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Abstract
The objective of this paper is to develop a duality between a novel entropy martin-
gale optimal transport (EMOT) problem and an associated optimisation problem. In
EMOT, we follow the approach taken in the entropy optimal transport (EOT) prob-
lem developed in Liero et al. (Invent. Math. 211:969–1117, 2018), but we add the
constraint, typical of martingale optimal transport (MOT) theory, that the infimum
of the cost functional is taken over martingale probability measures. In the associ-
ated problem, the objective functional, related via Fenchel conjugacy to the entropic
term in EMOT, is no longer linear as in (martingale) optimal transport. This leads
to a novel optimisation problem which also has a clear financial interpretation as a
nonlinear subhedging problem. Our theory allows us to establish a nonlinear robust
pricing–hedging duality which also covers a wide range of known robust results. We
also focus on Wasserstein-induced penalisations and study how the duality is affected
by variations in the penalty terms, with a special focus on the convergence of EMOT
to the extreme case of MOT.
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1 Introduction

As a consequence of the financial crisis in 2008, the uncertainty in the selection of a
reference probability P gained increasing attention and led to the investigation of the
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notions of arbitrage and of the pricing–hedging duality in different settings. On the
one hand, the single reference probability P was replaced with a family of – a priori
non-dominated – probability measures, leading to the theory of quasi-sure stochastic
analysis. On the other hand, taking an even more radical approach, a probability-free,
pathwise theory of financial markets made substantial advances in the second decade
of this century. In this context, it was shown in the seminal paper by Beiglböck et al.
[4] that optimal transport theory is a powerful tool to prove pathwise pricing–hedging
duality results. The theory we are going to present fits in this conceptual framework
that we now briefly recall.

The market model is in discrete time with a finite horizon T ∈ N and zero interest
rate. Let

� := K0 × · · · × KT

for closed (possibly noncompact) subsets K0, . . . ,KT of R and let X0, . . . ,XT be the
canonical projections Xt : � → Kt for t = 0,1, . . . , T . The process X = (Xt ) rep-
resents the price of some underlying asset. Later we allow a multidimensional price
process, but in this introduction, we stick to the one-dimensional case for notational
simplicity. We assume no reference probability measure. We write

Mart(�) := {martingale probability measures for X under the natural filtration},
and when μ is a measure defined on the Borel σ -algebra of �, its marginals are de-
noted by μ0, . . . ,μT . One then considers a contingent claim c : � → (−∞,+∞]
which is allowed to depend on the whole path of the underlying asset, and one ad-
mits semistatic trading strategies for hedging. This means that in addition to dynamic
trading in X via admissible integrands � ∈ H, one may invest in vanilla options
ϕt : Kt → R. For modelling purposes, one can take vector subspaces Et ⊆ C(Kt ) for
t = 0, . . . , T , where C(Kt ) is the space of real-valued continuous functions on Kt .
For each t , Et is the set of static options that can be used for hedging, say affine
combinations of vanilla options with different strikes and the same maturity t , and
E = E0 × · · · × ET is the space of all hedging instruments. The key assumption in the
robust, optimal-transport-based formulation is that the marginals (̂Q0, ̂Q1, . . . , ̂QT )

of the underlying price process X are known; see the seminal papers by Breeden and
Litzenberger [13] and Hobson [27]. Such marginals can be identified if one knows
a (very) large number of prices of plain vanilla options maturing at each intermedi-
ate date, for example the prices of all call options with intermediate maturities and
ranging strikes. In this case, the class of arbitrage-free pricing measures that are com-
patible with the observed prices of the options is given by

M(̂Q0, ̂Q1, . . . , ̂QT ) := {Q ∈ Mart(�) : Xt ∼Q
̂Qt for t = 0, . . . , T }.

Let H consist of admissible (predictable) trading strategies, given as in Beiglböck
et al. [4] via bounded continuous functions, and let

I :=
{

I�(x) :=
T −1
∑

t=0

�t(x0, . . . , xt )(xt+1 − xt ) : � ∈H
}
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denote the corresponding set of stochastic integrals. In this framework, the subhedg-
ing duality, obtained in [4, Theorem 1.1], takes the form

inf
Q∈M(̂Q0,̂Q1,...,̂QT )

EQ[c] = sup

{ T
∑

t=0

E
̂Qt

[ϕt ] : ϕ ∈ Ssub(c)

}

, (1.1)

for

Ssub(c) :=
{

ϕ ∈ E : ∃� ∈ H with
T

∑

t=0

ϕt (xt ) + I�(x) ≤ c(x),∀x ∈ �

}

, (1.2)

and the right-hand side of (1.1) is known as the robust subhedging price of c. Ob-
viously, an analogous theory for the superhedging price can be developed as well.
Several relevant papers contributed to this stream of literature, as for example Davis
et al. [18], Dolinsky and Soner [20], Galichon et al. [22], Henry-Labordère et al.
[26], Tan and Touzi [37]. More recent works on the topic include also Bartl et al. [3],
Cheridito et al. [14], Guo and Obłój [24], Hou and Obłój [28].

1.1 The dual problem

The left-hand side of (1.1), namely infQ∈M(̂Q0,̂Q1,...,̂QT ) EQ[c], represents the dual
problem in the financial application, but is typically the primal problem in martingale
optimal transport (MOT). We label this case as the sublinear case of MOT. Inspired
by the entropy optimal transport (EOT) introduced in Liero et al. [30], we are natu-
rally led to the study of the convex case of MOT, i.e., an entropy martingale optimal
transport (EMOT) problem, in the form

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

Dv∗
t ,̂Qt

(Qt )

)

, (1.3)

where Dv∗
t ,̂Qt

is a divergence in the usual form (see (3.5) below for an explicit ex-
pression). Notice that in the EMOT primal problem (1.3), the typical MOT constraint
that Q has prescribed marginals (̂Q0, ̂Q1, . . . , ̂QT ) is relaxed (as the infimum is
taken with respect to all martingale probability measures) by penalising via Dv∗

t ,̂Qt

those martingale measures Q whose marginals are far from some reference marginals
(̂Q0, ̂Q1, . . . , ̂QT ). This is a key difference with classical MOT. Nevertheless, when
Dv∗

t ,̂Qt
( · ) = δ{̂Qt }( · ), the EMOT reduces to the classical MOT problem where only

martingale probability measures with fixed marginals are allowed. Here δA := ∞1Ac

is the characteristic function of a set A as customarily defined in convex analysis. We
also stress that in (1.3), we only consider martingale probability measures, while the
EOT problem of [30] is obtained by replacing in (1.3) the set Mart(�) with Meas(�)

consisting of all positive finite measures μ on �.
In EMOT, the marginals are no longer fixed a priori as in the left-hand side of (1.1),

because we may not have sufficient information to detect them with enough accuracy.
This might be the case for example if there are not sufficiently many traded call and
put options on the underlying assets in the market so that we cannot extract precisely
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the marginals via the Breeden and Litzenberger [13] approach. Alternatively, the ex-
act prices of the options might be unknown, e.g. by market impact effects.

1.2 The primal problem

To describe the nonlinear subhedging value, we start with the space E = E0 ×· · ·×ET

of hedging instruments consisting of some vectors of continuous functions and con-
sider a functional U : E → [−∞,+∞). An example is given by (a sum of) expected
utility functions, as detailed below, so that U is not necessarily linear or even cash-
additive.

We restore cash-additivity via the notion of the optimised certainty equivalent
(OCE) studied in Ben Tal and Teboulle [5]. To this end, we introduce the generalised
optimised certainty equivalent associated to U as

SU(ϕ) := sup
β∈RT +1

(

U(ϕ + β) −
T

∑

t=0

βt

)

. (1.4)

This is a cash-additive map (see (2.2)), yet nonlinear in general, and can be considered
as a valuation of options ϕ = (ϕt ) instead of the linear cost

∑T
t=0 E

̂Qt
[ϕt ] in (1.1).

For a possibly path-dependent contingent claim c : � → (−∞,+∞], the nonlinear
subhedging value of c when valuation is done by SU then reads

π(c) = sup{SU(ϕ) : ϕ ∈ Ssub(c)} = sup
�∈H

sup
ϕ∈	�(c)

SU (ϕ)

for 	�(c) := {ϕ ∈ E : ∑T
t=0 ϕt (xt ) + I�(x) ≤ c(x),∀x ∈ �}.

1.3 The duality

One of the main results of the paper in Theorem 2.4 is the duality

inf
Q∈Mart(�)

(

EQ[c] +DU(Q)
) = sup

�∈H
sup

ϕ∈	�(c)

SU (ϕ), (1.5)

where

DU(Q) = sup
ϕ∈E

(

U(ϕ) −
T

∑

t=0

∫

Kt

ϕtdQt

)

for Q ∈ Mart(�) (1.6)

is the penalisation term associated to U via the Fenchel conjugate. In addition, we
also prove the existence of an optimiser for the problem on the left-hand side of
(1.5). We now understand that the dual problem for the latter, namely of EMOT in its
general form, is the nonlinear subhedging problem appearing on the right-hand side
of (1.5).

Observe that D := DU in (1.6) does not necessarily have an additive structure, or
a divergence formulation D(Q) = ∑T

t=0 Dv∗
t ,̂Qt

(Qt ) as in (1.3), and so it does not

necessarily depend on a given martingale measure ̂Q. For example, such penalisation
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terms could be induced by market prices (see Sect. 4.3) or by a Wasserstein distance
(see Sect. 4.4). This additional flexibility in choosing D constitutes one key generali-
sation of the entropy optimal transport theory of Liero et al. [30]. Of course, the other
difference with EOT is the presence in (1.5) of the additional supremum with respect
to admissible integrands � ∈ H. As a consequence, on the left-hand side of (1.5),
the infimum is now taken with respect to martingale probability measures instead of
positive measures.

In the special case of a valuation functional U induced by utility functions,
the duality (1.5) has a particularly interesting formulation (see Sects. 3.4 and 4.1
for the assumptions and more details). We provide here only two special cases.
Let ̂Qt be the marginals of some ̂Q ∈ Mart(�) and U(ϕ) = ∑T

t=0 E
̂Qt

[ut (ϕt )]. If

ut (x) = 1
γt

(1 − exp (−γtx)), γ0, . . . , γt > 0, is an exponential utility function, then
(1.5) takes the form

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

1

γt

H(Qt , ̂Qt)

)

= sup

{ T
∑

t=0

− 1

γt

lnE
̂Qt

[exp(−γtϕt )] : ϕ ∈ Ssub(c)

}

,

where H( · , · ) denotes the relative entropy. If ut (x) = x is the linear utility function,
then DU( · ) = ∑T

t=0 δ
̂Qt

( · ) and the EMOT reduces to the classical MOT problem.
Our framework allows us to establish and comprehend several different robust

pricing–hedging duality results: new nonlinear utility-based formulations (in Corol-
laries 4.3, 4.4 and 5.1); the linear case (in Corollary 5.3) and the case without options
(in Corollary 4.6); a new duality with penalisation functions based on market data
(see Sect. 4.3) or on a Wasserstein distance (see Sect. 4.4).

One additional feature of the paper consists in replacing the set of stochastic inte-
grals I with a general set A of suitable hedging instruments that is a general convex
cone. Particular choices of such an A, apart from the usual set of stochastic integrals,
allow us to work with ε-martingale measures, supermartingales and submartingales
in the duality (see Sect. 2.2.1). This extends EMOT beyond the strict martingale prop-
erty.

Section 2.5 is devoted to stability and convergence issues, as we analyse how the
duality is affected by variations in the penalty terms. In Examples 4.12, 4.16 and 5.4,
we apply this result to the convergence of EMOT to the extreme case of MOT, and in
Sect. 4.4, we focus on Wasserstein-induced penalisation terms.

2 The entropy martingale optimal transport duality

In this section, we present a precise mathematical setting, the main results and their
proofs. The main result in Theorem 2.4 relies on (i) a Fenchel–Moreau argument
applied to the dual system (C0:T , (C0:T )∗), where C0:T is a set of appropriately
weighted continuous functions, (ii) the Daniell–Stone theorem that guarantees that
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the elements in the dual space (C0:T )∗ that enter in the dual representation can be rep-
resented by probability measures. In order to make this possible, an order-continuity-
type assumption on the valuation functional is enforced (see (2.6)).

2.1 The setting

Fix d ∈ N modelling the number of stocks in the market, and fix d(T + 1) closed
subsets K1

0 , . . . ,Kd
0 , . . . ,K1

T , . . . ,Kd
T of R. Set, for 0 ≤ s ≤ t ≤ T ,

�s:t :=
t×

u=s

d×
j=1

K
j
u and � := �0:T =

T×
u=0

d×
j=1

K
j
u .

Let C (�s:t ) be the vector space of continuous real-valued functions on �s:t , and let

Cs:t :=
{

ϕ ∈ C(�s:t ) : ‖ϕ‖s:t := sup
x∈�s:t

|ϕ(x)|
1 + ∑t

u=s

∑d
j=1 |xj

u |
< ∞

}

. (2.1)

We introduce the space Bs:t in a similar fashion, just substituting the requirement
of continuity for ϕ with the request that ϕ be measurable with respect to the Borel
σ -algebra of �s:t . Then Cs:t and Bs:t are Banach lattices under the norm ‖ · ‖s:t . The
topological dual of Cs:t is denoted by (Cs:t )∗.

In a discrete-time framework with finite horizon T and assuming zero interest rate,
we model a market with d stocks using the canonical d-dimensional process given
by X

j
t (x) = x

j
t , j = 1, . . . , d, t = 0, . . . , T , for x ∈ �. We introduce the set Prob(�)

of probability measures on �, endowed with its Borel σ -algebra, and the set of those
probability measures under which the X

j
t are integrable as

Prob1(�) :=
{

Q ∈ Prob(�) : EQ

[ T
∑

t=0

d
∑

j=1

|Xj
t |

]

< ∞
}

.

Fix now vector subspaces E0, . . . ,ET with Et ⊆ C0:t . The space E = E0 × · · · × ET

represents the class of financial instruments that can be used for static hedging. Since
Et ⊆ C0:t , we are potentially allowing to consider also Asian and path-dependent
options ϕt (x0, . . . , xt ) in the sets Et . Nonetheless, the choice Et ⊆ Ct :t is permit-
ted, too; see Sects. 4 and 5. Moreover, in some of the subsequent results, see
Sect. 4.1, we take as Et ⊆ Ct :t the subspace consisting of (combinations of) de-
terministic amounts, units of underlying stock at time t and call options with dif-
ferent strike prices and the same maturity t . Let U : E → [−∞,+∞) be a proper
(i.e., dom(U) := {ϕ ∈ E : U(ϕ) > −∞} �= ∅) concave functional. Recall from (1.4)
the definition of SU : E → [−∞,+∞] which represents the valuation functional of
the hedging instruments in E . Let dom(SU ) := {ϕ ∈ E : SU(ϕ) > −∞}. Observe that
we are considering valuation of the process ϕ = (ϕ0, . . . , ϕT ) ∈ E rather than the val-
uation of the terminal payoffs only. Under the usual convention ∞ · 0 = 0 · ∞ = 0,
one can check that the functional SU is concave on the convex set dom(SU ) and
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cash-additive, meaning that

SU(ϕ + α) = SU(ϕ) +
T

∑

t=0

αt , ∀ϕ ∈ E,∀α ∈R
T +1. (2.2)

Definition 2.1 Given a convex cone A ⊆ C0:T and a Borel function c, we define

π(c) := sup
z∈−A

sup
ϕ∈	z(c)

SU (ϕ) ∈ [−∞,+∞], (2.3)

where

	z(c) :=
{

ϕ ∈ dom(SU ) :
T

∑

t=0

ϕt (x0, . . . , xt ) + z(x) ≤ c(x),∀x ∈ �

}

and the usual convention sup∅ = −∞ is adopted.

We recognise that π(c) in (2.3) is a generalised robust subhedging value for c,
with a general set −A replacing the set of terminal values of stochastic integrals used
before. Some relevant examples for choices of A are provided in Sect. 2.2.1.

Definition 2.2 We define the polar A◦ of the cone A ⊆ C0:T to be the set

A◦ := {λ ∈ (C0:T )∗ : 〈z,λ〉 ≤ 0,∀z ∈ A}
where 〈 · , · 〉 is the usual pairing between C0:T and its topological dual (C0:T )∗, and
we observe that for any λ in (C0:T )∗,

σA(λ) := sup
z∈A

〈z,λ〉 =
{

0 for λ ∈A◦

∞ otherwise

}

= δA◦(λ).

