
Denote now An

t := {τn > t} ∩ Bt . Note that An
t ∈ Ft = Gt−h because τn is an

F-stopping time. Since Q[τn > t] increases to 1 as n → ∞ by dominated conver-
gence, there exists N > 0 such that for all n > N , we have

Q[An
t ] ≥ δt

2
> 0.

For any ω ∈ An
t , we have

EQ[Xτn
t |Gt−h](ω) = 1{τn>t}(ω)EQ[Xτn

t |Gt−h](ω) = EQ[1{τn>t}Xτn
t |Gt−h](ω)

= EQ[1{τn>t}Xt |Gt−h](ω) = 1{τn>t}(ω)EQ[Xt |Gt−h](ω)

= EQ[Xt |Gt−h](ω) < Xt−h(ω) = X
τn

t−h(ω),
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where the second and fourth equalities follow since 1{τn>t} is Gt−h-measurable and
the strict inequality comes from the definitions of An

t and Bt . Thus (τn)n∈N is not a
localising sequence for X, and Q,oX cannot be a Q-local martingale. �

Proposition 4.12 immediately implies the following corollary.

Corollary 4.13 Let X be a nonnegative G-strict local martingale and Ft = Gt−h,
t ≥ 0, for a given h > 0. Then

Mstrict(X,G) ∩Mo
loc(X,F) = ∅,

i.e., (P3) does not hold.

The next result, together with Proposition 4.12, shows that optional projections of
strict local martingales on delayed filtrations provide a family of examples showing
that the sufficient condition of Larsson [25, Corollary 1] is not necessary.

Proposition 4.14 Take a strictly positive strict G-local martingale X and Ft = Gt−h,
t ≥ 0, for a given h > 0. Then the equivalent measure extension problem admits no
solution for P , F and G.

Proof Let Q0 be the Föllmer measure introduced above and Q an extension of Q0
to G∞. We show that there exists a time t ≥ 0 such that the restrictions of P and Q

to Ft are not equivalent. Since X is a strict local martingale, there exists some r > 0
such that E[Xs] < X0 for all s ≥ r . Take t ≥ r + h and let τ be the stopping time
introduced in (4.4). Then we have

P [τ ≤ t − h] = 0, Q[τ ≤ t − h] = 1 − E[Xt−h]/X0 > 0; (4.5)

see Larsson [25]. Since {τ ≤ t − h} ∈ Ft , (4.5) implies that the restrictions of Q and
P to Ft are not equivalent. �

5 The inverse Bessel process

In this section, we study (P1)–(P5) in the case of the inverse Bessel process. Let
B1 = (B1

t )t≥0, B2 = (B2
t )t≥0, B3 = (B3

t )t≥0 be standard, independent Brownian mo-
tions, starting at (B1

0 ,B2
0 ,B3

0 ) = (1,0,0), on (�,F ,P ). We specify the filtration
later. In the notation of Sect. 2, we now assume that the nonnegative local martingale
X is given by the inverse Bessel process

Xt := (
(B1

t )2 + (B2
t )2 + (B3

t )2)−1/2
, t ≥ 0.

Itô’s formula implies that under the original probability measure P , X has the dy-
namics

dXt = −X3
t (B

1
t dB1

t + B2
t dB2

t + B3
t dB3

t ), t ≥ 0, (5.1)
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with X0 = 1. We note that X also solves the SDE

dXt = −X2
t dWt , t ≥ 0, (5.2)

where the process W with

Wt =
∫ t

0
Xs(B

1
s dB1

s + B2
s dB2

s + B3
s dB3

s ), t ≥ 0, (5.3)

is a one-dimensional Brownian motion by Lévy’s characterisation theorem.
In the notation of Sect. 2, we now consider two different choices for the filtra-

tion G. In Sect. 5.1, we let G be the filtration generated by (B1,B2,B3), whereas in
Sect. 5.2, it is generated by the Brownian motion W in (5.3). In both cases, X is a
strict G-local martingale, and it is therefore interesting to investigate (P1)–(P5) when
X is projected on a smaller filtration F. It is well known that the projection of X on
the natural filtration of B1 is not a local martingale; see Föllmer and Protter [11, The-
orem 5.1]. See also Kardaras and Ruf [24] for a more general study of projections of
sums of Bessel processes. In Sect. 5.1, we consider the case when F is generated by
B1 and B2, while in Sect. 5.2, we study delayed information.

Remark 5.1 In the case of the inverse Bessel process, whether Mloc(X,G) is a sin-
gleton or not depends on the choice of G. If G is generated by one Brownian motion,
as in Sect. 5.2 below, P is the only ELMM; see also Delbaen and Schachermayer [8].

In contrast, if G is the natural filtration of (B1,B2,B3), as in Sect. 5.1 below, we
have Mloc(X,G) �= {P }. Consider for example the G-predictable processes

α1
t = − B2

t

(B1
t )2 + (B2

t )2 + 1
, α2

t = B1
t

(B1
t )2 + (B2

t )2 + 1
, t ≥ 0,

and Z = (Zt )t≥0 defined by

Zt = Et (L), t ≥ 0, (5.4)

with

Lt :=
∫ t

0
e−δsα1

s dB1
s +

∫ t

0
e−δsα2

s dB2
s , t ≥ 0,

for a given δ > 0. With this choice of αi , i = 1,2, the stochastic exponential Z in (5.4)
is a G-adapted process such that [X,Z] = 0 a.s. Moreover, the Novikov condition for
Z is fulfilled since

exp

(
1

2
[Z,Z]∞

)

= exp

(
1

2

∫ ∞

0
e−2δs |αs |2ds

)

≤ exp

(
1

4δ

)

,

and so Z is a uniformly integrable martingale. Defining Q by

dQ

dP

∣
∣
∣
∣
Gt

= Zt , t ≥ 0,

we thus have Q ∈Mloc(X,G) and Q �= P .
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However, Proposition 4.4 together with (5.2) implies that Mtrue(X,H) = ∅ for
every filtration H to which X is adapted, i.e., there does not exist any measure Q ≈ P

such that X is a true martingale under Q in H. This also means that for the examples
of Sects. 5.1 and 5.2, (P1) holds if and only if (P3) holds.

