
Finance and Stochastics (2022) 27:49–96
https://doi.org/10.1007/s00780-022-00494-7

Speculative trading, prospect theory and transaction costs

Alex S.L. Tse1 · Harry Zheng2

Received: 13 October 2021 / Accepted: 5 October 2022 / Published online: 15 December 2022
© The Author(s) 2022

Abstract
A speculative agent with prospect theory preference chooses the optimal time to pur-
chase and then to sell an indivisible risky asset to maximise the expected utility of
the round-trip profit net of transaction costs. The optimisation problem is formulated
as a sequential optimal stopping problem, and we provide a complete characterisa-
tion of the solution. Depending on the preference and market parameters, the optimal
strategy can be “buy and hold”, “buy low, sell high”, “buy high, sell higher” or “no
trading”. Behavioural preference and market friction interact in a subtle way which
yields surprising implications on the agent’s trading patterns. For example, increasing
the market entry fee does not necessarily curb speculative trading, but instead may
induce a higher reference point under which the agent becomes more risk-seeking
and in turn is more likely to trade.

Keywords Sequential optimal stopping · S-shaped utility · Transaction costs ·
Entry-and-exit strategies

Mathematics Subject Classification (2020) 60G40 · 60J60

JEL Classification D81 · G19 · G40

1 Introduction

When it comes to modelling trading behaviour, the standard economic paradigm is the
maximisation of risk-averse agents’ expected utility in a frictionless market. This cri-
terion, however, has been criticised on many levels. In terms of trading environment,
financial friction is omnipresent in reality where transactions are subject to various
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costs. In terms of agents’ preferences, the behavioural economics literature suggests
that many individuals do not make decisions in accordance to expected utility the-
ory. First, utilities are not necessarily derived from final wealth, but typically what
matters is the change in wealth relative to some reference point. Second, individuals
are usually risk-averse over the domain of gains, but risk-seeking over the domain
of losses—this can be captured by an S-shaped utility function. Finally, individuals
may fail to take portfolio effects into account when making investment decisions,
and this phenomenon is known as narrow framing. These psychological ideas are ex-
plored for example in the seminal work of Kahneman and Tversky [16], Tversky and
Kahneman [26, 27] and Kahneman and Lovallo [15].

In this paper, we develop a tractable dynamic trading model which captures a
number of stylised behavioural biases of individuals as well as market frictions. In
our setup, trading is costly due to proportional transaction costs as well as a fixed
market entry fee. The goal of an agent is to find the optimal time to buy and then
to sell an indivisible risky asset to maximise the expected utility of the round-trip
profit under the prospect theory preference of Tversky and Kahneman [27]. While a
realistic economy can consist of multiple assets, we can interpret the assumption of
a single indivisible asset as a manifestation of narrow framing such that the trading
decisions associated with one particular unit of indivisible asset can be completely
isolated from the other investment opportunities. We believe the model is the best
suitable to describe the trading behaviour of speculative agents. These “less-than-
fully rational” agents purchase and sell an asset with a narrow objective of making
a one-off round-trip profit rather than supporting consumption or stipulating a long-
term portfolio growth.

A sequential optimal stopping problem featuring an S-shaped utility function is
solved to identify the entry and exit time of the market by the agent. The solution
approach is based on a backward induction idea. In the first stage, we focus on the
exit strategy of the agent: Conditionally on the ownership of the asset purchased
at a given price level (which determines the agent’s reference point), the optimal
liquidation problem is solved. Then the value function of this exit problem reflects
the utility value of purchasing the asset at a different price level. Upon comparison
against the utility value of inaction, we obtain the payoff function of the real option
to purchase the asset which is then used in the second stage problem concerning the
entry decision of the agent: The agent picks the optimal time to enter the trade so as
to maximise the expected payoff of this real option to purchase the asset.

The traditional route to analyse an optimal stopping problem is to first conjecture
a candidate optimal stopping rule, and then the dynamic programming principle is in-
voked to derive a free boundary value problem that the value function should satisfy.
Then one can attempt to solve for the free boundaries via value matching and smooth
pasting. For this approach to work, we need to correctly identify the form of the op-
timal stopping rule, but this exercise may be not trivial. As it turns out, the optimal
continuation region of our entry problem can either be connected or disconnected,
depending on the model parameters. It is thus difficult to adopt such a guess-and-
verify approach since we do not know the correct form of the optimal stopping rule
upfront. In our analysis, a martingale method is employed to solve the underlying
optimal stopping problems, which has the important advantage that no a priori con-
jecture on the optimal strategy is required. The optimal continuation/stopping set can
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be deduced directly by studying the smallest concave majorant of a suitably scaled
payoff function.

Despite its relatively simple nature, our model is capable of generating a rich vari-
ety of trading behaviours such as “buy and hold”, “buy low, sell high”, “buy high, sell
higher” and “no trading”. The risk-seeking preference of a behavioural agent over the
loss domain will typically encourage him to enter the trade, but his precise trading
behaviour depends crucially on the level of transaction costs relative to his preference
parameters. Generally speaking, a high proportional (fixed) transaction cost discour-
ages trading at a high (low) nominal price. When proportional costs are high and the
asset is expensive, the agent prefers waiting until the price level declines, and hence
he is more inclined to consider a “buy low, sell high” strategy. But if instead the fixed
entry fee is high and the asset is cheap, the agent might prefer delaying the purchase
decision until the asset reaches a higher price level, and this leads to a trading pattern
of “buy high, sell higher”.

Both behavioural preferences and market frictions are studied extensively as sep-
arate topics in the mathematical finance literature. To the best of our knowledge,
however, their interaction has not been explored to date. Under prospect theory, the
risk attitude of the agent is heavily influenced by the reference point. In our model,
the reference point is endogenised so that it depends on the cost of purchase including
the transaction cost paid. The level of transaction cost therefore has a direct impact
on the agent’s risk preference. This subtle interaction between risk preference and
transaction cost leads to interesting policy implications on how speculative trading
can be curbed effectively. For example, a surprising result is that imposing a fixed
market entry fee might indeed accelerate rather than cool down trading participation.

Our paper is closely related to the literature on optimal stopping under an S-shaped
utility function. Kyle et al. [18] and Henderson [9] consider a one-off optimal liquida-
tion problem in which the agent solves for the optimal time to liquidate an endowed
risky asset to maximise an expected prospect theory utility. They do not consider the
purchase decision, and the reference point is taken as some exogenously given sta-
tus quo. A main contribution of our paper is that we further endogenise the reference
point which depends on the purchase price of the asset, and the optimal purchase price
must be determined as a part of the optimisation problem. The recent work of Hen-
derson and Muscat [11] extends the model of Henderson [9] by considering partial
liquidation of multiple indivisible assets. Both the present paper and [11] consider
a sequential optimal stopping problem as the underlying mathematical framework.
However, the economic natures of the problems are completely different—we study
the sequential decision of purchase and sale, while they exclusively focus on sales.

Another relevant class of works is the realisation utility model which further incor-
porates a reinvestment possibility within a behavioural optimal stopping model, such
as Barberis and Xiong [2], Ingersoll and Jin [14], He and Yang [8], Kong et al. [17]
and Dai et al. [3]. In such models, the agent repeatedly purchases and sells an asset
to maximise the sum of utility bursts realised from the gain and loss associated with
each round-trip transaction. In a certain sense, these models consider an endogenised
reference point which is continuously updated based on the historical prices within
each trading episode. However, the purchase decision is exogenously given in many
of the models where the agent is simply assumed to buy the asset again immediately
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after a sale. These cited papers on realisation utility models all feature transaction
costs which are required to make the problems well posed. As a result, the purchase
pattern is not entirely realistic: If the agent is willing to sell an asset and then in-
stantaneously repurchase an identical (or a different, but statistically identical) asset,
then the agent is essentially throwing away money in the form of transaction costs
without altering his own financial position. Only He and Yang [8] carefully analyse
the purchase decision of the agent, but in any case they find that the purchase strat-
egy is trivial—the agent either buys the asset immediately after a sale or never enters
the trade again. Our model differs from the realisation utility model in that we do
not consider perpetual reinvestment opportunities (which can be understood as nar-
row framing that the agent only focuses on a single episode of the trading experience
when evaluating the entry and exit strategies). Nonetheless, the optimal purchase
region of our model is non-trivial under typical parameters and encapsulates many
realistic trading strategies.

Beyond the context of behavioural economics, there are a few works attempt-
ing to model the sequential purchase and sale decisions under an optimal switching
framework. However, identification of a modelling setup which can generate reason-
able trading patterns proves to be much more difficult than expected. On the one
hand, Zervos et al. [29] report that “. . . the prime example of an asset price process,
namely, the geometric Brownian motion, does not allow optimal buying and sell-
ing strategies that have a sequential nature”. Indeed, existing literature which gives
“buy low, sell high” as an optimal trading strategy often relies on extra statistical fea-
tures of the asset price process such as mean reversion. See for example Zhang and
Zhang [30], Song et al. [25], Leung et al. [20] and Leung and Li [19]. On the other
hand, momentum-based trading strategies are also rarely studied in the mathematical
finance literature. The scarce examples include the work of Dai et al. [5] and Dai
et al. [4] who find that a trend-following strategy is optimal under a regime-switching
model for the asset price. We contribute to this strand of literature by showing that
a trading model based on a simple geometric Brownian motion can also generate
many realistic trading patterns including both a reversal strategy (buy low, sell high)
and a momentum strategy (buy high, sell higher). This is achieved via incorporating
standard elements of behavioural preferences and market frictions.

The optimal investment rule in the classical Merton [23, 24] portfolio selection
problem can also be viewed as a buy low, sell high strategy: Since the agent keeps
a constant fraction of wealth invested in the risky asset, extra units of risky asset are
sold (purchased) when the price increases (falls), ceteris paribus. In our paper, we
focus on a single indivisible asset and do not consider portfolio effects.

The rest of the paper is organised as follows. Section 2 provides a description of
the model and the underlying optimisation problem. In Sect. 3, we outline the solu-
tion methods to a standard optimal stopping problem and discuss heuristically how
the solution to our sequential optimal stopping problem can be characterised via the
idea of backward induction. The main results are collected in Sect. 4. Some com-
parative statics results and their policy implications are discussed in Sect. 5. Several
extensions of the baseline model are discussed in Sect. 6. Section 7 concludes. A few
technical proofs are deferred to the Appendix.
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2 Problem description

Let (�,F , (Ft ),P) be a filtered probability space satisfying the usual conditions and
supporting a one-dimensional Brownian motion B = (Bt )t≥0. There is a single in-
divisible risky asset in the economy. Its price process P = (Pt )t≥0 is modelled by a
one-dimensional diffusion with state space J ⊆ R+ and dynamics of

dPt = μ(Pt )dt + σ(Pt )dBt ,

where μ : J → R and σ : J → (0,∞) are Borel functions. We assume that
J is an interval with endpoints 0 ≤ aJ < bJ ≤ ∞ and that P is regular in
(aJ , bJ ), i.e., for any p,y ∈ (aJ , bJ ), we have P[τy < ∞|P0 = p] > 0, where
τy := inf{t ≥ 0 : Pt = y}.

We assume that the interest rate is zero in our exposition. For the non-zero interest
rate case, one can interpret the process P as the numéraire-adjusted price of the asset.
Then the drift term μ( · ) can be viewed as the instantaneous excess return of the risky
asset.

Trading in the asset is costly. If the agent wants to purchase the asset at its current
price p, he will need to pay λp+� to initiate the trade, where λ ∈ [1,∞) so that λ−1
represents the proportional transaction cost on purchases and � ≥ 0 represents a fixed
market entry fee. When the agent sells the asset at price p, he will only receive γp,
where γ ∈ (0,1] so that 1 − γ represents the proportional transaction cost on sales.

The preference of the agent is described by the prospect theory of Tversky and
Kahneman [27]. Under this framework, utility is derived from gains and losses rela-
tive to some reference point rather than from the total wealth. Individuals are typically
risk-averse over the domain of gains and risk-seeking over the domain of losses. This
can be captured by an S-shaped utility function U : R → R with U(0) = 0 and such
that U is concave (resp. convex) over R+ (resp. R−). Finally, individuals also exhibit
loss-aversion so that the negative utility increment brought by a unit of loss is much
larger in magnitude than the positive utility increment from a unit of gain.

In the behavioural optimal liquidation literature such as Kyle et al. [18] and Hen-
derson [9], the liquidation payoff is always compared against some exogenously
given constant reference point. In our setup, we assume the reference point depends
on both an exogenous constant R as well as on the amount paid by the agent to
purchase the asset. Suppose the agent has executed a speculative round-trip trade
where he has bought and then sold the asset at stopping times τ and ν (with τ ≤ ν),
respectively. The liquidation payoff γPν is evaluated against λPτ + � + R as the
reference point, where λPτ + � is the capital spent on purchasing the asset and R

is a constant outside the model specification. The parameter R can be interpreted as
a preference parameter of the agent which reflects his “aspiration level” in the sense
of Lopes and Oden [21], where a more motivated agent will set a higher economic
benchmark as a profit target to beat. The realised utility of this round-trip trade is
U(γPν − λPτ − � − R).

A caveat, however, is that the agent is not obliged to enter or exit the trade at all if
it is undesirable to do so. A realisation of τ = ∞ refers to the case that the purchase
decision is deferred indefinitely, which is economically equivalent to not entering
the trade at all. The liquidation value is zero because there is nothing to be sold,
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and the reference point becomes R since the required cash outflow λPτ + � for the
purchase has never materialised. Thus the prospect theory value under this strategy
is simply U(−R). Similarly, the agent may enter the trade at some time point but
never liquidate the asset. This corresponds to a realisation of τ < ∞ and ν = ∞. In
this case, the liquidation value is again zero and evaluated against the reference point
λPτ + � + R. To summarise all the possibilities, the realised prospect theory utility
associated with a trading strategy (τ, ν) is written as

⎧
⎪⎨

⎪⎩

U(γPν − λPτ − � − R) if τ < ∞, ν < ∞,

U(−R) if τ = ∞,

U(−λPτ − � − R) if τ < ∞, ν = ∞.