As will be clarified in Sect. 2.4.1, Prob1(�) can be identified with a subset of
(C0:T )∗; so we introduce the set of probability measures

Prob1(�) ∩A◦ = {Q ∈ Prob1(�) : EQ[z] ≤ 0,∀z ∈A}. (2.4)

2.2 The main results

Assumption 2.3 (i) Let K1
0 , . . . ,Kd

0 , . . . ,K1
T , . . . ,Kd

T be closed subsets of R and

denote � = �0:T = ×T
t=0 ×d

j=1 K
j
t . The vector subspaces E0, . . . ,ET satisfy that

R ⊆ Et ⊆ C0:t , t = 0, . . . , T , and we set E = E0 × · · · × ET . The functional
U : E → [−∞,+∞) is concave with U(0) ∈ R. Moreover, A ⊆ C0:T is a convex
cone with 0 ∈ A.

(ii) For every t = 0, . . . , T , there exist compact sets Ht(n) ⊆ ×d
j=1 K

j
t , n ≥ 1, and

functions 0 ≤ f n
t ∈ Et , n ≥ 1, such that

1+
T

∑

t=0

d
∑

j=1

|xj
t | ≤

T
∑

t=0

f n
t (x0, . . . , xt ), ∀(x0, . . . , xT ) ∈ �\

(

T×
t=0

Ht(n)

)

(2.5)
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and

U(−af n
0 , . . . ,−af n

T ) −→ 0 as n → ∞,∀a ∈ R, a > 0 . (2.6)

Theorem 2.4 Suppose Assumption 2.3 is fulfilled.

(i) If

π( ĉ ) < ∞ for some ĉ ∈ B0:T , (2.7)

then π(c) ∈ R for every c ∈ B0:T and π : B0:T → R is norm-continuous, cash-
additive, concave and nondecreasing on B0:T .

(ii) For every lower semicontinuous c : � → (−∞,+∞] satisfying

c(x) ≥ −A

(

1 +
T

∑

t=0

d
∑

j=1

|xj
t |

)

, ∀x ∈ �, for some A ∈ [0,∞), (2.8)

we have the duality

inf
Q∈Prob1(�)∩A◦

(

EQ[c] +D(Q)
) = sup

z∈−A
sup

ϕ∈	z(c)

SU (ϕ) = π(c), (2.9)

where Prob1(�) ∩A◦ is given in (2.4),

D(Q) = sup
ϕ∈E

(

U(ϕ) −
T

∑

t=0

∫

�0:t
ϕtdQt

)

, (2.10)

and Qt is the marginal of Q ∈ Prob1(�) on B(�0:t ). Furthermore, if π(c) < ∞,
the infimum on the left-hand side of (2.9) is a minimum.

Notice that the condition π( ĉ ) < ∞ for some ĉ ∈ B0:T is not required for the
validity of Theorem 2.4 (ii). In addition, we allow in (2.9) Prob1(�) ∩ A◦ = ∅ with
the usual convention inf∅ = +∞. Recall also that the existence of an optimiser in
MOT implies that M(̂Q0, ̂Q1, . . . , ̂QT ) is not empty and that the marginals must be
in convex order. In EMOT, the marginals are no longer assigned, and so an optimiser
Q∗ of the left-hand side of (2.9) belongs to Prob1(�) ∩ A◦ with D(Q∗) < ∞ with
no other requirement.

Corollary 2.5 Suppose Assumption 2.3 (i) holds with the subsets K
j
t , t = 0, . . . , T ,

j = 1, . . . , d , of R being compact, c : � → (−∞,+∞] is lower semicontinuous and
U(0) = 0. Then (2.9) holds true and if π(c) < ∞, there exists an optimum for the
left-hand side of (2.9).

Proof When K1
0 , . . . ,Kd

0 , . . . ,K1
T , . . . ,Kd

T are compact, then C0:T = Cb(�). As

U(0) = 0, (2.5) and (2.6) are automatically satisfied: just take ×T
t=0 Ht(n) = � and

f n
t = 0, t = 0, . . . , T ,n ≥ 1. �
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Assumption 2.3 (ii) is inspired by Cheridito et al. [15] and is for instance satis-
fied if K

j
t ⊆ [0,∞), t = 0, . . . , T , j = 1, . . . , d , and if the valuations over a suitable

sequence of call options on the underlying stocks converge to zero when the corre-
sponding strikes diverge to infinity, as explained in the following example.

Example 2.6 Let

f α
j,t (xt,j ) := (|xt,j | − α)+, xt,j ∈ K

j
t , j = 1, . . . , d, t = 0, . . . , T , (2.11)

and suppose that f α
j,t ∈ Et for every α ≥ 0, j = 1, . . . , d , t = 0, . . . , T . As shown

in Proposition A.1 (ii), to guarantee that (2.5) and (2.6) are satisfied, it is enough to
require that U is (componentwise) nondecreasing on ×T

t=0 Et , U(0) = 0 and that for
β ∈ R+ given in A.1 (i), we have

U(0, . . . ,0,−af
n
β

j,t ,0, . . . ,0) −→ 0 as n → ∞, ∀j = 1, . . . , d,

t = 0, . . . , T , a ≥ 0. (2.12)

Condition (2.12) is a requirement on the valuation of single options having maturity t .

Remark 2.7 The proof of Theorem 2.4 will clarify that the use of −A in place of A in
defining π(c) is somehow a matter of taste. Now the infimum in (2.9) is in fact taken
over measures in the polar A◦. Instead, without the minus sign (−A) in defining
π(c), we should work with (−A)◦, which is less convenient in the computations of
the proof.

2.2.1 Examples for A

We anticipate here financially relevant examples of possible choices of the convex
cone A and the corresponding set Prob1(�) ∩A◦.

Example 2.8 To introduce martingale measures in this setup, we set

Hd := {

� = (�0, . . . ,�T −1) : �t ∈ (

Cb(K0 × · · · × Kt)
)d}

,

I�(x) :=
T −1
∑

t=0

d
∑

j=1

�
j
t (x0, . . . , xt )(x

j

t+1 − x
j
t ), ∀x ∈ �,

A = I := {I� : � ∈Hd} ⊆ C0:T . (2.13)

Thus the space Hd is the class of admissible trading strategies and I is the set of
elementary stochastic integrals. The (possibly empty) class of martingale measures
for the canonical process is denoted by Mart(�) and consists of all probability mea-
sures on B(�) which make each of the processes (X

j
t ) a martingale under the natural

filtration Ft := σ(X
j
s , s ≤ t, j = 1, . . . , d), t = 0, . . . , T . Equivalently,

Mart(�) := {Q ∈ Prob1(�) : EQ[I�] = 0, ∀� ∈Hd}.



264 A. Doldi, M. Frittelli

It is then clear that choosing A = I , we get Mart(�) = Prob1(�)∩A◦. When d = 1,
we simply write H = H1.

Example 2.9 For every ε ≥ 0, the set of so-called ε-martingale measures (see Guo
and Obłój [24]) is

Martε(�) :=
{

Q ∈ Prob1(�) : EQ[I�] ≤ ε

T −1
∑

t=0

max
j=1,...,d

‖�j
t ‖∞,∀� ∈Hd

}

.

Thus, taking

Aε := conv

({

I� − ε

T −1
∑

t=0

max
j=1,...,d

‖�j
t ‖∞ : � ∈ Hd

})

(2.14)

(here conv( · ) stands for the convex hull in C0:T , which is easily seen to be a cone
since Hd is a vector space), one sees that

Martε(�) = Prob1(�) ∩ (Aε)◦.

Taking in particular ε = 0, we have Mart0(�) = Mart(�) as in Example 2.8. It is
interesting to notice that for any sequence εn ↓ 0, we have

σAεn (Q) ↑ σI(Q), ∀Q ∈ Prob1(�). (2.15)

Example 2.10 Alternative choices for the set A which produce supermartingale or
submartingale measures are A± = {I� : � ∈ (H±)d}, where we define the sets
H+ = {� ∈H : �t ≥ 0,∀t = 0, . . . , T } and H− = −H+. The set A+ models dy-
namic trading with no short selling and yields

Prob1(�) ∩ (A+)◦ = {supermartingale measures for the canonical process}.

2.2.2 Rephrasing the main results: superhedging and the martingale measures case

For a given proper concave U : E → R, recall the definition of SU in (1.4) and for
V ( · ) = −U(−· ), set SV (ϕ) := −SU(−ϕ) and

dom(SV ) := {ϕ ∈ E : SV (ϕ) < ∞} = −dom(SU ).

Observe that in our notation, the superhedging value for c is

π+(c) := inf
z∈A

inf
ϕ∈�z(c)

SV (ϕ) ∈ [−∞,+∞],

where

�z(c) :=
{

ϕ ∈ dom(SV ) :
T

∑

t=0

ϕt (x0, . . . , xt ) + z(x) ≥ c(x),∀x ∈ �

}

.
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The selection of −A for π and A for π+ permits to recognise that the two are linked
by π+(c) = −π(−c), and so the duality results for π can easily be translated into
duality results for π+. Of course, when A is a vector space as in the case of stochastic
integrals (see (2.13) and Example 2.8), we have A = −A and there is no need for the
different choices −A for π and A for π+.

We now rephrase our findings in Theorem 2.4, with minor additions, to get the
formulations in Corollary 2.12 and Corollary 2.13 which will simplify our discussion
in Sects. 4 and 5.

We associate to the functions c : � → (−∞,+∞], g : � → [−∞,+∞) the sets

Ssub(c) :=
{

ϕ ∈ dom(SU ) : ∃� ∈ Hd such that

T
∑

t=0

ϕt (x0, . . . , xt ) + I�(x) ≤ c(x),∀x ∈ �

}

, (2.16)

Ssup(g) :=
{

ϕ ∈ dom(SV ) : ∃� ∈Hd such that

T
∑

t=0

ϕt (x0, . . . , xt ) + I�(x) ≥ g(x),∀x ∈ �

}

, (2.17)

Remark 2.11 If Et ⊆ Ct :t for t = 0, . . . , T , then dom(SU ) ⊆ C0:0 × · · · × CT :T and
each element ϕt in (2.16) is a function of the single variable xt . If additionally
dom(SU ) = E and d = 1, (2.16) is consistent with (1.2).

From Theorem 2.4 and the equalities Ssup( · ) = −Ssub(−· ), SV ( · ) = −SU(−· ),
one easily deduces

Corollary 2.12 Let A = I as in (2.13). Suppose that the assumptions in Theorem 2.4
are satisfied, g : � → [−∞,+∞) is upper semicontinuous and also condition (2.8)
holds with c replaced by −g. Then

inf
Q∈Mart(�)

(

EQ[c] +D(Q)
) = sup

ϕ∈Ssub(c)

SU (ϕ) , (2.18)

sup
Q∈Mart(�)

(

EQ[g] −D(Q)
) = inf

ϕ∈Ssup(g)
SV (ϕ) . (2.19)

If the left-hand side of (2.18) (resp. (2.19)) is finite, then an optimum exists for the
left-hand side of (2.18) (resp. (2.19)).

Corollary 2.13 If d = 1 and � := K0 × · · · × KT for compact sets K0, . . . ,KT ⊆ R,
then (2.18) and (2.19) as well as existence of optima are guaranteed by the fol-
lowing simplified set of assumptions: c : � → (−∞,+∞] is lower semicontinuous,
g : � → (−∞,+∞] is upper semicontinuous and U(0) = 0.

Proof When K0, . . . ,KT ⊆ R are compact, we may repeat the proof of Corol-
lary 2.12 invoking Corollary 2.5 in place of the more general Theorem 2.4. �
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In the subsequent sections, we only consider the subhedging price; the correspond-
ing statements for the superhedging price can be obtained in the obvious way just
described.

2.3 Literature review

We observe that the EMOT problem on the left-hand side of (1.5) was not previously
considered in the literature. The associated subhedging value on the right-hand side of
(1.5) is also new, even though different formulations of nonlinear subhedging prices
already appeared in the literature. For example, in Föllmer and Schied [21, Sect. 4.8],
the use of general risk measures in a non-robust framework allows weakening the
pointwise inequality constraint in subhedging problems. In Cheridito et al. [15], the
authors, now in a robust framework, consider additionally a general set of discounted
trading gains that may describe different market structures, such as transaction costs
or trading constraints. In the present paper, we consider instead explicitly nonlinear
pricing (i.e., SU on the right-hand side of (1.5)) of static parts of semistatic trading
strategies and its impact in the duality (i.e., DU on the left-hand side of (1.5)). Pen-
nanen and Perkkiö [33] also developed a generalised optimal transport duality, which
can be applied to study the pricing–hedging duality in a context similar to our additive
setup of Sect. 3.

The addition of an entropic term to optimal transport problems was popularised
by Cuturi [17], with several applications especially from the computational point of
view (see for example the survey/monograph by Peyré and Cuturi [34, Chap. 4]).
The Sinkhorn algorithm can be applied with the entropic regularisation procedure
described in these works (see Benamou et al. [6] for some advantages). Convergence
for this algorithm is studied e.g. in Ireland and Kullback [29] and Rüschendorf [35].
After the present paper was posted on arXiv, several relevant advances were made re-
garding this topic. We mention here Nutz and Wiesel [32], Bernton et al. [7], Ghosal
et al. [23]. We stress that all the papers mentioned in this paragraph address a dif-
ferent problem: in Cuturi [17] and subsequent works, the requirement of an exact
matching of the marginal distributions is maintained. In the present setting, we relax
this constraint in order to model uncertainty regarding the marginals themselves.

A Sinkhorn algorithm approach was adopted in De March and Henry-Labordère
[19] for building an arbitrage-free implied volatility surface from bid-ask quotes,
while Henry-Labordère [25] studied a problem related to the entropic relaxation of
an optimal transportation problem and Blanchet et al. [9] studied the number of op-
erations needed for approximation of the transport cost with a given accuracy, in the
case of entropic regularisation. Our framework also allows the use of a penalisation
of the form Q �→ ∑T

t=0 δ
̂Qt

(Qt )+ ˜D(Q), for some entropic term ˜D, so that with this
choice, the EMOT reduces to the MOT problem with an additional entropic regulari-
sation term, as analysed in the abovementioned literature.

Stability issues have been studied in Backhoff-Veraguas and Pammer [2] and
Neufeld and Sester [31] in what we called the sublinear case, namely with no penalty
and with fixed marginals.

The works by Bernton et al. [7] and Ghosal et al. [23] study geometric properties of
minimisers of the entropic OT, by means of the concept of cyclical invariance. This is



Entropy martingale optimal transport 267

a counterpart to the characterisation, using c-cyclical monotonicity, of the geometry
of optimal transport plans in the classical framework of OT. Even though a similar
study of geometric properties for optimisers of EMOT would be of great interest, this
topic is beyond the scope of the present paper and is left for future research.

In the framework of Liero et al. [30] (i.e., with penalisations of the marginals in-
duced by divergence functions) and after the first version of the present work was
posted on arXiv, duality results were obtained in the context of weak martingale op-
timal entropy transport problems by Chung and Trinh [16].

2.4 Proof of Theorem 2.4

2.4.1 The full technical setup

For a metric space X, B(X) denotes the Borel σ -algebra and mB(X) the class of
real-valued, Borel-measurable functions on X. We define the sets

ca(X) := {γ : B(X) → (−∞,+∞) : γ finite signed Borel measure on X},
Meas(X) := {μ : B(X) → [0,∞) : μ ≥ 0 finite Borel measure on X},
Prob(X) := {Q : B(X) → [0,1] : Q probability Borel measure on X},

C(X) := {ϕ :X → R : ϕ continuous on X},
Cb(X) := {ϕ :X → R : ϕ bounded and continuous on X}.

Recall that we fixed d(T + 1) closed sets K1
0 , . . . ,Kd

0 , . . . ,K1
T , . . . ,Kd

T ⊆ R, where
d is the number of stocks and T the time horizon. We use the following weighted
spaces of continuous functions: for an index set I ⊆ {1, . . . , d} × {0, . . . , T }, we take

CI :=
{

φ ∈ C
( ×

(j,t)∈I

K
j
t

)

: ‖φ‖I := sup
x∈×(j,t)∈I K

j
t

|φ(x)|
1 + ∑

(j,t)∈I |xj
t |

< ∞
}

.

For example, we already encountered Cs:t in (2.1), and we also consider

Ct := Ct :t .

The corresponding norms are denoted by ‖ · ‖I ,‖ · ‖s:t ,‖ · ‖t , respectively. Some
additional details on weighted spaces can be found in Appendix A.1.

Notice that if K1
0 , . . . ,Kd

0 , . . . ,K1
T , . . . ,Kd

T are compact, then

C0:T = Cb(�) and (C0:T )∗ = ca(�).