5.1 Optional projection on the filtration generated by (B1,B2)

In this section, we provide an example for which (P4) is satisfied by introducing two
filtrations F ⊆ G such that for the inverse Bessel process X, we have

Mloc(X,G,F) = Mo
loc(X,G,F).

Let G be the natural filtration of (B1,B2,B3) and F be generated by (B1,B2). As
usual, we denote the optional projection of X on F by oX. Föllmer and Protter [11,
Theorem 5.2] state that oX is an F-local martingale and has the form

oXt = u(B1
t ,B2

t , t), t ≥ 0,

with

u(x, y, t) = 1√
2πt

exp

(
x2 + y2

4t

)

K0

(
x2 + y2

4t

)

.

Here and below, Kn, n ≥ 0, are the modified Bessel functions of the second kind. In
particular, we have

∂xu(x, y, t) = xψ(x, y, t), ∂yu(x, y, t) = yψ(x, y, t), (5.5)

where

ψ(x, y, t) = 1√
2πt

exp

(
x2 + y2

4t

)(

K0

(x2 + y2

4t

)
− K1

(x2 + y2

4t

))

. (5.6)

Since oX is an F-local martingale, we focus here on (P4). The following theorem
shows that it holds in this example.

Theorem 5.2 Let F be the natural filtration of (B1,B2). Then

Mloc(X,G,F) = Mo
loc(X,G,F).

Proof We introduce the sequence of F-stopping times (τn)n∈N with

τn:= inf

{

t ≥ 0 : (B1
t )2 + (B2

t )2 ≤ 1

n

}

, n ≥ 1.

We have limn→∞ τn = ∞ because the origin (0,0) is polar for a two-dimensional
Brownian motion; so the sequence localises X to a bounded martingale. Given a prob-
ability measure Q ∈Mloc(X,G,F), Theorem 4.3 implies that Q,oX is a (Q,F)-local
martingale, and so Mloc(X,G,F) ⊆ Mo

loc(X,G,F).
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To prove the converse inclusion, take Q ∈ Mo
loc(X,G,F), which means that Q,oX

is a (Q,F)-local martingale and GZ is F-adapted. By Lemma 4.2, Q,oX = oX; so
oX is both a (P,F)- and a (Q,F)-local martingale, and thus [FZ, oX] is zero by
Girsanov’s theorem. Now

FZt = dQ

dP

∣
∣
∣
∣
Ft

= Et

(∫
α1

s dB1
s +

∫
α2

s dB2
s

)

, t ≥ 0, (5.7)

where α1 and α2 are F-predictable processes such that the Doléans-Dade exponential
in (5.7) is well defined and a uniformly integrable martingale. By (5.5)–(5.7), we have

[FZ, oX]t =
∫ t

0

FZsψ(B1
s ,B2

s , s)(α1
s B

1
s + α2

s B
2
s )ds, t ≥ 0. (5.8)

Since the left-hand side of (5.8) is zero and ψ(x, y, t) < 0 for x, y < ∞ and t > 0
(see for example Yang and Chu [34]), we get

α1
t B

1
t + α2

t B
2
t = 0, t ≥ 0, (5.9)

P -almost surely, as P is equivalent to Q. On the other hand, from (5.1) and (5.7) and
since FZ = GZ, it follows that

[GZ,X]t = −
∫ t

0

GZsX
3
s (α

1
s B

1
s + α2

s B
2
s )ds, t ≥ 0,

and this is zero P -a.s. by (5.9). Since X is a (P,G)-local martingale, this implies that
X is also a (Q,G)-local martingale. Hence Q ∈Mloc(X,G,F).

�

5.2 Delayed information

We now consider a market model where G is the filtration generated by the Brownian
motion W in (5.3) and F = (Ft )t≥0 is given by Ft = Gt−ε with ε > 0. As explained
above, this means that investors have access to the information about W , with respect
to which X is adapted by (5.2), only with a positive delay ε.

In this setting, Proposition 4.12 implies that the optional projection of X on F is
not a local martingale so that (P1), (P3) and (P4) are not satisfied. We show that (P2)
and (P5) (which are equivalent since Mloc(X,G) = {P }) do not hold either. However,
in Example 5.7, we introduce a modification M of the inverse Bessel process X such
that (P2) and (P5) are satisfied, but (P1), (P3) and (P4) are not.

We start our analysis with the following result.

Lemma 5.3 For every ε > 0, we have

E[Xt+ε |σ(B1
t ,B2

t ,B3
t )] = Xterf

(
1

Xt

√
2ε

)

,

where erf(x) := 2√
π

∫ x

0 e−t2
dt .
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Proof We have

E[Xt+ε |σ(B1
t ,B2

t ,B3
t )] = u(ε,B1

t ,B2
t ,B3

t )

with

u(t, a, b, c) = (2πt)−3/2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e− 1

2t
((x−a)2+(y−b)2+(z−c)2)

√
x2 + y2 + z2

dzdydx =: I.

