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Received: 27 March 2021 / Accepted: 4 May 2022 / Published online: 15 September 2022
© The Author(s) 2022

Abstract
We develop a computational method for expected functionals of the drawdown and
its duration in exponential Lévy models. It is based on a novel simulation algorithm
for the joint law of the state, supremum and time the supremum is attained of the
Gaussian approximation for a general Lévy process. We bound the bias for various
locally Lipschitz and discontinuous payoffs arising in applications and analyse the
computational complexities of the corresponding Monte Carlo and multilevel Monte
Carlo estimators. Monte Carlo methods for Lévy processes (using Gaussian approx-
imation) have been analysed for Lipschitz payoffs, in which case the computational
complexity of our algorithm is up to two orders of magnitude smaller when the jump
activity is high. At the core of our approach are bounds on certain Wasserstein dis-
tances, obtained via the novel stick-breaking Gaussian (SBG) coupling between a
Lévy process and its Gaussian approximation. Numerical performance, based on the
implementation in Cázares and Mijatović (SBG approximation. GitHub repository.
Available online at https://github.com/jorgeignaciogc/SBG.jl (2020)), exhibits a good
agreement with our theoretical bounds. Numerical evidence suggests that our algo-
rithm remains stable and accurate when estimating Greeks for barrier options and
outperforms the “obvious” algorithm for finite-jump-activity Lévy processes.
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1 Introduction

1.1 Setting and motivation

Lévy processes are increasingly popular for the modelling of market prices of risky
assets. They naturally address the shortcoming of diffusion models by allowing large
(often heavy-tailed) sudden movements of the asset price as observed in the markets;
see Schoutens [63, Chap. 4], Kou [43, Sect. 1], Cont and Tankov [20, Chap. 1]. While
Lévy models with finite jump activity (i.e., jump-diffusions) can model large instanta-
neous movements (jumps) and small-time fluctuations (Gaussian component), infinite
activity Lévy models often provide better parsimonious statistical and/or risk-neutral
descriptions of asset returns (e.g. Carr et al. [13]) and exhibit a more flexible im-
plied volatility behaviour over short time horizons (e.g. Mijatović and Tankov [54]).
For risk management, it is thus crucial to quantify the probabilities of rare and/or
extreme events under all Lévy models. Of particular interest in this context are the
distributions of the drawdown (the current decline from a historical peak) and its du-
ration (the elapsed time since the historical peak); see e.g. Sornette [65, Chap. 1],
Večeř [67], Carr et al. [15], Baurdoux et al. [5], Landriault et al. [48]. Together with
the hedges for barrier options (Avram et al. [3], Schoutens [64], Kudryavtsev and
Levendorskiı̆ [45], Giles and Xia [30]) and ruin probabilities in insurance (Mordecki
[55], Klüppelberg et al. [41], Li et al. [49]), the expected drawdown and its duration
constitute risk measures dependent on the following random vector, which is a statis-
tic of the path of a Lévy process X: a historic maximum XT at a time T , the time
τT (X) ≤ T at which this maximum was attained, and the value XT of the process
at T . Since neither the distribution of the drawdown 1 − exp(XT − XT ) nor of its
duration T − τT (X) is analytically tractable for a general X, simulation provides a
natural alternative. The main objective of the present paper is to develop and analyse
a novel practical simulation algorithm for the joint law of (XT ,XT , τT (X)) which is
applicable to a general Lévy process X.

Exact simulation of the drawdown of a Lévy process is currently out of reach ex-
cept for the stable (González Cázares et al. [33]) and jump-diffusion cases. However,
even in the stable case, it is not known how to jointly simulate any two compo-
nents of (XT ,XT , τT (X)). Among the approximate simulation algorithms, the re-
cently developed stick-breaking approximation in González Cázares et al. [35] is
the fastest in terms of its computational complexity, as it samples from the law of
(XT ,XT , τT (X)) with a geometrically decaying bias. However, like most approxi-
mate simulation algorithms for a statistic of the entire trajectory, it is only valid for
a Lévy process whose increments can be sampled. Such a requirement does not hold
for large classes of widely used Lévy processes, including the general CGMY (aka
KoBoL) model in Carr et al. [14]. Moreover, nonparametric estimation of Lévy pro-
cesses typically yields Lévy measures whose transitions cannot be sampled (Neu-
mann and Reiß [56], Chen et al. [17], Comte and Genon-Catalot [19], Cai et al.
[11], Qin and Todorov [59]), which again makes a direct application of the algorithm
in [35] infeasible.

If the increments of X cannot be sampled, a general approach is to use the Gauss-
ian approximation introduced by Asmussen and Rosiński [2], which substitutes the
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small-jump component of the Lévy process by a Brownian motion. Thus the Gauss-
ian approximation process is a jump-diffusion, and the exact sample of the ran-
dom vector (consisting of the state of the process, the supremum and the time the
supremum is attained) can be obtained by applying Devroye’s sampler, see Devroye
[23, Alg. MAXLOCATION], between the consecutive jumps. However, little is known
about how close these quantities are to the vector (XT ,XT , τT (X)) that is being ap-
proximated, in either Wasserstein or Kolmogorov distances. Indeed, bounds on the
distances between the marginals of the Gaussian approximation and XT have been
considered by Dia [24] and recently improved by Mariucci and Reiß [50] and Car-
pentier et al. [12]. A Wasserstein bound on the supremum is given by Dia [24], but so
far, no improvement analogous to the marginal case has been established. Moreover,
to the best of our knowledge, there are no corresponding results for either the joint
law of (XT ,XT ) or the time τT (X). Furthermore, as explained in Remark 4.1 below,
the exact simulation algorithm for the supremum and the time of the supremum of a
Gaussian approximation based on Devroye [23, Alg. MAXLOCATION] is unsuitable
for the multilevel Monte Carlo estimation.

The main motivation for the present work is to provide an operational frame-
work for Lévy processes which allows us to settle the issues raised in the previous
paragraph, develop a general simulation algorithm for (XT ,XT , τT (X)) and analyse
the computational complexity of its Monte Carlo (MC) and multilevel Monte Carlo
(MLMC) estimators.

1.2 Contributions in the present paper

Our main contributions are as follows.
(Ia) We establish bounds on the Wasserstein and Kolmogorov distances between

the vector χT = (XT ,XT , τT (X)) and its Gaussian approximation, denoted by

χ
(κ)
T = (X

(κ)
T ,X

(κ)

T , τT (X(κ))), where X(κ) is a jump-diffusion equal to the Lévy pro-
cess X with the jumps smaller than κ ∈ (0,1] substituted by a Brownian motion (see

(2.5) below) and X
(κ)

T (resp. τT (X(κ))) is the supremum of X(κ) (resp. the time X(κ)

attains the supremum) over the time interval [0, T ].
(Ib) These results enable us to control the bias |E[f (χT )] − E[f (χ

(κ)
T )]| for a

discontinuous and/or locally Lipschitz payoff f , a fundamental advance in the area
of Gaussian approximation of Lévy processes.

(II) We introduce a simple and fast algorithm, SBG-Alg, which samples exactly
the vector of interest for the Gaussian approximation of any Lévy process X, develop
an MLMC estimator based on SBG-Alg (see González Cázares and Mijatović [31]
for an implementation in Julia), and analyse its complexity for discontinuous and
locally Lipschitz payoffs arising in applications.

Before discussing contributions (Ia)+ (Ib) and (II) in more detail, note that the
role in the present paper of the main algorithm from González Cázares et al. [35]
is analogous to the role the simulation of Brownian increments plays in the sam-
pling of Euler scheme chains approximating the law of the solutions of stochastic
differential equations. Differently put, the present paper analyses the convergence of
a family of algorithms, indexed by the cutoff parameter κ > 0 and essentially given
by the algorithm in [35] for each approximation χ

(κ)
T , analogous to the analysis of
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the convergence of Euler schemes indexed by the step size h > 0 that controls the
volatility in the simulation algorithm for Brownian increments. The underlying ideas
in the present paper and in [35] are based on the theory of convex minorants of gen-
eral Lévy processes (see e.g. González Cázares and Mijatović [32]). While [35] has
a theoretical obstruction as it is applicable only if the increments of X can be sam-
pled, the results and algorithms in the present paper are applicable to essentially all
Lévy processes. This requires fundamental advances in both bias and level variance
control, which we now discuss briefly.

(Ia) In Theorem 3.4 (see also Corollary 3.5), we establish novel bounds on the
Wasserstein distance between χT and χ

(κ)
T (as κ tends to 0) under weak assumptions,

typically satisfied by the models used in applications. The proof of Theorem 3.4 has
two main ingredients. First, in Sect. 7.2 below, we construct a novel stick-breaking
Gaussian (SBG) coupling between χT and χ

(κ)
T , based on the stick-breaking (SB)

representation of χT in (2.1) and the minimal transport coupling between the in-
crements of X and its approximation X(κ). The second ingredient consists of new
bounds on the Wasserstein and Kolmogorov distances between the laws of Xt and
X

(κ)
t for any t > 0, given in Theorems 3.1 and 3.3, respectively. The improvement of

our bounds on the existing literature on the Gaussian approximation for the marginals
of a Lévy process is reflected both in the bounds of Theorem 3.4 (for which there is
no comparison in the literature) as well as in the performance of SBG-Alg. Moreover,
even though the bounds in Theorem 3.4 are of Wasserstein type, the estimates in The-
orem 3.3 of the Kolmogorov distance of the marginals of a Gaussian approximation
are crucial in the proof of Theorem 3.4 because of the presence of the indicator func-
tions in SB representations (2.1).

(Ib) In Sect. 3.2, we give novel bounds on the bias of locally Lipschitz and bar-
rier payoffs of χT ; see Propositions 3.7, 3.9 and 3.12. Their proofs are based on
Theorem 3.4 and Lemma 7.5, which essentially converts the Wasserstein distance
into the Kolmogorov distance for sufficiently regular distributions. In particular, note
that Theorem 3.4 is used to control the distance between a non-Lipschitz functional
τT (X) of the path of X and τT (X(κ)). Thus Proposition 3.12 bounds the bias of
a discontinuous payoff of a non-Lipschitz functional of X. Applications related to
the duration of the drawdown and the risk-management of barrier options require
bounding the bias of certain discontinuous functions of χT . We thus develop ex-
plicit general sufficient conditions on the characteristic triplet of the Lévy process
X (see Proposition 3.15 below) which guarantee the applicability of the results of
Sect. 3.2 to models typically used in practice. Finally, Propositions 3.9 and 3.12 yield
new bounds on the Kolmogorov distance between the components of (XT , τT (X))

and (X
(κ)

T , τT (X(κ))) (see Corollary 3.14 below) which we hope are of independent
interest, complementing the Wasserstein bounds of Corollary 3.5.

(II) Our main simulation algorithm, SBG-Alg, samples jointly coupled Gaussian
approximations of χT at distinct approximation levels (i.e., two different values of
the cutoff κ). The coupling in SBG-Alg exploits the following simple observations:

– Any Gaussian approximation χ
(κ)
T has an SB representation in (2.2), where the

law of Y in (2.2) must equal that of X(κ).
– For any two Gaussian approximations, the stick-breaking process in (2.2) can be

shared.
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Fig. 1 Dashed (resp. solid) line plots the power of ε−1 in the computational complexity of an MC
(resp. MLMC) estimator, as a function of the BG index β defined in (2.6), for discontinuous functions
in BT1 (3.12) and BT2 (3.14), locally Lipschitz payoffs as well as Lipschitz functions of τT (X). The
cases are split according to whether X is with (σ �= 0) or without (σ = 0) a Gaussian component. The
pictures are based on Tables 1 and 2 under assumptions typically satisfied in applications; see Sect. 4.2
below for details

– The increments in (2.2) over the shared sticks can be coupled using the defini-
tion (2.5) of the Gaussian approximation X(κ).

We analyse the computational complexity of the MLMC estimator based on SBG-
Alg for a variety of payoff functions arising in applications. Figure 1 shows the lead-
ing power of the resulting MC and MLMC complexities, summarised in Tables 1
and 2 below (see Theorem 7.17 for full details), for locally Lipschitz and discontinu-
ous payoffs used in practice. To the best of our knowledge, neither locally Lipschitz
nor discontinuous payoffs have been previously considered in the context of MLMC
estimation under Gaussian approximation.

A key component of the analysis of the complexity of an MLMC estimator is the
rate of decay of level variances (see Appendix A.2 for the definition). In the case
of SBG-Alg, the rate of decay is given in Theorem 7.10 below for locally Lipschitz
and discontinuous payoffs of interest. The analysis in the proof of Theorem 7.10 of
the coupling simulated in SBG-Alg (between two Gaussian approximations at dis-
tinct cutoff levels) relies on the SBG coupling (between a Gaussian approximation
and its limit) to control the rate of decay of level variances. Moreover, the proof of
Theorem 7.10 shows that the decay of the level variances for Lipschitz payoffs under
SBG-Alg is asymptotically equal to that of Algorithm 1, which samples jointly the
increments at two distinct levels only. The principal reason for this equality between
the “marginal” Algorithm 1 and the “path-dependent” SBG-Alg lies in the fact that
it is the increments that dominate in the SB representation in (2.2). Furthermore, an
improved coupling in Algorithm 1 for the increments of the Gaussian approximations
(cf. the final of the three observations listed in the previous paragraph) would further
reduce the computational complexity of the MLMC estimator for all payoffs consid-
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ered in this paper (including the discontinuous ones). However, such a coupling is
currently out of reach; cf. the discussion following Algorithm 1 in Sect. 4.1.1 below.
To the best of our knowledge, SBG-Alg is the first exact simulation algorithm for
coupled Gaussian approximations of χT with vanishing level variances for a general
Lévy process X; see Remark 4.1 below for further details.

In Sect. 6, using the code in the repository González Cázares and Mijatović [31],
we test our theoretical findings against numerical results. In Sect. 6.1, we run SBG-
Alg for models in the tempered stable and Watanabe classes. The former is a widely
used class of processes whose increments cannot be sampled for all parameter val-
ues, and the latter is a well-known class of processes with infinite activity but singular
continuous increments. In both cases, we find a good agreement between the theo-
retical prediction and the estimated decays of the bias and level variance; see Figs. 4
and 5 below.

In the context of MC estimation, a direct simulation algorithm based on Devroye’s
sampler [23, Alg. MAXLOCATION] (Algorithm 2 below) can be used instead of SBG-
Alg. In Sect. 6.2, we compare numerically its cost with that of SBG-Alg. In the
examples we considered, the speedup of SBG-Alg over Algorithm 2 is about 50,
see Fig. 6, remaining significant even for processes with finite jump activity; see
Fig. 7. In fact, these examples demonstrate that SBG-Alg (with κ = 0) is preferable
for jump-diffusions as it significantly outperforms Algorithm 2.

In Sect. 6.3, we provide numerical evidence demonstrating that SBG-Alg (com-
bined with central finite differences) remains very stable and fast for computing Delta
and Gamma of barrier options under exponential Lévy models. Interestingly, the error
of the Delta remains bounded all the way to the barrier (see Fig. 10 below), a property
crucial in practice and very rare for Monte Carlo algorithms.

1.3 Organisation

The remainder of the paper is organised as follows. Section 2 recalls the SB
representation (2.1), (2.2) and the Gaussian approximation (2.5) developed in
González Cázares et al. [35] and Asmussen and Rosiński [2], respectively. Section 3
presents bounds on the Wasserstein and Kolmogorov distances between χT and its
Gaussian approximation χ

(κ)
T and the biases of certain payoffs arising in applications.

Section 3 also provides simple sufficient conditions, in terms of the Lévy triplet, un-
der which these bounds hold. Section 4 constructs our main algorithm, SBG-Alg, and
presents the computational complexity of the corresponding MC and MLMC estima-
tors for all payoffs considered in this paper. Having stated our main results, we present
a thorough comparison with the literature in Sect. 5. In Sect. 6, we illustrate numer-
ically our results for a widely used class of Lévy models. The proofs and technical
results are found in Sect. 7. Appendix A.1 gives a brief account of the complexity
analysis of MC and MLMC (introduced in Heinrich [37] and Giles [28]) estimators.

2 The stick-breaking representation and the Gaussian
approximation

Let f : [0,∞) → R be a right-continuous function with left limits. For t ∈ (0,∞),
define f

t
:= infs∈[0,t] f (s), f t := sups∈[0,t] f (s) and let τ t (f ) (resp. τ t (f )) be the
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last time before t that the infimum f
t

(resp. supremum f t ) is attained. Throughout,
X = (Xt )t≥0 denotes a Lévy process, i.e., a stochastic process started at the origin
with independent, stationary increments and right-continuous paths with left limits;
see Bertoin [7, Chap. 1], Kyprianou [47, Chaps. 1 and 2] and Sato [62, Chaps. 1
and 2] for background on Lévy processes. In mathematical finance, the risky asset
price S = (St )t≥0 under an exponential Lévy model is given by St := S0e

Xt . The
price St , its drawdown 1 − St/St (resp. drawup St/St − 1) and duration t − τ t (S)

(resp. t − τ t (S)) at time t can be recovered from the vector χt := (Xt ,Xt , τ t (X))

(resp. χ
t
:= (Xt ,Xt , τ t (X))). Because Z := −X is a Lévy process and we have

χt = (−Zt ,−Zt , τ t (Z)), it is sufficient to analyse the vector χ
t
.

2.1 The stick-breaking (SB) representation

Given a Lévy process X and a time horizon t > 0, there exist a coupling (X,Y ),

where Y
d= X (throughout the paper,

d= denotes equality in law), and a stick-breaking
process � = (�n)n∈N on [0, t] based on the uniform law U(0,1) (i.e., L0 := t ,
Ln := Ln−1Un, �n := Ln−1 − Ln for n ∈ N, where (Un)n∈N is an i.i.d. sequence fol-
lowing Un ∼ U(0,1)), which is independent of Y , such that a.s.,

χ
t
=

∞∑

k=1

(
YLk−1 − YLk

,min{YLk−1 − YLk
,0}, �k1{YLk−1−YLk

≤0}
)
. (2.1)

The coupling (X,Y ) and � can be constructed easily using the equality in law in
González Cázares and Mijatović [32, Theorem 11]. For a construction of this cou-
pling, see González Cázares et al. [35, Sect. 4.1]. Since given Ln, (�k)k>n is a stick-
breaking process on [0,Ln], for any n ∈N, (2.1) implies that

χ
t

d= (YLn,YLn
, τLn

(Y )
)

+
n∑

k=1

(
YLk−1 − YLk

,min{YLk−1 − YLk
,0}, �k1{YLk−1 −YLk

≤0}
)
.

(2.2)

Observe that the vector (YLn,YLn
, τLn

(Y )) and the sum on the right-hand side of
the identity in (2.2) are conditionally independent given Ln: the former (resp. latter)
is a function of (Ys)s∈[0,Ln] (resp. (Ys − YLn)s∈[Ln,t]), cf. Fig. 2. The vector χ

t
of

interest is thus represented by the corresponding vector (YLn,YLn
, τLn

(Y )) over an
exponentially small interval (since E[Ln] = 2−nt) and n independent increments of
the Lévy process over random intervals independent of Y . In (2.2) and throughout,
1A is the indicator function of the set A.

We stress that (2.1) and (2.2) reduce the analysis of the path-functional χ
t

to
that of the increments of X, since the “error term” (YLn,YLn

, τLn
(Y )) in (2.2) is

typically exponentially small in n. For an arbitrary Lévy process X′, the vector

(X′
t ,X

′
t , τ t (X

′)) has a representation as in (2.1) for a Lévy process Y ′ d= X′ inde-
pendent of the stick-breaking process �. Thus more generally, the laws of the vectors
χ

t
and (X′

t ,X
′
t , τ t (X

′)) will be close if the laws of the increments of Y and Y ′ over
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Fig. 2 The figure illustrates the first n = 4 sticks of a stick-breaking process. The increments of Y

in (2.2) are taken over the intervals [Lk,Lk−1] of length �k . Crucially, the time Ln featuring in the vector
(YLn ,YLn

, τLn
(Y )) in (2.2) is exponentially small in n

the intervals [Lk,Lk−1] are close. Indeed, by the identity in law (2.1), in order to
quantify the distance between the vectors χ

t
and (X′

t ,X
′
t , τ t (X

′)), it suffices to cou-
ple the increments of Y and Y ′ over the intervals [Lk,Lk−1], k ∈ N, with a common
stick-breaking process � independent of (Y,Y ′) and compare the corresponding sums
appearing on the right-hand side of (2.1). This observation constitutes a key step in
the construction of the coupling used in the proof of Theorem 3.4 below, which in
turn plays a crucial role in controlling the bias (see the subsequent results of Sect. 3)
of our main simulation algorithm SBG-Alg described in Sect. 4 below. SBG-Alg is
based on (2.2) with X′ being the Gaussian approximation of a general Lévy process X

introduced in Asmussen and Rosiński [2] and recalled briefly in the next subsection.