Observe that by a slight abuse of notation (regarding the domains of the functions),
for index sets I ⊆ J ⊆ {1, . . . , d}×{0, . . . , T }, there is a constant 0 < θ ≤ 1 such that

CI ⊆ CJ , θ‖φ‖I ≤ ‖φ‖J ≤ ‖φ‖I , ∀φ ∈ CI . (2.20)
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As already mentioned in Pennanen and Perkkiö [33] and Cheridito et al. [15], every
finite signed Borel measure γ on X with C0:T ⊆ L1(X,B(X), |γ |) induces a contin-
uous linear functional λ ∈ (C0:T )∗ via integration, namely

c �→ 〈c,λ〉 =
∫

X

c dγ, ∀c ∈ C0:T .

The collection of such functionals, identified with the corresponding measures, is
denoted by ca1(X), that is,

ca1(X) := {

γ :γ is a finite signed Borel measure on B(X)

with C0:T ⊆ L1(
X,B(X), |γ |)},

while the classes of nonnegative and of probability measures in ca1(X) are denoted
by Meas1(X) and Prob1(X), respectively. The canonical d-dimensional process is
given by X

j
t (x) = x

j
t , j = 1, . . . , d , t = 0, . . . , T . Observe that every φ ∈ C0:T satis-

fies |φ(x)| ≤ ‖φ‖0:T (1 + ∑T
t=0

∑d
j=1 |xj

t |), and so for any μ ∈ Meas1(X), we have

C0:T ⊆ L1(X,B(X),μ) iff X
j
t ∈ L1(X,B(X),μ) for all j and t .

Remark 2.14 Under Assumption 2.3 (i), with the notation from there, consider the
proper, convex functional V (ϕ) := −U(−ϕ), with dom(V ) = {ϕ ∈ E : V (ϕ) < ∞}.
We define the (convex) conjugate D : ×T

t=0(C0:t )∗ → (−∞,+∞] of U by

D(γ0, . . . , γT ) := sup
ϕ∈E

(

U(ϕ) −
T

∑

t=0

〈ϕt , γt 〉
)

= sup
ϕ∈E

( T
∑

t=0

〈ϕt , γt 〉 − V (ϕ)

)

. (2.21)

Then D is a convex functional and σ(×T
t=0(C0:t )∗,E)-lower semicontinuous, even

if we do not require that U is σ(E,×T
t=0(C0:t )∗)-upper semicontinuous. When some

γ ∈ (C0:T )∗ is given, we slightly improperly write D(γ ) = D(γ0, . . . , γT ), where γt

is the restriction of γ to C0:t . We also set

dom(D) =
{

(γ0, . . . , γT ) ∈
T×

t=0

(C0:t )∗ : D(γ0, . . . , γT ) < ∞
}

.

As an immediate consequence of the definitions, the Fenchel inequality holds: if
(ϕ0, . . . , ϕT ) ∈ E and (γ0, . . . , γT ) ∈ ×T

t=0(C0:t )∗, then

T
∑

t=0

〈ϕt , γt 〉 ≤ D(γ0, . . . , γT ) + V (ϕ0, . . . , ϕT ). (2.22)

Remark 2.15 Another way to introduce our setting, which is used in Sects. 4.3
and 4.4, is to start with a proper convex functional D : ca1(�) → (−∞,+∞] which
is σ(ca1(�),E)-lower semicontinuous for an E = E0 ×· · ·×ET ⊆ (C0:T )T +1. By the
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Fenchel–Moreau theorem, we then have the representation

D(γ ) = sup
ϕ∈E

( T
∑

t=0

∫

�

ϕt dγ − V (ϕ)

)

,

where now V is the Fenchel–Moreau (convex) conjugate of D, namely

V (ϕ) := sup
γ∈ca1(�)

( T
∑

t=0

∫

�

ϕt dγ −D(γ )

)

. (2.23)

Setting U(ϕ) := −V (−ϕ), ϕ ∈ E , we get back that D satisfies (2.21) and additionally
that U is σ(E, ca1(�))-upper semicontinuous. In conclusion, a pair (U,D) satisfying
(2.21) might be defined either by providing a proper concave U : E → [−∞,+∞) as
in Sect. 2.1, or by assigning a proper convex and σ(E, ca1(�))-lower semicontinuous
D : ca1(�) → (−∞,+∞] as explained in this remark.

2.4.2 Technical comments on Theorem 2.4

Remark 2.16 We now provide conditions ensuring that π(0) < ∞, which by Theo-
rem 2.4 (i) implies that π(c) ∈R for every c ∈ B0:T .

(a) If there exists λ ∈ A◦ ∩ ∂U(0) ⊆ (C0:T )∗, then π(0) < ∞. Note that here,
∂U(0) ⊆ ×T

t=0(C0:T )∗ is the supergradient of U at 0 ∈ E , and we identify λ with the
vector of its restrictions in writing improperly λ ∈ ∂U(0)). To see this, let λ satisfy
SU(ϕ) ≤ ∑T

t=0〈ϕt , λt 〉, ∀ϕ ∈ E . In particular, for all z ∈ −A and ϕ ∈ 	z(0), it then
holds that SU(ϕ) ≤ 〈∑T

t=0 ϕt , λ〉 ≤ 〈∑T
t=0 ϕt +z,λ〉 ≤ 0, as 〈z,λ〉 ≥ 0 for all λ ∈ A◦,

which in turns yields π(0) ≤ 0.
(b) We have π(0) < ∞ if and only if there exists Q ∈ Prob1(�) ∩ A◦ such

that D(Q) < ∞. Indeed, by definition, π(0) ≤ ∫

�
0 dQ + π∗(Q) = π∗(Q). But from

Lemma 2.20 (which does not rely on Lemma 2.18), we have

π∗(Q) = D(Q) + σA(Q) = D(Q)

(the latter equality coming from Q ∈ A◦). Hence π(0) ≤ D(Q) < ∞. Conversely,
π(0) < ∞ implies the existence of a minimum point in (2.9).

Remark 2.17 Set

˜	z(c) :=
{

ϕ ∈ E :
T

∑

t=0

ϕt (x0, . . . , xt ) + z(x) ≤ c(x),∀x ∈ �

}

and observe that 	z(c) = ˜	z(c) ∩ dom(SU ). Then with sup∅ = −∞,

π(c) := sup
z∈−A

sup
ϕ∈	z(c)

SU (ϕ) = sup
z∈−A

sup
ϕ∈˜	z(c)

SU (ϕ). (2.24)

To see this, we consider different cases for a fixed z ∈ −A.
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Case 1: 	z(c) = ∅, which means supϕ∈	z(c)
SU (ϕ) = −∞ by convention.

If ˜	z(c) = ∅, then supϕ∈˜	z(c)
SU (ϕ) = −∞ by convention. If ˜	z(c) �= ∅, then

supϕ∈˜	z(c)
SU (ϕ) = −∞ since for every ϕ ∈ ˜	z(c), we have SU(ϕ) = −∞ as

ϕ /∈ dom(SU ).
Case 2: 	z(c) �= ∅. Then ˜	z(c) �= ∅, too, and since we can ignore all functions

ϕ ∈ ˜	z(c) \ 	z(c) (which produce values SU(ϕ) = −∞), we get

sup
ϕ∈˜	z(c)

SU (ϕ) = sup
ϕ∈	z(c)

SU (ϕ).

2.4.3 The proof

The proof of Theorem 2.4 is split in the following Lemmas 2.18, 2.20, 2.22–2.24
which are then combined in Lemma 2.25.

Lemma 2.18 Under Assumption 2.3 and if (2.7) holds, Theorem 2.4 (i) holds. More-
over, the restriction of π to C0:T satisfies

π(c) = min
λ∈(C0:T )∗,
λ≥0,λ(1)=1

(〈c,λ〉 + π∗(λ)
)

, ∀c ∈ C0:T , (2.25)

for

π∗(λ) = sup
c∈C0:T

(

π(c) − 〈c,λ〉), λ ∈ (C0:T )∗.

Proof Suppose that π( ĉ ) < ∞ for some ĉ ∈ B0:T . To prove that π(c) > −∞ for
every c ∈ B0:T , it is (more than) enough to show that

	z(c) �= ∅, ∀z ∈ −A. (2.26)

Set Hn = H0(n) × · · · × HT (n) ⊆ �. Observe that whenever c ∈ B0:T is given, we
have for every n ≥ 1 and x ∈ Hn that

c(x) − z(x) ≥ − sup
x∈Hn

|c(x) − z(x)|

≥ −‖c − z‖0:T sup
x∈Hn

(

1 +
T

∑

t=0

d
∑

j=1

|xj
t |

)

> −∞,

and for every x ∈ � \ Hn that

c(x) − z(x) ≥ −‖c − z‖0:T
(

1 +
T

∑

t=0

d
∑

j=1

|xj
t |

)

≥ −‖c − z‖0:T − ‖c − z‖0:T
T

∑

t=0

f n
t (x0, . . . , xt ),
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using (2.5) in the last inequality. Thus for every x ∈ �,

c(x) − z(x) ≥ −‖c − z‖0:T − sup
x∈Hn

|c(x) − z(x)| − ‖c − z‖0:T
T

∑

t=0

f n
t (x0, . . . , xt ).

If we now show that (−‖c − z‖0:T f n
t )0≤t≤T ∈ dom(SU ) for n big enough, we then

conclude that
(

− ‖c − z‖0:T − sup
x∈Hn

|c(x) − z(x)| − ‖c − z‖0:T f n
t

)

0≤t≤T
∈ dom(SU )

by cash-additivity of SU , and at the same time,

(

− ‖c − z‖0:T − sup
x∈Hn

|c(x) − z(x)| − ‖c − z‖0:T f n
t

)

0≤t≤T
∈ 	z(c)

by definition. This in particular proves that π(c) > −∞. Going then back to checking
(−‖c − z‖0:T f n

t )0≤t≤T ∈ dom(SU ), observe that

SU
(

(−‖c − z‖0:T f n
t )0≤t≤T

)

= sup
α∈RT +1

(

U
(

(−‖c − z‖0:T f n
t )0≤t≤T + α

) −
T

∑

t=0

αt

)

≥ U
( − ‖c − z‖0:T (f n

t )0≤t≤T

)

= −V
(‖c − z‖0:T (f n

t )0≤t≤T

) −→ 0 > −∞ as n → ∞

by Assumption 2.3. The fact that π(c) < ∞ will follow once we show monotonic-
ity, cash-additivity and concavity of π . Monotonicity is trivial: if c1 ≤ c2, then
	z(c1) ⊆ 	z(c2) for every z ∈ −A (both sets might be empty). The cash-additivity
property can be seen as follows: given β ∈ R and setting 1 = (1, . . . ,1) ∈ R

T , ob-
serve that whenever z ∈A is given, ϕ ∈ 	z(c+β) is equivalent to ϕ − β

T +1 1 ∈ 	z(c)

since by cash-additivity of SU , dom(SU ) +R
T +1 = dom(SU ). Consequently,

π(c + β) = sup
z∈−A

sup
ϕ∈	z(c+β)

SU (ϕ) = sup
z∈−A

sup
ϕ∈	z(c)

SU

(

ϕ + β

T + 1
1

)

=
T

∑

t=0

β

T + 1
+ sup

z∈−A
sup

ϕ∈	z(c)

SU (ϕ) = π(c) + β.

Coming to concavity, it is convenient to rewrite π(c) in a slightly more convenient
form as

π(c) = sup

{

SU(ϕ) : ϕ ∈ dom(SU ),∃ z ∈ −A such that
T

∑

t=0

ϕt + z ≤ c

}

(2.27)
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and to recall that whenever c ∈ B0:T is given, the set over which we take the
supremum on the right-hand side of (2.27) is not empty by (2.26). Take then
ci ∈ B0:T and associated zi ∈ −A, ϕi ∈ dom(SU ) with

∑T
t=0 ϕi

t + zi ≤ ci . De-
fine cα = αc1 + (1 − α)c2 and analogously zα and ϕα for α ∈ [0,1]. Then clearly
∑T

t=0 ϕα
t + zα ≤ cα . Combining this with concavity of SU on dom(SU ), we obtain

αSU(ϕ1) + (1 − α)SU (ϕ2)

≤ SU(ϕα)

≤ sup

{

SU(ϕ) : ϕ ∈ dom(SU ),∃ z ∈ −A such that
T

∑

t=0

ϕt + z ≤ cα

}

= π(cα),

using (2.27) in the last equality. Taking now the supremum over all zi, ϕ
i with

∑T
t=0 ϕi

t + zi ≤ ci , we obtain

απ(c1) + (1 − α)π(c2) ≤ π
(

αc1 + (1 − α)c2
)

, ∀α ∈ [0,1], c1, c2 ∈ B0:T . (2.28)

Notice that up to this point, we have π(ci) ∈ (−∞,+∞] so that (2.28) makes sense.
Now we can combine (2.28) with the fact that π(c) > −∞ for every c ∈ B0:T

to show that π(c) < ∞ for every c ∈ B0:T . Indeed, suppose that π( c̃ ) = ∞ for
some c̃ ∈ B0:T . We know by hypothesis that π( ĉ ) < ∞ for some ĉ ∈ B0:T , and by
what we have previously proved, we know that π(2 ĉ − c̃ ) > −∞. Observing that
ĉ = α(2 ĉ − c̃ ) + (1 − α) c̃ for α = 1

2 , we have from (2.28) that

∞ = απ(2 ĉ − c̃ ) + (1 − α)π( c̃ ) ≤ π
(

α(2 ĉ − c̃ ) + (1 − α)̃c
) = π( ĉ ) < ∞.

This yields a contradiction; thus there can be no c̃ ∈ B0:T with π(̃c) = ∞. Hence
π : B0:T → R is cash-additive, concave and nondecreasing on B0:T . Then it is au-
tomatically norm-continuous on B0:T by the extended Namioka–Klee theorem (see
Biagini and Frittelli [8]). The Fenchel–Moreau-type dual representation (2.25) holds,
again by the extended Namioka–Klee theorem, this time applied to the restriction
of π to C0:T , plus standard arguments involving monotonicity and cash-additivity to
prove that π∗(λ) < ∞ implies that λ ≥ 0 and λ(1) = 1. See for example Föllmer and
Schied [21, Theorem 4.16] for an exploitable technique for a similar argument. �

Remark 2.19 Under Assumption 2.3 and if (2.7) holds, SU(ϕ) < ∞ for every
ϕ ∈ dom(SU ). Indeed, choosing cϕ := ∑T

t=0 ϕt , we get that ϕ ∈ 	0(cϕ) and
SU(ϕ) ≤ π(cϕ) < ∞ by Lemma 2.18.

Lemma 2.20 For every λ ∈ (C0:T )∗ with λ ≥ 0, we have

π∗(λ) = (SU )∗(λ0, . . . , λT ) + σA(λ).