We set R = √
a2 + b2 + c2, r = √

x2 + y2 + z2. The above integral can be written in
spherical coordinates as

I = (2πt)−3/2
∫ 2π

0

∫ ∞

0
r2 1

r

∫ π

0
sin(θ)e− 1

2t
(r2−2rR cos(θ)+R2)dθdrdφ

= 2

R
√

π

∫ R√
2t

0
e−r2

dr = 1√
a2 + b2 + c2

erf

(√
a2 + b2 + c2

2t

)

.

Thus

E[Xt+ε |σ(B1
t ,B2

t ,B3
t )]

= 1
√

(B1
t )2 + (B2

t )2 + (B3
t )2

erf

(
√

(B1
t )2 + (B2

t )2 + (B3
t )2

2ε

)

= Xterf

(
1

Xt

√
2ε

)

. �

Proposition 5.4 Let G = (Gt )t≥0 be the filtration generated by the Brownian motion
W in (5.3) and F= (Ft )t≥0 be given by Ft := Gt−ε with ε > 0. Then

oXt+ε = E[Xt+ε |Ft+ε] = Xterf

(
1

Xt

√
2ε

)

, t ≥ 0.

Proof By (5.2) and (5.3), we have σ(Wt) ⊆ σ(B1
t ,B2

t ,B3
t ). Moreover, X is like its

reciprocal, the Bessel process, a Markov process with respect to G. Combining this
with Lemma 5.3 gives

E[Xt+ε |Ft+ε] = E[Xt+ε |σ(Wt)] = E
[
E[Xt+ε |σ(B1

t ,B2
t ,B3

t )]∣∣σ(Wt)
]

= E

[

Xterf

(
1

Xt

√
2ε

)∣
∣
∣
∣σ(Wt)

]

= Xterf

(
1

Xt

√
2ε

)

, t ≥ 0,

as Xt is σ(Wt)-measurable by the Markov property. �

By Proposition 5.4, we have

oXt+ε = f (Xt ), t ≥ 0,
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where f (x) = xerf( 1
x
√

2ε
). Since

f ′(x) = −
√

2e
− 1

2εx2

x
√

πε
+ erf

(
1

x
√

2ε

)

, f ′′(x) = −
√

2ε− 3
2 e

− 1
2εx2

x4
√

π
,

Itô’s formula gives

d oXt+ε =
(

−
√

2e
− 1

2εX2
t

Xt

√
πε

+ erf
( 1

Xt

√
2ε

))

dXt −
√

2ε− 3
2 e

− 1
2εX2

t

X4
t

√
π

d[X,X]t

=
(√

2e
− 1

2εX2
t√

πε
Xt − erf

( 1

Xt

√
2ε

)
X2

t

)

dWt −
√

2

π
ε− 3

2 e
− 1

2εX2
t dt. (5.10)

The above expression shows that the optional projection is a strict F-supermartingale
as the drift is strictly negative. Note that this is stated for the projection on the delayed
filtration for a general nonnegative strict local martingale in Proposition 4.12. Since
we have Mloc(X,G) = {P } by Remark 5.1, this implies that

Mloc(X,G) ∩Mo
loc(X,F) = ∅, (5.11)

i.e., (P1), (P3) and (P4) do not hold.
Moreover, the following result implies that (P2) and (P5) are not satisfied.

Theorem 5.5 Let G = (Gt )t≥0 be the filtration generated by the Brownian motion W

in (5.3) and F = (Ft )t≥0 with Ft := Gt−ε with ε > 0. Then

Mloc(
oX,F) = ∅.

To prove Theorem 5.5, we rely on some results provided by Mijatović and Urusov
[27] which we now recall. Consider the state space J = (�, r), −∞ ≤ � < r ≤ ∞,
and a J -valued diffusion Y = (Yt )t≥0 on some filtered probability space, governed
by the SDE

dYt = μY (Yt )dt + σY (Yt )dBt , t ≥ 0, (5.12)

where Y0 = y0 ∈ J , B is a one-dimensional Brownian motion and μY ,σY : R → R

satisfy

σY (x) �= 0, ∀x ∈ J (5.13)

and

1

σ 2
Y

,
μY

σ 2
Y

∈ L1
loc(J ). (5.14)
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Here L1
loc(J ) denotes the class of locally integrable functions ψ on J , i.e., the mea-

surable functions ψ : (J,B(J )) → (R,B(R)) that are Lebesgue-integrable on com-
pact subsets of J . Consider the stochastic exponential

Et

(∫
g(Yu)dBu

)

, t ≥ 0, (5.15)

with g : R →R such that

g2

σ 2
Y

∈ L1
loc(J ). (5.16)

Put J̄ = [�, r] and, fixing an arbitrary c ∈ J , define

ρ(x) := exp

(

−
∫ x

c

2μY

σ 2
Y

(y)dy

)

, x ∈ J, (5.17)

ρ̃(x) := ρ(x) exp

(

−
∫ x

c

2g

σY

(y)dy

)

, x ∈ J, (5.18)

s(x) :=
∫ x

c

ρ(y)dy, x ∈ J̄ , (5.19)

s̃(x) :=
∫ x

c

ρ̃(y)dy, x ∈ J̄ . (5.20)

Define s(r) = limx→r− s(x), s(�) = limx→�+ s(x) and analogously for s̃ and ρ̃. De-
fine

L1
loc(r−) :=

{

ψ : (J,B(J )
) → (

R,B(R)
) :

∫ r

x

|ψ(y)|dy < ∞ for some x ∈ J

}

,

and L1
loc(�+) analogously. We report here [27, Theorem 2.1].