2.2 The Gaussian approximation

The law of a Lévy process X = (Xt )t≥0 is uniquely determined by the law of its
marginal Xt (for any t > 0), which is in turn given by the Lévy–Khintchine for-
mula [62, Theorem 8.1]: for u ∈ R,

1

t
logE[eiuXt ] = iub − 1

2
u2σ 2 +

∫

R\{0}
(
eiux − 1 − iux1(−1,1)(x)

)
ν(dx). (2.3)

The Lévy measure ν is required to satisfy
∫
R\{0} min{x2,1}ν(dx) < ∞, while σ ≥ 0

specifies the volatility of the Brownian component of X. Note that the drift b ∈ R

depends on the cutoff function x 
→ 1(−1,1)(x). Thus the Lévy triplet (σ 2, ν, b), with
respect to the cutoff function x 
→ 1(−1,1)(x), determines the law of X. All Lévy
triplets in the present paper use this cutoff function.

The Lévy–Itô decomposition at level κ ∈ (0,1] (see [62, Theorems 19.2 and 19.3])
is given by

Xt = bκ t + σBt + J
1,κ
t + J

2,κ
t , t ≥ 0, (2.4)

where bκ := b − ∫
(−1,1)\(−κ,κ)

xν(dx), B = (Bt )t≥0 is a standard Brownian mo-

tion and the processes J 1,κ = (J
1,κ
t )t≥0 and J 2,κ = (J

2,κ
t )t≥0 are Lévy with triplets

(0, ν|(−κ,κ),0) and (0, ν|R\(−κ,κ), b − bκ), respectively. The processes B , J 1,κ , J 2,κ

in (2.4) are independent, J 1,κ is an L2-bounded martingale with jumps of magnitude
less than κ and J 2,κ is a driftless (i.e., piecewise constant) compound Poisson process
with intensity ν(κ) := ν(R \ (−κ, κ)) and jump distribution ν|R\(−κ,κ)/ν(κ).

In applications, the main problem lies in the user’s inability to simulate the incre-
ments of J 1,κ in (2.4), i.e., the small jumps of the Lévy process X. Instead of ignoring
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this component for a small value of κ , the Gaussian approximation in Asmussen and
Rosiński [2],

X
(κ)
t := bκ t +

√
σ 2

κ + σ 2 Wt + J
2,κ
t , where σ 2

κ :=
∫

(−κ,κ)\{0}
x2ν(dx), (2.5)

substitutes the martingale σB + J 1,κ in (2.4) with a Brownian motion with variance
σ 2

κ +σ 2. In (2.5), the standard Brownian motion W = (Wt)t≥0 is independent of J 2,κ .
Let σκ denote the nonnegative square root of σ 2

κ . The Gaussian approximation of X

at level κ , given by the Lévy process X(κ) = (X
(κ)
t )t≥0, is natural in the following

sense: the weak convergence σ−1
κ J 1,κ d→ W (in the Skorokhod space D[0,∞)) as

κ → 0 holds if and only if σmin{Kσκ,κ}/σκ → 1 for every K > 0 (see [2]). This
condition holds if σκ/κ → ∞, and the two conditions are equivalent if ν has no
atoms in a neighbourhood of zero; see [2, Proposition 2.2].

Since J 2,κ has an average of ν(κ)t jumps on [0, t], the expected cost of simulating
the increment X

(κ)
t is a constant multiple of 1 + ν(κ)t (see Algorithm 1 below).

Moreover, the user need only be able to sample from the normalised tails of ν, which
can typically be achieved in multiple ways (see e.g. Rosiński [61]). The behaviour
of ν(κ) and σκ as κ ↓ 0, key in the analysis of the MC/MLMC complexity, can be
described in terms of the Blumenthal–Getoor (BG) index β from Blumenthal and
Getoor [9], defined by

β := inf{p > 0 : Ip

0 < ∞}, where I
p

0 :=
∫

(−1,1)\{0}
|x|pν(dx) for p ≥ 0. (2.6)

Note that β ∈ [0,2], since I 2
0 < ∞ for any Lévy measure ν. Furthermore, I 1

0 < ∞ if
and only if the paths of J 1,κ have finite variation. Moreover, I

p

0 < ∞ for any p > β ,

but I
β
0 can be either finite or infinite. If q ∈ [0,2] satisfies I

q

0 < ∞, we have for all
κ ∈ (0,1] the inequalities (see e.g. [35, Lemma 9])

σ 2
κ ≤ I

q

0 κ2−q and ν(κ) ≤ ν(1) + I
q

0 κ−q . (2.7)

Finally, we stress that the dependence between W in (2.5) and σB + J 1,κ in (2.4)
has not been specified. This coupling can vary greatly, depending on the circumstance
(e.g. the analysis of the Wasserstein distance between functionals of X and X(κ)

(Sect. 3) or the minimisation of level variances in MLMC (Sect. 4)). Thus unless
otherwise stated, no explicit form for the dependence between σB + J 1,κ and W is
assumed.

3 Distance between the laws of χ
t

and its Gaussian approximation
χ(κ)

t

In this section, we present bounds on the distance between the laws of χ
t
, defined in

Sect. 2 above, and its Gaussian approximation χ(κ)
t

:= (X
(κ)
t ,X

(κ)
t , τ t (X

(κ))), based
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on the Lévy process X(κ) in (2.5). The results in this section are crucial for the
analysis of the computational complexity of the MC and MLMC estimators based
on SBG-Alg discussed in Sect. 4 below.

Our bounds on the Wasserstein distance (see Theorem 3.4 and Corollary 3.5) are
based on the SBG coupling constructed in Sect. 7.2 below, which in turn draws on
the coupling in (2.1). Theorems 3.1 and 3.3 provide fundamental improvements (dis-
cussed in Sect. 3.1.1 below) for the bounds on the Wasserstein and Kolmogorov dis-
tances of the marginals Xt and X

(κ)
t , which play a key role in the proof of The-

orem 3.4. In Sect. 3.2 below, Theorem 3.4 is applied to control the bias of some
discontinuous and non-Lipschitz payoffs of χ

t
arising in applications as well as the

Kolmogorov distances between the components of (Xt , τ t (X)) and (X
(κ)
t , τ t (X

(κ))).

3.1 The Wasserstein distance between the vectors χ
t

and χ(κ)
t

In order to study the Wasserstein distance between χ
t

and χ(κ)
t

via (2.1), (2.2), we
have to quantify the Wasserstein and Kolmogorov distances between the increments
Xs and X

(κ)
s for any time s > 0. With this in mind, we start with Theorems 3.1

and 3.3, which play a key role in the proofs of the main results of the subsection,
Theorem 3.4 and Corollary 3.5 below, and are of independent interest.

Theorem 3.1 There exist universal constants K1 := 1/2 and Kp > 0, p ∈ (1,2], in-
dependent of (σ 2, ν, b), such that for any t > 0 and κ ∈ (0,1], there exists a coupling
(Xt ,X

(κ)
t ) satisfying for all p ∈ [1,2] that

E[|Xt −X
(κ)
t |p]1/p ≤ min{√2tσ κ ,Kpκϕ2/p

κ }, where ϕκ := σκ√
σ 2

κ + σ 2
. (3.1)

Bounds on the Kolmogorov distance may require the following generalisation of
Orey’s condition, which makes the distribution of Xt sufficiently regular (see Sato
[62, Proposition 28.3]).

Assumption 3.2 We have infu∈(0,1] uδ−2(σ 2
u + σ 2) > 0 for some δ ∈ (0,2].

Note that if σ �= 0, Assumption 3.2 holds with δ = 2. If σ = 0 and δ satisfies the in-
equality in Assumption 3.2, we must have β ≥ δ, where β is the Blumenthal–Getoor
index defined in (2.6) above. In fact, models typically used in applications either
have σ �= 0 or Assumption 3.2 holds with δ = β . However, for Orey’s process (de-
fined in [62, Example. 41.23]), Assumption 3.2 holds for some δ < β , but not for
δ = β (see details in Bang et al. [4, Example. 2.7]).

Theorem 3.3 (a) There exists a constant CBE ∈ (0, 1
2 ) such that for any t > 0,

κ ∈ (0,1], we have

sup
x∈R

∣∣P[Xt ≤ x] − P[X(κ)
t ≤ x]∣∣≤ CBE κϕ3

κ

σ κ

√
t

. (3.2)
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(b) Let Assumption 3.2 hold. Then for every T > 0, there exists a constant C > 0,
depending only on (T , δ, σ, ν), such that for any κ ∈ (0,1] and t ∈ (0, T ], we have

sup
x∈R

∣∣P[Xt ≤ x] − P[X(κ)
t ≤ x]∣∣≤ (Ct−1/δ min{√tσ κ , κϕκ })2/3. (3.3)

Denote x+ := max{x,0} for x ∈R. The next result quantifies the Wasserstein dis-
tance between the laws of the vectors χ

t
and χ(κ)

t
.

Theorem 3.4 For any κ ∈ (0,1] and t > 0, there exists a coupling between X and
X(κ) on the interval [0, t] such that we have for p ∈ {1,2} the inequalities

E[max{|Xt − X
(κ)
t |, |Xt − X

(κ)
t |}p]1/p ≤ μp(κ, t), (3.4)

where

μ1(κ, t) := min{2√
2tσ κ , κϕ2

κ }
(

1 + log+ (2
√

2t(σ κ/κ)ϕ−2
κ

))
,

μ2(κ, t) := √
2μ1(κ, t)

+ min{√2tσ κ ,K2κϕκ }
√

1 + 2 log+ (K−1
2

√
2t(σ κ/κ)ϕ−1

κ

)
, (3.5)

with ϕκ = σκ/

√
σ 2

κ + σ 2 and the universal constant K2 from Theorem 3.1, and

E[|τ t (X) − τ t (X
(κ))|] ≤ μτ

0(κ, t) := √
t(κ/σ κ)ϕ3

κ . (3.6)

Moreover, under Assumption 3.2 for some δ ∈ (0,2], there exists for every T > 0
a constant C > 0, dependent only on (T , δ, σ, ν), such that for all t ∈ [0, T ] and
κ ∈ (0,1], we have

E[|τ t (X) − τ t (X
(κ))|] ≤ μτ

δ (κ, t), (3.7)

where ψκ := Cκϕκ and

μτ
δ (κ, t):=

⎧
⎪⎨

⎪⎩

min{t,ψδ
κ } + t1− 2

3δ ψ
2
3
κ (1 − min{1, t− 1

δ ψκ}δ− 2
3 ), δ �= 2

3 ,

min{t,ψ
2
3
κ }(1 + log+(tψ

− 2
3

κ )), δ = 2
3 .

(3.8)

The proof of Theorem 3.4, given in Sect. 7.2 below, constructs the SBG cou-
pling (X,X(κ)), satisfying the above inequalities, in terms of the distribution func-
tions of the marginals Xs and X

(κ)
s (for s > 0) and the coupling used in (2.1);

see González Cázares et al. [35] for the latter. The key idea is to couple χ
t

and

χ(κ)
t

so that they share the stick-breaking process in their respective SB representa-
tions (2.1), while the increments of the associated Lévy processes over each interval
[Ln,Ln−1] are coupled so that they minimise appropriate Wasserstein distances. This
coupling produces a bound on the distance between χ

t
and χ(κ)

t
that depends only
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on the distances between the marginals of Xs and X
(κ)
s , s > 0, so that Theorems 3.1

and 3.3 can be applied. We stress that the bound in (3.4) cannot be obtained from
Doob’s L2-maximal inequality and Theorem 3.1: if the processes X and X(κ) are
coupled in such a way that Xt − X

(κ)
t satisfies the inequality in (3.1), the difference

process (Xs − X
(κ)
s )s∈[0,t] need not be a martingale.

Inequality (3.4) holds without assumptions on X and is at most a logarithmic fac-
tor worse than the marginal inequality (3.1) for p ∈ {1,2}, with the upper bound
satisfying μp(κ, t) ≤ 2κ log(1/κ) for all sufficiently small κ . Moreover, by Jensen’s
inequality, the SBG coupling satisfies for all 1 < p < 2 the inequality

E[max{|Xt − X
(κ)
t |, |Xt − X

(κ)
t |}p]1/p ≤ μ2(κ, t).

In the absence of a Brownian component (i.e., σ = 0), we have ϕκ = 1, mak-
ing the upper bound μ2(κ, t) proportional to μ1(κ, t) as κ → 0. If σ > 0, then
μ1(κ, t) ≤ 2κσ 2

κ log(1/(κσ κ))/σ 2 for all small κ and typically, μ2(κ, t) is propor-
tional to κσκ

√
log(1/(κσ κ)) as κ → 0, which dominates μ1(κ, t).

The bound in (3.6) holds without assumptions on the Lévy process X, while (3.7)
requires Assumption 3.2 and is the sharper the larger the value of δ ∈ (0,2] sat-
isfying Assumption 3.2. If σ > 0, the inequality in (3.6) is sharper than (3.7), i.e.
μτ

0(t, κ) ≤ μτ
2(t, κ) for all small κ > 0. However, if σ = 0 and δ ∈ (0,2) satisfies

Assumption 3.2, then typically μτ
0(κ, t) is proportional to κδ/2, while μτ

δ (κ, t) be-
haves as κmin{2/3,δ}(1 + log(1/κ)1{2/3}(δ)) as κ → 0, implying that (3.7) is sharper
than (3.6) for δ < 4/3. The smallest of the upper bounds in (3.6) and (3.7) is

μτ∗(κ, t) := min
{
μτ

0(κ, t), inf{μτ
δ (κ, t) : δ ∈ (0,2] satisfies Assumption 3.2}}.

Under Assumption 3.2, for some constant ct > 0 and all κ ∈ (0,1], we have

μτ∗(κ, t) ≤ ctκ
max{δ/2,min{2/3,δ}}(1 + log(1/κ)1{2/3}(δ)

)
. (3.9)

For any a ∈ R
d , let |a| :=∑d

i=1 |ai | denote its �1-norm. Recall that for p ≥ 1, the
Lp-Wasserstein distance (Villani [68, Definition 6.1]) between the laws of random
vectors ξ and ζ in R

d can be defined as

Wp(ξ, ζ ) := inf{E[|ξ ′ − ζ ′|p]1/p : ξ ′ d= ξ, ζ ′ d= ζ }. (3.10)

Theorem 3.4 implies a bound on the Lp-Wasserstein distance between the vectors χ
t

and χ(κ)
t

, extending the bound on the distance between the laws of the marginals Xt

and X
(κ)
t in Mariucci and Reiß [50, Theorem 9].

Corollary 3.5 Fix κ ∈ (0,1] and t > 0. Then

Wp

(
(Xt ,Xt ), (X

(κ)
t ,X

(κ)
t )
)≤ 2

(
1{p=1}μ1(κ, t) + 1{1<p≤2}μ2(κ, t)

)
, p ∈ [1,2],

Wp

(
τ t (X), τ t (X

(κ))
)≤ t1−1/pμτ∗(κ, t)1/p, p ≥ 1.

Moreover, Wp(χ
t
,χ(κ)

t
) is bounded by twice the sum of both bounds for p ∈ [1,2].
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Given the bounds in Corollary 3.5 and Theorem 3.3, it is natural to inquire
about the convergence in the Kolmogorov distance of the components of the vec-
tor (X

(κ)
t , τ t (X

(κ))) to those of (Xt , τ t (X)) as κ → 0. This question is addressed by
Corollary 3.14 below.

Dereich [21, Theorem 6.1] used the famous Komlós–Major–Tusnády (KMT) cou-
pling to bound the L2-Wasserstein distance between the paths of X and X(κ) on [0, t]
in the supremum norm, implying a bound on W2((Xt ,Xt ), (X

(κ)
t ,X

(κ)
t )) proportional

to κ log(1/κ) as κ → 0; cf. [21, Corollary 6.2]. If σ > 0, μ2(κ, t) in (3.4) is bounded
by a multiple of κσκ log(1/(κσ κ)) for small κ and is thus smaller than a multiple of
κ2−q/2 for any q ∈ (β,2) (where β is the BG index defined in (2.6)). As mentioned
above, μ2(κ, t) is bounded by a multiple of κ log(1/κ) for small κ . Unlike the SBG
coupling which underpins Theorem 3.4, the KMT coupling does not imply a bound
on the distance between the times of the infima τ t (X) and τ t (X

(κ)) as these are not
Lipschitz functionals of the trajectories with respect to the supremum norm.

Remark 3.6 The bounds on E[|τ t (X) − τ t (X
(κ))|] in Theorem 3.4 and Corollary 3.5,

based on the SB representation in (2.1), require a control on the expected difference
between the signs of the components of (Xs,X

(κ)
s ) as either s or κ tend to zero. This

is achieved via the minimal transport coupling (see (7.1) and Lemma 7.2 below) and
a general bound in Theorem 3.3 on the Kolmogorov distance. However, further im-
provements seem possible in the finite variation case if the natural drift (i.e., the drift
of X when small jumps are not compensated) is nonzero. Intuitively, the sign of the
natural drift determines the sign of both components of (Xs,X

(κ)
s ) with overwhelm-

ing likelihood as s → 0. This suggestion is left for future research.

3.1.1 Why are Theorems 3.1 and 3.3 an improvement on the existing bounds on the
distance between the laws of Xt and its Gaussian approximation X

(κ)
t ?

Theorem 3.1 bounds the Wasserstein distance between Xt and X
(κ)
t . The inequality

in (3.1) sharpens the bound E[|Xt − X
(κ)
t |p]1/p ≤ min{√2tσ κ ,Kpκ}, established by

Mariucci and Reiß [50, Theorem 9], as follows. The factor ϕ
2/p
κ ∈ [0,1] tends to zero

(as κ → 0) as a constant multiple of σ
2/p
κ if the Brownian component is present (i.e.,

σ > 0) and is equal to 1 when σ = 0. The bound in (3.1) cannot be improved in
general in the sense that there exists a Lévy process for which, up to constants, the
reverse inequality holds (see Mariucci and Reiß [50, Remark 3] and Fournier [27,
Sect. 4]).

The proof of Theorem 3.1, given in Sect. 7.1 below, decomposes the increment
M

(κ)
t of the Lévy martingale M(κ) := σB +J 1,κ into a sum of m i.i.d. copies of M

(κ)
t/m

and applies a Berry–Esseen-type bound established by Rio [60] for the Wasserstein
distance in the context of a central limit theorem (CLT) as m → ∞. The small-time
moment asymptotics of M

(κ)
t/m in Figueroa-López [26] imply that M

(κ)
t is much closer

to the Gaussian limit in the CLT if the Brownian component is present than if σ = 0.
This explains a vastly superior rate in (3.1) in the case σ 2 > 0.

The proof of Theorem 3.3 is in Sect. 7.1 below. Part (a) follows a similar strategy
as in the proof of Theorem 3.1, applying the Berry–Esseen theorem (instead of [60,
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Theorem 4.1]) to bound the Kolmogorov distance. By the same reasoning applied in
the previous paragraph to the bound in (3.1), the rate in (3.2) is far better if σ 2 > 0.
The proof of Theorem 3.3 (b) bounds the density of Xt using results due to Picard
[58] and applies (3.1).

Note that no assumption is made on the Lévy process X in Theorem 3.3 (a). In
particular, Assumption 3.2 is not required in part (a); however, if Assumption 3.2 is
not satisfied, implying in particular that σ = 0, it is possible for the bound in (3.2) not
to vanish as κ → 0 even if the Lévy process has infinite activity, i.e., ν(R \ {0}) = ∞.
In fact, if σ = 0, the bound in (3.2) vanishes (as κ → 0) if and only if σκ/κ → ∞,

which is also a necessary and sufficient condition for the weak limit σ−1
κ J 1,κ d→ W to

hold whenever ν has no atoms in a neighbourhood of 0 (see Asmussen and Rosiński
[2, Proposition 2.2]).