If in addition λ(1) = 1, then

(SU )∗(λ0, . . . , λT ) := sup
ϕ∈E

(

SU(ϕ) −
T

∑

t=0

〈ϕt , λt 〉
)

= D(λ0, . . . , λT ) = D(λ).
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Proof Fix λ ∈ (C0:T )∗ with λ ≥ 0. Then

π∗(λ) = sup
c∈C0:T

(

π(c) − 〈c,λ〉)

= sup
c∈C0:T

(

sup
z∈−A

sup
ϕ∈	z(c)

SU (ϕ) − 〈c,λ〉
)

= sup
c∈C0:T

(

sup
z∈−A

sup
ϕ∈˜	z(c)

SU (ϕ) − 〈c,λ〉
)

= sup
c∈C0:T

sup
z∈−A

sup
ϕ∈˜	z(c)

(

SU(ϕ) − 〈c,λ〉) (2.29)

≤ sup
c∈C0:T

sup
z∈−A

sup
ϕ∈˜	z(c)

(

SU(ϕ) −
〈 T
∑

t=0

ϕt + z,λ

〉)

= sup
z∈−A

sup
ϕ∈E

(

SU(ϕ) −
〈 T
∑

t=0

ϕt + z,λ

〉)

= sup
z∈A

〈z,λ〉 + sup
ϕ∈E

(

SU(ϕ) −
T

∑

t=0

〈ϕt , λt 〉
)

= σA(λ) + (SU )∗(λ0, . . . , λT ),

where the third equality follows from (2.24). Consequently,

π∗(λ) ≤ σA(λ) + (SU )∗(λ0, . . . , λT ). (2.30)

At the same time, for every ϕ ∈ E, z ∈ −A and for ĉ = ∑T
t=0 ϕt + z ∈ C0:T , we have

that ϕ ∈ 	z( ĉ ). Thus

SU(ϕ) −
〈 T
∑

t=0

ϕt + z,λ

〉

≤ sup
ϕ∈˜	z( ĉ )

(

SU(ϕ) − 〈̂c,λ〉) ≤ π∗(λ),

using (2.29) in the second inequality, and hence

sup
z∈A

〈z,λ〉 + sup
ϕ∈E

(

SU(ϕ) −
〈 T
∑

t=0

ϕt , λ

〉)

= sup
z∈−A

sup
ϕ∈E

(

SU(ϕ) −
〈 T
∑

t=0

ϕt + z,λ

〉)

≤ π∗(λ). (2.31)
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Combining (2.30) and (2.31), we get π∗(λ) = σA(λ) + (SU )∗(λ0, . . . , λT ). If addi-
tionally λ(1) = 1, then we have

(SU )∗(λ0, . . . , λT ) = sup
ϕ∈E

(

SU(ϕ) −
〈 T
∑

t=0

ϕt , λt

〉)

= sup
ϕ∈E

(

sup
α∈RT +1

(

U(ϕ + α) −
T

∑

t=0

αt

)

−
〈 T
∑

t=0

ϕt , λ

〉)

= sup
ϕ∈E

sup
α∈RT +1

(

(

U(ϕ + α) −
T

∑

t=0

αt

)

−
〈 T
∑

t=0

ϕt , λ

〉)

= sup
ϕ∈E

sup
α∈RT +1

(

U(ϕ + α) −
T

∑

t=0

〈ϕt + αt , λ〉
)

= sup
ϕ∈E

(

U(ϕ) −
〈 T
∑

t=0

ϕt , λ

〉)

= D(λ0, . . . , λT ) = D(λ).
�

Remark 2.21 Under Assumption 2.3, we have U(0) ∈R and therefore

(SU )∗(λ) ≥ SU(0) ≥ U(0) > −∞
for every 0 ≤ λ ∈ (C0:T )∗.

Lemma 2.22 Under Assumption 2.3 and if (2.7) holds, let 0 ≤ λ ∈ (C0:T )∗ with
λ(1) = 1 be given and define 0 ≤ λt = λ|C0:t ∈ (C0:t )∗. If (λ0, . . . , λT ) ∈ dom(D),
then there exists a unique Q ∈ Prob1(�) which represents λ on C0:T , i.e.,

〈ϕ,λ〉 = EQ[ϕ], ∀ϕ ∈ C0:T .

Proof The proof is an adaptation of Bogachev [10, Theorem 7.10.6]. We first stress
the fact that λt = λ|C0:t ∈ (C0:t )∗ is a consequence of (2.20). We apply Proposi-
tion A.2. To do so, we show that for a fixed ε > 0 and n big enough, we may define
a set H0(n) × · · · × HT (n) that is compact (since so are all the factors) and satisfies
the assumptions in Proposition A.2. Suppose that a given ϕ ∈ C0:T satisfies ϕ(x) = 0
for every x ∈ ×T

t=0 Ht(n). We also have automatically that

|ϕ(x)| ≤ ‖ϕ‖0:T
(

1 +
T

∑

t=0

d
∑

j=1

|xj
t |

)

, ∀x ∈ �.

By Assumption 2.3, we then have for every (x0, . . . , xT ) ∈ � \ (×T
t=0 Ht(n)) that

|ϕ(x)| ≤ ‖ϕ‖0:T
( T

∑

t=0

f n
t (x0, . . . , xt )

)

.
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Since, moreover, ϕ = 0 on ×T
t=0 Ht(n) by assumption, we get

|ϕ(x)| ≤ ‖ϕ‖0:T
( T

∑

t=0

f n
t (x0, . . . , xt )

)

, ∀(x0, . . . , xT ) ∈ �. (2.32)

Then for every a > 0, we have

|〈ϕ,λ〉| ≤ 〈|ϕ|, λ〉 ≤
〈

‖ϕ‖0:T
T

∑

t=0

f n
t , λ

〉

= ‖ϕ‖0:T
T

∑

t=0

〈f n
t , λ〉 (2.33)

= ‖ϕ‖0:T
T

∑

t=0

〈f n
t , λt 〉 = ‖ϕ‖0:T

1

a

T
∑

t=0

〈af n
t , λt 〉

≤ ‖ϕ‖0:T
(

1

a
D(λ0, . . . , λT ) + 1

a
V (af n

0 , . . . , af n
T )

)

, (2.34)

where (2.33) follows from positivity of λ, (2.32), linearity and the fact that we have
λt := λ|C0:t ∈ (C0:t )∗, while (2.34) follows from the Fenchel inequality (2.22).

Since (λ0, . . . , λT ) ∈ dom(D) by hypothesis, we can select a > 0 such that
1
a
D(λ0, . . . , λT ) ≤ ε

2 . Choose now n in such a way that 1
a
V (af n

0 , . . . , af n
T ) ≤ ε

2 for
every s ≤ T (which is possible by Assumption 2.3). Continuing from (2.34), we get

|〈ϕ,λ〉| ≤ ‖ϕ‖0:T
(

ε

2
+ ε

2

)

≤ ε‖ϕ‖0:T .

The result now follows by combining Proposition A.2 and the Daniell–Stone result
in Theorem A.3. �

Lemma 2.23 Under Assumption 2.3 and if (2.7) holds, equation (2.9) is true for every
c ∈ C0:T , with a minimum in place of the infimum.

Proof Combining Lemmas 2.18, 2.20 and 2.22, we have

π(c) = min
λ∈(C0:T )∗,
λ≥0,λ(1)=1

(〈c,λ〉 + π∗(λ)
)

= min
λ∈(C0:T )∗,
λ≥0,λ(1)=1

(〈c,λ〉 +D(λ) + σA(λ)
)

= min
λ∈(C0:T )∗,(λ0,...,λT )∈dom(D),

λ≥0,λ(1)=1

(〈c,λ〉 +D(λ) + σA(λ)
)

= min
Q∈Prob1(�),
Q∈dom(D)

(

EQ[c] +D(Q) + σA(Q)
)

(2.35)

= min
Q∈Prob1(�)

(

EQ[c] +D(Q) + σA(Q)
)

= min
Q∈Prob1(�)∩A◦

(

EQ[c] +D(Q)
)

,
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where the first equality uses Lemma 2.18, the second Lemma 2.20, and the third and
fifth equalities the fact that D is bounded from below by SU(0) by Remark 2.21,
hence (λ0, . . . , λT ) ∈ dom(D) if and only if D(λ0, . . . , λT ) < ∞. Moreover, in
(2.35), we use Lemma 2.22 and identify probability measures Q ∈ Prob1(�) and
their induced functionals, as well as the marginals Qt of such measures, with the
restrictions of such functionals to C0:t . Finally, in the last equality, we just use the
definition of σA and the fact that π(c) < ∞ by Lemma 2.18. �

Lemma 2.24 Under Assumption 2.3 and if (2.7) holds, the sublevel set

{Q ∈ Prob1(�) ∩A◦ :D(Q) ≤ b}
is σ((C0:T )∗,C0:T )|Prob1(�)-(sequentially) compact for every b ∈ R.

Proof To begin with, we show that {λ ∈ (C0:T )∗ : λ ≥ 0, λ(1) = 1,π∗(λ) ≤ b} is
weak∗ compact. First, we prove that B := {λ ∈ (C0:T )∗ : π∗(λ) ≤ b} is weak∗ com-
pact. Observe that by (2.25), we have for every r > 0 and λ ∈ (C0:T )∗ with π∗(λ) ≤ b

that

sup
c∈C0:T ,
‖c‖0:T ≤r

|〈c,λ〉| = sup
c∈C0:T ,
‖c‖0:T ≤r

〈c,λ〉

≤ sup
c∈C0:T ,
‖c‖0:T ≤r

( − π(−c)
) + π∗(λ)

≤ b + sup
c∈C0:T ,
‖c‖0:T ≤r

( − π(−c)
)

. (2.36)

Now since −π( · ) is real-valued, convex and continuous on C0:T by Lemma 2.18,
it follows from Aliprantis and Border [1, Theorem 5.43] that the right-hand side in
(2.36) is finite for some r > 0. Thus the operator norms of elements of the set B are
uniformly bounded, and so B is contained in some (weak∗ compact, by the Banach–
Alaoglu theorem) ball of (C0:T )∗. Since π∗ is weak∗ lower semicontinuous by its
very definition, its sublevel sets are weak∗ closed. This concludes the proof of weak∗
compactness of B . Next,

{λ ∈ (C0:T )∗ : λ ≥ 0, λ(1) = 1,π∗(λ) ≤ b}
= B ∩ {λ ∈ (C0:T )∗ : λ(1) = 1} ∩

⋂

ϕ∈C0:T ,ϕ≥0

{λ ∈ (C0:T )∗ : λ(ϕ) ≥ 0}

is the intersection of a weak∗ compact set and weak∗ closed sets; hence it is weak∗
compact. Combining the fact that σA = δA◦ and Lemma 2.20,

{λ ∈ (C0:T )∗ : λ ≥ 0, λ(1) = 1,π∗(λ) ≤ b}
= {λ ∈ (C0:T )∗ : λ ≥ 0, λ(1) = 1,D(λ) ≤ b} ∩A◦.
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By Lemma 2.22, we can identify normalised nonnegative functionals in dom(D) and
measures in Prob1(�), so that by a slight abuse of notation, we can write

{λ ∈ (C0:T )∗ : λ ≥ 0, λ(1) = 1,D(λ) ≤ b} ∩A◦

= {Q ∈ Prob1(�),D(Q) ≤ b} ∩A◦.

Moving to sequential compactness, the topology τ = σ((C0:T )∗,C0:T )|Prob1(�) in-

duced on Prob1(�) is the topology generated by the 1-Wasserstein distance by Bol-
ley [11, Theorem A.2] (see also the discussion in the introduction of Bolley [12],
and Villani [38, Definition 6.8.(iv) and Theorem 6.9]). By the above argument, the
set {Q ∈ Prob1(�) :D(Q) ≤ b} is then a compact subset of (Prob1(�), τ ), which is
then 1-Wasserstein sequentially compact. As A◦ is weak∗ closed by its definition, the
result follows. �

Lemma 2.25 Under Assumption 2.3, for every lower semicontinuous functional

c : � → (−∞,+∞]
satisfying (2.8), the duality (2.9) holds, and if π(c) < ∞, the infimum in (2.9) is a
minimum.

Proof Take c as in the statement. Observe that from the definition of π and the
Fenchel inequality on SU , for any Q ∈ Prob1(�) ∩A◦, we have

π(c) = sup
z∈−A

sup
ϕ∈	z(c)

SU (ϕ)

≤ sup
z∈−A

sup
ϕ∈	z(c)

(

(SU )∗(Q0, . . . ,QT ) + EQ

[ T
∑

t=0

ϕt

])

≤ sup
z∈−A

sup
ϕ∈	z(c)

(

(SU )∗(Q0, . . . ,QT ) + EQ

[ T
∑

t=0

ϕt + z

])

≤ sup
z∈−A

sup
ϕ∈	z(c)

(

EQ[c] +D(Q)
)

= EQ[c] +D(Q),

where the second inequality follows from Q ∈ Prob1(�) ∩ A0 and the third is a
consequence of Lemma 2.20. Hence

π(c) ≤ inf
Q∈Prob1(�)∩A◦

(

EQ[c] +D(Q)
)

. (2.37)

The case π(c) = ∞ is thus trivial, and we focus on the case π(c) < ∞. Let
cA(x) := −A(1 + ∑T

t=0
∑d

j=1 |xj
t |), for x ∈ �. Then c ≥ cA ∈ C0:T and we have

π(cA) ≤ π(c) < ∞, as can be easily verified. A standard argument produces a se-
quence (cn) ⊆ C0:T with cn ↑ c pointwise on �. We claim that given a sequence of
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optima for the dual problems of π(cn), taking a suitable converging subsequence, the
limit ̂Q satisfies ̂Q ∈ Prob1(�)∩A◦ and E

̂Q[c]+D(̂Q) ≤ π(c). This and (2.37) then
imply (2.9).

To prove the claim, recall from Lemma 2.23 and ∞ > π(c) ≥ π(cn) that each dual
problem for π(cn) admits an optimum; call it Qn ∈ Prob1(�) ∩ A◦. We proceed by
observing that D(Qn) ∈ R for every n and

π(cn) = EQn[cn] +D(Qn) ≥ −EQn

[

‖c1‖0:T
(

1 +
T

∑

t=0

ηt

)]

+D(Qn), (2.38)

where we set ηt (xt ) = ∑d
j=1 |xj

t | for xt ∈ Kt . Now by the Fenchel inequality (2.22),
mimicking the argument in (2.34),

EQn

[

‖c1‖0:T
T

∑

t=0

ηt

]

≤ 1

2
D(Qn) + 1

2
V (2‖c1‖0:T η0, . . . ,2‖c1‖0:T ηT ).

Going back to (2.38), we then get

π(cn) ≥ ζ + 1

2
D(Qn), (2.39)

where ζ ∈R is a constant depending on c1,V , η0, . . . , ηT . As π(cn) ≤ π(c) < ∞, we
conclude that supn D(Qn) < ∞, which in turn implies that the sequence (Qn) lies in
{Q ∈ Prob1(�) ∩ A◦ : D(Q) ≤ b} for b ∈ R big enough. We know that the latter set
is weak∗ sequentially compact by Lemma 2.24. Thus we can extract a subsequence,
which we call again (Qn), weak∗ converging to a ̂Q ∈ Prob1 ∩ A◦. Now it is easily
seen that

E
̂Q[c] +D(̂Q) = lim

n
E

̂Q [cn] +D(̂Q) ≤ lim
n

lim inf
m

(

EQm[cn] +D(Qm)
)

≤ lim
n

lim inf
m

(

EQm[cm] +D(Qm)
)

= lim inf
m

(

EQm[cm] +D(Qm)
) = lim

m
π(cm) ≤ π(c),

where the first inequality uses the fact that Q �→ EQ[cn] + D(Q) is weak∗ lower
semicontinuous as a sum of weak∗ lower semicontinuous functionals, and the second
uses that cn ≤ cm if m ≥ n. �

2.5 Convergence of EMOT

In this section, we study some stability and convergence results for the EMOT prob-
lem. In particular, we show how under suitable convergence assumptions on the
penalty terms, one can see the classical MOT as a limit case for EMOT.

We suppose that for each n ∈ N ∪ {∞}, we are given a functional Un and a set
An ⊆ C0:T . We denote the corresponding value as in (2.3) by πn(c).
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Proposition 2.26 Suppose that for each n ∈ N∪{∞}, the assumptions of Theorem 2.4
hold for πn(c) and that πn(c) < ∞. Suppose that

Dn(Q) + σAn
(Q) ↑D∞(Q) + σA∞(Q) as n → ∞ (2.40)

for every Q ∈ Prob1(�). Then πn(c) ↑ π∞(c) for every c : � → (−∞,+∞] which
is lower semicontinuous and satisfies (2.8).

Proof By Lemma 2.23, the dual problem for π(cn) admits an optimum Qn in the set
Prob1(�) ∩A◦

n for each n ∈ N. Observe that ∞ > π∞(c) ≥ supn πn(c) = limn πn(c)

and that with an argument similar to the one yielding (2.39),

πn(c) = EQn[c] +Dn(Q
n) + σAn

(Qn)

≥ EQn

[

− ‖c‖0:T
T

∑

t=0

ψt

]

+Dn(Q
n) + σAn

(Qn)

≥ −1

2
π∗

n (Qn) + 1

2
πn

(

− 2‖c‖0:T
T

∑

t=0

ψt

)

+Dn(Q
n) + σAn

(Qn)

= 1

2
πn

(

− 2‖c‖0:T
T

∑

t=0

ψt

)

+ 1

2
Dn(Q

n) + σAn
(Qn)

≥ 1

2
π1

(

− 2‖c‖0:T
T

∑

t=0

ψt

)

+ 1

2
D1(Q

n) + σA1(Q
n),

using Lemma 2.20 to get the equality in the fourth line. As a consequence, for some
constant η,

∞ > π∞(c) ≥ πn(c) ≥ η + 1

2
D1(Q

n) + σA1(Q
n).