Theorem 5.6 Let the functions μY , σY and g satisfy conditions (5.13), (5.14) and
(5.16) and let Y be a solution of the SDE (5.12). Then the Doléans-Dade exponential
given by (5.15) is a true martingale if and only if both of the following requirements
are satisfied:

1) It does not hold that

s̃(r) < ∞ and
s̃(r) − s̃

ρ̃σ 2
Y

∈ L1
loc(r−), (5.21)

or it holds that

s(r) < ∞ and
(s(r) − s)g2

ρσ 2
Y

∈ L1
loc(r−). (5.22)
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2) It does not hold that

s̃(�) > −∞ and
s̃ − s̃(�)

ρ̃σ 2
Y

∈ L1
loc(�+),

or it holds that

s(�) > −∞ and
(s − s(�))g2

ρσ 2
Y

∈ L1
loc(�+).

We now use Theorem 5.6 in order to prove Theorem 5.5.

Proof of Theorem 5.5 By (5.10), we have

d oXt+ε = μ(Xt)dt + σ(Xt )dWt , t ≥ 0,

with

μ(x) = −
√

2

π
ε− 3

2 e
− 1

2εx2 , σ (x) = x

√
2

πε
e
− 1

2εx2 − x2erf

(
1

x
√

2ε

)

. (5.23)

By Girsanov’s theorem, there exists a probability measure Q ∈ Mloc(
oX,F) only if

the Doléans-Dade exponential

dQ

dP

∣
∣
∣
∣
Gt

= Zt = Et

(∫
αsdWs

)

, t ≥ 0, (5.24)

with

αt = −μ(Xt)

σ (Xt )
, t ≥ 0, (5.25)

is a true martingale. In order to prove that this is not the case, we apply Theo-
rem 5.6. In our case, by (5.2), (5.23) and (5.25), we have Y = X, J = (0,∞), μY ≡ 0,
σY (x) = −x2 and

g(x) =
√

2/πε− 3
2 e

− 1
2εx2

x(

√
2

πε
e
− 1

2εx2 − xerf( 1
x
√

2ε
))

.

Note that conditions (5.13) and (5.14) are satisfied. In order to prove that (5.16) also
holds, it is enough to check that

xerf

(
1

x
√

2ε

)

−
√

2

πε
e
− 1

2εx2 > 0 for every x ∈ (0,∞). (5.26)

This holds if and only if

erf(y)
1

y
√

2ε
−

√
2

πε
e−y2

> 0 for every y ∈ (0,∞),
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i.e., if and only if

F(y) := erf(y) − 2√
π

ye−y2
> 0 for every y ∈ (0,∞).

The last condition if fulfilled since F(0) = 0 and F ′(y) = 4√
π
y2e−y2

> 0 for every
y > 0. So we have (5.26) and the assumptions of Theorem 5.6 are thus satisfied.

We now show that condition (5.22) fails whereas (5.21) is satisfied, implying that
the process Z introduced in (5.24) is not a martingale. Consider first ρ and s defined
in (5.17) and (5.19), respectively. We have ρ ≡ 1 so that s(x) = x − c for any c > 0.
This implies that s(∞) = +∞ so that condition (5.22) fails. We now check condition
(5.21). We have

lim
x→∞

e
− 1

2εx2

x2(

√
2

πε
e
− 1

2εx2 − xerf( 1
x
√

2ε
))

= −3

√
π

2
ε3/2,

and so

lim
x→∞−x

2g(x)

σY (x)
= lim

x→∞ 2
√

2/πε− 3
2

e
− 1

2εx2

x2(

√
2

πε
e
− 1

2εx2 − xerf( 1
x
√

2ε
))

= −6.

Hence for every δ > 0, there exists x̄ > 0 such that

∣
∣
∣
∣ − x

2g(x)

σY (x)
+ 6

∣
∣
∣
∣ ≤ δ for every x ≥ x̄. (5.27)

We fix δ < 1 and choose x̄ > 0 such that (5.27) holds. For every x > x̄, we get the
estimate

∣
∣
∣
∣ −

∫ x

x̄

2g(y)

σY (y)
dy +

∫ x

x̄

6

y
dy

∣
∣
∣
∣ ≤

∫ x

x̄

∣
∣
∣
∣ − 2g(y)

σY (y)
+ 6

y

∣
∣
∣
∣dy

≤
∫ x

x̄

1

y

∣
∣
∣
∣ − y

2g(y)

σY (y)
+ 6

∣
∣
∣
∣dy

≤ δ(logx − log x̄).

Thus for every x > x̄, we have

(−6 − δ)(logx − log x̄) ≤ −
∫ x

x̄

2g(y)

σY (y)
dy ≤ (−6 + δ)(logx − log x̄).

Taking ρ̃ as in (5.18) and choosing c = x̄, this implies for every x > x̄ that

(
x

x̄

)−6−δ

≤ ρ̃(x) ≤
(

x

x̄

)−6+δ

. (5.28)
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Hence, taking s̃ as in (5.20) and choosing again c = x̄, we have for every x > x̄ that

∫ x

x̄

(
y

x̄

)−6−δ

dy ≤ s̃(x) =
∫ x

x̄

ρ̃(y)dy ≤
∫ x

x̄

(
y

x̄

)−6+δ

dy

so that s̃(∞) < ∞, and in particular,

x̄6+δ x−5−δ

5 + δ
≤ s̃(∞) − s̃(x) =

∫ ∞

x

ρ̃(y)dy ≤ x̄6−δ x−5+δ

5 − δ
.