If X has a Brownian component (i.e., σ �= 0), the bound on the total variation
distance between the laws of Xt and X

(κ)
t established in Mariucci and Reiß [50,

Proposition 8] implies the bound

sup
x∈R

∣∣P[Xt ≤ x] − P[X(κ)
t ≤ x]∣∣≤ min{√8t σ κ , κ}√

2πσ 2t

on the Kolmogorov distance. This inequality is both generalised and sharpened (as
κ → 0) by the bound in (3.2). Further improvements to the bound on the total varia-
tion were made in Carpentier et al. [12], but the implied rates for the Kolmogorov
distance are worse than the ones in Theorem 3.3 and require model restrictions
when σ = 0 (beyond those of Theorem 3.3 (b)) that can be hard to verify (see [12,
Sect. 2.1.1]).

We stress that the dependence on t in the bounds of Theorem 3.3 is explicit. This
is crucial in the proof of Theorem 3.4 as we need to apply (3.2), (3.3) over intervals
of small random lengths. A related result proved by Dia [24, Proposition 10] contains
similar bounds which are non-explicit in t and suboptimal in κ .

If Assumption 3.2 is satisfied, the parameter δ in part (b) of Theorem 3.3 should be
taken as large as possible to get the sharpest inequality in (3.3). If σ �= 0 (equivalently
δ = 2), the bound in part (a) has a faster decay in κ than the bound in part (b). If σ = 0
(equivalently 0 < δ < 2), it is possible for the bound in part (a) to be sharper than that
in part (b) or vice versa. Indeed, it is easy to construct a Lévy measure ν such that
δ ∈ (0,2) in Theorem 3.3 (b) satisfies limu↓0 uδ−2σ 2

u = infu∈(0,1] uδ−2σ 2
u = 1. Then

the bound in (3.2) is a multiple of t−1/2κδ/2 as t, κ → 0, while that in (3.3) behaves
as t−2/(3δ)κ2/3 min{1, t1/3κ−δ/3}. Hence one bound may be sharper than the other de-
pending on the value of δ, as t and/or κ tend to zero. In fact, we use the bound in part
(b) only when the maximal δ satisfying the assumption of Theorem 3.3 (b) is smaller
than 4/3. In that case, the activity of the Lévy measure around 0 is bounded away
from its maximal possible activity, which would correspond to δ being close to 2.

3.2 The bias of locally Lipschitz and discontinuous functions of χ
t

and the

Kolmogorov distance between the vectors χ
t

and χ(κ)
t

The main tool for studying the bias of locally Lipschitz and discontinuous payoff
functions of χ

t
is the SBG coupling underpinning Theorem 3.4. The Lipschitz case
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follows trivially from Theorem 3.4. Indeed, for any d ∈ N, let LipK(Rd) denote
the space of real-valued Lipschitz functions on R

d (under the �1-norm given above
(3.10)) with Lipschitz constant K > 0 and note that the triangle inequality and Theo-
rem 3.4 imply for any time horizon T > 0 the bounds on the bias

|E[f (XT ,XT )] −E[f (X
(κ)
T ,X

(κ)
T )]| ≤ 2Kμ1(κ, T ),

∣∣E[g(τT )] −E
[
g
(
τT (X(κ))

)]∣∣≤ K ′μτ∗(κ, T ),
(3.11)

where f ∈ LipK(R2) satisfies E[|f (XT ,XT )|] < ∞ and g ∈ LipK ′(R).
In applications, the process X is often used to model log-returns of a risky asset

(S0e
Xt )t≥0. It is thus important to understand the bias of a Monte Carlo estimator

for the class locLipK(R2) of locally Lipschitz functions, with the defining property
f ∈ locLipK(R2) if and only if

|f (x, y) − f (x′, y′)| ≤ K(|ex − ex′ | + |ey − ey′ |) for any x, x′, y, y′ ∈ R

(equivalently (x, y) 
→ f (logx, logy) is in LipK((0,∞) × (0,∞))). Such payoffs
arise in risk management (e.g. absolute drawdown) and in the pricing of hindsight
call, perpetual American call and lookback put options.

Proposition 3.7 Let f ∈ locLipK(R2) and assume
∫
[1,∞)

e2xν(dx) < ∞, where ν is
the Lévy measure of X. For any T > 0 and κ ∈ (0,1] and μ2(κ, T ) defined in (3.5),
the SBG coupling satisfies

E[|f (XT ,XT ) − f (X
(κ)
T ,X

(κ)
T )|] ≤ 4KE[e2XT ]1/2(1 + eσ 2

κT )μ2(κ, T ).

The assumption
∫
[1,∞)

e2xν(dx) < ∞ is equivalent to E[e2XT ] < ∞ (see Sato [62,

Theorem 25.3]), which is a natural requirement as the asset price model (S0e
Xt )t≥0

ought to have finite variance. Moreover, via the Lévy–Khintchine formula, an ex-
plicit bound on the expectation E[e2XT ] (and hence the constant in the inequality of
Proposition 3.7) in terms of the Lévy triplet of X can be obtained.

The bound in Proposition 3.7 does not via duality imply an analogous bound in-
volving a function of the supremum XT , since the assumption is not symmetric in
the Lévy measure. However, for f (XT ,XT ) the proof of Proposition 3.7 in Sect. 7.3
yields

E[|f (XT ,XT )−f (X
(κ)
T ,X

(κ)

T )|] ≤ 4K
(
E[exp(2XT )]+E[exp(2X

(κ)

T )])1/2
μ2(κ, T ),

where both expectations E[e2XT ] and E[e2X
(κ)
T ] are finite under our natural assump-

tion
∫
[1,∞)

e2xν(dx) < ∞ and can be bounded explicitly in terms of the Lévy triplet

of X; see e.g. the proof of [35, Proposition 2]. Thus the bias for f ∈ locLipK(R2)

(applied to either (XT ,XT ) or (XT ,XT )) is at most a multiple of κ log(1/κ), as is
by (3.11) the case for f ∈ LipK(R2); see the discussion after Theorem 3.4.

In financial markets, the class of barrier-type functions arises naturally. For con-
stants K,M ≥ 0, y < 0, define

BT1(y,K,M) := {f : f (x, z) = h(x)1[y,∞)(z), h ∈ LipK(R),0 ≤ h ≤ M}. (3.12)
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Note that 1[y,∞) lies in BT1(y,0,1) and satisfies E[1[y,∞)(XT )] = P[XT ≥ y].
Moreover, a down-and-out put option payoff x 
→ max{ek − ex,0}1[y,∞)(x), for
some constants y < 0 < k, is in BT1(y, ek, ek − ey). Bounding the bias of the es-
timators for functions in BT1(y,K,M) requires the following regularity of the dis-
tribution of XT at y.

Assumption 3.8 Given C,γ > 0 and y < 0, we have the inequality

|P[XT ≤ x + y] − P[XT ≤ y]| ≤ C|x|γ for all x ∈R.

Proposition 3.9 Let f ∈ BT1(y,K,M) for some K,M ≥ 0 and y < 0. If y and some
C,γ > 0 satisfy Assumption 3.8, then for any T > 0 and κ ∈ (0,1], the SBG coupling
satisfies

E[|f (XT ,XT ) − f (X
(κ)
T ,X

(κ)
T )|]

≤ Kμ1(κ, T ) + M ′ min
{
μ1(κ, T )

γ
1+γ ,μ2(κ, T )

2γ
2+γ
}
, (3.13)

where M ′ = M max{(1 + 1/γ )(2Cγ )1/(1+γ ), (1 + 2/γ )(Cγ )2/(2+γ )}.
Remark 3.10 Because we have μ1(κ, T ) → 0 and μ2(κ, T ) → 0 as κ → 0 and
γ /(1 + γ ) < 2γ /(2 + γ ) for all γ > 0, the bound in (3.13) is typically dominated
by a multiple of μ1(κ, T )γ/(1+γ ), if σ �= 0 and β < 2 − γ (recall the definition of the
BG index β in (2.6)), or by μ2(κ, T )2γ /(1+γ ), otherwise. By Hölder’s inequality, f

in (3.13) need not be bounded if appropriate moments of X exist.

The proof of Proposition 3.9 is in Sect. 7.3 below. Assumption 3.8 with γ = 1
requires the distribution function of XT to be locally Lipschitz at y. By the Lebesgue
differentiation theorem (see Cohn [18, Theorem 6.3.3]), any distribution function is
differentiable Lebesgue-a.e., implying that Assumption 3.8 holds for γ = 1 and a.e.
y < 0. However, there indeed exist Lévy processes that do not satisfy Assumption 3.8
with γ = 1 for countably many levels y; see the example in González Cázares et al.
[35, App. B]. (In fact, that example shows that Assumption 3.8 may fail at countably
many levels y for any γ ∈ (0,1].) Proposition 3.15 below provides simple sufficient
conditions, in terms of the Lévy triplet of X, for Assumption 3.8 to hold with γ = 1
for all y < 0. In particular, this is the case if σ �= 0.

The next class of payoffs arises in the analysis of the duration of a drawdown. For
K,M ≥ 0, s ∈ (0, T ), let

BT2(s,K,M) := {f : f (x, t) = h(x)1(s,T ](t), h ∈ LipK(R2), 0 ≤ h ≤ M}. (3.14)

The biases of these functions clearly include |P[τT (X) > s] − P[τT (X(κ)) > s]|.
Analogously to Proposition 3.9, we require the following regularity from the distri-
bution function of τT (X).

Assumption 3.11 Given C,γ > 0 and s ∈ (0, T ), we have the inequality

|P[τT (X) ≤ s] − P[τT (X) ≤ s + t]| ≤ C|t |γ for all t ∈R.
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Proposition 3.12 Let Assumption 3.11 hold for some s ∈ (0, T ) and C,γ > 0. Let
f ∈ BT2(s,K,M) for some K,M ≥ 0. Then for all κ ∈ (0,1], the SBG coupling
satisfies

E[|f (χ
T
) − f (χ(κ)

T
)|] ≤ 2Kμ1(κ, T )

+ M(2Cγ )1/(1+γ )(1 + 1/γ )μτ∗(κ, T )γ/(1+γ ). (3.15)

Remark 3.13 As in Remark 3.10, the bound in (3.15) is asymptotically proportional
to μτ∗(κ, T )γ/(1+γ ) as κ → 0. The inequality (3.15) can be generalised to unbounded
functions f if appropriate moments of X exist.

If X is not a compound Poisson process, Assumption 3.11 holds with γ = 1 for all
s ∈ (0, T ) since by Lemma 7.7 below, τT (X) has a locally bounded density, making
the distribution function of τT (X) locally Lipschitz on (0, T ). Assumption 3.11 is
satisfied if either ν(R \ {0}) = ∞ or σ �= 0. In particular, Assumption 3.2 implies
Assumption 3.11. The proof of Proposition 3.12 is in Sect. 7.3 below.

The classes BT1(y,K,M) and BT2(s,K,M) of payoffs in (3.12) and (3.14), re-
spectively, consist of bounded functions. We stress that boundedness of the payoffs is
not essential in Propositions 3.9 and 3.12. It can be substituted by a combination of a
local Lipschitz assumption and a moment bound on the tails of the Lévy measure (cf.
Proposition 3.7), typically satisfied in applications. The crucial Lemma 7.5, applied
in the proofs of Propositions 3.9 and 3.12, can be generalised to unbounded payoffs
by substituting the almost sure bound on the payoff in its current proof (see (7.11)
below) with a bound on its expected value via Hölder’s inequality. The details are
omitted for ease of exposition.

As a consequence of Proposition 3.9 (resp. 3.12), if Assumption 3.8 (resp. 3.11)
holds uniformly over y for fixed C,γ > 0, then X

(κ)
T (resp. τT (X(κ))) converges to

XT (resp. τT (X)) in the Kolmogorov distance as κ → 0.

Corollary 3.14 (a) Suppose C,γ > 0 satisfy Assumption 3.8 for all y < 0. Then for
κ ∈ (0,1],

sup
x∈R

∣∣P[XT ≤ x] − P[X(κ)
T ≤ x]∣∣≤ M ′ min

{
μ1(κ, T )

γ
1+γ ,μ2(κ, T )

2γ
2+γ
}
,

where M ′ = max{(1 + 1/γ )(2Cγ )1/(1+γ ), (1 + 2/γ )(Cγ )2/(2+γ )}.
(b) Suppose C,γ > 0 satisfy Assumption 3.11 for all s ∈ [0, T ]. Then for

κ ∈ (0,1], we have

sup
x∈R

∣∣P[τT (X) ≤ x] − P[τT (X(κ)) ≤ x]∣∣≤ (2Cγ )
1

1+γ (1 + 1/γ )μτ∗(κ, T )
γ

1+γ .

Proposition 3.15 gives sufficient conditions (in terms of the triplet (σ 2, ν, b)) for
Assumptions 3.8 and 3.11 to hold for all y < 0 and s ∈ [0, T ], respectively. Re-
call that a function f (x) is said to be regularly varying with index r as x → 0 if
limx→0 f (λx)/f (x) = λr for every λ > 0.



688 J. González Cázares, A. Mijatović

Proposition 3.15 Let ν+(x) := ν([x,∞)) and ν−(x) := ν((−∞,−x]) for x > 0 and
let β be the BG index of X defined in (2.6). Suppose that either (I) σ > 0 or (II) the
Lévy measure ν satisfies the following conditions: ν+(x) is regularly varying with
index −β as x → 0 and either

• β = 2 and lim infx→0 ν+(x)/ν−(x) > 0, or
• β ∈ (1,2) and limx→0 ν+(x)/ν−(x) ∈ (0,∞].

Then there exist constants γ > 0 and C such that Assumption 3.11 holds with γ,C

for all s ∈ [0, T ]. Moreover, for any compact I ⊆ (−∞,0), Assumption 3.8 holds
with γ = 1 and some constant CI for all y ∈ I .

Note that Proposition 3.15 holds if the roles of ν+ and ν− are interchanged,
i.e., ν−(x) is regularly varying and the limit conditions are satisfied by the quotients
ν−(x)/ν+(x). The assumptions of Proposition 3.15 are satisfied by most models used
in practice that have infinite variation, including tempered stable and subordinated
Brownian motion processes.

Proposition 3.15 is a consequence of a more general result, Proposition 7.9 below,
stating that Assumptions 3.11 and 3.8 hold uniformly and locally uniformly, respec-
tively, if over short time horizons, X is “attracted to” an α-stable process with non-
monotone paths; see Sect. 7.3 below for details. In this case, ρ := limt→0 P[Xt > 0]
exists in (0,1), and γ in the conclusion of Proposition 3.15, satisfying Assump-
tion 3.11 on [0, T ], can be arbitrarily chosen in (0,min{ρ,1 − ρ}). In contrast to
Assumption 3.11, a simple sufficient condition for the uniform version of Assump-
tion 3.8, required in Corollary 3.14(a), remains elusive beyond special cases such as
stable or tempered stable processes with γ in the interval (0, α(1 − ρ)), where α is
the stability parameter and ρ is as above.

The reasoning in the previous paragraph does not apply if X is attracted to a linear
drift, since the paths of the limit are monotone, implying ρ ∈ {0,1}. This occurs if X

is of finite variation with b �= ∫
(−1,1)

xν(dx) or if X is of infinite variation with β = 1
(see Ivanovs [38, Theorem 2] for details). In these cases, the uniform convergence in
Corollary 3.14 may fail due to an atom in the limit.

4 Simulation and the computational complexity of MC and MLMC

In this section, we describe a method using MC or MLMC for simulating the vec-
tor χ(κ)

T
= (X

(κ)
T ,X

(κ)
T , τT (X(κ))) (SBG-Alg in Sect. 4.1) and analyse the computa-

tional complexities for various locally Lipschitz and discontinuous functions of χ(κ)
T

(Sect. 4.2). The numerical performance of SBG-Alg, which is based on the SB rep-
resentation in (2.1), (2.2) of χ(κ)

T
, is far superior to that of the “obvious” algorithm

for jump-diffusions (see Algorithm 2 below), particularly when the jump intensity
is large (cf. Sects. 4.1.2 and 4.1.3). Moreover, SBG-Alg is designed with MLMC in
mind, which turns out not to be feasible in general for the “obvious” algorithm (see
Sect. 4.1.2).

4.1 Simulation of χ(κ)
T

The main aim of the subsection is to develop a simulation algorithm for the pair of
vectors (χ(κ)

T
,χ(κ ′)

T
) at levels κ, κ ′ ∈ (0,1] over a time horizon [0, T ] such that the
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Algorithm 1 Simulation of the law �
κ1,κ2
t

Require: Cutoff levels 1 ≥ κ1 > κ2 > 0 and time horizon t > 0.
1: Compute bκi

and σ 2
κi

for i ∈ {1,2} and ν(κ2)

2: Sample Wt ∼ N (0, t), Nt ∼ Poi(ν(κ2)t) and λk ∼ ν( · \ (−κ2, κ2))/ν(κ2) for
k ∈ {1, . . . ,Nt }

3: Put J
2,κi
t :=∑Nt

k=1 λk1{|λk |≥κi } for i ∈ {1,2}
4: return (Z

(κ1)
t ,Z

(κ2)
t ), where Z

(κi)
t := bκi

t +
√

σ 2 + σ 2
κi

Wt + J
2,κi
t for i ∈ {1,2}

L2-distance between χ(κ)
T

and χ(κ ′)
T

tends to zero as κ, κ ′ → 0. SBG-Alg below, based
on the SB representation in (2.2), achieves this aim; it applies Algorithm 1 for the
increments over the stick-breaking lengths that arise in (2.2) and Algorithm 2 for the
“error term” over the time horizon [0,Ln]. By Theorem 7.10 below, the L2-distance
for the coupling given in SBG-Alg decays to zero, ensuring the feasibility of MLMC
(see Theorem 7.17 for the computational complexity of MLMC).

4.1.1 Simulation of (X
(κ1)
t ,X

(κ2)
t )

A simulation algorithm for a coupling (X
(κ1)
t ,X

(κ2)
t ) of Gaussian approximations (at

levels 1 ≥ κ1 > κ2 > 0) of Xt at an arbitrary time t > 0 is based on the follow-
ing observation. The compound Poisson processes J 2,κ1 and J 2,κ2 in the Lévy–Itô
decomposition in (2.4) can be simulated jointly, as the jumps of J 2,κ1 are precisely
those of J 2,κ2 with modulus of at least κ1. By choosing the same Brownian motion W

in the representation (2.5) of X
(κ1)
t and X

(κ2)
t , we obtain the coupling (X

(κ1)
t ,X

(κ2)
t )

with law �
κ1,κ2
t given in Algorithm 1.

Since Z
(κi)
t

d= X
(κi)
t , i ∈ {1,2}, the definition in (3.10) and Proposition 7.11(a)

below imply that the coupling �
κ1,κ2
t provides the bound

W2(X
(κ1)
t ,X

(κ2)
t ) ≤ E[(Z(κ1)

t − Z
(κ2)
t )2]1/2 ≤ (2t (σ 2

κ1
− σ 2

κ2
)
)1/2

. (4.1)

This bound is not optimal since the sum of the jumps J
2,κ2
t − J

2,κ1
t of magnitude in

the interval (κ2, κ1] and the normal random variable Wt constructed in Algorithm 1,
which appear in the difference Z

(κ1)
t − Z

(κ2)
t , are independent. The minimal trans-

port coupling, with the L2-distance equal to W2(X
(κ1)
t ,X

(κ2)
t ), is not accessible via

simulation.
An important open problem in this context is to find an algorithm that samples

Z
(κ2)
t as in Algorithm 1 and constructs

Z
(κ1)
t = bκ1 t +

√
σ 2 + σ 2

κ2
Wt +

√
σ 2

κ1
− σ 2

κ2
W ′

t + J
2,κ2
t ,

where W ′
t is a normal variable with mean zero and variance t , independent of Wt

and J
2,κ2
t , but coupled with the difference J

2,κ2
t − J

2,κ1
t in a way that reduces the

second moment E[(Z(κ1)
t −Z

(κ2)
t )2] asymptotically as κ1 → 0. Such an improvement

in the bound in (4.1) on the L2-Wasserstein distance would make the level variances
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Algorithm 2 Simulation of the law �
κ1,κ2
t

Require: Cutoff levels 1 ≥ κ1 > κ2 > 0 and time horizon t > 0.