Hence all the measures Qn,n ∈ N, belong to a sublevel set of the form

{Q ∈ Prob1(�) ∩ (A1)
◦ :D1(Q) ≤ b}

which is σ(Prob1(�),C0:T )-(sequentially) compact by Lemma 2.24. Extract a sub-
sequence, again called (Qn), converging to a limit Q∞ ∈ Prob1(�). Since Dn and
σAn

are lower semicontinuous, so is Dn + σAn
for every n ∈ N∪ {∞}. Hence

D∞(Q∞) + σA∞(Q∞) = sup
K

(

DK(Q∞) + σAK
(Q∞)

)

≤ sup
K

lim inf
n

(

DK(Qn) + σAK
(Qn)

)

≤ sup
K

lim inf
n

(

Dn(Q
n) + σAn

(Qn)
)

= lim inf
n

(

Dn(Q
n) + σAn

(Qn)
)

,
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using (2.40) in the first equality and the second inequality. Up to taking a further
subsequence, again called (Qn), we may assume that the lim inf above is in fact a
limit, so that

D∞(Q∞) + σA∞(Q∞) ≤ lim
n

(

Dn(Q
n) + σAn

(Qn)
)

.

Since c : � → (−∞,+∞] is lower semicontinuous and satisfies (2.8) for some
A ≥ 0, there exists a sequence (cn) ⊆ C0:T with cn ↑ c pointwise on �, just as in the
proof of Lemma 2.25. By monotone convergence, we then have EQ[c]=supnEQ[cn].
We conclude that Q �→ EQ [c] is the supremum of linear functionals, each being
continuous with respect to the topology induced by σ((C0:T )∗,C0:T ) on Prob1(�).
Thus Q �→ EQ[c] is lower semicontinuous with respect to that topology, and we ob-
tain EQ∞[c] ≤ lim infn EQn[c]. Passing to a further subsequence, we can assume that
lim infn EQn[c] = limn EQn[c]. From the previous arguments, we then get

π∞(c) ≤ EQ∞[c] +D∞(Q∞) + σA∞(Q∞)

≤ lim
n

EQn[c] +D∞(Q∞) + σA∞(Q∞)

≤ lim
n

EQn[c] + lim
n

(

Dn(Q
n) + σAn

(Qn)
)

= lim
n

(

EQn[c] +Dn(Q
n) + σAn

(Qn)
) = lim

n
πn(c),

where we use that the Qn are optima. Since we already have limn πn(c) ≤ π∞(c),
this concludes the proof of πn(c) ↑ π∞(c). �

3 Additive structure

In Sect. 2, we did not require any particular structural form of the functionals D,U .
We now assume an additive structure of U and, complementarily, an additive struc-
ture of D. In the entire Sect. 3, we take for each t = 0, . . . , T a vector subspace
Et ⊆ Ct = Ct :t such that Et + R = Et and set E = E0 × · · · × ET . Observe that we
automatically have E +R

T +1 = E . It is also clear that E is a subspace of (C0:T )T +1

if we interpret E0, . . . ,ET as subspaces of C0:T . We also mention here that up to now,
we used for λ ∈ (C0:T )∗ (resp. for a measure μ ∈ ca(�)) the notation λt (resp. μt ) for
the restriction to C0:t (resp. for the marginal on �0:t ). This was motivated by the fact
that we were considering general Et ⊆ C0:t . Since we now mostly work with Et ⊆ Ct ,
we change notation slightly.

Notation 3.1 Throughout Sects. 3–5, given λ ∈ (C0:T )∗ (or a measure μ ∈ ca(�)),
we use the notation λt (resp. μt ) for the restriction to Ct (resp. for the marginal on

×d
j=1 K

j
t ).

3.1 Additive structure of U

Setup 3.2 We consider a proper concave functional Ut : Et → [−∞,+∞) for every
t = 0, . . . , T . We define Dt on ca1(Kt ) similarly to (2.21) as

Dt (γt ) := sup
ϕt∈Et

(

Ut(ϕt ) −
∫

Kt

ϕt dγt

)

, γt ∈ ca1(Kt ),
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and observe that Dt can also be viewed as defined on ca1(�) by using for γ ∈ ca1(�)

the marginals γ0, . . . , γT and setting Dt (γ ) := Dt (γt ). We now define, for each ϕ ∈ E ,
U(ϕ) := ∑T

t=0 Ut(ϕt ) and define D on ca1(�) using (2.21). Recall from (1.4) that

SU(ϕ) := sup
β∈RT +1

(

U(ϕ + β) −
T

∑

t=0

βt

)

, ϕ ∈ E,

SUt (ϕt ) := sup
α∈R

(

U(ϕt + α) − α
)

, ϕt ∈ Et .

Lemma 3.3 In Setup 3.2 and under the convention +∞ − ∞ = −∞, we have

D(γ ) =
T

∑

t=0

Dt (γ ) =
T

∑

t=0

Dt (γt ), ∀γ ∈ ca1(�),

SU (ϕ) =
T

∑

t=0

SUt (ϕt ), ∀ϕ ∈ E, (3.1)

and for all ϕ ∈ E that

SU(ϕ + β) = SU(ϕ) +
T

∑

t=0

βt , ∀β ∈R
T +1,

SUt (ϕt + β) = SUt (ϕt ) + β, ∀β ∈R.

Proof The simple proof is omitted. �

3.2 Duality for the general cash-additive setup

As a consequence of Theorem 2.4, we now obtain a duality in a general cash-additive
setup.

Theorem 3.4 Suppose that Et ⊆ Ct with Xt ∈ Et and that Ut : Et → R is a concave,
cash-additive functional null in 0. Set U(ϕ) := ∑T

t=0 Ut(ϕt ) for ϕ ∈ E = E0 ×· · ·×ET

and suppose that Assumption 2.3 is fulfilled. Recall the formulation of Ssub(c) from
(1.2) and consider for every t = 0, . . . , T the penalisations

Dt (Qt ) := sup
ϕt∈Et

(

Ut(ϕt ) −
∫

Kt

ϕt dQt

)

for Qt ∈ Prob1(Kt ). (3.2)

Let c : � → (−∞,+∞] be lower semicontinuous and such that (2.8) holds. Then

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

Dt (Qt )

)

= sup

{ T
∑

t=0

Ut(ϕt ) : ϕ ∈ Ssub(c)

}

= π(c), (3.3)

and the infimum in (3.3) is a minimum provided that π(c) < ∞.
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Proof Let D be defined as in (2.21). Observe that we are in Setup 3.2. Lemma 3.3 tells
us that SU(ϕ) = ∑T

t=0 SUt (ϕt ) = ∑T
t=0 Ut(ϕt ), since U0, . . . ,UT are cash-additive,

and that D coincides on Mart(�) with the penalisation term Q �→ ∑T
t=0 Dt (Qt ),

where Dt (Qt ) is given in (3.2). So SU = U and dom(SU ) = E , all the assumptions
of Theorem 2.4 are fulfilled, and so we can apply Corollary 2.12 which together with
Remark 2.11 yields exactly (3.3). �

3.3 Additive structure of D

The results of this subsection will be applied in Sects. 4.3 and 4.4. In the spirit of
Remark 2.15, we now reverse the procedure taken in the previous subsection: We
start from some functionals Dt on ca1(Kt ) for t = 0, . . . , T and build an additive
functional D on ca1(�). Our aim is to find the counterparts of the results in Sect. 3.1.

Setup 3.5 We consider a proper, convex, σ(ca1(Kt ),Et )-lower semicontinuous func-
tional Dt : ca1(Kt ) → (−∞,+∞] for every t = 0, . . . , T . We extend the functionals
Dt to ca1(�) by using, for any γ ∈ ca(�), the marginals γ0, . . . , γT . If γ ∈ ca1(�),
we set

Dt (γ ) := Dt (γt ) and D(γ ) :=
T

∑

t=0

Dt (γ ) =
T

∑

t=0

Dt (γt ).

We define V (ϕ) for ϕ ∈ E and Vt (ϕt ) for ϕt ∈ Et for t = 0, . . . , T similarly to
(2.23) as

V (ϕ) := sup
γ∈ca1(�)

(∫

�

(
T

∑

t=0

ϕt

)

dγ −D(γ )

)

,

Vt (ϕt ) := sup
γ∈ca1(Kt )

(∫

Kt

ϕt dγ −Dt (γ )

)

.

We define on E the functional U( · ) = −V (−· ) and similarly Ut( · ) = −Vt (−· )
on Et for t = 0, . . . , T . Finally, SU(ϕ), SU0(ϕ0), . . . , S

UT (ϕT ) are defined as in
Setup 3.2.

Lemma 3.6 In Setup 3.5, we have the following:
1) D0, . . . ,DT as well as D are σ(ca1(�),E)-lower semicontinuous.
2) Under the additional assumption that dom(Dt ) ⊆ Prob1(Kt ) for t = 0, . . . , T ,

we have for any ϕ = (ϕ0, . . . , ϕT ) ∈ E0 × · · · × ET that

U(ϕ) =
T

∑

t=0

Ut(ϕt ) =
T

∑

t=0

−Vt(−ϕt ), SU (ϕ) =
T

∑

t=0

SUt (ϕt ).

Proof The proof is omitted. �
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3.4 Divergences induced by utility functions

In this section, we provide the exact formulation of the divergences induced by util-
ity functions ut : R → [−∞,+∞), distinguishing the two cases dom(ut ) = R and
dom(ut ) ⊇ [0,∞).

Assumption 3.7 We consider concave, upper semicontinuous nondecreasing func-
tions u0, . . . , uT : R → [−∞,+∞) with u0(0) = · · · = uT (0) = 0 and ut (x) ≤ x,
∀x ∈ R (that is, 1 ∈ ∂u0(0) ∩ · · · ∩ ∂uT (0)). For each t = 0, . . . , T , we define
vt (x) := −ut (−x), x ∈ R, and

v∗
t (y) := sup

x∈R
(

xy − vt (x)
) = sup

x∈R
(

ut (x) − xy
)

, y ∈R. (3.4)

Remark 3.8 We observe that vt (y) = v∗∗
t (y) = supx∈R(xy − v∗

t (y)) for all y ∈ R

by the Fenchel–Moreau theorem and that v∗
t is convex, lower semicontinuous and

bounded from below on R. Assumption 3.7 is satisfied by a wide range of utility
functions.

Fix μ̂t ∈ Meas(Kt ). We define, for μ ∈ Meas(Kt ),

Dv∗
t ,μ̂t

(μ) :=
{∫

Kt
v∗
t (

dμ
dμ̂t

)dμ̂t if μ � μ̂t ,

∞ otherwise.
(3.5)

In the next two results, whose proofs are postponed to Appendix A.2, we provide the
dual representation of the divergence terms.

Proposition 3.9 Take u0, . . . , uT satisfying Assumption 3.7 with

dom(u0) = · · · = dom(uT ) = R,

consider closed (possibly noncompact) K0, . . . ,KT ⊆ R and let μ̂t ∈ Meas(Kt ),
t = 0, . . . , T . Then

Dv∗
t ,μ̂t

(μ) = sup
ϕt∈Cb(Kt )

(∫

Kt

ϕt (xt )dμ(xt ) −
∫

Kt

vt

(

ϕt (xt )
)

dμ̂t (xt )

)

. (3.6)

Let ̂Qt ∈ Prob(Kt ) and for μ ∈ Meas(Kt ), let μ = μa + μs be the Lebesgue de-
composition of μ with respect to ̂Qt , where μa � ̂Qt and μs ⊥ ̂Qt . Set

(v∗
t )′∞ := lim

y→∞
v∗
t (y)

y
, t = 0, . . . , T .

As ut (0) = 0, (v∗
t )′∞ ∈ [0,∞] since v∗

t (y) ≥ ut (0)− 0y = 0. Then we can define, for
μ ∈ Meas(Kt ),

Ft (μ|̂Qt) :=
∫

Kt

v∗
t

(

dμa

d̂Qt

)

d̂Qt + (v∗
t )′∞ μs(Kt ),
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where we use the convention ∞ · 0 = 0 if (v∗
t )′∞ = ∞ and μs(Kt ) = 0. Observe

that the restriction of F( · |̂Qt) to Meas(Kt ) coincides with the functional in Liero
et al. [30, Equation (2.35)] with F = v∗

t , and that whenever dom(ut ) = R, we have

(v∗
t )′∞ = limy→∞ v∗

t (y)

y
= ∞ and Ft ( · |̂Qt) coincides with Dv∗

t ,̂Qt
( · ) on Meas(Kt );

see (3.5).

Proposition 3.10 Suppose that u0, . . . , uT : R → [−∞,+∞) satisfy Assumption 3.7
and K0, . . . ,KT ⊆ R are compact. If ̂Qt ∈ Prob(Kt ) for all t ∈ {0, . . . , T } has full
support, then

Ft (μ|̂Qt) = sup
ϕt∈Cb(Kt )

(∫

Kt

ϕt (xt )dμ(xt ) −
∫

Kt

vt

(

ϕt (xt )
)

d̂Qt(xt )

)

. (3.7)

Example 3.11 The requirement that ̂Q0, . . . , ̂QT have full support is crucial for the
proof of Proposition 3.10. We provide a simple example to show that (3.7) does
not hold in general when that assumption is not fulfilled. Take K = {−2,0,2},
̂Q = 1

2δ−2 + 1
2δ+2, μ = δ0, u(x) = x

x+1 for x ≥ −1 and u(x) = −∞ for x < −1.
It is easy to see that v∗ associated via (3.4) is given by v∗(y) = 1 + y − 2

√
y for

y ≥ 0 and v∗(y) = −∞ for y < 0, so that (v∗
t )′∞ = 1. It is also easy to see that

μ ⊥ ̂Q; hence μa = 0 and μs = μ in the Lebesgue decomposition with respect to ̂Q.
Hence F(μ|̂Q) = 1 + 1μ(K) = 2. At the same time, we see that taking ϕN ∈ Cb(K)

defined via ϕN(−2) = ϕN(2) = 0, ϕN(0) = −N (observe that u(ϕN) /∈ Cb(K) for N

sufficiently large), we have

sup
ϕ∈Cb(K)

(∫

K

ϕ dμ −
∫

K

v(ϕ)d̂Q

)

= sup
ϕ∈Cb(K)

(∫

K

u(ϕ)d̂Q −
∫

K

ϕ dμ

)

≥ sup
N

(∫

K

u(ϕN)d̂Q −
∫

K

ϕN dμ

)

≥ sup
N

(

0
1

2
+ 0

1

2
− (−N)

)

= ∞.

4 Applications in the compact case

We suppose in the entire Sect. 4 that the following requirements are fulfilled.

Standing Assumption 4.1 Let d = 1 and � := K0 × · · · × KT for compact sets
K0, . . . ,KT ⊆ R, K0 = {x0} for some x0 ∈ R, the functional c : � → (−∞,+∞]
is lower semicontinuous, ̂Q ∈ Mart(�) is a given martingale measure with marginals
̂Q0, . . . , ̂QT , and c ∈ L1(̂Q).

Under this assumption, C0:T = Cb(�) and (C0:T )∗ = ca(�) = ca1(�). We observe
that the stock price (Xt ) is bounded due to the compactness of K0, . . . ,KT . As a
consequence, if we consider for example the call option (Xt − α)+, α ∈ R, then it is
also bounded on �. The selection E ⊆ Cb(K0) × · · · × Cb(KT ) is appropriate in this
context.
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4.1 Subhedging with vanilla options

As in Beiglböck et al. [4], we suppose in Sect. 4.1 that the elements in Et represent
portfolios obtained combining call options with maturity t , units of the underlying
stock at time t and deterministic amounts, that is, Et consists of all the functions in
Cb(Kt ) of the form

ϕt (xt ) = a + bxt +
N

∑

n=1

cn(xt − αn)
+ with N ≥ 1, a, b, cn,αn ∈R, xt ∈ Kt,

(4.1)
and take E = E0 × · · · × ET . As one can see in the proofs of Corollaries 4.3 and 4.5,
which are the core content of this section, one could as well take instead the space
E = Cb(K0) × · · · × Cb(KT ) and preserve the validity of (4.3) and (4.5).

In all the results in Sect. 4.1, the functional U is real-valued on the whole space
E and cash-additive, which yields dom(U) = dom(SU ) = E . Thus we can use Corol-
laries 2.5 and 2.12, in particular (2.16) and (2.17), in the case dom(SU ) = E .

Take Ut(ϕt ) := ∫

Kt
ut (ϕt (xt ))d̂Qt(xt ). We work with the associated (one-dimen-

sional) optimised certainty equivalent SUt that we rename, for ϕt ∈ Cb(Kt ), as

SUt (ϕt ) = sup
α∈R

(∫

Kt

ut

(

ϕt (xt ) + α
)

d̂Qt(xt ) − α

)

=: U
̂Qt

(ϕt ). (4.2)

We observe that Assumption 3.7 does not impose that the functions ut are real-valued
on all of R. Nevertheless, for the functional U

̂Qt
, it can be easily shown that we have

the following result whose proof is omitted.