Together with (5.28), this implies

x̄2δ

5 + δ
x1−2δ ≤ s̃(∞) − s̃(x)

ρ̃(x)
≤ x̄−2δ

5 − δ
x1+2δ

for every x > x̄, so that

x̄2δ

5 + δ
x−3−2δ ≤ s̃(∞) − s̃(x)

σ 2
Y (x)ρ̃(x)

≤ x̄−2δ

5 − δ
x−3+2δ.

Therefore, as δ < 1 by the choice of x̄, we have s̃(∞)−s̃

ρ̃σ 2
Y

∈ L1
loc(∞−) and (5.21) is

satisfied. By Theorem 5.6, it follows that Z in (5.24) is not a martingale. �

We now give an example of a process whose optional projection on a delayed
filtration is not a local martingale, but admits an equivalent local martingale measure.

Example 5.7 Consider again the filtration G = (Gt )t≥0 generated by the Brownian
motion W in (5.3), and define F = (Ft )t≥0 by Ft := Gt−ε with ε > 0. Introduce the
process M = (Mt)t≥0 with Mt = Xt − ∫ t

0 (1 + s)dWs , where X is the inverse Bessel
process. Thus

oMt+ε = E[Mt+ε |Gt ] = E

[

Xt+ε −
∫ t+ε

0
(1 + s)dWs

∣
∣
∣
∣Gt

]

= Xterf

(
1

Xt

√
2ε

)

−
∫ t

0
(1 + s)dWs, t ≥ 0,

where the last equality comes from Proposition 5.4 and the martingale property of∫
(1 + s)dWs . From (5.10), we therefore have

d oMt+ε =
(√

2

πε
e
− 1

2εX2
t Xt − erf

( 1

Xt

√
2ε

)
X2

t − (1 + t)

)

dWt

−
√

2

π
ε− 3

2 e
− 1

2εX2
t dt, t ≥ 0.

It is then clear that oM is not an F-local martingale. This implies that

Mloc(M,G) ∩Mo
loc(M,F) = ∅,

since Mloc(M,G) = {P } by Remark 5.1. So (P1), (P3) and (P4) do not hold here.
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We now introduce the Doléans-Dade exponential

Z̄t = Et

(∫
ᾱsdWs

)

, t ≥ 0,

with

ᾱt =
√

2
π
ε− 3

2 e
− 1

2εX2
t

√
2

πε
e
− 1

2εX2
t Xt − erf( 1

Xt

√
2ε

)X2
t − (1 + t)

, t ≥ 0,

and define Q̄ by dQ̄
dP

|Gt
= Z̄t , t ≥ 0. By (5.26), we have |ᾱt | ≤

√
2
π
ε− 3

2 (1 + t)−1 for
all t ≥ 0. Thus

exp

(
1

2

∫ ∞

0
|ᾱs |2ds

)

≤ exp

(
1

π
ε−3

∫ ∞

0
(1 + s)−2ds

)

< ∞,

and so Novikov’s condition is satisfied and Z̄ is a uniformly integrable martingale.
By Girsanov’s theorem, Q̄ ∈ Mloc(

oM,G). Hence (P2) and (P5) are satisfied.

Remark 5.8 Example 5.7 provides a case where we can explicitly compute the op-
tional projection of the stochastic process M . In particular, in contrast to the general
setting, the nonnegativity of the process is not needed here to ensure the existence of
the optional projection. Furthermore, M retains the supermartingale property since
it is the sum of − ∫ t

0 (1 + s)dWs , which is a martingale, and X, which is a local
martingale bounded from below. For this reason, the optional projection is also a
supermartingale.

Remark 5.9 In Sect. 5.2, G is the natural filtration of W and hence coincides with the
natural filtration of X by (5.2). From (5.11), we obtain that (P1) is not satisfied in this
setting, and also not if we project from the natural filtration Ḡ of (B1,B2,B3). In
fact, from Corollary 4.6, we have Mloc(X, Ḡ) = Mstrict(X, Ḡ), and Proposition 4.12
implies that Mstrict(X, Ḡ) ∩Mo

loc(X,F) = ∅ if Ft = Ḡt−h or Ft = FX
t−h, t ≥ 0, with

h > 0. Note that when F is the delayed filtration of FX , one can get the same result
from Corollary 4.7, which implies that for every Q ∈ Mloc(X, Ḡ),

EQ[Xt |Ft ] = EP [Xt |Ft ], a.s., t ≥ 0.

In particular, for that choice of F, the Q-optional projection Q,oX is a (Q,F)-local
martingale if and only if Q is an equivalent local martingale measure for oX, which
has dynamics given in (5.10). However, this is never the case because

Mloc(
oX,F) = ∅

by the same arguments as in the proof of Theorem 5.5.
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6 A stochastic volatility model

In this section, we assume that X comes from a stochastic volatility model and is
a local martingale with respect to a filtration G. We then consider a subfiltration F̂

of G such that (P1) is satisfied even if the optional projection of X on F̂ is not a local
martingale; see Theorem 6.11 below. We give Examples 6.7 and 6.8 to show when
(P2) or (P3) hold, respectively. Example 6.9 provides instead a setting where (P5) is
satisfied whereas (P2) is not. Finally, Example 6.12 shows a case where (P3) does not
hold whereas (P1) does.

We introduce a three-dimensional Brownian motion B = (B1,B2,B3) on a fil-
tered probability space (�,F ,P ,G), and consider a stochastic volatility model of
the form

dXt = σ1v
α
t XtdB1

t + σ2v
α
t XtdB2

t , t ≥ 0, X0 = x > 0, (6.1)

dvt = a1vtdB1
t + a2vtdB2

t + a3vtdB3
t + ρ(L − vt )dt, t ≥ 0, v0 = 1, (6.2)

where α,ρ,L ∈ R+ and σ1, σ2, a1, a2, a3 ∈ R.