(2.1)

The objective of the agent is to find the optimal purchase time τ and sale time ν

to maximise the expected value of (2.1). Define the objective function as

J (p; τ, ν) := E
[
U

(
γPν1{τ<∞,ν<∞} − (λPτ + �)1{τ<∞} − R

)∣
∣P0 = p

]
. (2.2)

Formally, the agent is solving the sequential optimal stopping problem

V(p) := sup
τ,ν∈T :τ≤ν

J (p; τ, ν), (2.3)

where T is the set of (Ft )-stopping times valued in R+ ∪ {+∞}. Problem (2.3) has
two features which make it non-standard relative to a typical optimal stopping prob-
lem. First, the decision space is two-dimensional. Second, the objective function has
an explicit dependence on the stopping times τ, ν via the indicator functions, which
further complicates the analysis.

Remark 2.1 Similarly to Henderson [9], Xu and Zhou [28] and Henderson et al. [10],
we do not explicitly consider subjective discounting in our baseline model. On the one
hand, our model features cash flows at different time points and it is not entirely clear
what is the most appropriate way to apply subjective discounting, because the stan-
dard prospect theory framework is not directly applicable to intertemporal choices.
On the other hand, under discounting, an impatient agent is much more inclined to
delay losses and to realise profits earlier, which will lead to an extreme disposition
effect which is not consistent with the empirical trading pattern of retail investors; see
the discussion in Henderson [9]. At a mathematical level, introducing subjective dis-
counting also makes our problem harder to be analysed in full generality. We briefly
discuss in Sect. 6.2 how subjective discounting might be incorporated and explore
(numerically in some cases) how it affects the optimal trading behaviour.

3 The solution methods

In this section, we give an overview of how problem (2.3) can be solved. We begin
by offering a short summary about the solution approach to solve a standard optimal
stopping problem for a one-dimensional diffusion.
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3.1 The martingale method for optimal stopping problems

We review the martingale method to solve an undiscounted optimal stopping prob-
lem; this is based on Dayanik and Karatzas [6].

Consider a general problem in the form of

V (p) = sup
τ∈T

E [G(Pτ ) |P0 = p]

for some payoff function G. In the standard theory of optimal stopping, the opti-
mal stopping time can be characterised as the first exit time of the process from
some open set C, so that τ = inf{t ≥ 0 : Pt /∈ C}. In a one-dimensional diffusion set-
ting, it is sufficient to consider stopping times which have the form τa,b := τa ∧ τb,
where τa := inf{t ≥ 0 : Pt = a} and τb := inf{t ≥ 0 : Pt = b} with a ≤ p ≤ b. Here
[a, b] ⊆ J is an unknown interval to be identified (and it depends on p in general).

Let s( · ) be the scale function of the process P (it is unique up to an affine trans-
formation), defined as a strictly increasing function such that 	 := s(P ) is a local
martingale. A simple application of Itô’s lemma shows that s( · ) should solve the
second order differential equation

σ 2(p)

2
s′′(p) + μ(p)s′(p) = 0. (3.1)

Let θ := s(p). Then

J (p; τa,b) := E[G(Pτa,b
)|P0 = p]

= E
[
G

(
s−1(	τa,b

)
)∣
∣	0 = θ

]

= E[φ(	τa,b
)|	0 = θ ]

= P[τa < τb|	0 = θ ]φ(
s(a)

) + P[τb < τa|	0 = θ ]φ(
s(b)

)

= s(b) − θ

s(b) − s(a)
φ
(
s(a)

) + θ − s(a)

s(b) − s(a)
φ
(
s(b)

)
,

where φ := G ◦ s−1. The above can be maximised with respect to a and b. Moreover,
the dummy variables a and b can be replaced by a′ = s(a) and b′ = s(b). Hence

V (p) = sup
a,b:a≤p≤b

J (p; τa,b)

= sup
a′,b′:a′≤θ≤b′

(
b′ − θ

b′ − a′ φ(a′) + θ − a′

b′ − a′ φ(b′)
)

=: v(θ),

and thus V (p) = v(s(p)). The scaled value function v(θ) can be characterised as
the smallest concave majorant of φ(θ) = G(s−1(θ)), the scaled payoff function
over s(J ), which is defined as an interval with endpoints s(aJ ) and s(bJ ). The
continuation and stopping set associated with the optimal stopping rule are given
by C = {p ∈ J : v(s(p)) > φ(s(p))} and S = {p ∈ J : v(s(p)) = φ(s(p))}, respec-
tively.
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3.2 Decomposition of the sequential optimal stopping problem

In the following two subsections, we discuss heuristically how the value function
of (2.3) can be constructed by considering two sub-problems based on the idea of
backward induction. The wellposedness conditions as well as a formal verification of
optimality are explored in Sect. 4 when we specialise the modelling setup.

3.2.1 Exit problem

Suppose for the moment that the agent has already purchased the asset at some
known price level q via paying λq + � at some time in the past. Conditionally
on this information, the reference point has been fixed at the known constant level
H := λq + � + R. Suppose the current time is labelled as t = 0 and the current price
of the asset is P0 = p. The goal of the agent in the exit problem is to find the optimal
time to sell this owned asset to maximise the expected prospect theory value of the
sale proceeds relative to the reference point H . If the asset is (ever) sold at time ν,
the utility of gain and loss relative to the reference point is U(γPν1{ν<∞} − H)

after taking the transaction cost on a sale into account. Since the realised utility is
increasing in Pν and the process P is nonnegative, there is in general no incen-
tive for the agent to forgo the sale opportunity. Hence heuristically, one can drop
the indicator function 1{ν<∞} and it is sufficient to consider the objective function
G1(Pν;H) := U(γPν − H). The agent then solves the optimal stopping problem

V1(p;H) := sup
ν∈T

E[G1(Pν;H)|P0 = p] = sup
ν∈T

E[U(γPν − H)|P0 = p] (3.2)

to determine the optimal time of the asset sale. The value function of the exit prob-
lem is then given by V1(p;H) = ḡ1(s(p);H), where ḡ1 = ḡ1(θ;H) is the smallest
concave majorant of

g1(θ;H) := G1
(
s−1(θ);H ) = U

(
γ s−1(θ) − H

)
.

We write the optimiser to problem (3.2) as ν∗(p;H); it depends on the initial price
level p and the given reference point H .

3.2.2 Entry problem

Now we assume the agent does not own any asset to begin with. His objective is
to determine the optimal time to purchase (and then to sell) the asset to maximise
the expected utility of the liquidation proceeds relative to the endogenised reference
point.

At a given current asset price level p, there are two possible actions for the agent.
First, he can opt to initiate the speculative trade by buying the asset now, which fixes
the reference point as λp+� +R, and then sell it later in the future. When the asset is
liquidated at his choice of the sale time ν, the realised utility is U(γPν −λp−�−R).
Conditionally on the decision to purchase the asset today at price p, the agent can
find the best time of sale to maximise his expected utility by solving problem (3.2)
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for H = λp + � + R. Then the best possible expected utility he can attain is

sup
ν∈T

E[U(γPν − λp − � − R)|P0 = p] = V1(p;λp + � + R),

provided that he decides to enter the trade at the given price of p.
Alternatively, the agent can forgo the opportunity to enter the trade and stay away

from the market forever. In this case, the payoff is zero and the reference point is
simply equal to R. The utility he will receive is just the constant U(−R).

Therefore, the opportunity to enter the speculative trade can be viewed as a real
option. At a given price level p, the agent is willing to enter the trade only if the
maximal expected utility of trading is not less than that of inaction, i.e., if

V1(p;λp + � + R) ≥ U(−R).

This is similar to a financial option being in the money. The payoff of this real option
to the agent in utility terms as a function of the price level p is given by

G2(p) := max{V1(p;λp + � + R),U(−R)}. (3.3)

The entry problem for the agent is to find the optimal time to initiate the trade so as
to maximise the expected value of (3.3). This is equivalent to solving

V2(p) := sup
τ∈T

E[G2(Pτ )|P0 = p]

= sup
τ∈T

E[max{V1(Pτ ;λPτ + � + R),U(−R)}|P0 = p], (3.4)

if the exit problem value function V1 is well defined. We identify ḡ2 = ḡ2(θ) as the
smallest concave majorant of

g2(θ) := G2
(
s−1(θ)

) = max
{
V1

(
s−1(θ);λs−1(θ) + � + R

)
,U(−R)

}

= max
{
ḡ1

(
θ;λs−1(θ) + � + R

)
,U(−R)

}
.

Then the value function of the entry problem is V2(p) = ḡ2(s(p)).
Let the optimiser to (3.4) be τ ∗(p). With p being the initial price of the asset at

t = 0, the agent will purchase the asset at the time t = τ ∗(p). Then conditionally on
the realisation of the entry price level Pτ∗(p), the agent solves the exit problem (3.2)
with initial value Pτ∗(p) and reference point H = λPτ∗(p) + � + R. The correspond-
ing optimiser is given by ν∗(Pτ∗(p);λPτ∗(p) + � + R) and reflects the time lapse
between the initiation and closure of the trade. In particular, the agent will sell the
asset at the time t = τ ∗(p) + ν∗(Pτ∗(p);λPτ∗(p) + � + R). This gives a complete
characterisation of the optimal entry and exit strategy of the agent. Note that it is pos-
sible to have P[τ ∗(p) < ∞] < 1. In other words, there is a possibility that the entry
strategy is not executed in finite time, and hence there is no decision to sell (see the
discussion in Sect. 4).

Intuitively, we expect V(p) = V2(p), where V is the value function of the original
sequential optimal stopping problem (2.3). This must be verified formally. Without
any further specifications of the utility function U and the underlying price process P ,
however, it is hard to make further progress. For example, it is not even clear upfront
whether (2.3) is a well-posed problem with a finite value function.
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4 Main results

The procedures described in Sect. 3 are very generic and can guide us to write down
a candidate for the value function of the sequential optimal stopping problem under
a range of model specifications. To derive stronger analytical results, we specialise
in the rest of this paper to the piecewise power utility function of Tversky and
Kahneman [27] in the form

U(x) =
{

xα for x > 0,

−k|x|α for x ≤ 0.

Here α ∈ (0,1) so that 1 − α is the level of risk-aversion and risk-seeking on the
domains of gains and losses, and k > 1 controls the degree of loss-aversion. Experi-
mental results in [27] give estimates of α = 0.88 and k = 2.25.

The price process of the risky asset P = (Pt )t≥0 is assumed to be a geometric
Brownian motion,

dPt = Pt(μdt + σdBt ),

with μ ≥ 0 and σ > 0 being the constant drift and volatility of the asset. Define
β := 1 − 2μ

σ 2 ≤ 1. Then by substituting μ(p) = μp and σ(p) = σp in (3.1), the scale
function of P can be found as

s(x) =

⎧
⎪⎨

⎪⎩

xβ if β > 0,

lnx if β = 0,

x−β if β < 0.

Finally, we assume R > 0 so that the aspiration level of the agent is always pos-
itive. This is not unreasonable since this parameter can be understood as some per-
formance benchmark that an agent wants to outperform, and such a goal is typically
positive.

We begin with a necessary condition under which (2.3) is well posed.

Lemma 4.1 If β ≤ 0 or 0 < β < α, then there exists a sequence of stopping times
(τn, νn)n=1,2,... such that J (p; τn, νn) → +∞ as n → ∞, where J (p; · , · ) is defined
in (2.2).

Proof Consider the sequence of stopping times defined by

τn := 0, νn := inf{t ≥ 0 : Pt ≥ n}. (4.1)

If β ≤ 0, then

Pt = P0 exp

((
μ − σ 2

2

)
t + σBt

)

= P0 exp

(

σ
(

− σ

2
βt + Bt

))

so that the Brownian motion in the exponent has nonnegative drift. Hence P can
reach any positive level in finite time, and so νn < ∞ and Pνn = n, almost surely.
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Hence

J (p; τn, νn) = E
[
U

(
γPνn1{τn<∞,νn<∞} − (λPτn + �)1{τn<∞} − R

)∣
∣P0 = p

]

= U (γ n − λp − � − R) −→ +∞
as n → ∞.

If β > 0, then instead P cannot reach any arbitrary level above its starting value in
finite time and we have limt→∞ Pt = 0 almost surely. Then {vn < ∞} = {Pνn = n},
and for sufficiently large n > p, one can compute that

P[νn = ∞|P0 = p] = nβ − pβ

nβ
, P[νn < ∞|P0 = p] = pβ

nβ
.

Then

J (p; τn, νn) = P[νn = ∞|P0 = p]U (−λp − � − R)

+ P[νn < ∞|P0 = p]U (γ n − λp − � − R)

= −nβ − pβ

nβ
k(λp + � + R)α + pβ

nβ
(γ n − λp − � − R)α −→ +∞

as n → ∞ if β < α. �

Mathematically speaking, the sequential optimal stopping problem (2.3) is ill
posed under the parameter combination in Lemma 4.1, and its value function di-
verges to infinity. This arises when the performance of the asset is too good relative
to the agent’s risk-aversion level over gains. Equation (4.1) corresponds to a “buy
and hold” trading rule as a possible optimal strategy: the agent purchases the asset
immediately from the outset, and the profit-target level of sale can be set arbitrarily
high.

Remark 4.2 Empirically, historical returns on equities are excessively high relative to
their risk level. For example, the annualised mean and standard deviation of the equity
premium (i.e., excess return above the risk-free rate) of the U.S. market over the time
period 1889–1978 are 6.18% and 16.67%, respectively (see Mehra and Prescott [22]),
so that β = 1 − 2μ/σ ≈ −3.45, while the estimates based on the more recent time
period 1950–2015 are 7.15% and 16.83% (see Bai and Lu [1]) so that β ≈ −4.05.
Although this may cast doubt on the practical relevance of the condition 0 < α ≤ β

(where buy and hold is an optimal strategy if the condition does not hold), we should
like to emphasise that β in general is a noisy statistical quantity which is hard to
forecast. In our model, β should be interpreted as the agent’s subjective assessment
of the asset performance which can be much more conservative than the historical es-
timates. The parameter μ may also encapsulate subjective discounting which further
lowers its value; see Sect. 6.2.

From here onwards, we focus on the case 0 < α ≤ β which is a necessary condi-
tion for (2.3) to be well posed. The form of the solutions to the exit problem (3.2) and
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entry problem (3.4) are first provided, and then we discuss the economic intuition be-
hind the associated trading strategies. Towards the end of this section, the optimality
of the value function of the entry problem is formally verified to show that it indeed
corresponds to the solution of the sequential optimal stopping problem (2.3).

We first state the solution to the exit problem (3.2); a similar result can be found
in Henderson [9].