Lemma 4.2 Under Assumption 3.7, for each t = 0, . . . , T , U
̂Qt

is real-valued on
Cb(Kt ) and null in 0, concave, nondecreasing and cash-additive.

Corollary 4.3 Take u0, . . . , uT satisfying Assumption 3.7 and suppose that we have
dom(u0) = · · · = dom(uT ) = R. Then

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

Dv∗
t ,̂Qt

(Qt )

)

= sup

{ T
∑

t=0

U
̂Qt

(ϕt ) : ϕ ∈ Ssub(c)

}

. (4.3)

Moreover, if the left-hand side of (4.3) is finite, a minimum point exists.

Proof Set U(ϕ) = ∑T
t=0 U

̂Qt
(ϕt ) for ϕ ∈ E . By Lemma 4.2, for each t = 0, . . . , T the

monotone concave functional ϕt �→ U
̂Qt

(ϕt ) is well defined, finite-valued, concave
and nondecreasing on all of Cb(Kt ). Hence by the extended Namioka–Klee theorem
(see [8]), it is norm-continuous on Cb(Kt ). We observe that in this case, we are in
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Setup 3.2 and can apply (3.1) from Lemma 3.3. We have for every Q ∈ Mart(�) that

D(Q) := sup
ϕ∈E

(

U(ϕ) −
T

∑

t=0

∫

Kt

ϕt dQt

)

=
T

∑

t=0

sup
ϕt∈Et

(

U
̂Qt

(ϕt ) −
∫

Kt

ϕt dQt

)

=
T

∑

t=0

sup
ϕt∈Cb(Kt )

(

U
̂Qt

(ϕt ) −
∫

Kt

ϕt dQt

)

(4.4)

=
T

∑

t=0

sup
ϕ∈Cb(Kt ),αt∈R

(∫

Kt

ut (ϕt + αt )d̂Qt −
∫

Kt

(ϕt + αt )dQt

)

=
T

∑

t=0

sup
ϕ∈Cb(Kt )

(∫

Kt

ut (ϕt )d̂Qt −
∫

Kt

ϕt dQt

)

=
T

∑

t=0

sup
ψt∈Cb(Kt )

(∫

Kt

ψt dQt −
∫

Kt

vt (ψt )d̂Qt

)

=
T

∑

t=0

Dv∗
t ,̂Qt

(Qt ).

Indeed, in (4.4), we combine the continuity of U
̂Qt

on Cb(Kt ) with the fact that Et

consists of all piecewise linear functions on Kt so that Et is norm-dense in Cb(Kt ); in
the fourth equality, we use the fact that for ϕ̃t := ϕt + αt and for every Q ∈ Mart(�),
∫

Kt
ϕ̃dQt = ∫

Kt
ϕd̂Qt + αt ; in the fifth equality, we exploit the fact that ϕ̃t ∈ Et for

every ϕt ∈ Et , αt ∈R; and the last equality follows from (3.6).
Using Lemma 3.3 and the fact that U

̂Q0
, . . . ,U

̂QT
are cash-additive, we obtain

SU(ϕ) = ∑T
t=0 S

U
̂Qt (ϕt ) = ∑T

t=0 U
̂Qt

(ϕt ) = U(ϕ). By Lemma 4.2, the assumptions
of Corollary 2.13 are satisfied so that we obtain

inf
Q∈Mart(�)

(

EQ[c(X)] +
T

∑

t=0

Dv∗
t ,̂Qt

(Qt )

)

= sup

{ T
∑

t=0

U
̂Qt

(ϕt ) : ϕ ∈ Ssub(c)

}

.

Existence of optima follows again from Corollary 2.13. �

We stress the fact that in Corollary 4.3, we assume that all the functions u0, . . . , uT

are real-valued on all of R. A more general result can be obtained when weakening
this assumption, but it requires an additional assumption on the marginals of ̂Q.

Corollary 4.4 Suppose Assumption 3.7 is fulfilled. Assume that ̂Q0, . . . , ̂QT have full
support on K0, . . . ,KT , respectively. Then (4.3) holds true if we replace Dv∗

t ,̂Qt
(Qt )

with Ft (Qt |̂Qt). Moreover, finiteness of the problem on the left-hand side of (4.3)
implies the existence of a minimum.
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Proof The proof carries over almost literally from the proof of Corollary 4.3, except
for replacing the reference to Proposition 3.9 with a reference to Proposition 3.10.

�

We stress that in Corollary 4.4, we impose the full support property on K0, . . . ,KT

with respect to their induced (Euclidean) topology. In particular, this means that
whenever kt ∈ Kt is an isolated point, ̂Qt [{kt }] > 0. This is consistent with the as-
sumption K0 = {x0}, which implies that Prob(K0) reduces to the Dirac measure, i.e.,
Prob(K0) = {δx0}.

We now take ut (x) = x for t = 0, . . . , T and get U
̂Qt

(ϕt ) = E
̂Qt

[ϕt ]. Hence an
easy computation yields for all Q ∈ Mart(�) that

Dv∗
t ,̂Qt

(Qt ) =
{

0 if Qt = ̂Qt,

∞ otherwise.

Recalling that Mart(̂Q0, . . . , ̂QT ) = {Q ∈ Mart(�) : Qt = ̂Qt,∀ t = 0, . . . , T }, we
recover from Corollary 4.3 the following result of Beiglböck et al. [4] (under the
compactness assumption, which will be dropped in Corollary 5.3).

Corollary 4.5 We have the equality

inf
Q∈Mart(̂Q0,...,̂QT )

EQ[c] = sup

{ T
∑

t=0

E
̂Qt

[ϕt ] : ϕ ∈ Ssub(c)

}

. (4.5)

Moreover, if the left-hand side of (4.5) is finite, a minimum point exists.

4.2 Subhedging without options

The pricing–hedging duality without options takes the following form.

Corollary 4.6 We have the equality

inf
Q∈Mart(�)

EQ[c] = sup{m ∈ R : ∃� ∈H with m + I� ≤ c} =: �sub(c). (4.6)

Moreover, if the left-hand side of (4.6) is finite, a minimum point exists.

Proof We take E0 = · · · = ET = R and E = E0 × · · · × ET = R
T +1. If ut (xt ) = xt ,

t = 0, . . . , T , and ̂Q ∈ Mart(�), the functional U
̂Qt

defined in (4.2) is given by

U
̂Qt

(mt ) = mt and so U(m) = ∑T
t=0 U

̂Qt
(mt ) = ∑T

t=0 mt for all m ∈ E . Hence for

each ϕ ∈ E with ϕ = (m0, . . . ,mT ), m ∈R
T +1, we select U(ϕ) = ∑T

t=0 mt . Then by
the definition of D (see (2.10)), we get

D(γ ) =
{

0 for γ ∈ ca(�) with γ (�) = 1,

∞ otherwise.
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In particular, D(Q) = 0 for every Q ∈ Mart(�). Moreover, we observe that we have
SU(ϕ) = U(ϕ) for every ϕ ∈ E . Applying Corollary 2.13, we get from (2.18) that

inf
Q∈Mart(�)

EQ[c] = sup

{ T
∑

t=0

mt : ∃� ∈ H such that
T

∑

t=0

mt + I� ≤ c

}

.

We recognise on the right-hand side above the right-hand side of (4.6). Finally, the
existence of optima follows again from Corollary 2.13. �

4.3 Penalty terms induced by market prices

In this section, we change our perspective. Instead of starting from a given U , we
give a particular form of the penalisation term D and proceed by identifying the
corresponding U in the spirit of Remark 2.15. For each t = 0, . . . , T , we suppose
that finite sequences (ct,n)1≤n≤Nt in R and (ft,n)1≤n≤Nt in Cb(Kt ) are given. The
functions ft,n represent payoffs of options whose prices ct,n are known from the
market. We also take E = ×T

t=0 Cb(Kt ) and define

Martt (Kt ) = {γt ∈ Prob(Kt ) : ∃Q ∈ Mart(�) with γt = Qt } ⊆ ca(Kt ).

Lemma 4.7 The set Martt (Kt ) is σ(ca(Kt ),Cb(Kt ))-compact.

Proof Consider the topology τ = σ(ca(�),Cb(�)). We see that Mart(�) is a
τ -closed subset of the τ -compact set Prob(�) (which is τ -compact since � is
a compact Polish space, see [1, Theorem 15.11]); hence it is τ -compact. Then
Martt (Kt ) is the image of a τ -compact set via the marginal map γ �→ γt which is
τ -σ(ca(Kt ),Cb(Kt ))-continuous; hence it is σ(ca(Kt ),Cb(Kt ))-compact. �

We introduce the notion of a loss function that will be useful here and also in the
sequel (see Sects. 4.4 and 4.4.1) to build penalisation functions.

Definition 4.8 A function G : R → (−∞,+∞] is called a loss function if it
is convex, nondecreasing, lower semicontinuous and satisfies G(0) = 0. We set
dom(G) := {x ∈ R : G(x) < ∞}. The conjugate function G∗ : R → (−∞,+∞]
defined by G∗(y) = supx∈R(xy − G(x)) satisfies by the monotonicity of G that
G∗(y) = ∞ for every y < 0.

Our requirements allow a wide range of penalisations. For example, we might
use power-like penalisations, i.e., G(x) = xp

p
for x > 0 and p ∈ (1,∞), G(x) = 0 for

x ≤ 0. In that case, we have G∗(y) = yq

q
for every y ≥ 0 for 1

p
+ 1

q
= 1. Alternatively,

we might take

G(x) =
{

0 if x ≤ ε,

∞ otherwise,
so that G∗(y) = εy for y ≥ 0. (4.7)
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For γt ∈ ca(Kt ) we set

DG
t (γt ) :=

{

∑Nt

n=1 Gt,n(|
∫

Kt
ft,n dγt − ct,n|) for γt ∈ Martt (Kt ),

∞ otherwise.

Proposition 4.9 Assume that Gn,t : R → (−∞,+∞] is a loss function for all
n = 0, . . . ,Nt and t = 0, . . . , T , and that the martingale measure ̂Q ∈ Mart(�) in
the Standing Assumption 4.1 also satisfies | ∫

Kt
ft,n d̂Qt − ct,n| ∈ dom(Gt,n). Then

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

DG
t (Qt )

)

= sup

{ T
∑

t=0

UG
t (ϕt ) : ϕ ∈ Ssub(c)

}

, (4.8)

where

UG
t (ϕt ) := sup

yt∈RNt

(

�sub
(

ϕt +
Nt
∑

n=1

yt,n(ft,n − ct,n)
)

−
Nt
∑

n=1

G∗
t,n(yt,n)

)

and �sub is given in (4.6). Finally, if the left-hand side of (4.8) is finite, a minimum
point exists.

Proof 1) Set gt,n := ft,n − ct,n. For any t ∈ {0, . . . , T }, we prove that the functional
DG

t is σ(ca(Kt ),Cb(Kt ))-lower semicontinuous and that for every ϕt ∈ Cb(Kt ), its
Fenchel–Moreau (convex) conjugate satisfies

V G
t (ϕt ) := sup

γt∈ca(Kt )

(∫

Kt

ϕt dγt −DG
t (γt )

)

= inf
yt∈RNt

(

�sup
(

ϕt −
Nt
∑

n=1

yt,ngt,n

)

+
Nt
∑

n=1

G∗
t,n(yt,n)

)

,

and thus

UG
t (ϕt ) := −V G

t (−ϕt ) = sup
yt∈RNt

(

�sub
(

ϕt +
Nt
∑

n=1

yt,ngt,n

)

−
Nt
∑

n=1

G∗
t,n(yt,n)

)

. (4.9)

Here we use the definition of the superhedging price as

�sup(g) := −�sub(−g) = sup
Q∈Mart(�)

EQ[g]

by Corollary 4.6. We observe that DG
t is σ(ca(Kt ),Cb(Kt ))-lower semicontinuous as

it is a sum of functions, each being a composition of a lower semicontinuous func-
tion and a continuous function on Martt (Kt ) which is σ(ca(Kt ),Cb(Kt ))-compact by
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Lemma 4.7. We now need to compute

V G
t (ϕt ) = sup

γt∈ca(Kt )

(∫

Kt

ϕt dγt −DG
t (γt )

)

= sup
Qt∈Martt (Kt )

(∫

Kt

ϕt dQt −DG
t (Qt )

)

.

Recall that Gt,n(x) = supy∈R(xy −G∗
t,n(y)) by the Fenchel–Moreau theorem. Hence

V G
t (ϕt ) = sup

Qt∈Martt (Kt )

(∫

Kt

ϕt dQt −
Nt
∑

n=1

sup
yt,n∈R

(

yt,n

∫

Kt

gt,n dQt − G∗
t,n(yt,n)

)

)

= sup
Qt∈Martt (Kt )

inf
yt∈dom

(∫

Kt

(

ϕt −
Nt
∑

n=1

yt,ngt,n

)

dQt +
Nt
∑

n=1

G∗
t,n(yt,n)

)

=: sup
Qt∈Mart(Kt )

inf
yt∈dom

T (yt ,Qt ),

where dom = dom(G∗
t,1) × · · ·× dom(G∗

t,Nt
) ⊆ R

Nt . We see that T is real-valued on
dom × Martt (Kt ), convex in the first variable and concave in the second. Moreover,
{T (yt , · ) ≥ C} is σ(Martt (Kt ),Cb(Kt ))-closed in Martt (�) for every yt ∈ dom,
and Martt (Kt ) is σ(Martt (Kt ),Cb(Kt ))-compact by Lemma 4.7. As a consequence,
T (yt , · ) is σ(Martt (Kt ),Cb(Kt ))-lower semicontinuous on Martt (Kt ). We can ap-
ply Simons [36, Theorem 3.1], with A = dom and B = Martt (Kt ) endowed with
the topology σ(Martt (Kt ),Cb(Kt )), and interchange inf and sup. From our previous
computations, we then get

V G
t (ϕt ) = sup

Qt∈Martt (Kt )

inf
yt∈dom

T (yt ,Qt )

= inf
yt∈dom

sup
Qt∈Martt (Kt )

T (yt ,Qt )

= inf
yt∈dom

(

sup
Qt∈Martt (Kt )

∫

Kt

(

ϕt −
Nt
∑

n=1

yt,ngt,n

)

dQt +
Nt
∑

n=1

G∗
t,n(yt,n)

)

= inf
yt∈dom

(

sup
Q∈Mart(�)

∫

�

(

ϕt −
Nt
∑

n=1

yt,ngt,n

)

dQ +
Nt
∑

n=1

G∗
t,n(yt,n)

)

= inf
yt∈dom

(

�sup
(

ϕt −
Nt
∑

n=1

yt,ngt,n

)

+
Nt
∑

n=1

G∗
t,n(yt,n)

)

= inf
yt∈RNt

(

�sup
(

ϕt −
Nt
∑

n=1

yt,ngt,n

)

+
Nt
∑

n=1

G∗
t,n(yt,n)

)

.

Equation (4.9) can be obtained with minor manipulations.
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2) To conclude, we are clearly in the setup of Corollary 2.13 with D given as
in Setup 3.5 from DG

0 , . . . ,DG
T , and by definition dom(DG

t ) ⊆ Prob(Kt ) for each
t = 0, . . . , T . Using Lemma 3.6, 2) together with the computations in 1) and the fact
that SUG

t = UG
t by cash-additivity of UG

t , we get the desired equality from (2.18) in
Corollary 2.13; indeed, G∗

t,n is bounded from below and proper by our assumptions
on Gt,n, and �sub is real-valued and cash-additive on bounded continuous functions.
This guarantees that V G

t (ϕt ) is null for an appropriate choice of (constant) ϕt . The
existence of optima follows again from Corollary 2.13. �

Remark 4.10 Our assumption of existence of a particular ̂Q ∈ Mart(�) in Proposi-
tion 4.9 expresses the fact that we are assuming that our market prices ct,n are close
enough to those given by expectations under some martingale measure.

Example 4.11 Proposition 4.9 covers a wide range of penalisations. For example, we
might impose a threshold for the error in computing option prices by taking into
account only those martingale measures Q such that | ∫

�
ft,n dQt − ct,n| ≤ εt,n for

some εt,n ≥ 0. To express this, just take Gt,n in the form (4.7) for ε = εt,n.

Example 4.12 We now study the convergence of the penalised problem described
above to the classical MOT problem. We suppose that our information on the
marginal distributions increases, by increasing the number of prices available from
the market. We take ft,n(xt ) = (xt − αn)

+ to be call options with maturity t and
strikes αn, n ∈ N, that form a dense subset of R.