Remark 6.1 The class of stochastic volatility models (6.1) and (6.2) reduces to the
class considered in Sin [31] for a3 = 0 and to the class presented in Biagini et al.
[2] for ρ = 0 and α = 1. Therefore, all the results of this section can be applied to
these particular cases. For analogous studies of a similar class of stochastic volatility
models, see also Lions and Musiela [26].

The next result states that under a condition on the coefficients of (6.1) and (6.2),
X is a strict (P,G)-local martingale, but Mtrue(X,G) �= ∅.

Proposition 6.2 The system of SDEs (6.1) and (6.2) admits a unique strong solution
(X,v). The process X satisfies the following properties:

1) X is a local martingale, and it is a true martingale if and only if

a1σ1 + a2σ2 ≤ 0.

2) For every T > 0, there exists a probability measure Q equivalent to P on GT

such that X is a true Q-martingale on [0, T ].

Proof Existence and uniqueness of a strong solution to (6.1) and (6.2) can be proved
as an extension of [31, Remark 2.2]. The proofs of the two claims are easy extensions
of the proofs of [31, Theorem 3.2] and [2, Theorem 5.1], respectively. �

We now give two results that provide a relation between the expectation of X and
the explosion time of a process associated to the volatility v.

Lemma 6.3 Let (X,v) satisfy the system of SDEs (6.1) and (6.2). Then

E[Xt ] = X0P [v̂ does not explode to +∞ up to time t], t ≥ 0,
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where v̂ = (v̂t )t≥0 is given by

dv̂t = a1v̂t dB1
t + a2v̂t dB2

t + a3v̂t dB3
t + ρ(L − v̂t )dt

+ (a1σ1 + a2σ2)v̂
α+1
t dt, t ≥ 0, v̂0 = 1. (6.3)

Proof This result is a particular case of Proposition 6.10 below. �

Lemma 6.4 The (unique) solution to (6.3) explodes to +∞ in finite time with positive
probability if and only if a1σ1 + a2σ2 > 0. Moreover, if a1σ1 + a2σ2 > 0, it does not
reach zero in finite time.

Proof The result is given in Sin [31, Lemma 4.3] when a3 = 0, and proved by using
Feller’s test of explosions. In that framework, the test is applicable because v̂ is a
one-dimensional Itô diffusion with respect to the Brownian motion (a · B)/|a|, with
a = (a1, a2) and B = (B1,B2). The author introduces σ = (σ1, σ2) and proves that
v̂ explodes to +∞ with positive probability in finite time and does not reach the
origin in finite time if a · σ > 0. In our case, the proof comes as an easy extension by
considering now a = (a1, a2, a3) and σ = (σ1, σ2,0). �

The following is from Karatzas and Ruf [22, Proposition 5.2].

Lemma 6.5 Fix an open interval I = (�, r) with −∞ ≤ � < r ≤ ∞ and consider the
stochastic differential equation

dYt = s(Yt )
(
dWt + b(Yt )dt

)
, t ≥ 0, Y0 = ξ, (6.4)

where ξ ∈ I and W denotes a standard Brownian motion. Suppose that the functions
b : (I,B(I )) → (R,B(R)) and s : (I,B(I )) → (R \ {0},B(R \ {0})) are measurable
and satisfy

∫

K

(
1

s2(y)
+

∣
∣
∣
∣
b(y)

s(y)

∣
∣
∣
∣

)

dy < ∞ for every compact set K ⊆ I . (6.5)

Call τ ξ the first time when the weak solution Y to (6.4), unique in the sense of distri-
bution, exits the open interval I . Introduce the function U : (0,∞) × I → R+ by

U(t, ξ) := P [τ ξ > t].
If the functions s and b are locally Hölder-continuous on I , the function U is of class
C([0,∞) × I ) ∩ C1,2((0,∞) × I ).

Applying Lemma 6.5 to our setting, we get the following result.

Lemma 6.6 Consider the solution v̂ to (6.3), supposing a1σ1 + a2σ2 > 0 and ρ = 0.
Define the function m : (0,∞) → R+ by

mt = P [v̂ does not explode to +∞ up to time t]. (6.6)

Then m ∈ C1((0,∞)).
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Proof Note that v̂ is a one-dimensional Itô diffusion with respect to the Brownian
motion W = (a · B)/|a|, with a = (a1, a2, a3) and B = (B1,B2,B3). In particular,
we have

dv̂t = |a|v̂t dWt + (a1σ1 + a2σ2)v̂
α+1dt, t ≥ 0.

We are thus in the setting of Lemma 6.5 with I = (0,∞) and

s(x) = |a|x, b(x) = a1σ1 + a2σ2

|a| xα.

Condition (6.5) is satisfied because for every compact interval K ⊆ (0,∞), we have
∫

K

(
1

s2(y)
+

∣
∣
∣
∣
b(y)

s(y)

∣
∣
∣
∣

)

dy =
∫

K

(
1

|a|y2 +
∣
∣
∣
∣
a1σ1 + a2σ2

|a|2 yα−1
∣
∣
∣
∣

)

dy < ∞.

Moreover, s and b are locally Hölder-continuous on (0,∞). The result follows from
Lemma 6.5 since v̂ does not reach zero in finite time by Lemma 6.4. �

We are now ready to state our first result in this setting.