Lemma 4.3 For the exit problem (3.2), if 0 < α ≤ β , the agent will sell the asset
when its price level first reaches cH

γ
or above, where c > 1 is a constant given by the

solution to the equation

α

β
c(c − 1)α−1 − (c − 1)α − k = 0. (4.2)

The value function is given by

V1(p;H) =
⎧
⎨

⎩

α
β
c1−β(c − 1)α−1Hα−β(γp)β − kHα for p < cH

γ
,

(γp − H)α for p ≥ cH
γ

.
(4.3)

Proof Recall the notation introduced in Sect. 3.2.1. For β > 0, the scaled payoff func-
tion of the exit problem is given by

g1(θ) = g1(θ;H) = G1
(
s−1(θ);H ) = U(γ θ

1
β − H)

=
⎧
⎨

⎩

−k(H − γ θ
1
β )α for 0 ≤ θ < (H

γ
)β,

(γ θ
1
β − H)α for θ ≥ (H

γ
)β .

It is straightforward to work out the derivatives of g1 as

g′
1(θ) =

⎧
⎨

⎩

kαγ
β

θ
1
β
−1

(H − γ θ
1
β )α−1 for 0 ≤ θ < (H

γ
)β,

αγ
β

θ
1
β
−1

(γ θ
1
β − H)α−1 for θ ≥ (H

γ
)β,

and

g′′
1 (θ) =

⎧
⎨

⎩

kαγ
β

θ
1
β
−2

(H − γ θ
1
β )α−2(

γ (β−α)
β

θ
1
β + 1−β

β
H) for 0 ≤ θ < (H

γ
)β,

αγ
β

θ
1
β
−2

(γ θ
1
β − H)α−2(

γ (α−β)
β

θ
1
β − 1−β

β
H) for θ ≥ (H

γ
)β .

Given the standing assumption β ≤ 1 and the condition 0 < α ≤ β , g1 is increasing
concave for θ > (H

γ
)β and increasing convex for 0 ≤ θ < (H

γ
)β . The smallest con-

cave majorant of g1 can be formed by drawing a straight line from (0, g1(0)) which
touches g1 at some θ∗ > (H

γ
)β . In particular, θ∗ is a solution to g1(θ)−g1(0)

θ
= g′

1(θ)

for θ > (H
γ

)β , i.e.,

αγ

β
θ

1
β
−1

(γ θ
1
β − H)α−1 = (γ θ

1
β − H)α + kHα

θ
.
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We conjecture that the solution has the form θ∗ = cβ(H
γ

)β for some constant c > 1.
Then direct substitution shows that the constant c should solve (4.2). The smallest
concave majorant of g1 is then

ḡ1(θ) =
{

g1(0) + θg′
1(θ

∗) for 0 ≤ θ < θ∗,
g1(θ) for θ > θ∗,

=
{−kHα + α

β
Hα−βc1−β(c − 1)α−1γ βθ for 0 ≤ θ < cβ(H

γ
)β,

(γ θ
1
β − H)α for θ > cβ(H

γ
)β .

The value function is given by V1(p;H) = ḡ1(s(p)) = ḡ1(p
β), leading to (4.3). The

corresponding optimal stopping time is

τ = inf {t ≥ 0 : ḡ1(	t ) = g1(	t )}

= inf{t ≥ 0 : 	t ≥ θ∗} = inf

{

t ≥ 0 : Pt ≥ c

(
H

γ

)}

. �

The optimal sale strategy is a gain-exit rule where the agent is looking to sell
the asset when its price is sufficiently high without considering stop-loss. Note that
the gain-exit target cH

γ
is increasing in transaction costs (i.e., decreasing in γ ). This

means that the agent tends to delay the sale decision in a more costly trading envi-
ronment.

Remark 4.4 Inspired by the literature, we expect that more sophisticated exit strate-
gies can be observed under alternative model setups. For example, the agent will con-
sider stop-loss when the asset has negative drift (see Sect. 6.1 and Henderson [9]) or
when there are multiple trading opportunities as in the realisation utility models (see
Sect. 6.3.2 as well as Ingersoll and Jin [14] and He and Yang [8]). Introducing jump-
diffusion price dynamics will further result in disconnected waiting regions where an
agent who has recently suffered from a huge jump loss may refuse to stop-loss (Dai
et al. [3] and Kong et al. [17]). We opt to work with a simpler baseline model to make
the whole entry-and-exit problem as tractable as possible.

Remark 4.5 Since we require β > 0, if the initial price of the asset is below the gain-
exit target, there is a strictly positive probability that the asset is never sold. Moreover,
an agent who fails to sell the asset at his target gain-exit level will suffer a total loss
in the long run.

Remark 4.6 The expression of the target gain-exit threshold and in turn the value
function of the exit problem are available in closed form, thanks to the specialisation
that the degree of risk-aversion over gains is the same as that of risk-seeking over
losses. This allows us to make a lot of analytical progress when studying the entry
problem. We also lose the closed-form expressions in Lemma 4.3 if a fixed transaction
cost on sales is introduced; in this case, the agent will only sell the asset when the
utility proceed U(γp − H − �) from the sale is larger than that of inaction U(−H),
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where � ≥ 0 represents a fixed market exit fee. Then the payoff function of the exit
problem becomes

G1(p;H) := max{U(γp − H − �),U(−H)}.

We now proceed to describe the optimal entry strategy of the agent. The proofs of
the two propositions below are given in the Appendix.

Proposition 4.7 Suppose α ≤ β < 1. For the entry problem (3.4), the value function
is given by V2(p) = ḡ2(p

β), where ḡ2 = ḡ2(θ) is the smallest concave majorant of

g2(θ) := max{v1(θ),−kRα} := max

{

(R + �)αf

(( γ

R + �

)β

θ

)

,−kRα

}

(4.4)

with

f (x) :=
α
β
c1−β(c − 1)α−1x − k( λ

γ
x1/β + 1)β

( λ
γ
x1/β + 1)β−α

. (4.5)

There are three different cases:

(1) If λ
γ

≤ ( α
βk

c1−β(c − 1)α−1)
1
β , there exists p∗

1 ∈ [0,∞) such that the agent will
enter the trade when the asset price is at or above p∗

1 . The value function is

V2(p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α
β
c1−β(c − 1)α−1(λp + � + R)α−β(γp)β

−k(λp + � + R)α for p ≥ p∗
1,

( α
β
c1−β(c − 1)α−1(λp∗

1 + � + R)α−β(γp∗
1)β

−k(λp∗
1 + � + R)α + kRα)

pβ

(p∗
1 )β

− kRα for p < p∗
1 .

(4.6)

(2) If λ
γ

> ( α
βk

c1−β(c − 1)α−1)
1
β , there exists a constant C ∈ (0,∞) independent

of � and R such that
(a) if � < CR, there exist 0 ≤ p∗

1 < p∗
2 < ∞ such that the agent will enter the

trade when the asset price is within the interval [p∗
1,p∗

2]. The value function is

V2(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
β
c1−β(c − 1)α−1(λp∗

2 + � + R)α−β(γp∗
2)β

−k(λp∗
2 + � + R)α for p > p∗

2,
α
β
c1−β(c − 1)α−1(λp + � + R)α−β(γp)β

−k(λp + � + R)α for p∗
1 ≤ p ≤ p∗

2,

( α
β
c1−β(c − 1)α−1(λp∗

1 + � + R)α−β(γp∗
1)β

−k(λp∗
1 + � + R)α + kRα)

pβ

(p∗
1)β

− kRα for p < p∗
1 .

(4.7)

(b) if � ≥ CR, the agent will never enter the trade. The value function is
V2(p) = −kRα . Moreover, in cases (1) and (2)(a), p∗

1 = R+�
γ

(x∗
1 )1/β , where x∗

1 is
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the smaller solution to the equation

k =
(

1 + �

R

)α

×k( λ
γ
x

1
β + 1)β( λ

γ
(1 − α

β
)x

1
β + 1) − α

β
c1−β(c − 1)α−1 λ

γ
(1 − α

β
)x

1
β
+1

( λ
γ
x

1
β + 1)β−α+1

. (4.8)

In case (2)(a), p∗
2 = R+�

γ
(x∗

2 )1/β , where x∗
2 is the unique solution to the equation

c1−β(c − 1)α−1
(

x
− 1

β + λα

γβ

)

− kλ

γ

(

x
− 1

β + λ

γ

)β

= 0. (4.9)

In the special case β = 1 where the asset has zero drift, the results are slightly
different from those in Proposition 4.7.

Proposition 4.8 Suppose α < β = 1. For the entry problem (3.4), we have:

(1) If λ
γ

≤ α
k
(c − 1)α−1, there exists p∗

1 ∈ [0,∞) such that the agent will enter the
trade when the asset price is at or above p∗

1 . The value function is given by (4.6) on
setting β = 1.

(2) If α
k
(c−1)α−1 < λ

γ
<

(c−1)α−1

k
, there exists a constant C ∈ (0,∞) independent

of � and R such that
(a) if � < CR, there exist 0 ≤ p∗

1 < p∗
2 < ∞ such that the agent will enter the

trade when the asset price is within the interval [p∗
1,p∗

2]. The value function is given
by (4.7) on setting β = 1.

(b) if � ≥ CR, the agent will never enter the trade. The value function is
V2(p) = −kRα .

(3) If λ
γ

≥ (c−1)α−1

k
, the agent will never enter the trade. The value function is

V2(p) = −kRα .

Moreover, p∗
1 has the same form as in Proposition 4.7 on setting β = 1, and the

expression of p∗
2 is available in closed form as

p∗
2 = (R + �)((c − 1)α−1 − kλ/γ )

λ(kλ/γ − α(c − 1)α−1)
.

Remark 4.9 For certain types of agents such as retail investors, fixed transaction costs
are typically insignificant so that their trading behaviour might be better described by
the specialisation � = 0. In this case, Propositions 4.7 and 4.8 can be simplified; see
Corollary 4.11 and the discussion thereafter.

The value function of the entry problem is characterised as the smallest concave
majorant of the payoff function in (4.4). Indeed, v1 defined in (4.4) is simply the
scaled value function of the exit problem so that v1(θ) = V1(θ

1/β;λθ1/β + � + R),
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Fig. 1 The scaled value functions of the entry problem for the different cases of Proposition 4.7. Base
parameters used are α = 0.5, k = 2.25, R = 1, β = 0.85

as discussed in Sect. 3.2.2. At a mathematical level, the various cases arising in Propo-
sitions 4.7 and 4.8 are due to the different possible shapes of v1 under different com-
binations of parameters. Some illustrations are given in Fig. 1.

Economically, the optimal entry strategy crucially depends on the level of trans-
action costs relative to the market and preference parameters. A fixed market entry
fee in general discourages trading when the asset price is low. Paying a flat fee of
$10 to purchase an asset at $20 is much less appealing compared to the case that the
asset is trading at $1000, because in the former case the asset has to increase in value
by 50% just to break even against the fixed transaction fee paid. Meanwhile, propor-
tional transaction costs are the most significant for an asset trading at a high nominal
price. A 10% transaction fee charged on a million worth of property is much more
expensive in monetary terms relative to the same percentage fee charged on a penny
stock.

In case (1) of both Propositions 4.7 and 4.8, the proportional transaction costs are
relatively low. Hence the agent does not mind purchasing the asset at a high nominal
price. He will just avoid purchasing the asset when its price is very low due to the
consideration of fixed transaction costs, and therefore the purchase region has the
form [p∗

1,∞).
In case (2)(a), proportional transaction costs start becoming significant. On the one

hand, the agent avoids initiating the trade when the asset price is too low since the
fixed entry cost will be too large relative to the size of the trade. On the other hand,
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the agent does not want to trade an expensive asset when the proportional costs are
large. Upon balancing these two factors, the agent will wait when the asset price is
either too low or too high, and will only purchase the asset when the price first enters
an interval [p∗

1,p∗
2]. A very interesting feature of the optimal entry strategy is that

the waiting region here is disconnected.
In case (2)(b) of Proposition 4.7, or cases (2)(b) and (3) of Proposition 4.8, the

overall level of transaction costs is too high and hence the agent is discouraged from
entering the trade in the first place. The key difference between Propositions 4.7
and 4.8 is that when the asset has a strictly positive drift (β < 1, i.e., μ > 0), one
must impose a strictly positive fixed entry cost in order to stop the agent from trading
at all price levels (if � = 0, then either case (1) or (2)(a) in Proposition 4.7 applies,
in which case the agent is willing to enter the trade at a certain price level). When the
asset is a statistically fair gamble (β = 1, i.e., μ = 0), a high proportional transaction
cost alone is sufficient to discourage the agent from trading. It is interesting to note
that the trading decision also depends on the agent’s aspiration level R. Comparing
cases (2)(a) and (2)(b) in Propositions 4.7 and 4.8, a low value of R will more often
lead to the “no trading” case. The economic interpretation is that an agent with low
aspiration level (i.e., a low target benchmark) is less likely to participate in trading,
especially when the (proportional) costs of trading are high. In Sect. 6.4, we briefly
discuss how the aspiration level R may be endogenised.

When viewed in conjunction with the results of wellposedness (Lemma 4.1) and
the optimal exit strategy (Lemma 4.3), our model can encapsulate many styles of
trading behaviour. First, if β ≤ 0 or β < α < 1 so that the problem is ill posed, we
have already shown that a simple “buy and hold” strategy of the form (4.1) is optimal
in the sense that the attained utility level can be arbitrarily high.

In cases (1) or (2)(a) of Propositions 4.7 and 4.8, if the asset price starts below p∗
1

at time zero, the agent will purchase the asset when its price level increases to p∗
1 .

Note that similarly to Remark 4.5, the price process P may fail to reach a fixed level
p∗

1 > P0 in finite time. In this case, the entry strategy will not be executed and the
payoff to the agent is zero. But otherwise, if a purchase is realised, then at the time of
purchase, the reference point is set as H = λp∗

1 + � + R. Then due to Lemma 4.3,
the agent is looking to sell this asset later when its price level further increases to
cH
γ

= c(λp∗
1+�+R)

γ
. Since c > 1, γ ≤ 1 and λ ≥ 1, it is clear that the target sale level

c(λp∗
1+�+R)

γ
is strictly larger than p∗

1 . This trading rule is thus a momentum strategy
of the form “buy high, sell higher”.

If the asset price starts above p∗
2 at time zero in case (2)(a), the agent will buy

the asset when its price level drops to p∗
2 and later sell when the price increases to

c(λp∗
2+�+R)

γ
> p∗

2 . This is a counter-trend trading strategy of the form “buy low, sell
high”.