1: Compute bκi
, σ 2

κi
and υκi

:=
√

σ 2 + σ 2
κi

for i ∈ {1,2} and ν(κ2), see (2.4), (2.5)
2: Sample Nt ∼ Poi(ν(κ2)t) and Uk ∼ U(0, t) for k ∈ {1, . . . ,Nt + 1}
3: Set s :=∑Nt+1

i=1 logUk and let tk := s−1∑k
i=1 logUi for k ∈ {0, . . . ,Nt + 1}

4: Set (Z
(κ1)
0 ,Z

(κ1)
0 , τ

(κ1)
0 ,Z

(κ2)
0 ,Z

(κ2)
0 , τ

(κ2)
0 ) := (0,0,0,0,0,0)

5: for k ∈ {1, . . . ,Nt + 1} do
6: Sample λk ∼ ν( · \ (−κ2, κ2))/ν(κ2) if k ≤ Nt and otherwise put λk := 0
7: Independently sample (�1

k,i ,�
2
k,i ,�

3
k,i) ∼ �δk

(υκi
, bκi

), i ∈ {1,2}, where
δk := tk − tk−1

8: for i ∈ {1,2} do
9: if Z

(κi)
tk−1

> Z
(κi)
tk−1

+ �2
k,i then

10: Set (Z
(κi )
tk

,Z
(κi )
tk

, τ
(κi )
tk

):=(Z
(κi )
tk−1

+�1
k,i +λk1{|λk |≥κi },Z

(κi )
tk−1

+�2
k,i , tk−1+�3

k,i)

11: else
12: Set (Z

(κi )
tk

,Z
(κi )
tk

, τ
(κi )
tk

) := (Z
(κi )
tk−1

+ �1
k,i + λk1{|λk |≥κi },Z

(κi)
tk−1

, τ
(κi )
tk−1

)

13: end if
14: end for
15: end for
16: return (ζ (κ1), ζ (κ2)), where ζ (κi ) := (Z

(κi )
t ,Z

(κi )
t , τ

(κi )
t ) for i ∈ {1,2}

in the MLMC estimator in (4.3), based on SBG-Alg, decay at a faster rate (because
the increments in the SB representation in (2.2), and thus Algorithm 1, account for
most of the output). Note, however, that sampling W ′

t independently of J
2,κ2
t − J

2,κ1
t

would increase the second moment E[(Z(κ1)
t − Z

(κ2)
t )2] compared to the output of

Algorithm 1, which uses a single normal random variable in both coordinates.
Since the law Poi(ν(κ2)t) of the variable Nt in line 2 of Algorithm 1 is Poisson

with mean ν(κ2)t , the expected number of steps of Algorithm 1 is bounded by a
constant multiple of 1 + ν(κ2)t , which is in turn bounded by a negative power of κ2

by (2.7). Since the computational complexity of sampling the law of X
(κ2)
t is of the

same order as that of the law �
κ1,κ2
t , in the complexity analysis of SBG-Alg below,

we may apply Algorithm 1 with �
1,κ
t to sample X

(κ)
t for any κ ∈ (0,1].

4.1.2 Direct simulation of (χ(κ1)
t

, χ(κ2)
t

)

Algorithm 2 samples from the law �
κ1,κ2
t of a coupling (χ(κ1)

t
, χ(κ2)

t
) for levels

0 < κ2 < κ1 ≤ 1 and any t > 0. In particular, it requires the sampler from Devroye
[23, Alg. MAXLOCATION] for the law �t(v,μ) of (B̂t , B̂t , τt (B̂)), where the pro-
cess (B̂s)s≥0 = (vBs + μs)s≥0 is a Brownian motion with drift μ ∈ R and volatility
v > 0.

Algorithm 2 samples the jump times and sizes of the compound Poisson process
J 2,κ2 on the interval (0, t) and prunes the jumps to get J 2,κ1 . Then it samples the
increment, infimum and the time the infimum is attained for the Brownian motion
with drift on each interval between the jumps of J 2,κ2 . The pair (ζ (κ1), ζ (κ2)) clearly
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satisfies ζ (κi ) d= χ(κi)
t

, i ∈ {1,2}. Since [23, Alg. MAXLOCATION] samples the law
�t(v,μ) with expected runtime uniformly bounded over the choice of parameters μ,
v and t , the computational cost of sampling the pair of vectors (χ(κ1)

t
, χ(κ2)

t
) using

Algorithm 2 is proportional to the cost of sampling X
(κ)
t via Algorithm 1.

In principle, Algorithm 2 is an exact algorithm for the simulation of a coupling
(χ(κ1)

t
, χ(κ2)

t
). However, as explained in Remark 4.1 below, it cannot be applied

within an MLMC simulation scheme for a function of χ(κ)
T

at a fixed time horizon T .
SBG-Alg below circumvents this issue via the SB representation in (2.2), which also
makes SBG-Alg parallelisable and thus much faster in practice even in the context
of MC simulation (see the discussion after Corollary 7.14 below).

Remark 4.1 To the best of our knowledge, there is no simulation algorithm for the
increment, the infima and the times the infima are attained of a Brownian motion
under different drifts, i.e., of the vector
(
Bt ,B

(c1)
t , τ t (B

(c1)),B
(c2)
t , τ t (B

(c2))
)
, where c1 �= c2 and B(c)

s = Bs + cs, s ≥ 0.

Thus in line 7 of Algorithm 2, we are forced to take independent samples from
�δk

(υκ1 , bκ1) and �δk
(υκ2, bκ2) at each step k. In particular, the coupling of the

marginals X
(κ1)
t and X

(κ2)
t of �

κ1,κ2
t given in line 16 of Algorithm 2 amounts to tak-

ing two independent Brownian motions in the respective representations in (2.5) of
X

(κ1)
t and X

(κ2)
t . Thus unlike the coupling defined in Algorithm 1, here, by Proposi-

tion 7.11 (b), the squared L2-norm satisfies E[(X(κ1)
t − X

(κ2)
t )2] ≥ 2tσ 2 for all levels

1 ≥ κ1 > κ2 > 0, where σ 2 is the Gaussian component of X. Hence for a fixed time
horizon, the coupling �

κ1,κ2
t of χ(κ1)

t
and χ(κ2)

t
is not sufficiently strong for an MLMC

scheme to be feasible if X has a Gaussian component, because the level variances do
not decay to zero. However, by Proposition 7.11 (b), the L2-distance between ζ (κ1)

and ζ (κ2) constructed in Algorithm 2 does tend to zero with t → 0. Thus SBG-Alg
below, which applies Algorithm 2 over the time interval [0,Ln] (recall E[Ln] = T/2n

from the SB representation (2.2)), circumvents this issue.

4.1.3 The SBG sampler

For a time horizon T , we can now define the coupling �
κ1,κ2
n,T of the vectors χ(κ1)

T
and

χ(κ2)
T

via the following algorithm.
By the SB representation (2.2), the law �

κ1,κ2
n,T is indeed a coupling of the vectors

χ(κ1)
T

and χ(κ2)
T

for any n ∈ N ∪ {0}. Note that if n equals zero, the set {1, . . . , n}
in lines 1 and 2 of the algorithm is empty and the laws �

κ1,κ2
0,T and �

κ1,κ2
T coincide,

implying that SBG-Alg may be viewed as a generalisation of Algorithm 2. The main
advantage of SBG-Alg over Algorithm 2 is that it samples n increments of the Gauss-
ian approximation over the interval [Ln,T ] using the fast Algorithm 1, with the “error
term” contribution ξ

i
being geometrically small in the number of sticks n.

The computational complexity of SBG-Alg and Algorithms 1 and 2 is simple to
analyse. Assume throughout that all mathematical operations (addition, multiplica-
tion, exponentiation, etc.), as well as the evaluation of ν(κ) and σ 2

κ for all κ ∈ (0,1]
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Algorithm 3 (SBG-Alg) Simulation of the coupling (χ(κ1)
T

,χ(κ2)
T

) with law �
κ1,κ2
n,T

Require: Cutoff levels 1 ≥ κ1 > κ2 > 0, number of sticks n ∈ N∪ {0} and T > 0.
1: Set L0 := T , sample Uk ∼ U(0,1) and put (�k,Lk) := Lk−1(Uk,1 − Uk) for

k ∈ {1, . . . , n}
2: Sample (ξk,1, ξk,2) ∼ �

κ1,κ2
�k

, k ∈ {1, . . . , n}, and (ξ
1
, ξ

2
) ∼ �

κ1,κ2
Ln� Algorithms 1 & 2

3: Put χ(κi)
n,T

:= ξ
i
+∑n

k=1(ξk,i ,min{ξk,i ,0}, �k1{ξk,i≤0}) for i ∈ {1,2}
4: return (χ(κ1)

n,T
,χ(κ2)

n,T
)

have constant computational cost. Moreover, assume that the simulation of any of
the following random variables has constant expected cost: standard normal N (0,1),
uniform U(0,1), Poisson random variable (independently of its mean) and any jump
with distribution ν|R\(−κ,κ)/ν(κ) (independently of the cutoff level κ ∈ (0,1]). Recall
that [23, Alg. MAXLOCATION] samples the law �t(v,μ) with uniformly bounded
expected cost for all values of the parameters μ ∈ R, v > 0 and t > 0. The next state-
ment follows directly from the algorithms.

Corollary 4.2 Under the assumptions above, there exists a positive constant C1 (resp.
C2; C3), independent of κ1, κ2 ∈ (0,1], n ∈ N and time horizon t > 0, such that the
expected computational complexity of Algorithm 1 (resp. Algorithm 2; SBG-Alg) is
bounded by C1(1 + ν(κ2)t) (resp. C2(1 + ν(κ2)t); C3(n + ν(κ2)t)).

Up to a multiplicative constant, Algorithms 1 and 2 have the same expected com-
putational complexity. However, Algorithm 2 requires not only the additional simu-
lation of the jump times of X(κ2) and a sample from �t(v,μ) using the sampler [23,
Alg. MAXLOCATION] between any two consecutive jumps, but also a sequential
computation of the output (the “for-loop” in lines 5–15) due to the condition in line 9
of Algorithm 2. This makes it hard to parallelise Algorithm 2. SBG-Alg avoids this is-
sue by using the fast Algorithm 1 over the stick lengths in the SB representation (2.2)
and calling Algorithm 2 only over the short time interval [0,Ln], during which very
few (if any) jumps of X(κ2) occur. Moreover, SBG-Alg consists of several condi-
tionally independent evaluations of Algorithm 1, which is parallelisable, leading to
additional numerical benefits (see Sect. 6.2 below).

Remark 4.3 Line 2 of SBG-Alg contains the only call of Algorithm 2, which sam-
ples the coupling (ξ

1
, ξ

2
) of the “error terms” in the SB representation (2.2) over

the geometrically small time interval [0,Ln]. There are two natural modifications of
SBG-Alg that avoid Algorithm 2 altogether, but retain the asymptotic properties (up
to logarithmic factors) of the bias and level variances: (I) set (ξ

1
, ξ

2
) = 0 or (II) ap-

ply SBA introduced in González Cázares et al. [35] to approximate χ(κ1)
Lm

and χ(κ2)
Ln

as a function of the output of Algorithm 1 with t = Ln. Both of these choices would
increase bias and level variance because unlike SBG-Alg, they are sampling from
approximations to the laws of χ(κ1)

Ln
and χ(κ2)

Ln
. This makes them slightly simpler to
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implement, but theoretically less attractive. Moreover, in order to match the asymp-
totic properties of the bias under SBG-Alg, the number of sticks n in algorithms (I)
and (II) would have to grow as a function of the decaying cutoff level κ .

4.2 MC and MLMC estimator based on SBG-Alg

This subsection gives an overview of the bounds on the computational complexity of
the MC and MLMC estimators defined respectively in (4.2) and (4.3) below. Corol-
lary 7.14 (for MC) and Theorem 7.17 (for MLMC) in Sect. 7.5 give the full analysis.

We suppose throughout the subsection that Assumption 3.2 holds with some
δ ∈ (0,2]. As discussed in Sect. 3.1 above, we take δ as large as possible. In particu-
lar, if σ �= 0 then δ = 2. Let q ∈ (0,2] be as in (2.7) and thus q ≥ δ if σ = 0. We take
q as small as possible. For processes used in practice with σ = 0, we may typically
take δ = q = β , where β is the BG index defined in (2.6). Assumption 3.11, required
for the analysis of the class BT2 in (3.14) of discontinuous functions of τT (X), holds
with γ = 1 as Assumption 3.2 is satisfied (see the discussion following Proposi-
tion 3.12). When analysing the class of discontinuous functions BT1 in (3.12), we
suppose that Assumption 3.8 holds throughout with some γ > 0.

4.2.1 Monte Carlo

Pick κ ∈ (0,1] and let the sequence χκ,i
T

, i ∈ N, be i.i.d. (with the same distribution

as χ(κ)
T

) simulated by SBG-Alg with n ∈ N ∪ {0} sticks. The MC estimator based on
N ∈ N independent samples is given by

ϒMC := 1

N

N∑

i=1

f (χκ,i

T
). (4.2)

The MC estimator is L2-accurate at level ε > 0 if its bias is smaller than ε/
√

2 and
the number N of independent samples is proportional to ε−2; see Appendix A.1.
Table 1 contains a summary of the values κ , as a function of ε, such that the bias
of the estimator in (4.2) is at most ε/

√
2, and of the associated Monte Carlo cost

CMC(ε) (up to a constant) for various classes of functions of χ
T

analysed in Sect. 3.2.
Corollary 7.14 below contains the full details of the analysis.

The number n ∈ N ∪ {0} of sticks in SBG-Alg affects neither the law of χ(κ)
T

nor the asymptotic behaviour as ε ↘ 0 of the computational complexity CMC(ε). It
only impacts the MC estimator in (4.2) through numerical stability and the reduc-
tion of the simulation cost by a constant factor. It is hard to determine the optimal
choice for n. Clearly, the choice n = 0 (i.e., Algorithm 2) is not a good one as dis-
cussed in Sect. 4.1.3. A balance needs to be struck between (i) having a vanishingly
small number of jumps in the time interval [0,Ln], so that Algorithm 2 behaves
in a numerically stable way, and (ii) not having too many sticks so that line 2 of
SBG-Alg does not execute redundant computation of many geometrically small in-
crements of X(κ), which are not detected in the final output. A good rule of thumb
is n = n0 + �log2(1 + ν(κ)T )�, where �x� := inf{j ∈ Z : j ≥ x}, x ∈ R, and the
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Table 1 Asymptotic behaviour of the level κ and the complexity CMC(ε) as ε → 0 for the MC estimator
in (4.2)

Family of functions f Case κ ε2 · CMC(ε)

Lip in (XT ,XT ) σ �= 0 ε1/(3−q)| log ε|−1 ε−q/(3−q)| log ε|q
locLip in (XT ,XT ) σ �= 0 ε2/(4−q)| log ε|−1/2 ε−2q/(4−q)| log ε|q/2

Lip ∪ locLip in (XT ,XT ) σ = 0 ε| log ε|−1 ε−q | log ε|q

BT1 defined in (3.12) σ �= 0 max
{

ε3/(4−q)

| log ε| , ε2/(3−q)

| log ε|1/2

}
min

{ | log ε|q
ε3q/(4−q) ,

| log ε|q/2

ε2q/(3−q)

}

σ = 0 ε1/2+1/γ | log ε|−1 ε−q(1/2+1/γ )| log ε|q

Lip in τT (X) σ �= 0 ε1/(3−q) ε−q/(3−q)

δ ∈ (0,2) \ { 2
3 } εmin{2/δ,max{3/2,1/δ}} ε−q min{2/δ,max{3/2,1/δ}}

δ = 2
3 ε3/2| log ε|−1 ε−3q/2| log ε|q

BT2 defined in (3.14)

σ �= 0 ε2/(3−q) ε−2q/(3−q)

δ ∈ (0,2) \ { 2
3 } εmin{4/δ,max{3,2/δ}} ε−q min{4/δ,max{3,2/δ}}

δ = 2
3 ε3| log ε|−1/2 ε−3q | log ε|q/2

initial value n0 is chosen so that some sticks are present if for large κ , the total ex-
pected number ν(κ)T of jumps is small (e.g. n0 = 5 works well in Sect. 6.2 for jump-
diffusions with low activity; see Figs. 7 and 6), ensuring that the expected number of
jumps in [0,Ln] vanishes as ε → 0 (and hence κ → 0). This choice keeps the com-
plexity of the simulation nearly constant for varying values of κ when the increments
of X(κ) can be sampled efficiently. Moreover, it typically satisfies the asymptotic as-
sumptions of Theorem 7.17.

4.2.2 Multilevel Monte Carlo

The key ingredient of any MLMC estimator is the coupling between two consecu-
tive levels of approximation that can be sampled efficiently. SBG-Alg is constructed
with this in mind, returning a sample from a joint law for two different cutoff levels.
(Note that the coupling constructed in SBG-Alg is different from the SBG coupling
between χ

T
and its Gaussian approximation χ(κ)

T
, used in Sect. 3 to control the dis-

tances between the two laws.) More precisely, the MLMC estimator in (4.3), based
on the coupling in SBG-Alg, is given as follows. Let (κj )j∈N (resp. (nj )j∈N∪{0}) be a
decreasing (resp. increasing) sequence in (0,1] (resp. N) satisfying limj→∞ κj = 0.

Let χ0,i d= χ(κ1)
T

and (χ
j,i

1 , χ
j,i

2 ) ∼ �
κj ,κj+1
nj ,T , i, j ∈ N, be independent draws con-

structed by SBG-Alg. Recall that the sequence (nj ) appears as a parameter in the

coupling �
κj ,κj+1
nj ,T (which is the law that the pair of vectors (χ

j,i

1 , χ
j,i

2 ) follow). The
number nj specifies the number n of sticks used in SBG-Alg for the level j . Then for
the parameters m,N0, . . . ,Nm ∈ N, the MLMC estimator takes the form

ϒML :=
m∑

j=0

1

Nj

Nj∑

i=1

Di
j , where Di

j :=
⎧
⎨

⎩
f (χ

j,i

2 ) − f (χ
j,i

1 ), j ≥ 1,

f (χ0,i ), j = 0.
(4.3)
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Table 2 The table presents the power of ε−1 in ε2CML(ε) as ε → 0, neglecting only the
logarithmic factors (see Theorem 7.17 below for the complete result). The parameter a in
the table determines the decreasing sequence of cutoff levels (κj )j∈N as follows: κj =
(1 + |a|/q)−2(j−1)/|a| if a �= 0, and κj = exp(−(2/q)(j − 1)) otherwise. The correspond-

ing increasing number nj of sticks in the definition of the law �
κj ,κj+1
nj ,T

can be taken to grow

asymptotically as log2(1 + ν(κj )T ) for large j ; see Theorem 7.17 below

Family of functions f Case a The power of ε−1 in ε2CML(ε)

Lip in (XT ,XT ) σ �= 0 2(q − 1) 2(q − 1)+/(3 − q)

locLip in (XT ,XT ) σ �= 0 2(q − 1) 4(q − 1)+/(4 − q)

Lip ∪ locLip in (XT ,XT ) σ = 0 2(q − 1) 2(q − 1)+

BT1 defined in (3.12) σ �= 0 2(2q − 1)/3 (2q − 1)+ min{2/(4 − q),4/(9 − 3q)}
σ = 0 2(q(1 + γ ) − γ )/(2 + γ ) (q(1 + 1/γ ) − 1)+

Lip in τT (X) σ �= 0 5
4 q − 1

2 ( 5
4 q − 1

2 )+

σ = 0 q − (1 − q
2 )min{ 1

2 , 2δ
2−δ

} (2q − (2 − q)min{1,4δ/(2 − δ)})+
max{δ,min{4/3,2δ}}

BT2 defined in (3.14) σ �= 0 9
8 q − 1

4 ( 9
4 q − 1

2 )+

σ = 0 q − (1 − q
2 )min{ 1

4 , δ
2−δ

} (2q − (2 − q)min{1/2,2δ/(2 − δ)})+
max{δ/2,min{2/3, δ}}

Given a coupling between consecutive levels, the integer parameters m,N0, . . . ,Nm

in the estimator ϒML are chosen in a well-known optimal way; see Appendix A.2
for details. Table 2 summarises the resulting MLMC complexity up to logarithmic
factors, with complete results available in Theorem 7.17 below.