Example 6.7 Consider the solution (X,v) to the system of SDEs (6.1) and (6.2), sup-
posing ρ = 0 and a1σ1 + a2σ2 > 0. Let H be the filtration generated by (B1,B2,B3)

and F the filtration generated by a fourth Brownian motion B4, independent of
(B1,B2,B3). Introduce the F-local martingale N = (Nt )t≥0 with dynamics given by

dNt = (1 + m′
t )(1 + t)dB4

t , t ≥ 0,

where m′ is the first derivative of the function m from (6.6). Then the stochastic pro-
cess R := N + X is a G-local martingale for G := H∨ F, and its optional projection
on F is oR = N + m by Lemma 6.3. Thus oR is not an F-local martingale because m

is not constant by Lemma 6.4. We introduce the stochastic exponential

Zt = Et

(∫
αsdB4

s

)

, t ≥ 0,

with

αt = m′
t

(1 + m′
t )(1 + t)

, t ≥ 0.

As m ∈ C1((0,∞)) from (6.6) is increasing, we get
∫ ∞

0 α2
s ds ≤ ∫ ∞

0
1

(1+s)2 ds < ∞.
So Novikov’s condition is satisfied, Z is an F-uniformly integrable martingale and
we can introduce the probability measure Q ≈ P defined by Z. Then oR = N + m is
a (Q,F)-local martingale. Hence (P2) is satisfied.

Example 6.8 In the setting of Example 6.7, introduce a strict (P,F)-local martin-
gale Y independent of H. Let Q be the probability measure from Proposition 6.2
under which X is a true martingale. Since the density of Q with respect to P only
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depends on (B1,B2,B3), Y is a strict local martingale also with respect to Q, and so
is U := Y + X. The Q-optional projection of U on F is

Q,oUt = Yt +E[Xt ] = Yt + X0, t ≥ 0,

which is a (Q,F)-local martingale. Thus P /∈Mo
loc(U,F), but

Mstrict(U,H∨ F) ∩Mo
loc(U,F) �= ∅,

i.e., (P3) holds for U .

The next example provides a case where (P2) does not hold whereas (P5) does.

Example 6.9 Consider again the solution (X,v) to (6.1) and (6.2), supposing ρ = 0
and a1σ1 +a2σ2 > 0. Let H be the filtration generated by (B1,B2,B3) and F a filtra-
tion independent of H. Consider a (P,F)-local martingale N̄ such that the measure
d[N̄ ]t is singular with respect to Lebesgue measure1. Then the process R̄ := N̄ + X

is a local martingale for the filtration G := H∨ F. As in Example 6.7, we obtain that
the optional projection of R̄ on F is given by

o
R̄ = N̄ + m, where m is defined in

(6.6). Thus
o
R̄ is not an F-local martingale as m is not a constant function.

Since for any F-adapted density Z, the measure d[N̄,Z]t is absolutely continuous
with respect to d[N̄ ]t and hence singular with respect to Lebesgue measure, we have
Mloc(

o
R̄,F) = ∅. Hence (P2) does not hold. Consider now the optional projection

Q,o
R̄ of R̄ on F under the martingale measure Q from Proposition 6.2. Since X is a

true martingale under Q, the process
Q,o

R̄ is a local martingale under Q itself, and
so (P5) is satisfied.

The next result is a generalisation of Sin [31, Lemma 4.2].

Proposition 6.10 Suppose the two-dimensional process (X,v) satisfies the system of
SDEs (6.1) and (6.2) and call F the natural filtration of B1. Introduce the process
(X̂t )t≥0 defined by

X̂t = B1
t − σ1

∫ t

0
vα
s ds, t ≥ 0, (6.7)

and call F̂ the natural filtration of X̂. Then for every F̂-stopping time τ̂ , there exists
an F-stopping time τ such that

E[XT ∧τ̂ ] = X0P [v̂ does not explode to +∞ up to time T ∧ τ ],
where v̂ is defined in (6.3).

1One can easily provide an example of such a pair (F, N̄): consider a Brownian motion B4 independent
of (B1,B2,B3) and an increasing process f = (ft )t≥0 such that dft is singular with respect to Lebesgue
measure. Let then F be the filtration generated by (B4, f ) and set N̄t := B4

ft
, t ≥ 0.
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Proof By (6.1), X is a positive (P,G)-local martingale. Define the sequence of
G-stopping times (τn)n∈N by

τn = inf

{

t ≥ 0 : |σ1 + σ2|2
∫ t

0
v2α
s ds ≥ n

}

∧ T ,

with v = (vt )t≥0 as in (6.2). Then the process Xn defined by

Xn
t = Xt∧τn , t ≥ 0,

is a (P,G)-local martingale for n ∈ N. Define Zn by

Zn
t = σ1

∫ t∧τn

0
vα
s dB1

s + σ2

∫ t∧τn

0
vα
s dB2

s , t ≥ 0.

Then Xn is the stochastic exponential of Zn, and since [Zn,Zn]t ≤ n for all t ≥ 0, Xn

is a (P,G)-martingale for every n ∈ N by Novikov’s condition and (τn)n∈N reduces
X with respect to (P,G). Since Xn stopped at τ̂ is also a (P,G)-martingale, we can
define a new probability measure Qn on GT as

Qn[A] = 1

X0
E[XT ∧τn∧τ̂1A] for all A ∈ GT .