Finally, in the high transaction cost cases (2)(b) of Proposition 4.7 and (2)(b) or (3)
of Proposition 4.8, the agent will never participate in trading at any asset price level.

The various cases above are generated by different levels of transaction costs rel-
ative to the other model parameters. The following two corollaries further highlight
the role of transaction costs in relationship to the optimal trading strategies.
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Corollary 4.10 If λ = γ = 1, the agent will purchase the asset when its price level is
at or above p∗

1 for some p∗
1 ∈ [0,∞).

Proof The result follows if we can show that ( α
βk

c1−β(c − 1)α−1)
1
β > 1 so that

case (1) of Propositions 4.7 and 4.8 always applies when λ = γ = 1. Rewriting the
required inequality in equivalent ways gives

(
α

βk
c1−β(c − 1)α−1

) 1
β

> 1 ⇐⇒ α

β
c1−β(c − 1)α−1 > k

⇐⇒ α

β
c1−β(c − 1)α−1 >

α

β
c(c − 1)α−1 − (c − 1)α

⇐⇒ (c − 1)α − α

β
c(c − 1)α−1(1 − c−β) > 0,

where we have used (4.2). Using simple calculus, we can show that

F(x) := (x − 1)α − α

β
x(x − 1)α−1(1 − x−β) > 0

for all x > 1. This concludes the proof. �

Corollary 4.11 If the model parameters satisfy the conditions in cases (1) or (2)(a) in
Propositions 4.7 and 4.8 and if � = 0, then we have p∗

1 = 0.

Proof This follows immediately from Propositions 4.7 and 4.8 by observing that
x = 0 is the solution to (4.8) when � = 0. �

From Corollary 4.10, if there is no proportional transaction cost, then the agent
does not care about entering the trade at a high nominal price level because he no
longer needs to worry about the large magnitude of the trading fee arising from the
proportional nature of the transaction costs. Hence “buy low, sell high” will not be
observed as an optimal strategy. Similarly, Corollary 4.11 suggests that in the absence
of a fixed market entry fee, the agent is happy to purchase an asset at any arbitrarily
low price (in the non-degenerate case) since now he does not need to take the size
of the trade into account against any fixed cost for break-even considerations. Thus
“buy high, sell higher” will not be an optimal strategy in this special case.

Remark 4.12 If we further assume R = � = 0 (where the main results in Proposi-
tions 4.7 and 4.8 still hold except that (4.4) will have a different and simpler expres-
sion), then only case (1) or case (2)(b) of Proposition 4.7 can arise for β < 1. Alterna-
tively, only cases (1), (2)(b) or (3) of Proposition 4.8 can arise for β = 1. But p∗

1 = 0
when � = 0 as in Corollary 4.11. The entry behaviour is thus trivial—the agent ei-

ther is willing to purchase the asset at any price level if λ
γ

≤ ( α
βk

c1−β(c − 1)α−1)
1
β ,

or never enters the trade if λ
γ

> ( α
βk

c1−β(c − 1)α−1)
1
β . From the modelling perspec-

tive, the constant R + � is a crucial component which enables the model to produce
non-trivial purchase behaviour; see Sect. 6.3.2 as well.
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The decomposition of the original purchase-and-sale problem (2.3) into two sub-
problems of optimal exit and optimal entry is based on some economic heuristics
described in Sects. 3.2.1 and 3.2.2. To close this section, we formally show that the
value function of the entry problem in Propositions 4.7 and 4.8 indeed corresponds
to the value function of the sequential optimal stopping problem (2.3).

Theorem 4.13 Recall the definition of V2 in Propositions 4.7 and 4.8 as the value
function of the entry problem (3.4). We have V(p) = V2(p), where V is the value
function of the sequential optimal stopping problem (2.3). The optimal purchase and
sale rules are given by

τ ∗ := inf{t ≥ 0 : V2(Pt ) = G2(Pt )},

ν∗ := inf

{

t ≥ τ ∗ : Pt ≥ c

γ
(λPτ∗ + � + R)

}

. (4.10)

Proof Starting from (2.2), we have for any τ, ν ∈ T with τ ≤ ν that

J (p; τ, ν)

= E
[
U

(
γPν1{τ<∞,ν<∞} − (λPτ + �)1{τ<∞} − R

)∣
∣P0 = p

]

≤ E
[
U

(
(γ Pν − λPτ − �)1{τ<∞} − R

)∣
∣P0 = p

]

= P[τ < ∞|P0 = p]E[U(γPν − λPτ − � − R)|P0 = p, τ < ∞]
+ P[τ = ∞|P0 = p]U(−R)

= E
[
E[U(γPν − λPτ − � − R)|Pτ , τ < ∞]∣∣P0 = p, τ < ∞]

P[τ < ∞|P0 = p]
+ P[τ = ∞|P0 = p]U(−R)

= E
[
E[G1(γ Pν;λPτ + � + R)|Pτ , τ < ∞]∣∣P0 = p, τ < ∞]

P[τ < ∞|P0 = p]
+ P[τ = ∞|P0 = p]U(−R)

≤ E

[
sup

ν∈T :ν≥τ

E[G1(γ Pν;λPτ + � + R)|Pτ , τ < ∞]
∣
∣
∣P0 = p, τ < ∞

]

× P[τ < ∞|P0 = p] + P[τ = ∞|P0 = p]U(−R).

But using the Markovian structure of the problem,

sup
ν∈T :ν≥τ

E[G1(γ Pν;λPτ + � + R)|Pτ = s, τ < ∞]

= sup
ν∈T :ν≥0

E[G1(γ Pν;λP0 + � + R)|P0 = s]

= V1(s;λs + � + R).
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Then we have

J (p; τ, ν) ≤ E[V1(Pτ ;λPτ + � + R)|P0 = p, τ < ∞]P[τ < ∞|P0 = p]
+ P[τ = ∞|P0 = p]U(−R)

≤ E[max{V1(Pτ ;λPτ + � + R),U(−R)}|P0 = p]
≤ sup

τ∈T
E[max{V1(Pτ ;λPτ + � + R),U(−R)}|P0 = p]

= sup
τ∈T

E[G2(Pτ )|P0 = p]

= V2(p).

Taking the supremum on both sides leads to V(p) ≤ V2(p).
To complete the proof, it is sufficient to show J (p; τ ∗, ν∗) = V2(p), where τ ∗, ν∗

are defined in (4.10). This can be directly verified for the various cases covered in
Propositions 4.7 and 4.8 with different initial price level p.

As an example, we cover case (2)(a) in Proposition 4.7 and a level p < p∗
1 . We

can deduce from the shape of V2 in this case that τ ∗ = inf{t ≥ 0 : Pt /∈ (0,p∗
1)}. Since

β > 0, there are two possibilities: the asset price reaches the purchase target level p∗
1

in finite time, which happens with probability P[τ ∗ < ∞|P0 = p] = pβ

(p∗
1 )β

, or it never

reaches p∗
1 in finite time so that the agent never enters a trade and faces a realised

utility of U(−R), which happens with probability P[τ ∗ = ∞|P0 = p] = 1 − pβ

(p∗
1)β

.

In the first scenario, after the agent purchases the asset at price p∗
1 , he will sell the

asset when its price further increases to x∗ := c
γ
(λp∗

1 + � + R). The conditional

probability of a successful sale is P[ν∗ < ∞|Pτ∗ = p∗
1] = (p∗

1)β

(x∗)β , where the realised
utility is U(γ x∗ − λp∗

1 − � − R). Otherwise, the target sale level is never reached

with conditional probability P[ν∗ = ∞|Pτ∗ = p∗
1] = 1− (p∗

1 )β

(x∗)β , and the realised utility
becomes U(−λp∗

1 − � − R). Then we can directly compute

J (p; τ ∗, ν∗)

= E
[
U

(
γPν∗1{τ∗<∞,ν∗<∞} − (λPτ∗ + �)1{τ∗<∞} − R

)∣
∣P0 = p

]

= P[τ ∗ = ∞|P0 = p]U(−R)

+ P[τ ∗ < ∞, ν∗ = ∞|P0 = p]U(−λp∗
1 − � − R)

+ P[τ ∗ < ∞, ν∗ < ∞|P0 = p]U(γ x∗ − λp∗
1 − � − R)

= − (p∗
1)β − pβ

(p∗
1)β

kRα − k
pβ

(p∗
1)β

(x∗)β − (p∗
1)β

(x∗)β
(λp∗

1 + � + R)α

+ pβ

(p∗
1)β

(p∗
1)β

(x∗)β
(γ x∗ − λp∗

1 − � − R)α
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= pβ

(p∗
1)β

(
(p∗

1)β

(x∗)β
(γ x∗ − λp∗

1 − � − R)α − k
(x∗)β − (p∗

1)β

(x∗)β
(λp∗

1 + � + R)α
)

− (p∗
1)β − pβ

(p∗
1)β

kRα

= pβ

(p∗
1)β

(
(γp∗

1)βc−β
(
(c − 1)α + k

)
(λp∗

1 + � + R)α−β − k(λp∗
1 + � + R)α

)

− (p∗
1)β − pβ

(p∗
1)β

kRα

= pβ

(p∗
1)β

(

(γp∗
1)β

α

β
c1−β(c − 1)α−1(λp∗

1 + � + R)α−β − k(λp∗
1 + � + R)α

)

− (p∗
1)β − pβ

(p∗
1)β

kRα

= pβ

(p∗
1)β

(

(γp∗
1)β

α

β
c1−β(c − 1)α−1(λp∗

1 + � + R)α−β

− k(λp∗
1 + � + R)α + kRα

)

− kRα

= V2(p),

where we have used the definition x∗ := c
γ
(λp∗

1 + � + R) and the fact that c is the
solution to (4.2). The other cases can be handled similarly. �

5 Comparative statics of the optimal trading strategies

The critical trading boundaries in Propositions 4.7 and 4.8, although not available in
closed form in general, can be analysed to shed light on the comparative statics of the
optimal trading strategies with respect to a few underlying model parameters. The
proof of the following proposition is given in the Appendix.

Proposition 5.1 Away from case (2)(b) in Proposition 4.7 and cases (2)(b) and (3) in
Proposition 4.8, we have that

1) p∗
1 is decreasing in γ and increasing in �;

2) p∗
2 is decreasing in λ, increasing in γ and increasing in � .

Figure 2(b) shows the critical purchase boundaries p∗
1 and p∗

2 as γ varies. For
very large values of γ such that the condition in case (1) of Proposition 4.7 holds,
the optimal strategy is to buy the asset when its price exceeds p∗

1 , and the agent is
willing to enter the trade no matter how high the price is. Once γ is smaller than a
certain critical value (labelled by the vertical dotted line in the figure), the parameter
condition in case (2)(a) of Proposition 4.7 applies. The optimal strategy now becomes
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Fig. 2 Comparative statics of the optimal purchase boundaries p∗
1 and p∗

2 . Base parameters used are
α = 0.5, k = 2.25, R = 1, β = 0.85, λ = 1.05, γ = 0.95, � = 5

Fig. 3 An illustration that p∗
1 ,

the lower bound of the purchase
region, need not be monotonic
with respect to λ. Base
parameters used are α = 0.5,
k = 2.25, β = 0.85, λ = 1.05,
γ = 0.95, � = 1

to purchase the asset only when its price is within a bounded range [p∗
1,p∗

2]. As
γ further decreases, p∗

1 increases while p∗
2 decreases so that the purchase region

[p∗
1,p∗

2] shrinks. Once γ reaches another critical value, p∗
1 and p∗

2 converge and the
purchase region vanishes entirely. This corresponds to case (2)(b) of Proposition 4.7
that the agent will not enter the trade at any price level. As a reminder, the constant C

in case (2) of Propositions 4.7 and 4.8 depends on λ and γ . Increasing λ
γ

will result
in a switch from case (2)(a) to case (2)(b).

We do not mention in Proposition 5.1 the effect of λ on p∗
1 . Indeed, p∗

1 is not
monotonic in λ in general; see Fig. 3. Hence when viewed in conjunction with p∗

2 , the
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purchase region [p∗
1,p∗

2] does not necessarily shrink uniformly when the proportional
cost on purchases increases, i.e., the agent need not delay the purchase decision.
Similar observations regarding potential non-monotonicity of trading decisions with
respect to (proportional) transaction costs are made by Hobson et al. [12, 13] in the
context of portfolio optimisation.

Similarly, we can also examine the impact of the fixed market entry cost on the
purchase decision. As shown in Fig. 2(c), p∗

1 and p∗
2 are both increasing in � . The

fact that p∗
2 is increasing in � is indeed somewhat counter-intuitive and has a few

interesting policy implications. Suppose there is a market regulator who wants to
discourage the agent from purchasing the asset (for example, as a means to cool
down a highly speculative real estate market). A natural measure to curb trading
participation is to increase transaction costs. However, Fig. 2 reveals that there is a
subtle difference between the impact of proportional and fixed transaction costs on
the agent’s trading behaviour.

From Fig. 2(b), the effect of increasing proportional transaction costs on sales
(i.e., decreasing γ ) is “monotonic” in terms of changing the trading decision of the
agent. At any given current asset price level, decreasing γ (while all other parameters
are held fixed) can only take the price from the purchase region to the no-trade re-
gion. Increasing proportional transaction costs on sales can therefore unambiguously
suppress the trading activities in the market.

In contrast, the impact of the fixed market entry cost is somewhat unclear. Take
Fig. 2(c) as an example and suppose the current price of the asset is $100. If there
is no fixed market entry fee initially (i.e., � = 0), the agent will not participate in
trading as the price is in the no-trade region. However, increasing � from zero to $4
will now put the price in the purchase region so that the agent is willing to purchase
the asset immediately (given that the current asset price stays the same at $100).
This is exactly opposite to the intended outcome of the market regulator, because the
increase in � actually encourages trading participation.

The rationale behind this phenomenon is as follows. The speculative agent is eval-
uating the trading opportunity by comparing the potential sale proceeds against the
reference point which is partly determined by the initial capital λp + � required to
enter the trade if the purchase price is p. Increasing the fixed market entry fee �

increases the total costs required to initiate the trade and results in a higher effective
reference point. However, under a prospect theory framework, the agent’s risk atti-
tude is tied to the level of the reference point. When the purchase price is kept the
same, a large � will put the agent deeper in the loss territory over which he becomes
highly risk-seeking. Thus he will give a higher valuation to the opportunity to enter
the speculative trade and hence is more prone to immediate trade participation.