There are two key ingredients in the proof of Theorem 7.17: (I) the bounds in
Theorem 7.10 on the L2-distance (i.e., the level variance, see Appendix A.2) between
the functions of the marginals of the coupling �

κj ,κj+1
nj ,T constructed by SBG-Alg; (II)

the bounds on the bias of various functions in Sect. 3. The number m of levels in the
MLMC estimator in (4.3) is chosen to ensure that its bias, equal to the bias of χ(κm)

T

at the top cutoff level κm, is bounded by ε/
√

2. Thus the value of m can be expressed
in terms of ε using Table 1 and the explicit formula for the cutoff κj , given in the
caption of Table 2. The formula for κj at level j in the MLMC estimator in (4.3) is
established in the proof of Theorem 7.17 by minimising the multiplicative constant in
the computational complexity CML(ε) over all possible rates of the geometric decay
of the sequence (κj )j∈N.

We stress that the analysis of the level variances for the various payoff functions
of the coupling �

κj ,κj+1
nj ,T in Theorem 7.10 is carried out directly for locally Lipschitz

payoffs; see Propositions 7.11. However, in the case of the discontinuous payoffs
in BT1 (see (3.12)) and BT2 (see (3.14)), the analysis requires a certain regular-

ity (uniformly in the cutoff levels) of the coupling (χ
(κj )

T ,χ
(κj+1)

T ). This leads to

a construction of a further coupling (χ
(κj )

T ,χ
(κj+1)

T ,χ
T
) where the components of

(χ
(κj )

T ,χ
(κj+1)

T ) can be compared to the limiting object χ
T

, which can be shown to
possess the necessary regularity (see Proposition 7.13 below for details).
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Fig. 3 Dashed (resp. solid) lines represent the power of ε−1 in the computational complexity of the MC
(resp. MLMC) estimator for the expectation of a Lipschitz functional f (XT ,XT ), plotted as a function
of the BG index β defined in (2.6). The SBG plots are based on Tables 1 and 2. The JAG plots are based
on Dereich [21, Corollary 3.2] for the MC cost, and on [21, Corollary 1.2] if β ≥ 1 (resp. Dereich and
Heidenreich [22, Corollary 1] if β < 1) for the MLMC cost

5 Comparison with the literature

Approximations of the pair (XT ,XT ) abound. They include the random walk ap-
proximation, a Wiener–Hopf based approximation (Kuznetsov et al. [46], Ferreiro-
Castilla et al. [25]), the jump-adapted Gaussian (JAG) approximation (Dereich and
Heidenreich [22, 21]) and more recently, the SB approximation (González Cázares
et al. [35]). The SB approximation converges the fastest as its bias decays geo-
metrically in its computational cost. However, the JAG approximation is the only
method known to us that does not require the ability to simulate the increments
of the Lévy process X. Indeed, the JAG approximation simulates all jumps above
a cutoff level, together with their jump times, and then samples the transitions of
the Brownian motion from the Gaussian approximation on a random grid contain-
ing all the jump times. In contrast, in the present paper, we approximate the vector
χT = (XT ,XT , τT (X)) with an exact sample from the law of the Gaussian approxi-

mation χ
(κ)
T = (X

(κ)
T ,X

(κ)

T , τT (X(κ))).
The JAG approximation has been analysed for Lipschitz payoffs applied to the pair

(XT ,XT ) in Dereich and Heidenreich [22], Dereich [21]. The discontinuous and lo-
cally Lipschitz payoffs arising in applications and considered in this paper (see Fig. 1)
have, to the best of our knowledge, not been analysed for the JAG approximation,
nor have the payoffs involving the time τT (X) at which the supremum is attained.
Within the class of Lipschitz payoffs of (XT ,XT ), the computational complexities
of the MC and MLMC estimators based on SBG-Alg are asymptotically smaller than
those based on the JAG approximation; see Fig. 3. In fact, SBG-Alg applied to dis-
continuous payoffs outperforms the JAG approximation applied to Lipschitz payoffs
by up to an order of magnitude in computational complexity; cf. Figs. 1(A), (B)
and 3.

In order to understand where the differences in Fig. 3 come from, we summarise
in Table 3 the bias and level variance for SBG-Alg and the JAG approximation as a
function of the cutoff level κ ∈ (0,1] in the Gaussian approximation; cf. (2.5).

Table 3 shows that both bias and level variance decay at least as fast (and typi-
cally faster) for SBG-Alg than for the JAG approximation. The large improvement
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Table 3 The rates (as κ → 0) of decay of bias and level variance for Lipschitz payoffs of (XT ,XT ) under
the JAG approximation are based on Dereich [21, Corollary 3.2] and Dereich and Heidenreich [22, Theorem
2], respectively. The rates on the bias and level variance for the SBG-Alg are given in Theorems 3.4 and
7.10

Gaussian component Approximation Bias Level variance

With (σ �= 0) JAG max{κ1−β/4, κβ/2}| logκ|1/2 max{κ2−β, κβ | logκ|}
SBG κ3−β | logκ| κ2−β

Without (σ = 0) JAG max{κ1−β/4| logκ|1/2, κβ } max{κ2−β, κ2β }
SBG κ| logκ| κ2−β

in the computational complexity of the MC estimator in Fig. 3 is due to the faster
decay of the bias under SBG-Alg. Put differently, the SBG coupling constructed in
the present paper controls the Wasserstein distance much better than the KMT-based
coupling in Dereich [21]. For a BG index β > 1, the improvement in the computa-
tional complexity of the MLMC estimator is mostly due to a faster bias decay. For
β < 1, Fig. 3 (A) suggests that the computational complexity of the MLMC estima-
tor under both algorithms is optimal. However, in this case, Table 3 and the equal-
ity in (A.3) imply that the MLMC estimator based on the JAG approximation has a
computational complexity proportional to ε−2 log3(1/ε), while that of SBG-Alg is
proportional to ε−2. This improvement is due solely to the faster decay of level vari-
ance under SBG-Alg. The numerical experiments in Sect. 6.1 suggest that our bounds
for Lipschitz and locally Lipschitz functions are sharp; see the graphs (A) and (C) in
Figs. 4 and 5.

To the best of our knowledge, there are no directly comparable results in the lit-
erature to either Theorem 3.4 or Proposition 3.12. Partial results in the direction of
Theorem 3.4 are given in Dia [24], Mariucci and Reiß [50], Carpentier et al. [12].
Improvements in our Theorems 3.1 and 3.3 on the existing bounds on the distance
between the marginals Xt and X

(κ)
t have been discussed in detail in Sect. 3.1.1. The

rate of the bound in [24, Theorem 2] on the Wasserstein distance between the suprema

Xt and X
(κ)

t is worse than that implied by the bound in Corollary 3.5 on the Wasser-

stein distance between the joint laws of (Xt ,Xt ) and (X
(κ)
t ,X

(κ)

t ). Proposition 3.7
bounds the bias of locally Lipschitz functions, generalising [24, Proposition 9] and
providing a faster decay rate. Proposition 3.9 and Corollary 3.14 (a) cover a class
of discontinuous payoffs, including the up-and-out digital option considered in [24,
Proposition 10 (part 3)], and provide a faster rate of decay as κ → 0 if either X has a
Gaussian component or a BG index β > 2/3.

6 Numerical examples

In this section, we study numerically the performance of SBG-Alg. All the results
are based on the code available in the repository [31]. In Sect. 6.1, we apply SBG-
Alg to two families of Lévy models (tempered stable and Watanabe processes) and
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verify numerically the decay of the bias (established in Sect. 3.2) and level variance
(see Theorem 7.10 below) of the Gaussian approximations. In Sect. 6.2, we study
numerically the cost reduction of SBG-Alg, when compared to Algorithm 2, for the
simulation of the vector χ(κ)

T
. In Sect. 6.3, we numerically demonstrate the stability

and effectiveness of SBG-Alg for the Monte Carlo estimation of Delta and Gamma
of barrier options under Lévy models.

6.1 Numerical performance of SBG-Alg for tempered stable and Watanabe
models

To illustrate numerically our results, we consider two classes of exponential Lévy
models S = S0e

X . The first is the tempered stable class, containing the CGMY (or
KoBoL) model, a process widely used for modelling risky assets in financial math-
ematics (see e.g. Cont and Tankov [20, Remarks 4.3 and 4.4] and the references
therein), which satisfies the regularity assumptions from Sect. 3.2. The second is
the Watanabe class, which has diffuse but singular transition laws (Sato [62, Theo-
rem 27.19]), making it a good candidate to stress test our results.

We numerically study the decay of the bias and level variance of the MLMC
estimator in (4.3) for the prices of a lookback put E[ST − ST ] and an up-and-out
call E[(ST − K)+1{ST ≤M}] as well as the values of the ulcer index (UI) given by

100E[(ST /ST − 1)2]1/2 (see Martin and McCann [51, Sect. 6.2]) and a modified
ulcer index (MUI) defined by 100E[(ST /ST − 1)21{τT (S)<T/2}]1/2. The first three
quantities are commonplace in applications; see Cont and Tankov [20, Sect. 11.3]
and Martin and McCann [51, Sect. 6.2]. The MUI refines the UI by incorporating
the information on the drawdown duration, and weights trends more heavily than
short-time fluctuations.

In Sects. 6.1.1 and 6.1.2, we use N = 105 independent samples to estimate

the means and variances of the variables D1
j in (4.3) (with χ

(κj )

T substituted by

χ
(κj )

T ), where the choice of the parameters nj = �max{j, log2(1 + ν(κj+1))}� and
κj = e−r(j−1), j ∈ N, is discussed in Sect. 7.5 below.

6.1.1 Tempered stable model

The characteristic triplet (σ 2, ν, b) of the tempered stable Lévy process X is given by
σ = 0, drift b ∈R and Lévy measure ν(dx) = |x|−1−αsgn(x)csgn(x)e

−λsgn(x)|x|dx, where
α± ∈ [0,2), c± ≥ 0 and λ± > 0; cf. (2.3). Exact simulation of increments is currently
out of reach if either α+ > 1 or α− > 1 (see e.g. Grabchak [36]) and requires the
Gaussian approximation.

Figure 4 suggests that our bounds are close to the exhibited numerical behaviour

for continuous payoff functions. In the discontinuous case, χ
(κj )

T appears to be much

closer to χT (resp. χ
(κj+1)

T ), than predicted by Propositions 3.9 and 3.12 (resp. Theo-
rem 7.10 (b) and (d)).
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Fig. 4 Gaussian approximation of a tempered stable process: log–log plot of the bias and level variance for
various payoffs as a function of logκj . Circle (◦) and plus (+) correspond to log |E[D1

j
]| and logV[D1

j
],

respectively, where D1
j

is given in (4.3) with κj = exp(−r(j − 1)) for r = 1/2. The dashed lines in all
the graphs plot the rates of the theoretical bounds in Sect. 3.2 (blue for the bias) and Theorem 7.10 (red
for level variances). In plots (A)–(D), the initial value of the risky asset is normalised to S0 = 1 and the
time horizon is set to T = 1/6. In plot (B), we set K = 1 and M = 1.2. The model parameters are given in
Table 4 below

Table 4 The parameters used for Fig. 4. The first set of parameters corresponds to the risk-neutral calibra-
tion to vanilla options on the USD/JPY exchange rate; see Andersen and Lipton [1, Table 3]. The second
set is the maximum likelihood estimate based on the real-world S&P stock prices; see Kim et al. [40,
Table 1]

Parameter set b α+ α− c+ c− λ+ λ− Graphs in Fig. 4

1 0 0.66 0.66 0.1305 0.0615 6.5022 3.0888 (A) and (B)

2 0.1274 1.0781 1.0781 0.41077 0.41077 49.663 59.078 (C) and (D)

6.1.2 Watanabe model

The characteristic triplet (σ, ν, b) of the Watanabe process is given by σ = 0, the
Lévy measure ν equals

∑
n∈N(c+δa−n + c−δ−a−n), where a ∈ N \ {1} and δx is the

Dirac measure at x, and the drift b ∈ R is arbitrary. The increments of the Watanabe
process are diffuse, but have no density (see Sato [62, Theorem 27.19]). Since the
process has very little jump activity, the bound in Proposition 3.12 (see also (3.6))
is non-vanishing and the bounds in Theorem 7.10 (c) and (d) are not applicable,
meaning that we have no theoretical control on the approximation of τT (S). This is
not surprising as such acute lack of jump activity makes the Gaussian approximation
unsuitable (cf. Asmussen and Rosiński [2, Proposition 2.2]).

The pictures in Fig. 5 (A) and (C) suggest that our bounds on the bias and level
variance in Sect. 3.2 and Theorem 7.10 are robust for continuous payoff functions
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Fig. 5 Gaussian approximation of a Watanabe process: log–log plot of the bias and level variance for
various payoffs as a function of logκj . Circle (◦) and plus (+) correspond to log |E[D1

j
]| and logV[D1

j
],

respectively, where D1
j

is given in (4.3) with κj = exp(−r(j − 1)) for r = 1. The dashed lines in graphs
(A) and (C) plot the rates of the theoretical bounds in Sect. 3.2 (blue for the bias) and Theorem 7.10 (red
for level variances). In plots (A)–(D), the initial value of the risky asset is normalised to S0 = 1 and the
time horizon is set to T = 1. The model parameters are given by a = 2, c+ = c− = 1

even if the underlying Lévy process has no transition densities. There are no dashed
lines in Fig. 5 (B) and (D) as there are no results for discontinuous functions of
τT (S) in this case. In fact, Fig. 5 (B) suggests that the decay rate of the bias and level
variance for functions of τT (S) can be arbitrarily slow if the process does not have
sufficient activity. Figure 5 (D), however, suggests that this decay is still fast if the un-
derlying finite variation process X has a nonzero natural drift (see also Remark 3.6).

6.2 The cost reduction of SBG-Alg over Algorithm 2

Recall that Algorithm 2 and SBG-Alg both draw exact samples of a Gaussian ap-
proximation χ(κ)

T
. However, in practice, SBG-Alg may be many times faster than

Algorithm 2; Fig. 6 plots the speedup factor in the case of a tempered stable process,
defined in Sect. 6.1.1, as a function of κ . In conclusion, one should use SBG-Alg
instead of Algorithm 2 for the MC estimator in (4.2). Even though the efficiency
of SBG-Alg over Algorithm 2 for κ > 0.1 is not as drastic, one should still use SBG-
Alg because Algorithm 2 is neither parallelisable nor suitable for MLMC, as dis-
cussed in Sect. 4.1.2.

If the Lévy process X is a jump-diffusion, i.e., ν(R \ {0}) < ∞, we may apply
Algorithms 1 and 2 and SBG-Alg with κ1 = κ2 = 0. In that case, SBG-Alg still out-
performs Algorithm 2 by a constant factor, with computational benefits being more
pronounced when the total expected number of jumps λ := ν(R \ {0})T is large; see
Fig. 7. The cost reduction is most drastic when λ is large, but the improvement is
already significant for λ = 2; see Fig. 7.
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Fig. 6 The pictures show the ratio of the cost of Algorithm 2 over the cost of SBG-Alg (both in seconds)
for the Gaussian approximations of a tempered stable process as a function of the cutoff level κ . The
parameters used are λ± = 5, c± = 2. The number of sticks n in SBG-Alg varies between 5 and 20. The
ratio for n = 20 is 57.8 (resp. 61.7) in the case α± = 1.2 (resp. α± = 1.4) for κ = 2−16 (resp. κ = 2−14)

Fig. 7 The pictures show, for multiple number of sticks n, the ratio of the cost of Algorithm 2 over
the cost of SBG-Alg (both in seconds) for jump-diffusions as a function of the mean number of jumps
λ = ν(R \ {0})T . The ratio for n = 15 is 11.8 (resp. 10.8) in Merton’s (resp. Kou’s) model when λ = 10,
see Merton [52] and Kou [44]

6.3 Estimating Greeks: Delta and Gamma for barrier options in Lévy models

A fundamental problem in mathematical finance is to compute the sensitivity of the
price of a derivative security to the various underlying parameters in order to construct
appropriate hedging strategies. These sensitivities are known as the Greeks and are in
practice given by the partial derivatives of the option price e−rT

E[P ] (where r is the
discount rate over the time horizon T and P is a random payoff). The most common
of the Greeks are Delta and Gamma, given by the first and second derivatives of the
price e−rT

E[P ] with respect to the spot S0.
If the risk-neutral dynamics of the risky asset is described by an exponential Lévy

model S = S0e
X , SBG-Alg provides a simple procedure for the Monte Carlo esti-

mation of Delta and Gamma for any payoff P = g(χT ) (where we recall that the
derivatives f ′(x) and f ′′(x) of a function f (x) are approximated by the quotients
(f (x + h) − f (x − h))/(2h) and (f (x + h) − 2f (x) + f (x − h))/h2, respectively,
for a small h > 0). This approach, widely used in practice, requires a Monte Carlo
evaluation using SBG-Alg of e−rT

E[g(χT )] on a grid of current spot prices S0, where
the simulated stick-breaking sequence and the corresponding increments of X(κ) can
be re-used over the grid points of S0.
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Fig. 8 Monte Carlo estimation of the price, Delta and Gamma for the up-and-out call option with payoff
g(χT ) = (ST −K)+1{ST ≤M} (see the first paragraph of Sect. 6.3.1 for parameter values) based on SBG-
Alg. Solid lines (resp. dashed lines; dotted lines) correspond to the option maturity of one month (resp.
one week; one day). Since the orders of magnitude (close to the barrier) of the Deltas and Gammas vary
significantly with the maturity and all the Greeks in this example take both positive and negative values,
we plot in graphs (B) and (C) F(Delta) and F(Gamma), where F(x) := sgn(x) log(1 + |x|), x ∈ R, is a
bijection on R preserving the sign of x but reducing its magnitude to logarithmic scale

6.3.1 Delta and Gamma for up-and-out call in a tempered stable (CGMY) model

We demonstrate the numerical stability of SBG-Alg in this context by computing
Delta and Gamma for the up-and-out call payoff g(χT ) = (ST − K)+1{ST ≤M} con-
sidered in Sect. 6.1.1; the model parameters, calibrated from USD/JPY foreign ex-
change options data, are given as parameter set 1 in Table 4, with strike K = 1, barrier
level M = 1.2 and interest rate r = 0.05. To stress test the model, we increased the
activity index by taking α± = 1.16 instead of 0.66. Figure 8 reports the results of the
Monte Carlo estimation of the up-and-out call option price, together with its Delta
and Gamma, with the spot ranging over the interval S0 ∈ [0.95,1.2) for the maturi-
ties of 1 month, 1 week and 1 day. The grid spacing in the interval [0.95,1.2) was
set at h = 0.001 with jump cutoff κ = 0.001. We used n = 10 sticks and N = 107

samples, which resulted in a total simulation time1 of 12 minutes for all spot values
S0 on the grid and all maturities.

We note that the option price, Delta and Gamma in Fig. 8 look remarkably smooth
as functions of the spot S0, given that all the values in the three graphs are obtained
using Monte Carlo simulation. We further note that the spot grid spacing h = 10−3

1We used an HP Pavilion laptop 15-cw0xxx containing an AMD Ryzen 5 2500U with Radeon Vega Mobile
and 12 GB of RAM.
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Fig. 9 Modulus of the difference between the estimates for Delta and Gamma for an up-and-out call option
using a Monte Carlo algorithm based on SBG-Alg, where the difference reflects the improved accuracy
of using the cutoff κ = 0.001 over the cutoff κ = 0.1. Away from the barrier, the numerical values for
both cutoff levels are close to each other. As expected, the gap widens close to the barrier. Since the order
of magnitude (close to the barrier) of the differences between Deltas and Gammas for the two cutoffs
varies significantly, we plot in both graphs F(difference), where F(x) := sgn(x) log(1 + |x|), x ∈ R, is a
bijection on R preserving the sign of x but reducing its magnitude to logarithmic scale. A positive value
of F(difference) indicates that the estimate of the Greek based on the cutoff κ = 0.001 is larger than the
one for κ = 0.1

should be small, but h2N = 10 should not be, which is consistent with the simi-
lar problem of density estimation via Monte Carlo (see e.g. Ben Abdellah et al.
[6]). Having h2N of moderate size ensures that the discontinuities of the function
S0 
→ e−rT (S0 exp(XT ) − K)+1{XT ≤log(M/S0)} do not dominate in the estimation of
the Greeks. For each realisation of X, this function has a single discontinuity at the
random level I = exp(−XT )M with size of constant order. Every discontinuity of
the Monte Carlo estimator will thus be of order 1/N . The estimators of Delta and
Gamma take a linear combination of such averages at different spot levels S0 and
divide by h and h2, respectively, resulting in discontinuities (as a function of S0) of
orders 1/(hN) and 1/(h2N) for the Delta and Gamma, respectively. Hence h should
be chosen to make h2N of moderate size to keep these discontinuities from dominat-
ing in the estimation. The apparent smoothness of both Greeks further confirms our
choice of h to be reasonable.