We take as loss functions Gt,n(x) = 0 for x ≤ 0 and Gt,n(x) = ∞ for all x > 0,
t = 0, . . . , T , n ≥ 1. This means that on the left-hand side of (4.8), the infimum
is taken only over martingale measures whose theoretical prices exactly match the
ones for the data, namely ct,n. For each t = 0, . . . , T , (ct,n) is a given sequence of
prices, and we suppose that they are all computed under the same martingale mea-
sure ̂Q ∈ Mart(�). We consider for each k ∈ N the initial segment ct,1, . . . , ct,Nt (k)

for sequences Nt(k) ↑ ∞, t = 0, . . . , T . This means that for every Q ∈ Mart(�),

Dk(Q) :=
T

∑

t=0

Nt (k)
∑

n=1

Gt,n

(∣

∣

∣

∣

∫

Kt

ft,n dQt − ct,n

∣

∣

∣

∣

)

≤
T

∑

t=0

Nt (k+1)
∑

n=1

Gt,n

(∣

∣

∣

∣

∫

Kt

ft,n dQt − ct,n

∣

∣

∣

∣

)

= Dk+1(Q)

and

D∞(Q) = sup
k

Dk+1(Q) =
T

∑

t=0

∞
∑

n=1

Gt,n

(∣

∣

∣

∣

∫

Kt

ft,n dQt − ct,n

∣

∣

∣

∣

)

,

so that

D∞(Q) =
{

0 if
∫

Kt
ft,n dQt = ct,n for all 0 ≤ t ≤ T ,n ≥ 1,

∞ otherwise.
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From the denseness of (αn), we conclude that D∞(Q) = 0 if Qt = ̂Qt for 0 ≤ t ≤ T ,
and D∞(Q) = ∞ otherwise. As a consequence, by Proposition 2.26, we have the
convergence

inf
Q∈Mart(�)

(

EQ[c] +Dk(Q)
) −→ inf

Q∈Mart(̂Q0,...,̂QT )
EQ[c] as k → ∞.

4.4 Penalty terms given via Wasserstein distance

Let dt be a metric on Kt (equivalent to the Euclidean one). The (1-)Wasserstein dis-
tance induced by dt is called Wt : Prob(Kt ) × Prob(Kt ) → R. Let Lip(1,Kt ) be the
class of dt -Lipschitz functions on Kt with Lipschitz constant at most 1. Notice that
Lip(1,Kt ) ⊆ Cb(Kt ) since dt is equivalent to the Euclidean metric. For each t , let
Gt : R → (−∞,+∞] be a loss function as in Definition 4.8. For Martt (Kt ) as in
Sect. 4.3, we introduce

Prob � Qt(Kt ) �→ DW
t (Qt ) :=

{

Gt(Wt(Qt , ̂Qt)) for Qt ∈ Martt (Kt ),

∞ otherwise.
(4.10)

Then DW
t is lower semicontinuous with respect to the topology of weak convergence

of probability measures, since the Wasserstein metric metrises the latter for compact
underlying spaces and Martt (Kt ) is compact under that topology by Lemma 4.7.
We are then in Setup 3.5 and the case 2) of Lemma 3.6. As in Sect. 4.3, we take
E = ×T

t=0 Cb(Kt ).

Proposition 4.13 For each t = 0, . . . , T , suppose that Gt is a loss function, that there
exists a Q ∈ Mart(�) with Gt(Wt(Qt , ̂Qt)) < ∞, where ̂Q ∈ Mart(�) is the martin-
gale measure from the Standing Assumption 4.1, and take DW

t as in (4.10). Then

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

DW
t (Qt )

)

= sup

{ T
∑

t=0

UW
t (ϕt ) : ϕ ∈ Ssub(c)

}

, (4.11)

where

UW
t (ϕt ) := sup

y≥0,
�t∈Lip(1,Kt )

(

�sub(ϕt + y�t ) −
∫

Kt

y�td̂Qt − G∗
t (y)

)

and �sub is given in (4.6). Finally, if the left-hand side of (4.11) is finite, a minimum
point exists.
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Proof Starting from DW
t , we compute the associated V W

t as

V W
t (ϕt ) := sup

γ∈ca(Kt )

(∫

Kt

ϕtdγ −DW
t (γ )

)

= sup
Q∈Martt (Kt )

(∫

Kt

ϕtdQ − Gt

(

Wt(Q, ̂Qt)
)

)

= sup
Q∈Martt (Kt )

(∫

Kt

ϕtdQ − sup
y≥0

(

yWt(Q, ̂Qt) − G∗
t (y)

)

)

= sup
Q∈Martt (Kt )

inf
y≥0

(∫

Kt

ϕtdQ − yWt(Q, ̂Qt) + G∗
t (y)

)

= sup
Q∈Martt (Kt )

inf
y∈dom(G∗

t ),
�t∈Lip(1,Kt )

(∫

Kt

(ϕt − y�t )dQ +
∫

Kt

y�td̂Qt + G∗
t (y)

)

= inf
y∈dom(G∗

t ),
�t∈Lip(1,Kt )

(

sup
Q∈Martt (Kt )

(

∫

Kt

(ϕt − y�t )dQ
)

+
∫

Kt

y�td̂Qt + G∗
t (y)

)

= inf
y∈dom(G∗

t ),
�t∈Lip(1,Kt )

(

�sup(ϕt − y�t ) +
∫

Kt

y�td̂Qt + G∗
t (y)

)

= inf
y≥0,

�t∈Lip(1,Kt )

(

�sup(ϕt − y�t ) + α(y, �t )
)

for the penalty α(y, �t ) := ∫

Kt
y�td̂Qt + G∗

t (y). In the equality chain above, we use
the following: in the third equality, the dual representation of Gt ; in the fifth, the defi-
nition of dom(G∗

t ) and the classical Kantorovich–Rubinstein duality (see Villani [38,
Remark 6.5]); in the sixth, Simons [36, Theorem 3.1] (observe that Martt (Kt ) is
compact by Lemma 4.7); in the seventh, the definition of the superhedging price
�sup(g) := −�sub(−g) = supQ∈Mart(�) EQ[g] by Corollary 4.6. Once we have V W

t ,
we have UW

t , and then we can argue as in step 2) of the proof of Proposition 4.9, also
regarding existence of an optimum. �

Remark 4.14 If UW
t (as well as UG

t in Proposition 4.9) is real-valued on Cb(Kt ), one
might take Et as the set of functions of the form (4.1) in place of Et = Cb(Kt ) in both
Proposition 4.9 and 4.13, using norm-density of the piecewise linear functions just as
in the proof of Corollary 4.3.

Remark 4.15 The reader can check that the property ̂Q ∈ Mart(�) is not used in the
proof, and that it would suffice to have only ̂Q ∈ Prob(�). This will be exploited in
Sect. 4.4.1.
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Example 4.16 Taking Gt(x) = 0 if x ≤ εt and Gt(x) = ∞ otherwise, we get
G∗

t (y) = εty if y ≥ 0 and G∗
t (y) = ∞ otherwise. In this case,

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

DW
t (Q)

)

= inf{EQ[c] : Q ∈ Mart(�) and Wt(Qt , ̂Qt) ≤ εt , t = 0, . . . , T }. (4.12)

One can verify with the same techniques as in Example 4.12 that we have conver-
gence, as εt ↓ 0 for every t = 0, . . . , T , of the values on the right-hand side of (4.12)
to the MOT value on the left-hand side of (4.5).

4.4.1 Convergence with Wasserstein-induced penalisation

As already mentioned, in the classical MOT framework, the marginals ̂Q0, . . . , ̂QT

need to be determined, potentially from the prices of many vanilla options. It is then
reasonable to suppose that in a real-world situation, one proceeds by approximation,
that is, one determines sequences of candidates (̂Qn

t ) ⊆ Prob(Kt ) for t = 0, . . . , T .
If such an approximation scheme (whose details are beyond the scope of this paper)
is working, one should have a convergence of these sequences to the true marginals.
One suitable candidate for the type of convergence is the weak one, namely one
might want to have ̂Qn

t → ̂Q∞
t := ̂Qt as n → ∞ for t = 0, . . . , T in the weak sense

for probability measures. We suppose here that K0, . . . ,KT are compact sets, and so
weak convergence is equivalent to convergence in the Wasserstein distance. Propo-
sition 4.17 below shows how the EMOT values treated in Proposition 4.13 and as-
sociated to the approximating measures ̂Qn

t , t = 0, . . . , T , converge to the original
MOT value for the true marginals ̂Q0, . . . , ̂QT , provided that the loss functions Gn

t

converge appropriately.
For the next result, it is convenient to rename the martingale measure ̂Q from the

Standing Assumption 4.1 as ̂Q∞, so that ̂Q∞ ∈ Mart(�) with marginals ̂Q∞
t and

c ∈ L1(̂Q∞).

Proposition 4.17 For each n ∈ N ∪ {∞} and t = 0, . . . , T , let Gn
t be a loss func-

tions with Gn
t (x) ↑ G∞

t (x) as n → ∞ for every x ∈ R and G∞
t (x) = ∞ for ev-

ery x > 0. For every t = 0, . . . , T and n ∈ N, we assume that ̂Qn
t ∈ Prob(Kt ),

limn Wt(̂Q∞
t , ̂Qn

t ) = 0 and limn Gn
t (Wt (̂Q∞

t , ̂Qn
t )) = 0. Then

lim
n

πW
n (c) = πW∞ (c) = inf

Q∈Mart(̂Q∞
0 ,...,̂Q∞

T )
EQ[c], (4.13)

where

πW
n (c) = inf

Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

Gn
t

(

Wt(Qt , ̂Qn
t )

)

)

, n ∈N∪ {∞}.

Proof The second equality in (4.13) is just a consequence of the definition of πW∞
and of G∞

t (x) = ∞ for every x > 0. Since we may always pass to a subsequence
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of (̂Qn), we may assume without loss of generality that Gn
t (Wt (̂Q∞

t , ̂Qn
t )) < ∞ for

all n ∈ N ∪ {∞} and all t (the case n = ∞ is obvious from G∞
t (0) = 0). We first

claim that πW
n (c) is finite for all n ∈N∪ {∞}. Indeed, since � is compact, c is lower

semicontinuous and Gn
t are nonnegative on [0,∞), we have for n ∈ N∪ {∞} that

−∞ < inf
x∈�

c(x) ≤ inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

Gn
t

(

Wt(Qt , ̂Qn
t )

)

)

≤ E
̂Q∞[c] +

T
∑

t=0

Gn
t

(

Wt(̂Q∞
t , ̂Qn

t )
)

< ∞.

We now prove that πW∞ (c) ≥ lim supn πW
n (c). Since πW∞ (c) < ∞, there exists an opti-

mum Q∞ ∈ Mart(�) for πW∞ (c), and its marginals satisfy Q∞
t = ̂Q∞

t , t = 0, . . . , T .
Then Gn

t (Wt (Q
∞
t , ̂Qn

t )) = Gn
t (Wt (̂Q∞

t , ̂Qn
t )) → 0 as n → ∞ and

πW∞ (c) = EQ∞[c]

= lim
n

(

EQ∞[c] +
T

∑

t=0

Gn
t

(

Wt(Q
∞
t , ̂Qn

t )
)

)

≥ lim sup
n

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

Gn
t

(

Wt(Qt , ̂Qn
t )

)

)

= lim sup
n

πW
n (c).

It only remains to show that lim infn πW
n (c) ≥ πW∞ (c). Proposition 4.13 and Re-

mark 4.15 guarantee for each n ∈ N the existence of an optimum Qn ∈ Mart(�)

for the value πW
n (c) < ∞. From the proof of Lemma 4.7, we know that Mart(�)

is weakly compact, and so we can take a subsequence of (Qn) such that for some
˜Q ∈ Mart(�), Wt(Q

nk
t , ˜Qt) → 0 as k → ∞ for every t and

lim
k

(

EQnk [c] +
T

∑

t=0

G
nk
t

(

Wt(Q
nk
t , ̂Q

nk
t )

)

)

= lim inf
n

πW
n (c). (4.14)

Let N ∈ N and recall that supN GN
t (x) = G∞

t (x). Then we compute by using the
particular form of G∞

t that

πW∞ (c) = inf
Q∈Mart(̂Q∞

0 ,...,̂Q∞
T )

EQ[c]

= inf
Q∈Mart(�)

sup
N∈N

(

EQ[c] +
T

∑

t=0

GN
t

(

Wt(Qt , ̂Q∞
t )

)

)

≤ sup
N∈N

(

E
˜Q[c] +

T
∑

t=0

GN
t

(

Wt(˜Qt, ̂Q∞
t )

)

)

≤ lim inf
n

πW
n (c), (4.15)
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where the first inequality uses ˜Q∈Mart(�) and the second is justified as follows.
From the lower semicontinuity with respect to the weak convergence of Q �→ ∫

�
cdQ,

the lower semicontinuity of GN
t and Wt(˜Qt, ̂Q∞

t ) = limk Wt (Q
nk
t , ̂Q

nk
t ) for all t ,

we obtain

E
˜Q[c] +

T
∑

t=0

GN
t

(

Wt(˜Qt, ̂Q∞
t )

)

≤ lim inf
k

(

EQnk [c] +
T

∑

t=0

GN
t

(

Wt(Q
nk
t , ̂Q

nk
t )

)

)

. (4.16)

Moreover, Gn
t is increasing in n for each t , and so for all nk > N ,

EQnk [c] +
T

∑

t=0

GN
t

(

Wt(Q
nk
t , ̂Q

nk
t )

) ≤ EQnk [c] +
T

∑

t=0

G
nk
t

(

Wt(Q
nk
t , ̂Q

nk
t )

)

.

This and (4.16) imply

(

E
˜Q[c] +

T
∑

t=0

GN
t

(

Wt(˜Qt, ̂Q∞
t )

)

)

≤ lim inf
k

(

EQnk [c] +
T

∑

t=0

G
nk
t

(

Wt(Q
nk
t , ̂Q

nk
t )

)

)

= lim inf
n

πW
n (c),

by (4.14). Taking the supremum over N ∈N, we obtain (4.15). �

5 Applications in the noncompact case

We stress that the extension of the results in Sects. 4.3 and 4.4 to the noncompact
case seems to be nontrivial. The main issues come from the verification of Assump-
tion 2.3 (ii), when one starts the analysis from penalisation terms rather than from
valuation functionals. Not excluding that such an extension is possible, we leave this
topic for future research. However, the case of valuations induced by utility functions
can be treated also in the noncompact case, as we describe below. In the noncompact
case, Corollary 4.3 takes the following form.

Corollary 5.1 Take d = 1, K0 = {x0} for some x0 ∈ R and let K1, . . . ,KT ⊆ R be
closed subsets of R. Consider utility functions u0, . . . , uT satisfying Assumption 3.7,
and suppose dom(u0) = · · · = dom(uT ) = R. Take for each t = 0, . . . , T the vector
space Et ⊆ Ct = Ct :t (see (2.1)) of functions of the form (4.1), let E = E0 × · · · × ET

and fix a ̂Q ∈ Mart(�) such that
∫

Kt

vt

(

a(1 + |xt |)
)

d̂Qt(xt ) < ∞, ∀a > 0, t = 0, . . . , T .
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Suppose that c : � → (−∞,+∞] is lower semicontinuous and satisfies (2.8). Then

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

Dv∗
t ,̂Qt

(Qt )

)

= sup

{ T
∑

t=0

U
̂Qt

(ϕt ) : ϕ ∈ Ssub(c)

}

, (5.1)

where U
̂Qt

(ϕt ) is defined in (4.2) for general ϕt ∈ Ct and Dv∗
t ,̂Qt

is given in (3.5).
Moreover, the infimum in (5.1) is a minimum provided that the right-hand side of
(5.1) is finite.

Proof All the claims follow from Theorem 3.4 if we show that all its hypothe-
ses are satisfied. To do so, we check the following properties: (i) the functional
Ut(ϕt ) = U

̂Qt
(ϕt ) is real-valued on Ct , concave, nondecreasing and cash-additive;

(ii) Dt (Qt ) = Dv∗
t ,̂Qt

(Qt ) for Q ∈ Mart(�); (iii) Ut(0) = 0 for t = 0, . . . , T and the
conditions (2.5) and (2.6) hold, which we do using Example 2.6.