Of course, increasing � will also decrease the potential profit of the trade, which
is economically unfavourable. As the fixed cost further increases, say from � = 4 to
� = 8, the price will eventually enter the no-trade region again. Hence the precise
effect of � on the trading decision is ambiguous and governed by the two opposing
forces of increasing the agent’s risk appetite versus decreasing profitability. When
the economy is consisting of multiple agents with heterogeneous preferences, it is
unclear whether increasing the fixed transaction costs can uniformly discourage trad-
ing participation for all agents.
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The non-monotonicity of p∗
1 with respect to λ, the proportional transaction cost

on purchases, also implies that an increase in λ can potentially bring certain prices
from the no-trade region to the purchase region. The rationale is the same as above
that λ partly determines the cost of purchase and in turn the reference point. Hence
increasing λ might actually make an agent find a speculative opportunity attractive.

6 Extensions

In this section, we briefly discuss several variations of our baseline model.

6.1 Risky asset with negative drift and voluntary stop-loss

Among all the non-trivial strategies derived in our baseline setup, the agent will never
voluntarily realise a loss. This is not consistent with real world trading behaviour
given the prevalent usage among market participants of stop-loss orders. One way
to enable the model to generate stop-loss behaviour is to allow the excess return of
the asset to be negative as inspired by Henderson [9]. A negative excess return is
equivalent to β := 1 − 2μ

σ 2 > 1 in our setup.

Lemma 6.1 Suppose the model parameters are such that β > 1. For the exit prob-
lem (3.2), the agent will sell the asset when its price level first exits the interval(

c1H
γ

, c2H
γ

)
, where 0 < c1 < 1 < c2 are the solutions to the system of equations

kα

β
c

1−β
1 (1 − c1)

1−α = α

β
c

1−β
2 (c2 − 1)α−1 = (c2 − 1)α + k(1 − c1)

α

c
β

2 − c
β

1

.

The value function is

V1(p;H) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−k(H − γp)α for p < c1H
γ

,

−kHα(1 − c1)
α

+Hα−β((c2−1)α+k(1−c1)
α)((γp)β−c

β
1 Hβ)

c
β
2 −c

β
1

for c1H
γ

≤ p ≤ c2H
γ

,

(γp − H)α for p > c2H
γ

.

(6.1)

Proof This follows from a slight extension of [9, Proposition 3]. �

Given that a purchase of the asset has occurred at some time τ which determines
the reference level for the exit problem via H = λPτ + � + R, the agent is willing
to impose a stop-loss level at c1H

γ
if the asset has a negative drift. Of course, it is not

clear upfront whether the agent is willing to purchase an asset with negative drift in
the first place. To understand the purchase behaviour, one needs to solve the entry
problem

V2(p) := sup
τ∈T

E[max{V1(Pτ ;λPτ + � + R),U(−R)}|P0 = p],
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Fig. 4 Optimal purchase and sale decisions as β varies; β < 1 (resp. β > 1) indicates that the asset has
a positive (resp. negative) drift. Base parameters used are α = 0.5, k = 2.25, R = 1, λ = 1.05, γ = 0.95,
� = 1

where V1 is now given by (6.1). Although the principle of the martingale method still
applies, we have so far not managed to analyse the problem thoroughly to explicitly
characterise different possible shapes of the scaled payoff function under different
combinations of model parameters. We hence opt to obtain numerical solutions by
solving the underlying variational inequality

min

{

− σ 2p2

2
V ′′

2 (p) − μpV ′
2(p),V2(p) − G2(p)

}

= 0

by the standard projected successive over-relaxation (PSOR) method and infer the
optimal purchase (stopping) and no-trade (continuation) regions by numerically iden-
tifying the sets {p ≥ 0 : V2(p) = G2(p)} and {p ≥ 0 : V2(p) > G2(p)}, respectively.

Figure 4(a) shows the optimal entry decisions as β varies. When β ≤ 1, the optimal
purchase boundaries p∗

1 and p∗
2 are obtained semi-analytically from Propositions 4.7

and 4.8, while the values for β > 1 are obtained numerically by the PSOR method.
The agent is willing to purchase the asset if and only if the current price level is
between p∗

1 and p∗
2 . As the drift of the asset becomes more and more negative (i.e.,

β increases), the purchase region [p∗
1,p∗

2] shrinks and eventually vanishes when β

is around 1.4. Beyond this critical level, the agent will not purchase the asset at any
price level because of its poor quality.

In parallel, Fig. 4(b) plots the optimal sale boundaries in the form q∗
i := ci

γ
so

that if the asset has been purchased at level p, it will be sold when its price level
leaves the interval (Hq∗

1 ,Hq∗
2 ), where H = λp +� +R. If β ≤ 1, it is never optimal

to voluntarily realise a loss, which is equivalent to q∗
1 = 0. But for β > 1, q∗

1 be-
comes strictly positive which represents a stop-loss level. Figure 4 demonstrates that
there exist some combinations of model parameters such that the agent is willing to
purchase the asset at some price level and subsequently liquidate it at a loss. This
happens when β is between 1 and 1.4 in our numerical example. Explicitly char-
acterising conditions on the model parameters where this phenomenon occurs is an
interesting research question.
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Fig. 5 Optimal purchase and sale decisions as δ varies under the profit-discounting criterion. Base param-
eters used are α = 0.5, k = 2.25, R = 1, λ = 1.05, γ = 0.95, � = 0, μ = 0.025, σ = 0.5

6.2 Subjective discounting

To investigate the effect of impatience on the optimal strategy, it is constructive to
consider a version of the problem with discounting. However, to the best of our
knowledge, there is no consensus in the literature how discounting should be incor-
porated within a prospect theory framework with intertemporal cashflows. We briefly
present two possible modelling choices.

6.2.1 Profit-discounting

The first idea is that the S-shaped utility function is applied to the net present value of
the trading proceed, which we term as “profit-discounting”. We consider the problem

sup
τ,ν∈T :τ≤ν

E
[
U

(
γ e−δνPν1{τ<∞,ν<∞} − e−δτ (λPτ + �)1{τ<∞} − R

)∣
∣P0 = p

]
,

where δ > 0 is the subjective discount factor. If we further assume � = 0 (which is
perhaps relevant in the context of retail trading where the fixed transaction cost is
insignificant), then this problem is the same as the undiscounted one except that the
drift of the asset is now replaced by μ − δ under the geometric Brownian motion
assumption for the asset price. For small δ such that δ ≤ μ, our baseline results under
the standing assumption β ≤ 1 apply. Otherwise, when δ > μ, the analysis becomes
similar to the one in Sect. 6.1. Increasing δ has the same effect as increasing β , where
an endowed asset tends to be liquidated sooner (lower gain-exit level and possibly
higher stop-loss level) while the purchase region shrinks; see Fig. 5. This result is
quite interesting because impatience affects sale and purchase decisions somewhat
differently. Increasing impatience will cause an agent who already owns the asset
to sell sooner, which is in line with common intuition; but surprisingly, a higher δ

will also delay the purchase decision. The economic rationale is that an increasing
discount rate makes the opportunity to sell the asset less valuable, and hence the
agent is more reluctant to enter the trade in the first place.
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Remark 6.2 If we insist on � > 0, then the objective function has an explicit depen-
dence on τ which will make the entry problem time-inhomogeneous. Such a problem
is more difficult to be analysed analytically or numerically.

6.2.2 Utility-discounting

The second possibility to incorporate discounting is to assume the utility of the round-
trip proceed is discounted by a single discount factor evaluated at the liquidation date.
We call this approach “utility-discounting”. The problem is formulated as

sup
τ,ν∈T :τ≤ν

E
[
e−δνU

(
Pν1{τ<∞,ν<∞} − (λPτ + �)1{τ<∞} − R

)∣
∣P0 = p

]
. (6.2)

The downside of this approach is that it does not properly take into the account the
timing of the cash outflow (incurred at τ ) and inflow (incurred at ν), but an advantage
is that this formulation resembles a standard discounted optimal stopping problem.

It turns out that introducing discounting in this fashion will drastically change the
agent’s entry behaviour, as summarised by the result below whose proof is given in
Appendix A.2.

Proposition 6.3 Suppose δ > 0 and let ω1 < 0 < ω2 be the two distinct real roots of

the quadratic equation σ 2

2 x2 + (
μ − σ 2

2

)
x − δ = 0. Under the assumption α < β , the

pair of stopping times

τ ∗ = 0, ν∗ = inf

{

t ≥ τ ∗ : Pt ≥ ω2(λPτ∗ + � + R)

γ (ω2 − α)

}

is optimal for (6.2). In other words, the agent always enters the trade immediately at
any price level and subsequently adopts a gain-exit strategy.

Proposition 6.3 applies to the case β > 1 as well. Unlike profit-discounting, the
agent will never stop-loss under utility-discounting even when the asset drift is neg-
ative. More remarkably, the entry strategy now becomes trivial, provided that the
standing assumption α < β holds. It is also interesting to point out that the optimal
strategy is not continuous at δ = 0, in the sense that letting δ ↓ 0 in Proposition 6.3
does not recover the no-discounting baseline results in Propositions 4.7 or 4.8. See
Fig. 6 for an illustration where we show the optimal sale boundary as a function of δ

under utility-discounting. Once discounting is applied to the utility term (no matter
how small δ is), the impact of a poor trading performance in the form of negative
utility can be mitigated by indefinitely deferring the realisation of a loss. The agent is
then effectively protected from negative outcomes, and there is no downside to tak-
ing risk regardless of the asset quality or level of the transaction costs. The agent is
impatient so that it is optimal to enter the trade as early as possible, and there is no
reason to realise a loss thereafter because it can be discounted away.

In view of the above results, profit-discounting seems to yield more reasonable and
flexible predictions of the agent’s optimal trading behaviour. Nonetheless, a proper
understanding of the implications behind the two discounting approaches is of interest
to the field of behavioural economics.
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Fig. 6 Optimal sale decisions as δ varies under the utility-discounting criterion, where the agent will sell
the endowed asset whenever the price level is at or above q∗

2 H . There is a discontinuity at δ = 0, where
the star ∗ marks the optimal threshold for the undiscounted problem. Base parameters used are α = 0.5,
k = 2.25, β = 0.85, λ = 1.05, γ = 0.95, � = 1

6.3 Multiple round-trip trades

We have exclusively focused on the case that the agent’s utility is derived from a
single round-trip trade. But what if the agent can repeatedly purchase and sell the
asset? Similarly to Sect. 6.2, we discuss two possible modelling choices how utility
over multiple trades can be computed.

6.3.1 Optimisation of utility over total trading profit

The first possibility is to consider utility derived from the total net present value
of the trading proceeds, which is similar to the profit-discounting idea in Sect. 6.2.
Suppose the agent can perform N round-trip trades; then the objective function can
be written as

V (p) := sup
τi ,νi∈T : i=1,...,N

J
(
p; (τi)i=1,...,N , (νi)i=1,...,N

)
(6.3)

with

J
(
p; (τi)i=1,...,N , (νi)i=1,...,N

)

:= E

[

U

( N∑

i=1

(
γPνi

1{τi<∞,νi<∞} − (λPτi
+ �)1{τi<∞}

) − R

)∣
∣
∣
∣P0 = p

]

.

Here (τi)i=1,...,N (resp. (νi)i=1,...,N ) is an increasing sequence of stopping times rep-
resenting the entry (resp. exit) time of the ith trade with

0 ≤ τ1 ≤ ν1 ≤ τ2 ≤ ν2 ≤ τ3 ≤ · · · ≤ τN ≤ νN ≤ +∞.

In particular, the agent’s utility is now derived from the total trading profits from the
N available round-trip trading opportunities.
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The problem can still be approached by a similar backward induction principle
which we outline below based on heuristics. Define

V
(n)
b (p;Q) := sup

(τi ,νi )i=1,...,n

E

[

U

( n∑

i=1

(
γPνi

1{τi<∞,νi<∞}

− (λPτi
+ �)1{τi<∞}

) − Q

)∣
∣
∣
∣P0 = p

]

and

V (n)
s (p;H) := sup

ν1,(τi ,νi )i=2,...,n

E

[

U

( n∑

i=2

(
γPνi

1{τi<∞,νi<∞} − (λPτi
+ �)1{τi<∞}

)

+ γPν11{ν1<∞} − H

)∣
∣
∣
∣P0 = p

]

.

Here V
(n)
b (p;Q) represents the value function when there are n purchase and sale

opportunities available under some reference point Q, and V
(n)
s (p;H) represents the

value function when the agent already owns the asset and there are n − 1 purchase
and n sale opportunities available under some reference point H . Then heuristically,
we expect from the dynamic programming principle that

V
(n)
b (p;Q) = sup

τ1

E

[

1{τ1=∞}U(−Q) + 1{τ1<∞} sup
ν1,(τi ,νi )i=2,...,n

ϒ

∣
∣
∣
∣P0 = p

]

,

where

ϒ := E

[

U

( n∑

i=2

(
γPνi

1{τi<∞,νi<∞} − (λPτi
+ �)1{τi<∞}

)

+ γPν11{ν1<∞} − (λPτ1 + �) − Q

)∣
∣
∣
∣Fτ1

]

.

Hence we expect that

V
(n)
b (p;Q)

= sup
τ1

E
[
1{τ1=∞}U(−Q) + 1{τ1<∞}V (n)

s (Pτ1;λPτ1 + � + Q)
∣
∣P0 = p

]
(6.4)

= sup
τ1

E
[

max{V (n)
s (Pτ1;λPτ1 + � + Q),U(−Q)}∣∣P0 = p

]
.

The first equality is due to the definition of V
(n)
s , and the second is expected to hold

because for the optimal stopping problem in (6.4), it is clearly suboptimal to stop the
process when V

(n)
s (Pt ;λPt + � + Q) < U(−Q) and hence the payoff function can

be replaced by max{V (n)
s (Pτ1;λPτ1 + � + Q),U(−Q)}.
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Based on a similar reasoning, we expect for n > 1 that

V (n)
s (p;H) = sup

ν1

E

[

1{ν1=∞}U(−H) + 1{ν1<∞} sup
(τi ,νi )i=2,...,n

	

∣
∣
∣
∣P0 = p

]

,

where

	 := E

[

U

( n∑

i=2

(
γPνi

1{τi<∞,νi<∞} − (λPτi
+ �)1{τi<∞}

) + γPν1 − H

)∣
∣
∣
∣Fν1

]

.