By dominated convergence,

E[XT ∧τ̂ ] = lim
n→∞E

[
XT ∧τn∧τ̂1{τn≥T ∧τ̂ }

] = X0 lim
n→∞Qn[τn ≥ T ∧ τ̂ ] (6.8)

by the definition of Qn. Moreover, Girsanov’s theorem implies that the processes
B(n,1), B(n,2) defined by

B
(n,1)
t = B1

t − σ1

∫ t

0
1{s≤τn∧τ̂ }vα

s ds, t ≥ 0,

B
(n,2)
t = B2

t − σ2

∫ t

0
1{s≤τn∧τ̂ }vα

s ds, t ≥ 0,

are Brownian motions under Qn, n ≥ 0. Therefore under Qn, the process v has the
dynamics

dvt = a1vtdB
(n,1)
t + a2v2dB

(n,2)
t + a3vtdB3

t + ρ(L − vt )dt

+ 1{t≤τn∧τ̂ }(a1σ1 + a2σ2)v
α+1
t dt, t ≥ 0, v0 = 1.

Introduce the SDE

dv̂t = a1v̂t dB1
t +a2v̂t dB2

t +a3v̂t dB3
t +ρ(L− v̂t )dt +(a1σ1 +a2σ2)v̂

α+1
t dt, t ≥ 0,

which admits a unique strong solution v̂ by the same arguments as in the proof of
Sin [31, Lemma 4.2], and consider the process X̂ introduced in (6.7). Note that on
�0, τn ∧ τ̂�, (X̂, v) has the same distribution under Qn as (B1, v̂) under P . By the
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Doob measurability theorem, there exists a measurable function h : C([0,∞)) →R+
such that τ̂ = h(X̂). Set τ = h(B1). As T ∧ τ̂ is a σ(X̂)-stopping time, there exists, by
the Doob measurability theorem again, a B(C([0, t]))-measurable function �t such
that 1{t≥T ∧τ̂ } = �t(X̂

t ). Thus

1{τn≥T ∧τ̂ } = �τn(X̂
τn), n ∈N.

Analogously, by the construction of τ , we have

1{τ̂n≥T ∧τ } = �τ̂n
(B1,τ̂n ), n ∈N,

where (τ̂n)n∈N are stopping times for the natural filtration of v̂ defined by

τ̂n = inf

{

t ≥ 0 : |σ1 + σ2|2
∫ s

0
v̂2α
u du ≥ n

}

, n ≥ 1.

Since on �0, τn ∧ τ̂�, (X̂, v) has the same law under Qn as (B1, v̂) under P , we have
that �τn(X̂

τn) has the same law under Qn as �τ̂n
(B1,τ̂n ) under P . Thus we get from

(6.8) that

E[XT ∧τ̂ ] = X0 lim
n→∞Qn[τn ≥ T ∧ τ̂ ]

= X0 lim
n→∞EQn[�τn(X̂

τn)]

= X0 lim
n→∞EP [�τ̂n

(B1,τ̂n )]
= X0 lim

n→∞P [τ̂n ≥ T ∧ τ ]
= X0P [τ̂n ≥ T ∧ τ for some n]
= X0P [v̂ does not explode to +∞ up to time T ∧ τ ],

and the proof is complete. �

We are now ready to give the following result.

Theorem 6.11 Consider the stochastic volatility model defined by

dXt = σ1v
α
t XtdB1

t + σ2v
α
t XtdB2

t , t ≥ 0, X0 = x > 0, (6.9)

dvt = a2vtdB2
t + ρ(L − vt )dt, t ≥ 0, v0 = 1,

i.e., the model introduced in (6.1) and (6.2) with a1 = a3 = 0, and suppose that
a2σ2 > 0. Consider the filtration F̂ ⊆ G generated by the process X̂ defined in (6.7).
Then the P -optional projection of X on F̂ is not an F̂-local martingale.

Proof The process X in (6.9) is a strict (P,G)-local martingale by Proposition 6.2.
By Proposition 6.10, for every F̂-stopping time τ̂ , there exists a σ(B1)-stopping time
τ such that

E[XT ∧τ̄ ] = X0P [v̂ does not explode to +∞ up to time T ∧ τ ], (6.10)
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where v̂ is now given by

dv̂t = a2v̂t dB2
t + ρ(L − v̂t )dt + a2σ2v̂

α+1
t dt, t ≥ 0, v̂0 = 1.

Since a1σ1 + a2σ2 = a2σ2 > 0, Lemma 6.4 implies that

P [v̂ does not explode to +∞ up to time t] < 1 for all t > 0.

In particular,

P [v̂ does not explode to +∞ up to time T ∧ η] < 1

for every σ(B1)-stopping time η with P [η = ∞] < 1, because v̂ is independent
of B1. Together with (6.10), this implies that X cannot be localised by any sequence
of F̂-stopping times. Consequently, the optional projection of X on F̂ cannot be an
F̂-local martingale by Föllmer and Protter [11, Theorem 3.7]. �

Proposition 6.2 and Theorem 6.11 provide a further example of two probability
measures P and Q, a P -local martingale X and a non-trivial filtration F̂ ⊆ G such
that the optional projection of X on F̂ under P is not a P -local martingale, but the
optional projection of X on F̂ under Q is a Q-martingale. We conclude the section
by considering projections on a delayed filtration.

Example 6.12 Let X = (Xt )t≥0 be the process defined in (6.1) and (6.2), and let
G = (Gt )t≥0 be the natural filtration of the Brownian motions (B1,B2,B3). Let
F = (Ft )t≥0 be defined by Ft = Gt−h for a given delay h > 0. Then Corollary 4.13
immediately implies that

Mstrict(X,G) ∩Mo
loc(X,F) = ∅,

i.e., (P3) does not hold. On the other hand, from Proposition 6.2, we have that (P1) is
satisfied, since projections of true martingales are true martingales.
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