There is an inflection point (a switch from concavity to convexity) for our ap-
proximation of the Delta near the barrier, visible in Fig. 8 for the 1 day maturity; it
corresponds to a local minimum of Gamma at S0 = 1.1971. For the larger maturities,
this inflection point is much closer to the barrier and is not visible in the graph, but
can be observed in the figures coming out of the simulation. This inflection point
close to the barrier was a persistent feature of our numerical scheme, observed after
repeating the simulation with different random seeds a number of times. In contrast
to the diffusion setting in Mijatović [53], we are not aware of any theoretical or em-
pirical studies documenting such phenomena for barrier options under models with
jumps. Put differently, while our Monte Carlo method suggests that the approxima-
tion of the Delta exhibits inflection near the barrier, it is neither clear that inflection
persists in the limit as the spacing tends to zero (i.e., h → 0), nor that it is a genuine
feature of the actual Delta in the model.

In order to understand the dependence on the jump cutoff κ , we compare the nu-
merical results in Fig. 8 (where κ = 10−3) with an identical Monte Carlo algorithm
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based on SBG-Alg, but with κ = 0.1. In Fig. 9, we plot the difference between Delta
and Gamma produced by two different values of κ . There is little difference between
the cutoff levels away from the barrier, meaning that the Monte Carlo estimator based
on SBG-Alg for Delta and Gamma is robust in the value of the cutoff κ . This is sur-
prising because we are using a naive (i.e., not based on Malliavin calculus) Monte
Carlo estimator to compute derivatives of an expectation with respect to the starting
point. The difference of the estimates for Delta and Gamma, corresponding to the
different cutoffs, increases close to the barrier. In the regime when S0 tends to the
barrier level M , it is hard to give an intuitive explanation for the difference between
the approximations of the first and second derivatives of the price.

6.3.2 Comparison with an analytically tractable pricing formula

We are not aware of an analytically tractable approximation for the price of an up-
and-out call option studied in Sect. 6.3.1 under a Lévy model with jumps of infinite
activity (i.e., with Lévy measure of infinite total mass), much less of its sensitivities.
In order to test numerically the performance of SBG-Alg against a tractable formula,
we compute Delta and Gamma of an up-and-out digital option with barrier M and
payoff g(χT ) = 1{ST ≤M} = 1{XT ≤log(M/S0)} under an exponential Lévy model with
analytically tractable Delta and Gamma. Let X be an α-stable process of infinite vari-
ation without positive jumps. The strong Markov property of X at the first crossing
time τx := inf{t ≥ 0 : Xt > x} yields

P[XT > x] =
∫

[0,T )

P[XT −t > 0]P[τx ∈ dt] = P[XT > 0]P[XT > x]

for any x > 0, since the scaling property of X implies P[Xt > 0] = P[XT > 0] for
all t > 0, and the absence of positive jumps yields Xτx = x a.s. for any x > 0 and
{τx < T } = {XT > x} a.s. In turn, the formula above implies that XT has the same
law as XT conditioned to be positive. The option price is thus given as function of
the spot by

S0 
→ e−rT
E[g(χT )] = e−rT

P[XT ≤ log(M/S0)]/P[XT > 0]. (6.1)

The corresponding Delta and Gamma, equal to the first and second derivatives of this
function, can be expressed as a geometrically converging power series (see Uchaikin
and Zolotarev [66, Chap. 4]) and computed numerically without the use of Monte
Carlo.

The parameters for this test were chosen as follows: X has unit scale (in
Zolotarev’s (C) parametrisation; see Uchaikin and Zolotarev [66, Sect. 3.6]) and the
stability parameter α = 1.7, while the market data is r = 0.05, T = 1/12, M = 1 and
S0 ∈ [0.85,1). To highlight the importance of the cutoff level κ , we compare κ = 0.1
with κ = 0.001. We used n = 25 sticks, N = 107 samples and grid size h = 0.005.
This resulted in a total simulation time of 12 minutes. The estimation of Delta and
Gamma is accurate and numerically stable.

Surprisingly, the error in Delta – see graph (B) in Fig. 10 – remains bounded all
the way to the barrier M for both values of κ . The error for κ = 0.001 is smaller than
the one for κ = 0.1, but comes at a significant increase in cost due to the Blumenthal–
Getoor index of X being equal to 1.7 (and in particular much greater than one).
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Fig. 10 Monte Carlo estimation of Delta and Gamma for the up-and-out digital option with payoff
g(χT ) = 1{ST ≤M} under an α-stable model with no positive jumps; see the second paragraph of
Sect. 6.3.2 for the values of the model and market parameters. Dashed lines (resp. dotted lines) correspond
to the output based on Monte Carlo estimation using SBG-Alg for κ = 0.1 (resp. κ = 0.001). Figures
(A) and (C) contain a solid line corresponding to the true values of Delta and Gamma, computed using
a geometrically convergent power series in Uchaikin and Zolotarev [66, Chap. 4] for the value function
in (6.1)

7 Proofs

In the remainder of the paper, we use the notation τ t := τ t (X), τ
(κ)
t := τ t (X

(κ))

for all t > 0.

7.1 Proof of Theorems 3.1 and 3.3

In this subsection, we establish bounds on the Wasserstein and Kolmogorov distances
between the increment Xt and its Gaussian approximation X

(κ)
t in (2.5).

Proof of Theorem 3.1 Recall the Lévy–Itô decomposition of X at level κ in (2.4)
and the martingale M(κ) = σB + J 1,κ . Set Z := X − M(κ) and note that we have

X(κ) = Z +
√

σ 2
κ + σ 2 W , where W is a standard Brownian motion in (2.5), indepen-

dent of Z. Hence any coupling (Wt ,M
(κ)
t ) yields a coupling of (Xt ,X

(κ)
t ) satisfying

E[|Xt − X
(κ)
t |p] = E

[∣∣∣M(κ)
t −

√
σ 2

κ + σ 2 Wt

∣∣∣
p]

.
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Setting W := B , which amounts to the independence coupling (W,J 1,κ ), and apply-
ing Jensen’s inequality for p ∈ [1,2] yields

E[|Xt − X
(κ)
t |p]2/p ≤ E

[∣∣∣J 1,κ
t −

(√
σ 2

κ + σ 2 − σ
)
Wt

∣∣∣
2]≤ 2tσ 2

κ .

For any m ∈ N, we have M
(κ)
t

d= ∑m
i=1 ξi , where ξ1, . . . , ξm are i.i.d. with

ξ1
d= M

(κ)
t/m. Hence Petrov [57, Theorem 16] and Rio [60, Theorem 4.1] imply the

existence of universal constants Kp , p ∈ [1,2], with K1 = 1/2, satisfying

Wp
p

(
M

(κ)
t ,

√
σ 2

κ + σ 2Wt

)
≤ K

p
p

(t (σ 2
κ + σ 2))p/2

E[|ξ1|p+2]
mp/2E[ξ2

1 ](p+2)/2

= K
p
p

(m/t)E[|M(κ)
t/m|p+2]

σ 2
κ + σ 2

for all m ∈ N. According to Figueroa-López [26, Theorem 1.1], the limit as m → ∞
of the right-hand side of the display above equals

K
p
p

∫

(−κ,κ)

|x|p+2ν(dx)/(σ 2
κ + σ 2) ≤ K

p
p κpϕ2

κ ,

implying the claim in the theorem. �

Proof of Theorem 3.3 (a) Set dκ := supx∈R |P[M(κ)
t ≤ x]−P[

√
σ 2

κ + σ 2 Wt ≤ x]| and
note that

∣∣P[Xt ≤ x] − P[X(κ)
t ≤ x]∣∣

= ∣∣E[P[M(κ)
t ≤ x − Zt |Zt ] − P[

√
σ 2

κ + σ 2Wt ≤ x − Zt |Zt ]
]∣∣≤ dκ,

where the processes Z and M(κ) are as in the proof of Theorem 3.1. Since M(κ) is

a Lévy process, for any m ∈ N, we have M
(κ)
t

d=∑m
i=1 ξi , where ξ1, . . . , ξm are i.i.d.

with ξ1
d= M

(κ)
t/m. By the Berry–Esseen inequality, see Korolev and Shevtsova [42,

Theorem 1], there exists a constant CBE ∈ (0, 1
2 ) such that

dκ ≤ CBEE[|ξ1|3]√
mE[ξ2

1 ]3/2
= CBEt

m
√

m

(m/t)E[|M(κ)
t/m|3]

(t/m)3/2(σ 2
κ + σ 2)3/2

= CBE
(m/t)E[|M(κ)

t/m|3]√
t(σ 2

κ + σ 2)3/2

for all m ∈ N. Taking m → ∞ yields (a) since according to Figueroa-López [26,
Theorem 1.1], the limit of the right-hand side of the display above equals

CBE

∫

(−κ,κ)

|x|3ν(dx)/
(√

t(σ 2
κ + σ 2)3/2)≤ CBE(κ/σ κ)ϕ3

κ/
√

t .

(b) By Picard [58, Theorem 3.1(a)], Xt has a smooth density ft , and given T > 0,
the constant C′ = sup(t,x)∈(0,T ]×R t1/δft (x) is finite. Applying (3.1) and (7.10) in
Lemma 7.5 with p = 2 gives (3.3). �
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7.2 Proof of Theorem 3.4

We recall an elementary result for stick-breaking processes.

Lemma 7.1 Let (�n)n∈N be a stick-breaking process on [0,1] based on the uniform
law. For any measurable function φ ≥ 0, we have

∑

n∈N
E[φ(�n)] =

∫ 1

0

φ(x)

x
dx.

In particular, for any a1, a2 > 0 and b1 < b2 with b2 > 0, we have
∑

n∈N
E[min{a1�

b1
n , a2�

b2
n }]

=
⎧
⎨

⎩

a2
b2

min{1, a1
a2

}b2/(b2−b1) + a1
b1

(1 − min{1, a1
a2

}b1/(b2−b1)), b1 �= 0,

b−1
2 min{a2, a1}(1 + log+ a2

a1
), b1 = 0.

Proof The law of − log�n is gamma with shape n and scale 1. Applying Fubini’s
theorem implies

∑

n∈N
E[φ(�n)] =

∑

n∈N

∫ ∞

0

xn−1

(n − 1)!e
−xφ(e−x)dx =

∫ ∞

0
φ(e−x)dx =

∫ 1

0

φ(x)

x
dx.

The formula for φ(x) := min{a1x
b1 , a2x

b2} follows by a direct calculation. �

The Lp-Wasserstein distance, defined in (3.10), satisfies

Wp
p (ξ, ξ∗) =

∫ 1

0
|F−1(u) − F−1∗ (u)|pdu,

where F−1 (resp. F−1∗ ) is the right inverse of the distribution function F (resp. F∗)
of the real-valued random variable ξ (resp. ξ∗) (see Bobkov and Ledoux [10, Theo-
rem 2.10]). Thus the comonotonic (or minimal transport) coupling defined by

(ξ, ξ∗) := (F−1(U),F−1∗ (U)
)

for some U ∼ U(0,1) (7.1)

attains the infimum in definition (3.10).

Lemma 7.2 If ξ and ξ∗ are real-valued and comonotonically coupled, then

E[|1{ξ≤x} − 1{ξ∗≤x}|] = |E[1{ξ≤x} − 1{ξ∗≤x}]| for any x ∈R.

Proof Suppose (ξ, ξ∗) = (F−1(U),F−1∗ (U)) for some U ∼ U(0,1), where F and
F∗ are the distribution functions of ξ and ξ∗. Suppose y := F(x) ≤ F∗(x) =: y∗.
Since F−1 and F−1∗ are monotonic functions, it follows that 1{ξ≤x} − 1{ξ∗≤x} ≤ 0
a.s. since this difference equals 0 or −1 according to whether U ∈ (0,1) \ (y, y∗] or
U ∈ (y, y∗], respectively. If y ≥ y∗, we have 1{ξ≤x} − 1{ξ∗≤x} ≥ 0 a.s. In either case,
the result follows. �
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For any t > 0, let Gκ
t denote the joint law of the comonotonic coupling of Xt and

X
(κ)
t defined in (7.1). Note that a coupling (Xt ,X

(κ)
t ) with law Gκ

t satisfies the in-
equality in Theorem 3.1. The following lemma is crucial in the proof of Theorem 3.4.

Lemma 7.3 Let � = (�n)n∈N be a stick-breaking process on [0, t] and (ξn, ξ
(κ)
n ),

n ∈N, a sequence of random vectors that conditionally on � are independent and
satisfy (ξn, ξ

(κ)
n ) ∼ Gκ

�n
for all n ∈ N. Then for any p ∈ [1,2] and x ∈R, we have

E

[( ∞∑

n=1

|ξn − ξ (κ)
n |
)p] 1

p ≤ μp(κ, t), (7.2)

E

[ ∞∑

n=1

�n|1{ξn≤x} − 1{ξ (κ)
n ≤x}|

]
≤ μτ

0(κ, t), (7.3)

where μp and μτ
0 are defined in (3.5) and (3.6), respectively. Moreover, if Assump-

tion 3.2 holds, then for every T > 0, there exists a constant C > 0, dependent only on
(T , δ, σ, ν), such that for all t ∈ [0, T ], κ ∈ (0,1] and x ∈R, we have

E

[ ∞∑

n=1

�n|1{ξn≤x} − 1{ξ (κ)
n ≤x}|

]
≤ μτ

δ (κ, t), (7.4)

where μτ
δ is defined in (3.8).

Proof Note that μp(κ, t) = μ2(κ, t) for all p ∈ (1,2]. Hence by Jensen’s inequal-
ity, in (7.3), we need only consider p ∈ {1,2}. Pick n ∈ N and set κp := K

p
p κpϕ2

κ ,
p ∈ {1,2}, where Kp and ϕκ are as in the statement of Theorem 3.1. Condition on �n

and apply the bound in (3.1) to obtain

E
[|ξ (κ)

n − ξn|p
∣∣�n

]≤ min{2p/2σp
κ �

p/2
n , κp}, p ∈ {1,2}. (7.5)

Applying (7.5) and Lemma 7.1 yields (7.2) for p = 1; indeed,

∞∑

n=1

E[|ξn − ξ (κ)
n |] ≤

∞∑

n=1

E[min{√2�nσκ, κ1}]

= 2 min{√2tσ κ , κ1}
(
1 + log+(

√
2tσ κ/κ1)

)
.

Now consider the case p = 2. A simple expansion yields

E

[( ∞∑

n=1

∣∣ξn −ξ (κ)
n

∣∣
)2]

=
∞∑

n=1

E[(ξn −ξ (κ)
n )2]+2

∞∑

n=1

∞∑

m=n+1

E[|ξn −ξ (κ)
n ||ξm −ξ (κ)

m |].
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We proceed to bound both sums. Inequality (7.5) for p = 2 and Lemma 7.1 imply

∞∑

n=1

E[(ξn − ξ (κ)
n )2] ≤

∞∑

n=1

E[min{2σ 2
κ�n, κ2}]

= min{2tσ 2
κ , κ2}

(
1 + 2 log+(

√
2tσ κ/

√
κ2)
)
.

Define the σ -algebra Fn := σ(�1, . . . , �n) and use the conditional independence to
obtain

E
[|ξn − ξ (κ)

n ||ξm − ξ (κ)
m |∣∣Fm

]≤ min{√2�nσ κ, κ1}min{√2�mσκ, κ1}, n < m.

Note that (�m/Ln)
∞
m=n+1 is a stick-breaking process on [0,1] independent of Fn. Use

the tower property and apply (3.1) and Lemma 7.1 to get

∞∑

m=n+1

E
[|ξn − ξ (κ)

n ||ξm − ξ (κ)
m |∣∣Fn

]

≤ min{√2�nσκ, κ1}
∞∑

m=n+1

E[min{√2�mσκ, κ1}|Fn]

= 2 min{√2�nσκ, κ1}min{√2Lnσκ, κ1}
(

1 + log+
√

2Ln σκ

κ1

)

≤ 2 min{2Ln−1σ
2
κ , κ2

1 }(1 + log+(
√

2t σ κ/κ1)
)
,

where max{Ln, �n} ≤ Ln−1 ≤ t is used in the last step. Since �n
d= Ln, n ∈ N,

Lemma 7.1 yields

2
∞∑

n=1

∞∑

m=n+1

E[|ξn − ξ (κ)
n ||ξm − ξ (κ)

m |]

≤ 4
∞∑

n=1

E[min{2Ln−1σ
2
κ , κ2

1 }](1 + log+(
√

2tσ κ/κ1)
)= 2μ1(κ, t)2.

Putting everything together yields (7.2) for p = 2.
Next we prove (7.3). By Lemma 7.2, we have

E
[|1{ξn≤x} − 1{ξ (κ)

n ≤x}|
∣∣�n

]= ∣∣P[X�n ≤ x|�n] − P[X(κ)
�n

≤ x|�n]
∣∣. (7.6)

By (3.2) in Theorem 3.3 (a), �n|P[X�n ≤ x|�n] − P[X(κ)
�n

≤ x|�n]| ≤ 1
2 (κ/σ κ)ϕ3

κ�
1/2
n .

By Fubini’s theorem, conditioning in each summand on �n, using (7.6) and
Lemma 7.1, we have

E

[∑

n∈N
�n|1{ξn≤x} − 1{ξ (κ)

n ≤x}|
]

≤ 1

2

√
t(κ/σ κ)ϕ3

κ

∑

n∈N
E[(�n/t)1/2] = μτ

0(κ, t).
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Let δ ∈ (0,2] satisfy infu∈(0,1] uδ−2(σ 2
u + σ 2) > 0. By (3.3) in Theorem 3.3 (b), we

get �n|P[X�n ≤ x|�n] − P[X(κ)
�n

≤ x|�n]| ≤ ψ
2/3
κ �

1−2/(3δ)
n , where ψκ = Cκϕκ as de-

fined in (3.7). Moreover, �n|P[X�n ≤ x|�n] − P[X(κ)
�n

≤ x|�n]| ≤ �n. Hence by (7.6)
and Lemma 7.1, we obtain

∞∑

n=1

E[�n|1{ξn≤x} − 1{ξ (κ)
n ≤x}|]

≤
∞∑

n=1

E[min{�n,ψ
2/3
κ �

1−2/(3δ)
n }]

=
⎧
⎨

⎩
min{t,ψδ

κ } + 3δ
3δ−2ψ

2/3
κ t1− 2

3δ (1 − min{1, t−1/δψκ}δ−2/3), δ ∈ (0,2] \ { 2
3 },

min{t,ψ2/3
κ }(1 + log+(tψ

−2/3
κ )), δ = 2

3 ,

completing the proof. �

Proof of Theorem 3.4 Let � = (�n)n∈N and (ξn, ξ
(κ)
n ), n ∈ N, be as in Lemma 7.3. De-

fine the vector

(ζ1, ζ2, ζ3, ζ
(κ)
1 , ζ

(κ)
2 , ζ

(κ)
3 )

:=
∞∑

n=1

(ξn,min{ξn,0}, �n1{ξn≤0}, ξ (κ)
n ,min{ξ (κ)

n ,0}, �n1{ξ (κ)
n ≤0}).