Then we expect that

V (n)
s (p;H)

= sup
ν1

E
[
1{ν1=∞}U(−H) + 1{ν1<∞}V (n−1)

b (Pν1;−γPν1 + H)
∣
∣P0 = p

]

= sup
ν1

E
[
V

(n−1)
b (Pν1;−γPν1 + H)

∣
∣P0 = p

]
.

The last equality holds because V
(n)
b (p;Q) is obviously increasing in p and decreas-

ing in Q so that V
(n)
b (p;−γp +H) ≥ V

(n)
b (0;H) = U(−H) for all p and n. Finally,

we obviously have

V (1)
s (p;H) = sup

ν
E[U(γPν1{ν1<∞} − H)|P0 = p]

= sup
ν

E[U(γPν − H)|P0 = p].

In summary, V
(n)
s and V

(n)
b should satisfy the recursion

V (n)
s (p;H) = sup

ν
E[U(γPτ − H)|P0 = p], n = 1,

V
(n)
b (p;Q) = sup

τ
E

[
max{V (n)

s (Pτ ;λPτ + � + Q),U(−Q)}∣∣P0 = p
]
, n ≥ 1,

V (n)
s (p;H) = sup

ν
E

[
V

(n−1)
b (Pν;−γPν + H)

∣
∣P0 = p

]
, n ≥ 2.

The required value function for (6.3) with N round-trip trading opportunities is given
by V

(N)
b (p;R). A formal verification of the above assertion as well as a thorough

analysis of this recursive problem is beyond the scope of the current paper.

6.3.2 Optimisation of total utilities from individual trading episodes

One may also assume that a burst of utility is derived upon completion of each round-
trip trade, i.e., the objective function with N round-trip trading opportunities is

J
(
p; (τi)i=1,...,N , (νi)i=1,...,N

)

:= E

[ N∑

i=1

U
(
γPνi

1{τi<∞,νi<∞} − (λPτi
+ �)1{τi<∞} − R

)
∣
∣
∣
∣P0 = p

]

.
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Unlike the criterion in Sect. 6.3.1 where a single utility is derived from the total profit
of all trades, utility is now realised upon completion of each round-trip trade and the
agent’s goal is to optimise the sum of those utilities. Define

V
(n)
b (p) :=

sup
(τi ,νi )i=1,...,n

E

[ n∑

i=1

U
(
γPνi

1{τi<∞,νi<∞} − (λPτi
+ �)1{τi<∞} − R

)
∣
∣
∣
∣P0 = p

]

and

V (n)
s (p;H) := sup

ν1,(τi ,νi )i=2,...,n

E

[

U(γPν11{ν1<∞} − H)

+
n∑

i=2

U
(
γPνi

1{τi<∞,νi<∞}

− (λPτi
+ �)1{τi<∞} − R

)
∣
∣
∣
∣P0 = p

]

.

Here V
(n)
b (p) is the value function with n purchase and sale opportunities remain-

ing, and V
(n)
s (p;H) represents the value function when agent has an endowed asset

(with some given reference point H for the first trading episode) and there are n − 1
purchase and n sale opportunities remaining.

Based on the dynamic programming principle, one can heuristically write down
the recursive system satisfied by the value functions as

V (1)
s (p;H) := sup

ν
E[U(γPν − H)|P0 = p], (6.5)

V
(n)
b (p) := sup

τ
E

[
max{V (n)

s (Pτ ;λPτ + � + R),nU(−R)}∣∣P0 = p
]
, (6.6)

V (n)
s (p;H) := sup

ν
E

[
U(γPν − H) + V

(n−1)
b (Pν)

∣
∣P0 = p

]
, (6.7)

where (6.6) holds for n ≥ 1 and (6.7) holds for n ≥ 2. For the “payoff function” in
(6.7), the first term U(γPν − H) represents the utility burst when the endowed as-
set is sold, and the second term V

(n−1)
b (Pν) reflects the maximal sum of expected

utilities from the remaining n − 1 round-trip trading opportunities. Otherwise, if
the agent does not own the asset to begin with and decides to purchase at time τ ,
the maximal expected utility attainable is given by V

(n)
s (Pτ ;λPτ + � + R), where

a new trading episode is initiated with reference point set to H = λPτ + � + R

(the total cost of purchase at time τ plus the exogenous aspiration level). But the
agent can also choose not to purchase at all and forgo all the n remaining trading
opportunities. This will result in a payoff of U(−R) for each trading opportunity
given up. Hence in (6.6) the “payoff function” for the entry problem is given by
max{V (n)

s (Pτ ;λPτ + � + R),nU(−R)}. When n = 1, (6.5) and (6.6) agree with the
sequential optimal stopping problem deduced in Sect. 3.
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This generalisation is conceptually close to the realisation utility model in the
literature. The canonical formulation (in our notation) of such a model is

sup
(τi ,νi )i=1,2,3,...

E

[ ∞∑

i=1

e−δνi U(Gνi−,Qνi−)

]

,

where Q = (Qt )t≥0 is the reference point process so that Qt is the benchmark to
be used for performance evaluation at time t , and G = (Gt )t≥0 is the gain-and-loss
process with Gt := γPt − Qt representing the size of realised gain-and-loss if the
agent liquidates an owned asset at time t . Typically, the function U(G,Q) is assumed
to be homogeneous in Q so that U(G,Q) = Qηu(G/Q) for some η ∈ (0,1] and u( · )
is S-shaped.

There are many choices for the reference point process Q. Ingersoll and Jin [14]
consider Qt = Pτi

for t ∈ [τi, τi+1) (up to a constant multiplier), which is simply the
most recent purchase price of the asset. Barberis and Xiong [2] and Dai et al. [3] take
Qt = Pτi

er(t−τi ) for t ∈ [τi, τi+1), which is the most recent purchase price growing
at the risk-free rate. He and Yang [8] incorporate an additional term which asym-
metrically adapts to the paper gain-and-loss. Kong et al. [17] study a path-dependent
reference point which is a weighted average of the asset prices throughout the current
trading episode. A common feature of the papers cited above is that Qt is proportional
to Pτi

over t ∈ [τi, τi+1), and hence a dimension reduction is possible via introducing
the new state variable Xt := Pt/Qt . This greatly simplifies the entry problem, but it
also trivialises the optimal strategy—one either immediately enters the trade again
after a sale or never enters the trade in the first place. This observation remains the
same even if one introduces additional modelling elements such as a Poisson random
termination time and an extra utility term over final wealth; see Proposition 3.4 of He
and Yang [8].

Our formulation can be seen as a version of the realisation utility model with
a finite number of trading opportunities, where the reference level process is (see
Remark 6.4 below as well)

Qt :=
{

λPτi
+ � + R for t ∈ [τi, νi),

R for t ∈ [νi, τi+1),
(6.8)

the gain-and-loss process is Gt := γPt1{t<∞} − Qt , the utility function is given by
U(G,Q) = Qαu(G/Q) with u(x) := xα1{x≥0} − k|x|α1{x<0}, and the discount rate
δ is set to zero. The most important distinction of our framework from the existing
realisation utility models is that our reference point consists of a constant component
� + R reflecting a fixed transaction cost and some baseline aspiration level. Without
this component, the reference level over a particular trading episode is always propor-
tional to the asset value at the beginning of the episode. Specifically, if � = R = 0,
then using (6.5)–(6.7), the scaling property of U and the geometric Brownian motion
assumption of P , we can inductively deduce for all n that V

(n)
s (p;H) = HαV (

p
H

;1)
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and

V
(n)
b (p) = sup

τ
E

[
max{V (n)

s (Pτ ;λPτ ),0}∣∣P0 = p
]

= sup
τ

E
[

max{λαP α
τ V (n)

s (1/λ;1),0}∣∣P0 = p
]
.

If V
(n)
s (1/λ;1) < 0, then τ ≡ +∞ is optimal and the associated value function

for the entry problem is V
(n)
b (p) = 0. If instead V

(n)
s (1/λ;1) > 0, then we have

V
(n)
b (p) = λαV

(n)
s (1/λ;1) supτ E[P α

τ |P0 = p] = λαV
(n)
s (1/λ;1)pα under the stand-

ing assumption α ≤ β . The corresponding optimal entry strategy is τ ≡ 0.
The above observations in conjunction with our main theoretical results for n = 1

suggest that incorporating a constant component within the dynamic reference point
(e.g. in the form of a fixed transaction cost or a default aspiration level) might en-
able a realisation utility model to generate more realistic and non-trivial purchase
behaviours. For the sale decision, recall that in the baseline model with n = 1, the op-
timal sale strategy is a simple gain-exit rule (Lemma 4.3). We expect this to change
when n > 1, since the effective payoff function of the exit problem (6.7) now contains
an additional term V

(n−1)
b (p) which will drastically change the convexity/concavity

of the scaled exit payoff function. We leave the full analysis of this problem for future
work.

Remark 6.4 At first sight, (6.8) looks more complicated than the models proposed
in the existing literature because our value of Qt depends on whether the agent is
inside a trading episode holding the asset (t ∈ [τi, νi) for some i) or outside a trading
episode without any asset (t ∈ [νi, τi+1) for some i). From an economic point of
view, the reference point should not depend on Pτi

any more once the ith trading
episode is complete, and hence should be reset to the baseline aspiration level until
the start of the (i + 1)th trading episode. In the special case τi+1 = νi for all i so that
there is no time delay between the exit of an existing trade and the entry of a new
trade, (6.8) simplifies to Qt = λPτi

+ � + R for t ∈ [τi, τi+1), which resembles the
usual definition in the literature. In the absence of a constant component within the
reference point process, the entry decision is trivial as τi+1 = νi for all i is indeed
optimal because of the scaling property discussed previously; so there is no need to
“correctly” specify Qt over t ∈ [νi, τi+1). But this result is no longer true when R or
� is non-zero, and hence it is necessary to model the reference point process more
carefully.

6.4 Endogenous aspiration level

Among all the model parameters, the “aspiration level” R of the agent is the hard-
est one to be interpreted and estimated. It can be a purely psychological parameter
representing the agent’s subjective threshold which distinguishes gains and losses. In
some applications such as delegated portfolio management, R can also be the perfor-
mance target imposed on the agent by a manager. Instead of calibrating R where the
exercise can be very context-specific, one may seek to endogenise this parameter by
introducing a further optimality criterion.
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Fig. 7 The principal’s certainty
equivalent − ln(−Ṽ (R))/η as a
function of R when
Ũ (x) = −e−ηx . Base
parameters used are α = 0.5,
k = 2.25, λ = 1.05, γ = 0.95,
� = 1, η = 0.01, P0 = 30

Consider a principal–agent setup as an example. The principal imposes an aspira-
tion level on the agent in the form of a performance target. For a given R, the agent’s
optimal trading rule (τ ∗(R), ν∗(R)) can be obtained by solving (2.3). If the principal
has a utility function Ũ ( · ) over the trading profit, then a particular choice of R will
bring the principal an expected utility level of

Ṽ (R) := E
[
Ũ

(
γPν∗(R)1{τ∗(R)<∞,ν∗(R)<∞} − (λPτ∗(R) + �)1{τ∗(R)<∞}

)∣
∣P0 = p

]
,

where we have suppressed the dependence of Ṽ on p. The above can be maximised
(numerically) with respect to R, where the solution in general depends on the ini-
tial asset price P0. In Fig. 7, we consider a risk-averse principal with utility function
Ũ (x) = −e−ηx , where η > 0 is the constant absolute risk-aversion level and Ṽ (R)

can be maximised at some interior R in this particular example. The higher the Sharpe
ratio of the asset (equivalent to a lower level of β), the higher the level of endogenous
aspiration. In other words, a more aggressive performance goal is set in a bullish mar-
ket. However, there are also examples where the principal’s maximisation problem is
degenerate (e.g. Ṽ (R) being monotonically increasing or decreasing in R). We leave
the complete analysis of such principal–agent problems for future research.

An alternative consideration to endogenise R is to modify the agent’s utility func-
tion such that a round-trip profit of x leads to a utility value of U(x − R,R), where
U( · , · ) is increasing in the first and decreasing in the second argument. The sec-
ond argument of U can reflect the agent’s desire for “self-improvement” and “self-
enhancement” which is achieved by choosing a high aspiration level R; see for ex-
ample Falk and Knell [7]. The optimal R can then be determined alongside with the
agent’s optimal trading rule.

7 Concluding remarks

This paper considers a dynamic trading model under prospect theory preference with
transaction costs. By solving a sequential optimal stopping problem, we find that the
optimal trading strategy can have various forms depending on the model parameters
and the price level of the asset. The impact of transaction costs is subtle. In con-
trast to conventional wisdom, increasing transaction costs does not necessarily deter
economic agents from trading participation because the agents may face a higher
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reference point and in turn be more risk-aggressive in an expensive trading environ-
ment. These results could potentially be useful to policy makers to better understand
how undesirable speculative trading behaviour in certain markets can be curbed ef-
fectively.

Our key mathematical results are derived under a somewhat stylised modelling
specification. In particular, asymmetry of the degree of risk-aversion/seeking over
gains/losses, a fixed transaction cost on sales and a negative aspiration level are cur-
rently omitted from the baseline analysis. While these omissions allow us to derive
a sharp characterisation and comparative statics of the optimal trading rules, it will
nonetheless be constructive to extend the model to further examine the impact of
other economic factors. Section 6 also highlights a number of possible extensions for
further rigorous mathematical analysis in the presence of a negative drift, subjective
discounting, repeated trading opportunities and an endogenous aspiration level. In
particular, a natural extension is to further explore the implications of our results for
the literature of realisation utility, where we believe that a different specification of
the reference point process (e.g. incorporation of a constant component) can lead to
more realistic predictions of purchase behaviour.

A more ambitious goal is to further incorporate probability weighting within our
continuous-time optimal stopping model (as in Xu and Zhou [28] and Henderson
et al. [10]) to fully reflect the features of the cumulative prospect theory framework
of Tversky and Kahneman [27]. However, technical difficulties are likely to arise due
to the time-inconsistency brought by probability weighting. A precise formulation
of the problem as well as the development of appropriate mathematical techniques
should be an another interesting proposal for future research.

Finally, the surprising comparative statics documented in this paper also reveal
that the economic interaction between market frictions and behavioural preferences
can be subtle or even counter-intuitive. The model considered in this paper is just
one of the many possible motivations that these two topics should not be studied in
isolation, and this could potentially open up a new strand of literature to advance our
understanding towards trading behaviour in a more realistic setup.