To check (i), observe that for every t = 0, . . . , T and ϕt ∈ Ct ,

−∞ < −
∫

Kt

vt

(‖ϕt‖t (1 + |xt |)
)

d̂Qt(xt )

=
∫

Kt

ut

( − ‖ϕt‖t (1 + |xt |)
)

d̂Qt(xt ) ≤
∫

Kt

ut

(

ϕt (xt )
)

d̂Qt(xt ) ≤ U
̂Qt

(ϕt )

≤
∫

Kt

ϕt (xt )d̂Qt(xt ) ≤
∫

Kt

‖ϕt‖t (1 + |xt |)d̂Qt(xt ) < ∞,

where the first inequality in the last line uses the fact that ut (x) ≤ x, ∀x ∈ R, and the
finiteness of the last term comes from ̂Q ∈ Prob1(�). Concavity, monotonicity and
cash-additivity can be checked by direct computation. Coming to (ii), from Proposi-
tion 3.9, for every Q ∈ Prob1(�) and t = 0, . . . , T , we have

Dv∗
t ,̂Qt

(Qt ) = sup
ϕt∈Cb(Kt )

(∫

Kt

ϕt (xt )dQt(xt ) −
∫

Kt

vt

(

ϕt (xt )
)

d̂Qt(xt )

)

≤ sup
ϕt∈Ct

(∫

Kt

ϕt (xt )dQt(xt ) −
∫

Kt

vt

(

ϕt (xt )
)

d̂Qt(xt )

)

≤ Dv∗
t ,̂Qt

(Qt ),

where the first equality exploits (3.6) and the last inequality is from the Fenchel in-
equality v∗

t (y) ≥ (ϕty − vt (ϕt )). To conclude the proof of (ii), we have to show that
the sup in the above expression can be taken over Et , as in the penalty term Dt in The-
orem 3.4. Observe that for every ϕt ∈ Ct , there exists a sequence (ϕn

t ) ⊆ Ct , with each
ϕn

t ∈ Et of the form (4.1), such that ϕn
t → ϕt pointwise on Kt and supn ‖ϕn

t ‖t < ∞.
This implies

∫

Kt

ϕt (xt )dQ(xt ) −
∫

Kt

vt

(

ϕt (xt )
)

d̂Qt(xt )

= lim
n

(∫

Kt

ϕn
t (xt )dQ(xt ) −

∫

Kt

vt

(

ϕn
t (xt )

)

d̂Qt(xt )

)
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for all Q ∈ Prob1(�) by dominated convergence and using the assumption that

∫

Kt

vt

(

a(1 + |xt |)
)

d̂Qt(xt ) < ∞, ∀a > 0.

Finally, we work on (iii). Take f
αn
t (xt ) = (|xt | − αn)

+ as in (2.11) and αn ↑ ∞.
Observe that f

αn
t (xt ) → 0 as n → ∞ and that the assumption ut (x) ≤ x for all x ∈R

implies Ut(0) ≤ 0. Then for every a > 0,

0 ≥ Ut(0) ≥ Ut(−af
αn
t ) ≥

∫

Kt

ut (−af
αn
t )d̂Qt −→ 0 as n → ∞, (5.2)

where the last limit is by dominated convergence. Indeed, f αn
t (xt ) ≤ 1+|xt | for every

xt ∈ Kt so that

∣

∣ut

( − af
αn
t (xt )

)∣

∣ = −ut

( − af
αn
t (xt )

)

≤ −ut

( − a(1 + |xt |)
) = vt

(

a(1 + |xt |)
) ∈ L1(̂Qt)

for every xt ∈ Kt, a > 0. Now (5.2) yields simultaneously that Ut(0) = 0 and
Ut(−af

αn
t ) → 0 as n → ∞ for all t = 0, . . . , T , a > 0. To apply Example 2.6, it

is then enough to observe that taking U(ϕ) := ∑T
t=0 Ut(ϕt ) as in Theorem 3.4, we

have U(0) = 0 and U(0, . . . ,0,−af
n
β

t ,0, . . . ,0) = Ut(−af
n
β

t ) → 0 as n → ∞ for all
a > 0, which is (2.12). �

Remark 5.2 Observe that Corollary 5.1 remains valid for general ̂Qt ∈ Prob1(Kt )

without requesting these are marginals of a martingale measure. Indeed, we did not
use the martingale property at any point in the above proof.

Just as we obtained Corollary 4.5 from Corollary 4.3 by using the linear utility
functions ut (xt ) = xt , we now deduce the following result from Corollary 5.1; see
Beiglböck et al. [4, Theorem 1.1 and Corollary 1.2].

Corollary 5.3 Take d = 1, K0 = {x0} for some x0 ∈ R and let K1, . . . ,KT ⊆ R

be closed subsets of R. Take for each t = 0, . . . , T the vector space Et ⊆ Ct of func-
tions of the form (4.1), let E = E0 × · · · × ET and fix a ̂Q ∈ Mart(�). Then for any
c : � → (−∞,+∞] which is lower semicontinuous and satisfies (2.8), we have

inf
Q∈Mart(̂Q0,...,̂QT )

EQ[c] = sup

{ T
∑

t=0

E
̂Qt

[ϕt ] : ϕ ∈ Ssub(c)

}

= π(c), (5.3)

and if π(c) < ∞, a minimum point exists for the infimum in (5.3).

Example 5.4 We now study the convergence to the MOT problem. Take functions
u0, . . . , uT : R →R satisfying Assumption 3.7, and assume additionally that these



Entropy martingale optimal transport 299

are all differentiable in 0 (which implies that {1} = ∂u0(0) = · · · = ∂uT (0)). Observe
that if we set un

t (x) := nut (
x
n

1) for x ∈ R, t = 0, . . . , T , the functions un
0, . . . , un

T

still satisfy Assumption 3.7. Moreover, (vn
t )∗(y) = supx∈R(un

t (x) − xy)) = nv∗
t (y),

y ∈ R. Since ut (0) = 0, we have v∗
t ≥ 0 and as a consequence supn(v

n
t )∗(y) = 0

if v∗
t (y) = 0 and supn(v

n
t )∗(y) = ∞ otherwise. Moreover, v∗

t (y) = 0 implies that
we have y ∈ ∂ut (0) = {1}. Consider the set Aε of ε-martingale measures defined
in (2.14), take ̂Q ∈ Mart(�) and a sequence εn ↓ 0. Using (2.15) gives for every
Q ∈ Prob1(�) that

T
∑

t=0

D(vn
t )∗,̂Qt

(Qt ) + σAεn (Qt ) ↑D∞(Q) + σA∞(Q) as n → ∞,

where

D∞(Q) + σA∞(Q) =
{

0 if Q ∈ Mart(�) and Qt = ̂Qt for t = 0, . . . , T ,

∞ otherwise.

As a consequence, by Proposition 2.26,

inf
Q∈Mart(�)

(

EQ[c] +
T

∑

t=0

D(vn
t )∗,̂Qt

(Qt )

)

−→ inf
Q∈Mart(̂Q0,...,̂QT )

EQ[c] as n → ∞.

Appendix

Proposition A.1 (i) There exist constants γ = γ (d,T ) > 0, β = β(d,T ) > 0 such
that for every A > 1, we have

1 +
T

∑

s=0

d
∑

j=1

|xj
s | ≤ γ

T
∑

s=0

d
∑

j=1

f
A
β

j,s(x
j
s ), ∀(x0, . . . , xT ) ∈ (Rd \ [−A,A]d)T +1,

where f α
j,s is defined in (2.11).

(ii) The conditions in Example 2.6 are sufficient for (2.5) and (2.6) to hold.

Proof (i) Note that f
A
β

j,s(x
j
s ) = (|xj

s | − A
β
)+. Fix x ∈ (Rd \ [−A,A]d)T +1. Define

I (x) := {(j, s) ∈ {1, . . . , d} × {0, . . . , T } : |xj
s | > A},

I c(x) := {(j, s) ∈ {1, . . . , d} × {0, . . . , T } : |xj
s | ≤ A}.
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Then {1, . . . , d} × {0, . . . , T } = I (x) ∪ I c(x) and I (x) �= ∅. Moreover, for β > 1,

γ

T
∑

s=0

d
∑

j=1

f
A
β

j,s(x
j
s ) −

(

1 +
T

∑

s=0

d
∑

j=1

|xj
s |

)

= γ

T
∑

s=0

d
∑

j=1

(

|xj
s | − A

β

)+
−

(

1 +
T

∑

s=0

d
∑

j=1

|xj
s |

)

=
∑

(j,s)∈I (x)

(

γ
(

|xj
s | − A

β

)

− |xj
s |

)

+
∑

(j,s)∈I c(x)

(

γ
(

|xj
s | − A

β

)+ − |xj
s |

)

− 1

≥ (γ − 1)
∑

(j,s)∈I (x)

|xj
s | − γA

β
|I (x)| −

∑

(j,s)∈I c(x)

|xj
s | − 1

≥ (γ − 1)A − γA

β
d(T + 1) − d(T + 1)A − 1

= γA

(

1 − d
T + 1

β

)

− (

A + d(T + 1)A + 1
)

.

Choosing e.g. β = 2d(T + 1), we can solve γA 1
2 − (A + d(T + 1)A + 1) ≥ 0 to

get γ ≥ 2d(T + 2) + 2
A

. This yields a possible selection γ = 2d(T + 2) + 2 as well
which depends only on the dimensions d,T .

(ii) Observe first that for any concave function F :RT +1 →R, we have

F

( T
∑

t=0

d
∑

j=1

yj,t e
(t)

)

≥ 1

d(T + 1)

T
∑

t=0

d
∑

j=1

F
(

d(T + 1)yj,t e
(t)

)

for all yj,t ∈R,

where {e(t) : t = 0, . . . , T } is the canonical basis in R
T +1. Now we define the set

Ht(n) := ×d
j=1 K

j
t ∩ [−n,n]d and set f n

t := γ
∑d

j=1 f
n
β

j,t for γ,β given in (i) above.
Then (i) guarantees that (2.5) holds. The concavity and monotonicity of U and (2.12)
imply that for any a ≥ 0,

0 = U(0) ≥ U(−af n
0 , . . . ,−af n

T )

≥ 1

d(T + 1)

T
∑

t=0

d
∑

j=1

U
( − d(T + 1)aγf

n
β

j,t e
(t)

) −→ 0 as n → ∞,

which is (2.6). �

A.1 Weighted spaces

We use the notation introduced in Sect. 2.4.1. Consider the following spaces of con-
tinuous functions. For ψ ∈ C(X), we set

Cψ :=
{

φ ∈ C(X) : ‖φ‖ψ := sup
x∈X

|φ(x)|
1 + |ψ(x)| < ∞

}

.
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As can be easily verified by following the classical case of bounded continuous func-
tions with the sup-norm, Cψ is a Banach lattice under the norm ‖ · ‖ψ . Notice also
that Cb(X) � ϕ �→ (1 + |ψ |)ϕ ∈ Cψ defines an isomorphism between Banach spaces.
The topological dual of Cψ is denoted by (Cψ)∗.

Proposition A.2 Let L ∈ (Cψ)∗ be continuous, linear and positive. Suppose that for
every ε > 0, there exists a compact Kε ⊆ X such that

ϕ ∈ Cψ with ϕ|Kε = 0 implies that |〈ϕ,L〉| ≤ ε‖ϕ‖ψ .

Then for every sequence (cn) ⊆ Cψ with cn ↓ 0 pointwise on X, we have L(cn) ↓ 0.

Proof Fix ε > 0 and take the associated compact Kε . By Dini’s lemma, we have
supx∈Kε

cn(x) ↓ 0. Take n big enough such that we have supx∈Kε
cn(x) < ε. Define

0 ≤ gε
n := min(cn, ε). Then clearly gε

n(x) = |gε
n(x)| ≤ ε ≤ ε(1+|ψ(x)|) for all x ∈X

implies that ‖gε
n‖ψ ≤ ε and therefore

|〈gε
n,L〉| ≤ ‖L‖‖gε

n‖ψ ≤ ‖L‖ε, (A.1)

where ‖L‖ is the operator norm (note that ‖L‖ < ∞ since L is continuous).
Also, since supx∈Kε

cn(x) < ε, we get that cn and gε
n coincide on Kε so that

(cn − gε
n)|Kε = 0. By using the hypothesis on L, we then get

|〈cn − gε
n,L〉| ≤ ε‖cn − gε

n‖ψ ≤ ε(‖cn‖ψ + ‖gε
n‖ψ) ≤ ε(‖c1‖ψ + ε), (A.2)

where the last step uses the Banach lattice property of ‖ · ‖ψ and that ‖gε
n‖ψ ≤ ε, as

shown before. We now combine (A.1) and (A.2) to get

0 ≤ 〈cn,L〉 = 〈cn − gε
n,L〉 + 〈gε

n,L〉 ≤ |〈cn − gε
n,L〉| + 〈gε

n,L〉
≤ ε(‖c1‖ψ + ε) + ‖L‖ ε.

Since ε > 0 is arbitrary, L(cn) ↓ 0. �

We state below the celebrated Daniell–Stone theorem.

Theorem A.3 Let V be a vector lattice of functions (i.e., f,g ∈ V implies that
max(f, g) ∈ V ) on a set X such that 1 ∈ V . Let L be a linear functional on V with
the properties that L(f ) ≥ 0 whenever f ≥ 0, L(1) = 1, and L(fn) → 0 for every
sequence (fn) of functions in V monotonically decreasing to zero. Then there exists
a unique probability measure μ on the σ -algebra F = σ(V ) generated by V such
that V ⊆ L1(μ) and

L(f ) =
∫

X

f dμ, ∀f ∈ V.

Proof See Bogachev [10, Theorem 7.8.1.] �
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A.2 Proofs

Proof of Proposition 3.9 We use Liero et al. [30, Theorem 2.7 and Remark 2.8]. To
do so, let us rename F := v∗

t (see (3.4) for the definition of v∗), which implies that
F ◦(y) := −F ∗(−y) of [30, Equation (2.45)] satisfies

F ◦(y) = −F ∗(−y) = −v∗∗
t (−y) = −vt (−y) = ut (y)

by the Fenchel–Moreau theorem. All the assumptions of [30, Sect. 2.3] on F are
satisfied since F(y) ≥ ut (0) − 0y = 0 for y ≥ 0 and F(1) = supx∈R(ut (x) − x) ≤ 0
(recall that ut (x) ≤ x for all x ∈ R). Also, we have limy→∞ F(y)

y
= F ′∞ = ∞ since

dom(ut ) = R. We can then apply [30, Theorem 2.7 and Remark 2.8] to obtain (3.6).
We stress the fact that since ut is finite-valued on all of R, it is continuous there
and for every ϕt ∈ Cb(Kt ), we have F ◦(ϕt ) = ut (ϕt ) ∈ Cb(Kt ). So the additional
constraint F ◦(ϕt ) ∈ Cb(Kt ) (below [30, Equation (2.49)]) is redundant in our setup.

�

Proof of Proposition 3.10 We exploit again Liero et al. [30, Theorem 2.7 and Re-
mark 2.8] (with ut in place of F ◦), as we explain now. Since ut is nondecreasing,
either its domain is of the form [M,∞) or (M,∞), with M ≤ 0. Given ϕt ∈ Cb(Kt )

and μ ∈ Meas(Kt ), we have three cases:
If inf(ϕt (R)) > M , then ut (ϕt ) ∈ Cb(Kt ) since ut is continuous on the interior of

its domain.
If inf(ϕt (R)) < M , then {ϕt < M} is open and non-empty and hence has positive

̂Qt -measure as ̂Qt has full support. Thus
∫

Kt
ut (ϕt )d̂Qt = −∞.

Finally, if inf(ϕt (R)) = M , then ut (ϕt ) = limε↓0 ut (max(ϕt ,M + ε)) (since ut is
nondecreasing and upper semicontinuous), ut (max(ϕt ,M + ε)) ∈ Cb(Kt ) as in the
first case, and by the monotone convergence theorem,

∫

Kt

ut (ϕt )d̂Qt −
∫

Kt

ϕt dμ

= lim
ε↓0

(∫

Kt

ut

(

max(ϕt ,M + ε)
)

d̂Qt −
∫

Kt

max(ϕt ,M + ε)dμ

)

.

Then we infer that

sup
ϕt∈Cb(Kt )

(∫

Kt

ϕt dμ −
∫

Kt

vt (ϕt )d̂Qt

)

= sup
ϕt∈Cb(Kt )

(∫

Kt

ut (ϕt )d̂Qt −
∫

Kt

ϕt dμ

)

= sup

{∫

Kt

ut (ϕt )d̂Qt −
∫

Kt

ϕt dμ : ϕt , ut (ϕt ) ∈ Cb(Kt )

}

, (A.3)

and from [30, Theorem 2.7 and Remark 2.8] and (A.3), we deduce the result. �
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