By (2.1) and (7.1), we have (ζ1, ζ2, ζ3)
d= χ

t
and (ζ

(κ)
1 , ζ

(κ)
2 , ζ

(κ)
3 )

d= χ(κ)
t

. Hence it
suffices to show that these vectors satisfy (3.4), (3.6) and (3.7). Since the function
x 
→ min{x,0} is in Lip1(R), the inequalities

max{|ζ1 − ζ
(κ)
1 |, |ζ2 − ζ

(κ)
2 |} ≤

∞∑

n=1

|ξn − ξ (κ)
n |,

|ζ3 − ζ
(κ)
3 | ≤

∞∑

n=1

�n|1{ξn≤0} − 1{ξ (κ)
n ≤0}|,

follow from the triangle inequality. The theorem follows from Lemma 7.3. �

Remark 7.4 Let Ct and C
(κ)
t denote the convex minorants of X and X(κ) on [0, t],

respectively. Couple X and X(κ) in such a way that the stick-breaking processes de-
scribing the lengths of the faces of their convex minorants (see González Cázares
and Mijatović [32, Theorem 11] and González Cázares et al. [35, Sect. 4.1]) coin-
cide. (The Skorokhod space D[0, t] and the space of sequences on R are both Borel
spaces by Kallenberg [39, Theorems A1.1, A1.2 and A2.2]; so the existence of such
a coupling is guaranteed by [39, Theorem 6.10].) By conditioning further, we may
assume the increments (ξn, ξ

(κ)
n ), n ∈ N, are coupled as in Lemma 7.3, yielding an

SBG coupling of the pair (X,X(κ)) on the interval [0, t].
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Geometric arguments similar to González Cázares et al. [34, Sect. 5.1] show that
the sequences of heights of the faces of the convex minorants (ξn)n∈N and (ξ

(κ)
n )n∈N

satisfy

sup
s∈[0,t]

|Ct(s) − C
(κ)
t (s)| ≤

∞∑

n=1

|ξn − ξ (κ)
n |,

|τ t − τ
(κ)
t | ≤

∞∑

n=1

�n|1{ξn≤0} − 1{ξ (κ)
n ≤0}|.

Hence the inequalities in (7.3) and (7.4) yield the same bounds as in Theorem 3.4,
but in a stronger metric (namely, the distance between the convex minorants in the
supremum norm), while retaining the control on the time of the infimum.

7.3 The proofs of Propositions 3.7, 3.9, 3.12 and 3.15

The Lévy–Khintchine formula for Xt in (2.3), the definition of X
(κ)
t in (2.5) and the

inequality ez ≥ 1 + z (for all z ∈R) imply for any u ∈ R, t > 0 and κ ∈ (0,1] that

t−1 logE[euX
(κ)
t ] = bu + (σ 2 + σ 2

κ)u2

2
+
∫

R\(−κ,κ)

(
eux − 1 − ux1(−1,1)(x)

)
ν(dx)

≤ σ 2
κu2/2 + t−1 logE[euXt ]. (7.7)

Thus E[exp(uX
(κ)
t )] ≤ E[exp(uXt )] exp(σ 2

κu2t/2), and in particular, the Gaussian
approximation X(κ) has as many exponential moments as the Lévy process X.

Proof of Proposition 3.7 By Villani [68, Theorem 6.16], there exists a coupling be-

tween (ξ, ζ )
d= (XT ,XT ) and (ξ ′, ζ ′) d= (X

(κ)
T ,X

(κ)
T ) such that

E[(|ξ − ξ ′| + |ζ − ζ ′|)2]1/2 = W2
(
(XT ,XT ), (X

(κ)
T ,X

(κ)
T )
)
.

The identity eb − ea = ∫ b

a
ezdz implies that for x ≥ y and x′ ≥ y′, we have

|f (x, y) − f (x′, y′)| ≤ K(|ex − ex′ | + |ey − ey′ |)
≤ K(|x − x′| + |y − y′|)emax{x,x′}. (7.8)

Apply this inequality, the Cauchy–Schwarz inequality, the elementary inequalities
(a + b)2 ≤ 2(a2 + b2) and (a + b)1/2 ≤ a1/2 + b1/2, which hold for all a, b ≥ 0, and
the bound in (7.7) to obtain

E[|f (ξ, ζ ) − f (ξ ′, ζ ′)|] ≤ KE[(|ξ − ξ ′| + |ζ − ζ ′|)2]1/2
E[(eξ + eξ ′

)2]1/2

≤ 21/2KW2
(
(XT ,XT ), (X

(κ)
T ,X

(κ)
T )
)
E[e2ξ + e2ξ ′ ]1/2

≤ 2KW2
(
(XT ,XT ), (X

(κ)
T ,X

(κ)
T )
)
E[e2XT ]1/2(1 + eσ 2

κT ).
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Applying Corollary 3.5 gives the desired inequality, concluding the proof of the
proposition. �

We now introduce a tool that uses the Lp-distance E[|ζ − ζ ′|p]1/p between ran-
dom variables ζ and ζ ′ to bound the L1-distance E[|1[y,∞)(ζ )−1[y,∞)(ζ

′)|] between
the indicators.

Lemma 7.5 Let (ξ, ζ ) and (ξ ′, ζ ′) be random vectors in R
n × R. Fix y ∈ R

and let h ∈ LipK(Rn) satisfy 0 ≤ h ≤ M for some constants K,M ≥ 0. Denote
f (x, z) = h(x)1[y,∞)(z). Then for any p, r > 0, we have

E[|f (ξ, ζ ) − f (ξ ′, ζ ′)|] ≤ KE[|ξ − ξ ′|] + MP[|ζ − y| ≤ r]
+ Mr−p

E[|ζ − ζ ′|p]. (7.9)

In particular, if |P[ζ ≤ y] − P[ζ ≤ y + r]| ≤ C|r|γ for some C,γ > 0 and all r ∈ R,
then

E[|f (ξ, ζ ) − f (ξ ′, ζ ′)|] ≤ KE[|ξ − ξ ′|]

+ M

(
2C

γ

p

) p
p+γ
(

1 + p

γ

)
E[|ζ − ζ ′|p] γ

p+γ . (7.10)

Remark 7.6 An analogous bound to the one in (7.9) holds for the indicator 1(−∞,y].
Moreover, it follows from the proof below that the boundedness of the function h in
Lemma 7.5 may be replaced with a moment assumption ξ, ξ ′ ∈ Lq for some q > 1. In
that case, Hölder’s inequality could be invoked to obtain an analogue to (7.11) below.
Similar arguments may be used to simultaneously handle multiple indicators.

Proof of Lemma 7.5 Applying the local γ -Hölder-continuity of the distribution func-
tion of ζ to (7.9) and optimising over r > 0 yields (7.10). Thus it remains to estab-
lish (7.9).

Elementary set manipulation yields

|1{y≤ζ } − 1{y≤ζ ′}| = |1{ζ ′<y≤ζ } − 1{ζ<y≤ζ ′}|
≤ 1{|ζ−ζ ′|>r,ζ ′<y≤ζ } + 1{|ζ−ζ ′|≤r,ζ ′<y≤ζ }

+ 1{|ζ−ζ ′|>r,ζ<y≤ζ ′} + 1{|ζ−ζ ′|≤r,ζ<y≤ζ ′}
≤ 1{|ζ−ζ ′|>r} + 1{|ζ−y|≤r}.

Hence the triangle inequality and the Lipschitz property give

|f (ξ, ζ ) − f (ξ ′, ζ ′)| ≤ |h(ξ)||1{ζ≥y} − 1{ζ ′≥y}| + |h(ξ) − h(ξ ′)|1{ζ ′≥y}
≤ M(1{|ζ−y|≤r} + 1{|ζ−ζ ′|>r}) + K|ξ − ξ ′|. (7.11)

Taking expectations and using Markov’s inequality P[|ζ −ζ ′| > r] ≤ r−p
E[|ζ −ζ ′|p]

yields (7.9). �
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Proof of Proposition 3.9 Theorem 3.4 and (7.10) in Lemma 7.5 (with C and γ given
in Assumption 3.8 and p = 2) applied to (XT ,XT ) and (X

(κ)
T ,X

(κ)
T ) under the SBG

coupling give the claim. �

Proof of Proposition 3.12 Analogously to the proof of Proposition 3.9, applying The-
orem 3.4 and (7.10) in Lemma 7.5 (with C and γ given in Assumption 3.11 and
p = 1) gives the result. �

Lemma 7.7 Suppose X is not a compound Poisson process. Then the law of τT is
absolutely continuous on (0, T ) and its density is bounded on compact subsets of
(0, T ).

Proof If X or −X is a subordinator, then τT is a.s. 0 or T , respectively. In either
case, the result follows immediately. Suppose now that neither X nor −X is a sub-
ordinator. Denote by n(ζ > · ) (resp. n(ζ > · )) the intensity measures of the lengths
ζ of the excursions away from 0 of the Markov process X − X (resp. X − X). Then
by Chaumont [16, Theorem 6], the law of τT can only have atoms at 0 or T , is ab-
solutely continuous on (0, T ) and its density is given by s 
→ n(ζ > s)n(ζ > T − s),
s ∈ (0, T ). The maps s 
→ n(ζ > s) and s 
→ n(ζ > s) are nonincreasing, and so the
density is bounded on any compact subset of (0, T ), completing the proof. �

In preparation for the next result, we introduce the following assumption.

Assumption 7.8 There exists some function a : (0,∞) → (0,∞) such that Xt/a(t)

converges in distribution to an α-stable law as t → 0.

Proposition 7.9 Let Assumption 7.8 hold for some α ∈ (0,2].
(a) If α > 1, then Assumption 3.8 holds uniformly on compact subsets of (−∞,0)

with γ = 1.
(b) Suppose ρ := limt→0 P[Xt > 0] ∈ (0,1). Then for any γ ∈ (0,min{ρ,1 − ρ}),

there exists a constant C > 0 such that Assumption 3.11 holds for all s ∈ [0, T ].
Note that ρ is well defined under Assumption 7.8 and that Xt/a(t) can only have

a nonzero weak limit as t → 0 if the limit is α-stable. Moreover, in that case, a is
necessarily regularly varying at 0 with index 1/α, and α is given in terms of the Lévy
triplet (σ 2, ν, b) of X by

α :=

⎧
⎪⎨

⎪⎩

2, σ �= 0,

1, β ∈ (0,1) and b �= ∫
(−1,1)

xν(dx),

β, otherwise,

where β is the BG index introduced in (2.6). In fact, the assumptions of Proposi-
tion 3.15 imply Assumption 7.8 for α > 1 by Bisewski and Ivanovs [8, Proposi-
tion 2.3], so that Proposition 7.9 generalises Proposition 3.15. We refer the reader
to Ivanovs [38, Sects. 3 and 4] for conditions that are equivalent to Assumption 7.8.

Assumption 7.8 allows the cases ρ = 0 or ρ = 1 when α ≤ 1, which correspond
to the stable limit being a.s. negative or a.s. positive, respectively. In these cases, the
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distribution of τT (X) may have an atom at 0 or T , while the law of τT (X(κ)) is abso-
lutely continuous, making the convergence in the Kolmogorov distance impossible.
This is the reason for excluding ρ ∈ {0,1} in Proposition 7.9.

Proof of Proposition 7.9 By [8, Lemma 5.7], under the assumptions in part (a) of the
proposition, XT has a continuous density on (−∞,0), implying the conclusion in (a).

Since ρ = limt→0 P[Xt > 0] ∈ (0,1), 0 is regular for both half-lines by Rogozin’s
criterion; see Sato [62, Theorem 47.2]. Chaumont [16, Theorem 6] then asserts that
the law of τT is absolutely continuous with density given by s 
→ n(ζ>s)n(ζ>T −s),
s ∈ (0, T ). The maps s 
→ n(ζ > s) and s 
→ n(ζ > s) are nonincreasing and by [8,
Proposition 3.5] regularly varying with indices ρ − 1 and −ρ, respectively. Thus for
any γ ∈ (0,min{ρ,1 − ρ}), there exists some constant C > 0 such that the inequality
n(ζ > s)n(ζ > T − s) ≤ Csγ−1(T − s)γ−1 holds for all s ∈ (0, T ). Thus for any
s, t ∈ [0, T /2] with t ≥ s, we have

P[τT ≤ t] − P[τT ≤ s] ≤
∫ t

s

Cuγ−1(T − u)γ−1du ≤ C

∫ t

s

uγ−1(T /2)γ−1du

≤ Cγ −1(T /2)γ−1(tγ − sγ ) ≤ Cγ −1(T /2)γ−1(t − s)γ ,

since the map x 
→ xγ is concave. A similar bound holds for s, t ∈ [T/2, T ]. More-
over, when s ∈ [0, T /2] and t ∈ [T/2, T ], we have

P[τT ≤ t] − P[τT ≤ s] ≤ P[τT ≤ t] − P[τT ≤ T/2] + P[τT ≤ T/2] − P[τT ≤ s]
≤ Cγ −1(T /2)γ−1((T /2 − s)γ + (t − T/2)γ

)

≤ Cγ −1(T /2)2γ−2(t − s)γ .

This gives part (b) of the proposition. �

7.4 Level variances under SBG-Alg

In the present subsection, we establish bounds on the level variances under the cou-
pling �

κ1,κ2
n,T (constructed in SBG-Alg) for Lipschitz, locally Lipschitz and discontin-

uous payoff functions (see BT1 in (3.12) and BT2 in (3.14)) of χ
T

.

Theorem 7.10 Fix T > 0, n ∈ N and 1 ≥ κ1 > κ2 > 0. Let (Z
(κi )
n,T ,Z

(κi )
n,T , τ

(κi )
n,T ) denote

the vector χ(κi)
n,T

, i ∈ {1,2}, where the vector (χ(κ1)
n,T

,χ(κ2)
n,T

) constructed in SBG-Alg

follows the law �
κ1,κ2
n,T .

(a) For any Lipschitz function f ∈ LipK(R2), K > 0, we have

E
[(

f (Z
(κ2)
n,T ,Z

(κ2)
n,T ) − f (Z

(κ1)
n,T ,Z

(κ1)
n,T )

)2]≤ K2T (27σ 22−n + 40σ 2
κ1

). (7.12)

For f ∈ locLipK(R2) as defined in Sect. 3.2, if
∫
[1,∞)

e4xν(dx) < ∞, then there exists
a constant C > 0 independent of (n, κ1, κ2) such that

E
[(

f (Z
(κ2)
n,T ,Z

(κ2)
n,T ) − f (Z

(κ1)
n,T ,Z

(κ1)
n,T )

)2]

≤ C

((2

3

) n
2
1R\{0}(σ ) + σ 2

κ1
+ σκ1κ1

)
. (7.13)
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(b) Suppose Assumption 3.8 is satisfied by some y < 0 and C,γ > 0. Then for any
f ∈ BT1(y,K,M), K,M ≥ 0, there exists some K ′ > 0 independent of (n, κ1, κ2)

such that

E
[(

f (Z
(κ2)
n,T ,Z

(κ2)
n,T ) − f (Z

(κ1)
n,T ,Z

(κ1)
n,T )

)2]≤ K ′(σ 22−n + σ 2
κ1

)
γ

2+γ .

(c) If δ ∈ (0,2] satisfies Assumption 3.2, then there exists some C > 0 such that
for any K > 0, f ∈ LipK(R), n ∈N, κ1 > κ2 and p ∈ {1,2}, we have

E[|f (τ
(κ1)
n,T ) − f (τ

(κ2)
n,T )|p]

≤ 2KpT p
(

2−n + Cσ
min{ 2δ

2−δ
, 1

2 }
κ1

(
1 + | logκ1|1{2/5}(δ)

))
. (7.14)

(d) Fix s ∈ (0, T ) and let Assumption 3.2 hold for some δ ∈ (0,2]. Then for any
f ∈ BT2(s,K,M), K,M ≥ 0, there exists a constant C > 0 such that for any n ∈ N,
p ∈ {1,2} and κ1 > κ2, we have

E[|f (χ(κ1)

n,T
) − f (χ(κ2)

n,T
)|p] ≤ C

(
2−n/2 + σ

min{ δ
2−δ

, 1
4 }

κ1

(
1 + √| logκ1|1{2/5}(δ)

))
.

The synchronous coupling of the large jumps of the Gaussian approximations im-
plicit in SBG-Alg ensures that no moment assumption on the large jumps of X is
necessary for (7.12) to hold. For locally Lipschitz payoffs, however, the function may
magnify the distance when a large jump occurs. This leads to the moment assumption∫
[1,∞)

e4xν(dx) < ∞ for f ∈ locLipK(R2).
The proof of Theorem 7.10 requires bounds on certain moments of the differences

of the components of the output of Algorithms 1 and 2 and SBG-Alg. They are given
in Proposition 7.11.

Proposition 7.11 For any 1 ≥ κ1 > κ2 > 0, t > 0 and n ∈ N, the following statements
hold:

(a) The pair (Z
(κ1)
t ,Z

(κ2)
t ) ∼ �

κ1,κ2
t constructed in Algorithm 1 satisfies the in-

equalities

E[(Z(κ1)
t − Z

(κ2)
t )2] ≤ 2(σ 2

κ1
− σ 2

κ2
)t,

E[(Z(κ1)
t − Z

(κ2)
t )4] ≤ 12(σ 2

κ1
− σ 2

κ2
)2t2 + (σ 2

κ1
− σ 2

κ2
)κ2

1 t.

Moreover, we have E[(Z(κ1)
t − Z

(κ2)
t )2p] ≤ 4E[(Z(κ1)

t − Z
(κ2)
t )2p] for p ∈ {1,2}.

(b) The vector (Z
(κ1)
t ,Z

(κ1)
t , τ

(κ1)
t ,Z

(κ2)
t ,Z

(κ2)
t , τ

(κ2)
t ) ∼ �

κ1,κ2
t constructed in Al-

gorithm 2 satisfies the inequalities

E[(Z(κ1)
t − Z

(κ2)
t )2] = 2(σ 2 + σ 2

κ1
)t,

E[(Z(κ1)
t − Z

(κ2)
t )4] ≤ 12(σ 2 + σ 2

κ1
)2t2 + (σ 2

κ1
− σ 2

κ2
)κ2

1 t.

Moreover, we have E[(Z(κ1)
t − Z

(κ2)
t )2p] ≤ 4E[(Z(κ1)

t − Z
(κ2)
t )2p] for p ∈ {1,2}.
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(c) The coupling (χ(κ1)
n,t

, χ(κ2)
n,t

) ∼ �
κ1,κ2
n,t constructed in SBG-Alg with components

χ(κi)
n,t

= (Z
(κi )
n,t ,Z

(κi )
n,t , τ

(κi )
n,t ), i ∈ {1,2}, satisfies the inequalities

E[(Z(κ1)
n,t − Z

(κ2)
n,t )2] ≤ 2(σ 22−n + σ 2

κ1
)t, (7.15)

E[(Z(κ1)
n,t − Z

(κ2)
n,t )4] ≤ (25σ 4

κ1
+ 24σ 43−n)t2 + σ 2

κ1
κ2

1 t, (7.16)

E[(Z(κ1)
n,t − Z

(κ2)
n,t )2] ≤ (2 + 3π)(σ 2 + σ 2

κ1
)2−nt + (2 + 5π)σ 2

κ1
t, (7.17)

E[(Z(κ1)
n,t − Z

(κ2)
n,t )4] ≤ 2 × 103((σ 2 + σκ1)

23−n + σ 4
κ1

)
t2

+ 2πσ 5/2
κ1

κ
3/2
1 t5/4 + 4σ 2

κ1
κ2

1 t. (7.18)

Remark 7.12 (i) Applying Proposition 7.11, we see that the L2-norms of the dif-
ferences Z

(κ1)
n,t − Z

(κ2)
n,t and Z

(κ1)
n,t − Z

(κ2)
n,t of the components of (χ(κ1)

n,t
, χ(κ2)

n,t
) con-

structed in SBG-Alg decay at the same rate as the L2-norm of Z
(κ1)
t − Z

(κ2)
t con-

structed in Algorithm 1. Indeed, assume that κ1 = cκ2 for some c > 1, κ2 → 0 and
for some c′, r > 0 and all x > 0, we have ν(x) = ν(R \ (−x, x)) ≥ c′x−r . Then for
n = �log2(1 + ν(κ2))�, we have 2−n ≤ σ 2

κ1
for all sufficiently small κ1, implying the

claim by Proposition 7.11 (a) and (c). Moreover, by Corollary 4.2, the corresponding
expected computational complexities of Algorithm 1 and SBG-Alg are proportional
as κ2 → 0. Furthermore, since the decay of the bias of SBG-Alg is by Theorem 3.4
at most a logarithmic factor away from that of Algorithm 1, the MLMC estimator
based on Algorithm 1 for E[f (Xt )] has the same computational complexity (up to
logarithmic factors) as the MLMC estimator for E[f (Xt ,Xt )] based on SBG-Alg
(see Table 2 for the complexity of the latter).