Appendix

A.1 Proofs of Propositions 4.7, 4.8 and 5.1

We start with two useful lemmas.

Lemma A.1 Write ξ := λ
γ

. For the function f defined in (4.5), we have

lim
x→∞f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

+∞ for ξ < ( α
βk

c1−β(c − 1)α−1)
1
β ,

0 for ξ = ( α
βk

c1−β(c − 1)α−1)
1
β ,

−∞ for ξ > ( α
βk

c1−β(c − 1)α−1)
1
β .

Moreover:
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1) Suppose α < β < 1. Then:

(a) If ξ ≤ ( α
βk

c1−β(c − 1)α−1)
1
β , then f is an increasing concave function.

(b) If ξ > ( α
βk

c1−β(c − 1)α−1)
1
β , then f is concave increasing on [0, x∗

2 ], con-
cave decreasing on [x∗

2 , x̃], and convex decreasing on [x̃,∞). Here x∗
2 and x̃ are

respectively the solutions to the equation

c1−β(c − 1)α−1
(

x
− 1

β + ξα

β

)

− kξ(x
− 1

β + ξ)β = 0 (A.1)

and

0 = c1−β(c − 1)α−1
(

− ξα

β2
(β − α) + 1

β

(α

β
− β + α − 1

)
x

− 1
β

)

− k
(
ξ + x

− 1
β
)β

(

− ξ
(

1 − α

β

)
+

( 1

β
− 1

)
x

− 1
β

)

. (A.2)

2) Suppose α < β = 1. Then:
(a) If ξ ≤ α

k
(c − 1)α−1, then f is an increasing concave function.

(b) If α
k
(c − 1)α−1 < ξ ≤ 1

k
(c − 1)α−1, then f is concave increasing on [0, x∗

2 ],
concave decreasing on [x∗

2 , x̃], and convex decreasing on [x̃,∞) with

x∗
2 := (c − 1)α−1 − kξ

ξ(kξ − α(c − 1)α−1)
, x̃ := 2(c − 1)α−1 − kξ

ξ(kξ − α(c − 1)α−1)
.

(c) If ξ > 1
k
(c − 1)α−1, then f is a decreasing function.

Proof We can rewrite f as

f (x) =
α
β
c1−β(c − 1)α−1 − k(ξ + x

− 1
β )β

(ξ + x
− 1

β )β−α
x

α
β

so that limx→∞ f (x) = ±∞ when ξ ≷ ( α
βk

c1−β(c − 1)α−1)
1
β . The corner case of

ξ = ( α
βk

c1−β(c − 1)α−1)
1
β can be analysed by a simple application of L’Hôpital’s

rule.
We now derive the shapes of f by first focusing on the case β �= 1. Direct differ-

entiation gives

f ′(x) = α

β

c1−β(c − 1)α−1(
ξα
β

x
1
β + 1) − kξx

1
β
−1

(ξx
1
β + 1)β

(ξx
1
β + 1)β−α+1

= αx
1
β h1(x

− 1
β )

β(ξx
1
β + 1)β−α+1

(A.3)
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with

h1(z) := c1−β(c − 1)α−1
(

z + ξα

β

)

− kξ (z + ξ)β ,

and

f ′′(x) = ξαx
1
β
−2

β(ξx
1
β + 1)β−α+2

×
(

c1−β(c − 1)α−1x
(

− ξα

β2 (β − α)x
1
β + 1

β

(α

β
− β + α − 1

))

− k
(
ξx

1
β + 1

)β(
− ξ

(
1 − α

β

)
x

1
β + 1

β
− 1

))

= ξαx
2
β
−1

h2(x
− 1

β )

β(ξx
1
β + 1)β−α+2

,

where

h2(z) := c1−β(c − 1)α−1
(

−ξα

β2
(β − α) + 1

β

(α

β
− β + α − 1

)
z

)

− k(ξ + z)β
(

−ξ
(

1 − α

β

)
+

( 1

β
− 1

)
z

)

.

We first investigate the convexity/concavity of f by studying the sign of f ′′(x),

which is determined by that of h2(x
− 1

β ). Check that

h2(0) = ξ

(

1 − α

β

)(

− α

β
c1−β(c − 1)α−1 + kξβ

)

,

h′
2(0) = c1−β(c − 1)α−1 1

β

(
α

β
− β + α − 1

)

− kξβ

(
1

β
− β + α − 1

)

and

h′′
2(z) = −k(ξ + z)β−2((1 − β)(1 + β)z + ξ(1 − β)(2 + β − α)

)
< 0

for all z > 0 since α ≤ β ≤ 1, and thus h2 is concave. Then there are two possibilities.
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If ξ ≤ ( α
βk

c1−β(c − 1)α−1)
1
β , then h2(0) ≤ 0 and

h′
2(0) = c1−β(c − 1)α−1 1

β

(
α

β
− β + α − 1

)

− kξβ

(
1

β
− β + α − 1

)

< c1−β(c − 1)α−1 1

β

(
α

β
− β + α − 1

)

− kξβ

(
α

β
− β + α − 1

)

= k

(
α

β
− β + α − 1

)(
c1−β(c − 1)α−1

βk
− ξβ

)

≤ k

(
α

β
− β + α − 1

)(
αc1−β(c − 1)α−1

βk
− ξβ

)

≤ 0,

where we have used the facts that α < 1 and α
β

− β + α − 1 < α − β ≤ 0. Since h2

is concave, we must have h2(z) ≤ 0 for all z > 0. Hence f ′′
2 (x) ≤ 0 for all x ≥ 0, i.e.,

f is a concave function.

If instead ξ > ( α
βk

c1−β(c − 1)α−1)
1
β , then h2(0) > 0 and

lim
z→∞

h2(z)

zβ+1
= −k

(
1

β
− 1

)

< 0

so that h2(z) → −∞ as z → ∞. As h2 is concave, we must have z �→ h2(z) down-

crossing zero exactly once on (0,∞). Hence f ′′
2 (x) ∝ h2(x

− 1
β ) has exactly one sign

change from negative to positive, i.e., f is concave for small x and convex for large x

with a unique inflection point x̃ which is given by the solution to h2(x
− 1

β ) = 0. This
corresponds to (A.2).

Now we look at the monotonicity of f via the sign of f ′(x) which in turn is

determined by that of h1(x
− 1

β ). Check that

h1(0) = ξ

(
α

β
c1−β(c − 1)α−1 − kξβ

)

,

h′
1(z) = c1−β(c − 1)α−1 − kξβ

(z + ξ)1−β
.

Observe that h′
1 is increasing and thus h1 is convex. There are two cases.

If ξ ≤ ( α
βk

c1−β(c − 1)α−1)
1
β , then h1(0) ≥ 0 and

h′
1(0) = c1−β(c − 1)α−1 − kβξβ ≥ αc1−β(c − 1)α−1 − kβξβ ≥ 0.

As h1 is convex, we must have h1(z) ≥ 0 for all z > 0. Hence f ′(x) ≥ 0 for all
x ≥ 0, i.e., f is an increasing function. Together with the consideration of f ′′ in this
parameter regime, f is an increasing concave function.
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If ξ > ( α
βk

c1−β(c − 1)α−1)
1
β , then we have h1(0) < 0 instead. We also have

lim
z→∞

h1(z)

z
= c1−β(c − 1)α−1 > 0 (A.4)

and hence h1(z) → ∞ as z → ∞. Since h1 is convex, it must up-cross zero exactly

once on (0,∞). Therefore f ′(x) ∝ h1(x
− 1

β ) changes sign exactly once, from which
we conclude that f is first increasing and then decreasing with a unique turning

point x∗
2 . Moreover, x∗

2 is the solution to h1(x
− 1

β ) = 0, which is equivalent to (A.1).
Taking the behaviour of f ′′ into consideration, we conclude that f is increasing con-
cave on [0, x∗

2 ], decreasing concave on [x∗
2 , x̃], and decreasing convex on [x̃,∞).

The case β = 1 can be handled similarly. The key difference is that (A.4) no longer
holds when β = 1, but we have instead

lim
z→∞

h1(z)

z
= (c − 1)α−1 − kξ

which can be either positive or negative. If ξ >
(c−1)α−1

k
, we have h1(z) → −∞ as

z → ∞. We can then deduce that f ′(x) is negative for all x and thus f is decreasing.
�

Lemma A.2 If ξ := λ
γ

> ( α
βk

c1−β(c − 1)α−1)
1
β , then f (x) < 0 for all x, where f is

defined in (4.5).

Proof The result follows directly from the definition of f that

f (x) =
(

α

β
c1−β(c − 1)α−1x

( λ

γ
x1/β + 1

)−β − k

)(
λ

γ
x1/β + 1

)α

<

(

k
( λ

γ

)β

x
( λ

γ
x1/β + 1

)−β − k

)(
λ

γ
x1/β + 1

)α

<

(

k
( λ

γ

)β

x
( λ

γ
x1/β + 0

)−β − k

)(
λ

γ
x1/β + 1

)α

= 0. �

With the help of Lemmas A.1 and A.2, we now prove Propositions 4.7, 4.8 and 5.1.

Proof of Proposition 4.7 From the discussion in Sect. 3, we have to identify the small-
est concave majorant ḡ2( · ) of the function

g2(θ) := max
{
V1

(
s−1(θ);λs−1(θ) + � + R

)
,U(−R)

}

= max{V1(θ
1
β ;λθ

1
β + � + R),U(−R)},

where V1 is the value function of the exit problem given in Lemma 4.3. Since c > 1

and we assume that R > 0, � ≥ 0 and γ ≤ 1 ≤ λ, we have c(λθ
1
β +�+R

γ
) ≥ θ

1
β , and
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hence the first regime in (4.3) will always apply when evaluating V1(θ
1
β ;λθ

1
β +�+R),

i.e.

v1(θ) := V1
(
θ

1
β ;λθ

1
β + � + R

)

= −k
(
λθ

1
β + � + R

)α + α

β

(
λθ

1
β + � + R

)α−β
c1−β(c − 1)α−1γ βθ

= Rα

(

1 + �

R

)α(
α

β
c1−β(c − 1)α−1

( λ

γ

γ θ
1
β

R + �
+ 1

)α−β( γ

R + �

)β

θ

− k
( λ

γ

γ θ
1
β

R + �
+ 1

)α
)

= Rα

(

1 + �

R

)α

f

(( γ

R + �

)β

θ

)

, (A.5)

where f is defined in (4.5). The shape of f under different parameter combinations
is given by Lemma A.1, and thus we have the following cases.

When ξ := λ
γ

≤ ( α
βk

c1−β(c − 1)α−1)
1
β , f is increasing concave and we have

limx→∞ f (x) = +∞. These properties are inherited by v1. Furthermore,

v1(0) = Rα(1 + �/R)αf (0) = −kRα(1 + �/R)α ≤ −kRα

and

lim
θ→∞v1(θ) > 0 > −kRα.

Thus g2 is constructed by truncating an increasing concave function from below at
−kRα . The smallest concave majorant of g2 is formed by drawing a tangent line
passing through (0,−kRα) which touches v1 at some θ∗

1 ; see Fig. 1(a) above. The
exact form of the smallest concave majorant is

ḡ2(θ) =
{

v1(θ
∗
1 )+kRα

θ∗
1

θ − kRα for θ < θ∗
1 ,

v1(θ) for θ ≥ θ∗
1 ,

which is equivalent to (4.6) upon observing that V2(p) = ḡ2(p
β).

The optimal strategy is to sell the asset when its transformed price 	t first reaches
θ∗

1 or above. The corresponding threshold in the original price scale is given by
p∗

1 := s−1(θ∗
1 ) = (θ∗

1 )1/β . Since θ∗
1 is the point of contact of the tangent line to v1

which passes through (0,−kRα), θ∗
1 should solve

v′
1(θ) − v1(θ) + kRα

θ
= 0. (A.6)

Furthermore, we can deduce from a graphical inspection that the solution to (A.6) is
a down-crossing. For the case of large proportional transaction costs where we have

ξ = λ
γ

> ( α
βk

c1−β(c − 1)α−1)
1
β , the straight line passing (0,−kRα) can touch v1 at
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two distinct locations. A simple geometric inspection tells us that the required root is
the smaller one. Using the representation of v1(θ) in (A.5), (A.6) can be rewritten as

0 = Rα

(

1 + �

R

)α(
γ

R + �

)β

f ′
(( γ

R + �

)β

θ

)

− Rα
(
1 + �

R

)α
f

(
(

γ
R+�

)βθ
) + kRα

θ
.

A further substitution of x = (
γ

R+�
)βθ leads to

(

1 + �

R

)α(
xf ′(x) − f (x)

) = k. (A.7)

Then p∗
1 = (θ∗

1 )1/β = R+�
γ

(x∗
1 )1/β , where x∗

1 is defined as the solution to (A.7) which
is equivalent to (4.8).

When ξ = λ
γ

> ( α
βk

c1−β(c − 1)α−1)
1
β , Lemma A.1 implies that v1 is first con-

cave increasing, reaching a global maximum at some θ∗
2 , then concave decreasing

and finally convex decreasing with limθ→∞ v1(θ) = −∞. There are two further pos-
sibilities.

If v1(θ
∗
2 ) > −kRα , there must exist 0 ≤ θ̂1 < θ̂2 such that g2(θ) = −kRα on

[0, θ̂1] ∪ [θ̂2,∞) and g2(θ) = v1(θ) on [θ̂1, θ̂2]. The smallest concave majorant of
g2(θ) is formed by a chord passing through (0,−kRα) which touches v1 at some
θ∗

1 < θ∗
2 on {θ < θ∗

1 }, a horizontal line at level g(θ∗
2 ) on {θ > θ∗

2 }, and the function g2

itself on {θ∗
1 ≤ θ ≤ θ∗

2 }; see Fig. 1(b) above. The smallest concave majorant is

ḡ2(θ) =

⎧
⎪⎨

⎪⎩

v1(θ
∗
1 )+kRα

θ∗
1

θ − kRα for θ < θ∗
1 ,

v1(θ) for θ∗
1 ≤ θ ≤ θ∗

2 ,

v1(θ
∗
2 ) for θ > θ∗

2 .

This gives the form of the value function in (4.7).
The optimal strategy is to purchase the asset when its transformed price 	t first

enters the interval [θ∗
1 , θ∗

2 ]. The boundary of the purchase regions in the original scale
can be recovered via p∗

i = (θ∗
i )1/β for i = 1,2. Given that θ∗

2 is the maximiser of
v2(θ), using the representation of (A.5), θ∗

2 should then solve f ′(( γ
R+�

)βθ) = 0.
Using (A.3), x∗

2 := (
γ

R+�
)βθ∗

2 is a solution to

h1(x
− 1

β ) = c1−β(c − 1)α−1
(

x
− 1

β + ξα

β

)

− kξ
(
x

− 1
β + ξ

)β = 0.

Then p∗
2 = (θ∗

2 )1/β = R+�
γ

(x∗
2 )1/β , where x∗

2 is given by the solution to (4.9).
If v1(θ

∗
2 ) ≤ −kRα instead, then v1(θ) ≤ −kRα for all θ . Thus g2(θ) = −kRα

which is a flat horizontal line, and it is also the smallest concave majorant of itself,
i.e., ḡ2(θ) = −kRα . The optimal strategy is not to trade at all at any price level so
that the utility received is always U(−R) = −kRα ; see Fig. 1(c) above. The “never
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purchase” case arises if and only if v1(θ
∗
2 ) ≤ −kRα or, equivalently,

Rα

(

1 + �

R

)α

f

(( γ

R + �

)β

θ∗
2

)

≤ −kRα ⇐⇒
(

1 + �

R

)α

f (x∗
2 ) ≤ −k,

where x∗
2 is the maximiser of f introduced in Lemma A.1 and is independent

of � and R. Using the fact that f (0) = −k and Lemma A.2, we deduce that
−k < f (x∗) < 0 and hence there must exist C := (− k

f (x∗) )
1/α − 1 > 0 such that

(1 + �
R

)αf (x∗) ≤ −k if and only if �/R ≥ C. �

Proof of Proposition 4.8 Omitted since it is largely the same as the proof of Proposi-
tion 4.7. �

Proof of Proposition 5.1 From the proof of Proposition 4.7, the required solution to
(4.8) is a down-crossing. Then given that the left-hand side of (4.8) is increasing in �

(when evaluated at x = x∗
1 ), we can deduce that x∗

1 and in turn p∗
1 are both increasing

in � .
To show that p∗

1 is decreasing in γ , consider the substitution q = x1/β

γ
. Then

p∗
1 = (R + �)q∗

1 , where q∗
1 is the solution to

k =
(

1 + �

R

)α

× k(λq + 1)β
(
λ
(
1 − α

β

)
q + 1

) − α
β
c1−β(c − 1)α−1λγ β

(
1 − α

β

)
qβ+1

(λq + 1)β−α+1
, (A.8)

where the right-hand side of (A.8) is decreasing in γ . Hence q∗
1 and in turn p∗

1 are
both decreasing in γ .

The monotonicity of p∗
2 with respect to � is trivial because (4.9) which defines

x∗
2 does not depend on � . To check the monotonicity with respect to γ , consider

the substitution q = x1/β

γ
again so that p∗

2 = (R + �)q∗
2 , where q∗

2 is defined as the
solution to

c1−β(c − 1)α−1
(

1

q
+ λα

β

)

− kλ

γ β

(
1

q
+ λ

)β

= 0. (A.9)

From the proof of Lemma A.1, the solution to h1(x
− 1

β ) = 0 is a down-crossing. This
property is inherited by (A.9). Moreover, the left-hand side of (A.9) is increasing
in γ . Hence q∗

2 and in turn p∗
2 is increasing in γ .

Similarly, consider the substitution y = λβx. Then p∗
2 = R+�

λγ
(y∗

2 )1/β , where y∗
2

is defined as the solution to

c1−β(c − 1)α−1
(

y
− 1

β + α

βγ

)

− kλβ

γ

(

y
− 1

β + 1

γ

)β

= 0. (A.10)

The left-hand side of (A.10) is decreasing in λ, and hence y∗
2 is decreasing in λ.

Therefore p∗
2 is decreasing in λ as well. �
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A.2 Proof of Proposition 6.3

We first show that the solution method in Sect. 3.1 can be extended to the prob-
lem with utility-discounting. A general exposition can be found in Dayanik and
Karatzas [6], but we outline the key ideas under our specific model to introduce some
notation to be used.

Let A := σ 2

2
d2

dp2 + μ d
dp

be the infinitesimal generator of P . The second order
ordinary differential equation Au(p) = δu(p) with δ > 0 admits r1(p) := pω1 and
r2(p) := pω2 as two linearly independent solutions, where ω1 < 0 < ω2 are the dis-
tinct real roots to the quadratic equation

σ 2

2
r2 +

(

μ − σ 2

2

)

r − δ = 0. (A.11)

Moreover, for p ∈ [a, b] ⊆ J , the function ϕ(p;a, b) := E[e−δτa1{τa<τb}|P0 = p] is
the solution to Aϕ = δϕ with boundary conditions ϕ(a;a, b) = 1 and ϕ(b;a, b) = 0,
where τ� := inf{t ≥ 0 : Pt = �} (likewise, ϑ(p;a, b) := E[e−δτb1{τb<τa}|P0 = p] has
similar properties). From this, we obtain

ϕ(p;a, b) = r2(b)r1(p) − r1(b)r2(p)

r1(a)r2(b) − r2(a)r1(b)
, ϑ(p;a, b) = r1(a)r2(p) − r2(a)r1(p)

r1(a)r2(b) − r2(a)r1(b)
.

Now consider a discounted optimal stopping problem of the form

V (p) = sup
τ∈T

E[e−δτG(Pτ )|P0 = p].

As before, it is sufficient to look for an optimal stopping time which is of the form
τa,b := τa ∧ τb . Then

J (p; τa,b) := E[e−δτa,bG(Pτa,b
)|P0 = p]

= G(a)E[e−δτa1{τa<τb}|P0 = p] + G(b)E[e−δτb1{τb<τa}|P0 = p]
= G(a)ϕ(p;a, b) + G(b)ϑ(p;a, b)

= G(a)
r2(b)r1(p) − r1(b)r2(p)

r1(a)r2(b) − r2(a)r1(b)
+ G(b)

r1(a)r2(p) − r2(a)r1(p)

r1(a)r2(b) − r2(a)r1(b)

= r1(p)

(
r2(b)/r1(b) − r2(p)/r1(p)

r2(b)/r1(b) − r2(a)/r1(a)

G(a)

r1(a)

+ r2(p)/r1(p) − r2(a)/r1(a)

r2(b)/r1(b) − r2(a)/r1(a)

G(b)

r1(b)

)

= r1
(
s−1(θ)

)
(

s(b) − s(p)

s(b) − s(a)
φ
(
s(a)

) + s(p) − s(a)

s(b) − s(a)
φ
(
s(b)

)
)

,

where s(x) := r2(x)/r1(x) = xω2−ω1 , θ := s(p) and

φ(x) := (G/r1)
(
s−1(x)

) = x
− ω1

ω2−ω1 G
(
x1/(ω2−ω1)

)
.



92 A.S.L. Tse, H. Zheng

The optimal stopping rule can be deduced by maximising the above with respect to a

and b. Upon replacing the dummy variables via a′ = s(a) and b′ = s(b), we have

V (p) = sup
a,b:a≤p≤b

J (p; τa,b)

= r1
(
s−1(θ)

)
sup

a′,b:a′≤θ≤b′

(
b′ − θ

b′ − a′ φ(a′) + θ − a′

b′ − a′ φ(b′)
)

=: v(θ).

The supremum in the second to last term can be characterised by the smallest concave
majorant φ̄ of the scaled payoff function φ = G

r1
◦ s−1, and the value function in the

original coordinates is given by V (p) = v(s(p)) = r1(p)φ̄(s(p)).

Proof of Proposition 6.3 Similarly to the baseline problem, (6.2) which features
utility-discounting can be solved by decomposing the problem into the sub-problems
of exit and entry. The discounted exit problem is

V1(p;H) := sup
ν∈T

E[e−δνU(γPν − H)|P0 = p],

where H ≥ 0 is some given constant. The scaled payoff function is given by

g1(θ) := θ
− ω1

ω2−ω1 U
(
γ θ

1
ω2−ω1 − H

)

=
⎧
⎨

⎩

−kθ
− ω1

ω2−ω1 (H − γ θ
1

ω2−ω1 )α for 0 ≤ θ < (H
γ

)ω2−ω1,

θ
− ω1

ω2−ω1 (γ θ
1

ω2−ω1 − H)α for θ ≥ (H
γ

)ω2−ω1 .

Note that g2(0) = g2((
H
γ

)ω2−ω1) = 0 and g2(θ) < 0 on {0 < θ < (H
γ

)ω2−ω1}. Fur-

thermore, on {θ > (H
γ

)ω2−ω1}, we have

g′
1(θ) = θ

− ω2
ω2−ω1

(
γ θ

1
ω2−ω1 − H

)α−1
(

− ω1(γ θ
1

ω2−ω1 − H)

ω2 − ω1
+ αγ θ

1
ω2−ω1

ω2 − ω1

)

> 0

and

g′′
1 (θ) = θ

− ω1
ω2−ω1

−2
(γ θ

1
ω2−ω1 )2(γ θ

1
ω2−ω1 − H)α−2

(ω2 − ω1)2
h
(
1 − Hγ −1θ

− 1
ω2−ω1

)
,

where

h(z) := ω1ω2z
2 + α(1 − ω1 − ω2)z − α(1 − α).

We now show that on [0,1], the quadratic function z �→ h(z) is strictly negative,
which in turn will imply that g1 is a strictly increasing and concave function for
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θ ≥ (H
γ

)ω2−ω1 . Note that ω1 + ω2 = 1 − 2μ

σ 2 = β by considering the sum of the roots
of the quadratic equation (A.11). Then we have h(0) = −α(1 − α) < 0 and

h(1) = ω1ω2 + α(1 − ω1 − ω2) − α(1 − α) = (α − ω1)(α − ω2) < 0,

since ω1 < 0 and 0 < α < β = ω1 + ω2 < ω2. If β ≥ 1, then

0 ≥ α(1 − β) = α(1 − ω1 − ω2) = h′(0) > h′(1)

and h must be decreasing and in turn negative on [0,1]. If β < 1 and α ≥ − 2ω1ω2
1−β

,
then

h′(0) > h′(1) = 2ω1ω2 + α(1 − ω1 − ω2) = 2ω1ω2 + α(1 − β) ≥ 0

and h must be increasing and thus negative on [0,1]. Finally, if β < 1 and
α < − 2ω1ω2

1−β
, we can compute the discriminant of the quadratic function h as

� := α2(1 − ω1 − ω2)
2 + 4ω1ω2α(1 − α)

= α2(1 − β)2 + 4ω1ω2α(1 − α)

< α
( − 2ω1ω2(1 − β) + 4ω1ω2(1 − α)

)

= −2ω1ω2α
(
(α − 1) − (α − β)

)
< 0,

and hence h(z) < 0 for all z.
Now, the smallest concave majorant of g1 can be formed by drawing a straight

line from (0,0) which touches g1 at some θ∗ > (H
γ

)ω2−ω1 . The point of contact is

given by the unique θ∗ satisfying g1(θ
∗)

θ∗ = g′
1(θ

∗). The required θ∗ is thus given by
the solution to the equation

θ
− ω1

ω2−ω1 (γ θ
1

ω2−ω1 − H)α

θ
= (

γ θ
1

θ2−θ1 − H
)α−1

θ
− ω2

ω2−ω1

×
(

αγ θ
1

ω2−ω1

ω2 − ω1
− ω1

ω2 − ω1

(
γ θ

1
ω2−ω1 − H

)
)

which admits the explicit solution

θ∗ =
(

ω2H

γ (ω2 − α)

)ω2−ω1

.

The smallest concave majorant of g1 is then

ḡ1(θ) = ḡ1(θ;H)

=
⎧
⎨

⎩

( ω2
γ (ω2−α)

)−ω2( α
ω2−α

)αHα−ω2θ for θ < ( ω2H
γ (ω2−α)

)ω2−ω1,

θ
− ω1

ω2−ω1 (γ θ
1

ω2−ω1 − H)α for θ ≥ ( ω2H
γ (ω2−α)

)ω2−ω1 .
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The value function of the exit problem is thus

V1(p;H) = r1(p)ḡ1
(
s(p)

) = pω1 ḡ1
(
pω2−ω1;H )

.

From the form of the value function, the optimal exit strategy is to sell the asset
whenever its price level is at or above p∗ = s−1(θ∗) = ω2H

γ (ω2−α)
.

Now we look at the entry problem. Unlike the problem without discounting whose
objective function is (2.2), the strategy τ ≡ ∞ now yields a value of zero rather than
U(−R) under utility-discounting. Hence the payoff function for the entry problem
is max {V1(Pτ ;λPτ + � + R),0} rather than max {V1(Pτ ;λPτ + � + R),U(−R)}.
The entry problem is thus

V2(p) := sup
τ

E[e−δτ max{V1(Pτ ;λPτ + � + R),0}|P0 = p].

It is also clear that V1 is nonnegative. Then the scaled payoff function of the entry
problem is

g2(θ) := θ
− ω1

ω2−ω1 V1
(
θ

1
ω2−ω1 ;λθ

1
ω2−ω1 + � + R

)

= ḡ1
(
θ;λθ

1
ω2−ω1 + � + R

)

=
(

ω2

γ (ω2 − α)

)−ω2
(

α

ω2 − α

)α(
λθ

1
ω2−ω1 + � + R

)α−ω2θ.

The last equality holds because

(
ω2

γ (ω2 − α)

)ω2−ω1(
λθ

1
ω2−ω1 + � + R

)ω2−ω1 ≥
(

ω2

γ (ω2 − α)

)ω2−ω1

λω2−ω1θ

=
(

ω2

ω2 − α

)ω2−ω1
(

λ

γ

)ω2−ω1

θ

> θ

due to the facts that R > 0, � ≥ 0, ω1 < ω2 and γ ≤ 1 ≤ λ, and thus the linear regime

of ḡ1 always applies when evaluating ḡ1(θ;λθ
1

ω2−ω1 +� +R). It remains to identify
the smallest concave majorant ḡ2 of g2. But by similar (and indeed less tedious)

calculations as for the exit problem, one can verify that θ �→ (λθ
1

ω2−ω1 +�+R)α−ω2θ

is an increasing concave function for all θ ≥ 0 under the condition α < β . We hence
must have g2 = ḡ2 and the strategy τ ≡ 0 is optimal. �
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