(ii) The proof of Proposition 7.11 implies that an improvement in Algorithm 1 (i.e.,
a simulation procedure for a coupling with a smaller L2-norm of Z

(κ1)
t −Z

(κ2)
t ) would

result in an improvement in SBG-Alg for the simulation of a coupling (χ(κ1)
t

, χ(κ2)
t

).
Interestingly, this holds in spite of the fact that SBG-Alg calls Algorithm 2 whose
coupling �

κ1,κ2
t is inefficient in terms of the L2-distance, but is applied over the short

interval [0,Ln].
(iii) A nontrivial bound on the moments of the difference τ

(κ1)
t − τ

(κ2)
t under the

coupling of Algorithm 2, which would complete the statement in Proposition 7.11 (b),
appears to be out of reach. By the SB representation in (2.2), such a bound is not nec-
essary for our purposes. The corresponding bound on the moments of the difference
τ

(κ1)
n,t −τ

(κ2)
n,t constructed in SBG-Alg follows from Proposition 7.13 below; see (7.24).

(iv) The bounds on the fourth moments in (7.16) and (7.18) are required to control
the level variances of the MLMC estimator in the case of locally Lipschitz payoff
functions and are applied in the proof of Theorem 7.10 (a).

Proof of Proposition 7.11 (a) The difference Z
(κ1)
t −Z

(κ2)
t constructed by Algorithm 1

equals by (2.5) a sum of the two independent martingales

(
(σ 2

κ1
+ σ 2)1/2 − (σ 2

κ2
+ σ 2)1/2)Wt, J

2,κ1
t − J

2,κ2
t + (bκ1 − bκ2)t.
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Thus we obtain the identity

E[(Z(κ1)
t − Z

(κ2)
t )2] =

((√
σ 2 + σ 2

κ1
−
√

σ 2 + σ 2
κ2

)2 + σ 2
κ1

− σ 2
κ2

)
t.

The first inequality follows since 0 < (σ 2 +σ 2
κ1

)1/2 −(σ 2 +σ 2
κ2

)1/2 ≤ (σ 2
κ1

−σ 2
κ2

)1/2.

Since Z
(κ1)
t − Z

(κ2)
t is a Lévy process, differentiating its Lévy–Khintchine formula

in (2.3) yields the identity

E[(Z(κ1)
t − Z

(κ2)
t )4] = 3

((√
σ 2 + σ 2

κ1
−
√

σ 2 + σ 2
κ2

)2 + σ 2
κ1

− σ 2
κ2

)2
t2

+ t

∫

(−κ1,κ1)\(−κ2,κ2)

x4ν(dx),

implying the second inequality. Since |Z(κ1)
t − Z

(κ2)
t | ≤ sups∈[0,t] |Z(κ1)

s − Z
(κ2)
s |,

Doob’s maximal martingale inequality applied to the martingale (Z
(κ1)
s −Z

(κ2)
s )s∈[0,t]

yields

E[|Z(κ1)
t − Z

(κ2)
t |p] ≤ (1 − 1/p)−p

E[|Z(κ1)
t − Z

(κ2)
t |p], p > 1.

The corresponding inequalities follow because (p/(p − 1))p ≤ 4 for p ∈ {2,4}.
(b) Analogously to part (a), the difference Z

(κ1)
t −Z

(κ2)
t constructed in Algorithm 2

is a sum of two independent martingales (σ 2
κ1

+ σ 2)1/2Bt − (σ 2
κ2

+ σ 2)1/2Wt and

J
2,κ1
t − J

2,κ2
t + (bκ1 − bκ2)t , where B and W are independent standard Brownian

motions. Thus the statements follow as in part (a).
(c) Let (ξ1,k, ξ2,k) ∼ �

κ1,κ2
�k

, k ∈ {1, . . . , n}, and (ζ
1
, ζ

2
) ∼ �

κ1,κ2
Ln

be independent
draws as in line 2 of SBG-Alg. Denote by (ξi,n+1, ξ i,n+1

) the first two coordinates of
ζ

i
, i ∈ {1,2}. Since the variables ξ1,k − ξ2,k , k = 1, . . . , n + 1, have zero mean and

are uncorrelated, by conditioning on �k , k = 1, . . . , n, and Ln and applying parts (a)
and (b), we obtain

E[(Z(κ1)
n,t − Z

(κ2)
n,t )2] = V[Z(κ1)

n,t − Z
(κ2)
n,t ]

= V[ξ1,n+1 − ξ2,n+1] +
n∑

k=1

V[ξ1,k − ξ2,k]

≤ 2(σ 2 + σ 2
κ1

)E[Ln] + 2σ 2
κ1

n∑

k=1

E[�k]

= 2(σ 2 + σ 2
κ1

)2−nt + 2σ 2
κ1

(1 − 2−n)t,

implying (7.15). Similarly, by conditioning on �k , k = 1, . . . , n, and Ln, we deduce
that the expectations of

(ξ1,k1 − ξ2,k1)
3(ξ1,k2 − ξ2,k2), (ξ1,k1 − ξ2,k1)

2
3∏

i=2

(ξ1,ki
− ξ2,ki

),

4∏

i=1

(ξ1,ki
− ξ2,ki

)
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vanish for any distinct k1, k2, k3, k4 ∈ {1, . . . , n + 1}. Thus expanding yields

E[(Z(κ1)
n,t − Z

(κ2)
n,t )4] =

n+1∑

k=1

E[(ξ1,k − ξ2,k)
4]

+ 6
n∑

m=1

n+1∑

k=m+1

E[(ξ1,m − ξ2,m)2(ξ1,k − ξ2,k)
2].

The summands in the first sum are easily bounded by parts (a) and (b). To bound the
summands of the second sum, condition on �k , k = 1, . . . , n, and Ln and apply parts
(a) and (b) to get

E[(ξ1,k − ξ2,k)
2(ξ1,m − ξ2,m)2] ≤

{
4σ 4

κ1
E[�m�k], m < k ≤ n,

4(σ 2 + σ 2
κ1

)σ 2
κ1
E[�mLn], m < k = n + 1.

Inequality (7.16) follows since E[�m�k] = 3−m2m−k−1t2, E[�kLn] = 3−k2k−n−1t2

for m < k ≤ n and σ 22−nσ 2
κ ≤ σ 23−n/2σ 2

κ ≤ (σ 43−n + σ 4
κ)/2.

The representation in line 3 of SBG-Alg and an appeal to the elementary inequality
|a − b| ≥ |min{a,0} − min{b,0}| (for all a, b ∈ R) imply

E[(Z(κ1)
n,t − Z

(κ2)
n,t )2] ≤ E

[
(ξ

1,n+1
− ξ

2,n+1
)2 +

n∑

k=1

(
ξ1,k − ξ2,k

)2
]

(7.19)

+ 2E

[ n∑

k=1

|ξ
1,n+1

− ξ
2,n+1

||ξ1,k − ξ2,k|

+
n−1∑

m=1

n∑

k=m+1

|ξ1,m − ξ2,m||ξ1,k − ξ2,k|
]
.

The first term on the right-hand side of this inequality is easily bounded via
the inequalities in parts (a) and (b). To bound the second term, condition on �k ,

k = 1, . . . , n, and Ln, apply the Cauchy–Schwarz inequality, denote υ :=
√

σ 2 + σ 2
κ1

and observe that for m < k ≤ n, we get

E[|ξ
1,n+1

− ξ
2,n+1

||ξ1,k − ξ2,k|] ≤ E

[√
16(σ 2 + σ 2

κ1
)σ 2

κ1
�kLn

]

= πυσκ1

(
2

3

)n(3

4

)k

t,

E[|ξ1,m − ξ2,m||ξ1,k − ξ2,k|] ≤ E

[√
4σ 4

κ1
�m�k

]
= πσ 2

κ1
(1/2)m+1(2/3)k−mt,
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where the equalities follow from the definition of the stick-breaking process (see
Sect. 2.1). By (7.19), we have

E[(Z(κ1)
n,t − Z

(κ2)
n,t )2] ≤ υ221−nt + 2σ 2

κ1
t

∞∑

k=1

2−k + 2πυσκ1

(
2

3

)n

t

∞∑

k=1

(
3

4

)k

+ πσ 2
κ1

t

∞∑

m=1

∞∑

k=1

2−m

(
2

3

)k

.

So (7.17) follows from the inequalities v(2/3)nσ κ ≤ υ2−n/2σκ ≤ (υ22−n + σ 2
κ)/2.

As before, |min{a,0} − min{b,0}| ≤ |a − b| for a, b ∈ R yields the inequality

E[(Z(κ1)
n,t − Z

(κ2)
n,t )4] ≤ E

[(
|ξ

1,n+1
− ξ

2,n+1
| +

n∑

k=1

|ξ1,k − ξ2,k|
)4]

. (7.20)

By Jensen’s inequality, E[|ϑ |3] ≤ E[ϑ4]3/4 and E[ϑ] ≤
√
E[ϑ2] for any random vari-

able ϑ . Hence we may bound the first and third conditional moments of the differ-
ences |ξ1,k − ξ2,k| and |ξ

1,n+1
− ξ

2,n+1
| given �k , k = 1, . . . , n, and Ln. Thus by

expanding (7.20), conditioning on �k , k = 1, . . . , n, and Ln and using elementary
estimates as in all the previously developed bounds, we obtain (7.18). �

In order to control the level variances of the MLMC estimator in (4.3) for discon-
tinuous payoffs of χ

t
and functions of τ t , we should need to apply Lemma 7.5 to the

components of (χ(κ1)
n,t

, χ(κ2)
n,t

) constructed in SBG-Alg. In particular, the assumption
in Lemma 7.5 requires a control on the constants in the local Lipschitz property of the
distribution functions of the various components of (χ(κ1)

n,t
, χ(κ2)

n,t
) in terms of the cut-

off levels κ1 and κ2. As such a uniform bound in the cutoff level appears to be out of
reach, we establish Proposition 7.13 which allows us to compare the sampled quanti-
ties χ(κ1)

n,t
and χ(κ2)

n,t
with their limit χ

t
(as κ1, κ2 → 0). Since under mild assumptions,

the distribution functions of the components of the limit χ
t

possess the necessary
regularity and do not depend on the cutoff level, the application of Lemma 7.5 in the
proof of Theorem 7.10 becomes feasible by using Proposition 7.13.

Proposition 7.13 There exists a coupling between the vector χ
t
= (Xt ,Xt , τ t ) and

the pair of vectors (χ(κ1)
n,t

, χ(κ2)
n,t

) ∼ �
κ1,κ2
n,t such that for i ∈ {1,2} and any p ≥ 1, the

vector (Z
(κi )
n,t ,Z

(κi )
n,t , τ

(κi )
n,t ) = χ(κi)

n,t
satisfies

E[(Xt − Z
(κi)
n,t )2] ≤ (4σ 22−n1{1}(i) + 2σ 2

κi

)
t, (7.21)

E[(Xt − Z
(κi)
n,t )2] ≤ (48σ 22−n1{1}(i) + 42σ 2

κi

)
t. (7.22)

Moreover, if δ ∈ (0,2] satisfies Assumption 3.2, we have

E[|τ t − τ
(κi )
n,t |p] ≤ 2−ntp + tp−1θ(t, κi), (7.23)
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where given T ≥ t , there exists a constant C > 0 dependent only on (T ,σ 2, ν, b) such
that for all κ ∈ (0,1], the function θ(t, κ) is defined as

θ(t, κ) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min{1,
√

Cσκ}t, δ = 2,

min{t, (Cσκ)
2δ

2−δ }
+ 4δ

5δ−2

√
Cσκ(t

5δ−2
4δ − min{t, (Cσκ)

4δ
4−2δ } 5δ−2

4δ ), δ ∈ (0,2) \ { 2
5 },

min{t,√Cσκ} + √
Cσκ log+(t/

√
Cσκ), δ = 2

5 .

A simple consequence of (7.23) (with p = 1) in Proposition 7.13 and the elemen-
tary inequality |τ (κ1)

n,t − τ
(κ2)
n,t | ≤ t is that the coupling in SBG-Alg satisfies

E[|τ (κ1)
n,t − τ

(κ2)
n,t |p] ≤ 21−ntp + 2tp−1θ(t, κ1) for any p ≥ 1. (7.24)

The bounds in (7.21) and (7.22) of Proposition 7.13 imply the inequalities in (7.15)
and (7.17) of Proposition 7.11 (c) with slightly worse constants.

Proof The proof and construction of the random variables is analogous to that of
Proposition 7.11 (c) where for i ∈ {1,2}, we compare the increment Z

(κi)
s defined

in Algorithm 1 with the Lévy–Itô decomposition Xs = bs + σWs + J
1,κi
s + J

2,κi
s

(W is as in Algorithm 1, independent of J 1,κi and J 2,κi ) over the time horizons
s ∈ {�1, . . . , �n−1}. Similarly, we compare the pair of vectors (χ(κ1)

s
, χ(κ2)

s
) produced

by Algorithm 2 with χ
s

for s = Ln, where we assume that the (standardised) Brown-

ian component of X equals that of χ(κ2)
s

(and is thus independent of the one in χ(κ1)
s

)

and all jumps in J 2,κ2 are synchronously coupled.
Denote the first and fourth components of the vector (χ(κ1)

s
, χ(κ2)

s
) by Z

(κ1)
s and

Z
(κ2)
s , respectively. Hence it is enough to obtain the analogous bounds and identities

to those presented in parts (a) and (b) for the expectations E[(Xt −Z
(κi)
t )2], i ∈ {1,2},

under both couplings �
κ1,κ2
t and �

κ1,κ2
t . Such bounds may be obtained by using the

proofs of parts (a) and (b), resulting in the following estimates: for i ∈ {1,2}, we have

E[(Xt − Z
(κi)
t )2] =

((√
σ 2 + σ 2

κi
− σ
)2 + σ 2

κi

)
t ≤ 2σ 2

κi
t under �

κ1,κ2
t ,

(7.25)

E[(Xt − Z
(κi)
t )2] = 2(σ 21{1}(i) + σ 2

κ1
)t under �

κ1,κ2
t .

Thus Doob’s martingale inequality and elementary inequalities give (7.21), (7.22).
By the construction of the law �

κ1,κ2
n,t in SBG-Alg, there exist random variables ξ ′

k ,
k = 1, . . . , n, such that for k ∈ {1, . . . , n}, conditionally on �k = s and independently

of �j , j �= k, the distributional equality (ξ ′
k, ξ1,k, ξ2,k)

d= (Xs,Z
(κ1)
s ,Z

(κ2)
s ) holds,

where (Z
(κ1)
t ,Z

(κ2)
t ) ∼ �

κ1,κ2
t and W in Algorithm 1 equals the Brownian compo-

nent of X in (2.4). Note that by (2.2), we have

|τ t − τ
(κi )
n,t | ≤ Ln +

n∑

k=1

�k|1{ξ ′
k<0} − 1{ξi,k<0}| for i ∈ {1,2}. (7.26)
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Let δ ∈ (0,2] be as in the statement of the proposition. By Picard [58, Theorem
3.1 (a)], as in the proof of Theorem 3.4, we know that the density ft of Xt exists, is
smooth and given T > 0, the constant C′ := 23/2 sup(s,x)∈(0,T ]×R s1/δfs(x) is finite.

Thus (7.10) in Lemma 7.5 (with constants γ = 1, C = 2−3/2�
−1/δ
k C′ and M = 1,

K = 0, p = 1) gives

E
[|1{ξ ′

k<0} − 1{ξi,k<0}|
∣∣�k

]≤ min
{
1,2−1/4

√
C′�− 1

2δ

k E
[|ξ ′

k − ξi,k|
∣∣�k

]1/2}

≤ min{1,2−1/4
√

C′�− 1
2δ

k (2σ 2
κi

�k)
1/4},

for i ∈ {1,2} and any k ∈ {1, . . . , n}, where the second inequality follows from
Jensen’s inequality and (7.25). Hence elementary inequalities, (7.26) and Lemma 7.1
imply that for i ∈ {1,2},

E[|τ t − τ
(κi )
n,t |] ≤ E[Ln] +

n∑

k=1

E[�k|1{ξ ′
k<0} − 1{ξi,k<0}|]

≤ 2−nt +
∞∑

k=1

E[min{√C′σκi
�

5
4 − 1

2δ

k , �k}]

≤ 2−nt + θ(t, κi).

For p > 1, the result follows from the case p = 1 and by using the inequality
|τ t − τ

(κi )
n,t |p ≤ tp−1|τ t − τ

(κi )
n,t |. �

Proof of Theorem 7.10 (a) Proposition 7.11 (c) and elementary inequalities yield
(7.12). So it remains to consider the case f ∈ locLipK(R2). As in the proof of Propo-
sition 3.7, by the inequality in (7.8) and the Cauchy–Schwarz inequality, we have

E
[(

f (Z
(κ1)
n,T ,Z

(κ1)
n,T ) − f (Z

(κ2)
n,T ,Z

(κ2)
n,T )

)2]2

≤ K4K ′
E[(|Z(κ1)

n,T − Z
(κ2)
n,T | + |Z(κ1)

n,T − Z
(κ2)
n,T |)4],

where K ′ := E[(exp(Z
(κ1)
n,T ) + exp(Z

(κ2)
n,T ))4] ≤ 8E[exp(4X

(κ1)
T ) + exp(4X

(κ2)
T )

]
. Ap-

plying (7.7), we get E[exp(4X
(κi)
T )] ≤ E[exp(4XT )] exp(4T σ 2

κi
) and σ 2

κi
≤ σ 2

1,
i ∈ {1,2}, where E[exp(4XT )] is finite since

∫
[1,∞)

e4xν(dx) < ∞. The concavity
of x 
→ √

x and the inequalities (7.16) and (7.18) in Proposition 7.11 (c) imply the
existence of a constant C > 0 satisfying

√
E[(|Z(κ1)

n,T − Z
(κ2)
n,T | + |Z(κ1)

n,T − Z
(κ2)
n,T |)4]

≤ C(2/3)n/2 + 11T σ 2
κ1

+ √
2πT 5/8σ 5/4

κ1
κ

3/4
1 + √

5T σκ1κ1.

The inequality (7.13) then follows since σ
1/4
κ1 κ

3/4
1 ≤ max{σκ1 , κ1} ≤ σκ1 + κ1.
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(b) Let (χ
T
,χ(κ1)

n,T
,χ(κ2)

n,T
) be as in Proposition 7.13, where χ

T
= (XT ,XT , τT )

and χ(κi)
n,T

= (Z
(κi )
n,T ,Z

(κi )
n,T , τ

(κi )
n,T ), i ∈ {1,2}. The triangle inequality and the inequalities

0 ≤ f ≤ M give

E
[(

f (Z
(κ1)
n,T ,Z

(κ1)
n,T ) − f (Z

(κ2)
n,T ,Z

(κ2)
n,T )

)2]

≤ ME[|f (Z
(κ1)
n,T ,Z

(κ1)
n,T ) − f (Z

(κ2)
n,T ,Z

(κ2)
n,T )|]

≤ M

2∑

i=1

E[|f (Z
(κi )
n,T ,Z

(κi )
n,T ) − f (XT ,XT )|].

Apply (7.10) in Lemma 7.5 with C and γ from Assumption 3.8 to (XT ,XT ) and
(Z

(κi )
n,T ,Z

(κi )
n,T ) to get

E[|f (XT ,XT ) − f (Z
(κi)
n,T ,Z

(κi )
n,T )|]

≤ KE[|Z(κi )
n,T − XT |] + M(1 + 2/γ )(C2γ 2

E[|Z(κ1)
n,T − XT |2]γ )

1
2+γ

≤ K

√
T
(
4σ 22−n1{1}(i) + 2σ 2

κi

)+ K ′′(σ 22−n1{1}(i) + σ 2
κi

) γ
2+γ

for i ∈ {1,2}, where K ′′ := M(1+2/γ )(48C2γ 2T γ )1/(2+γ ). In the second inequality,
we used the bounds (7.21) and (7.22). Since σκ1 ≥ σκ2 , the result follows.

(c) Recall that (7.24) follows from (7.23). The inequality (7.14) in the proposition
is a direct consequence of the Lipschitz property and (7.24).

(d) The proof follows along the same lines as in part (b): apply (7.10) in
Lemma 7.5 with C and γ from Assumption 3.11 and the bounds (7.21)–(7.23) from
Proposition 7.13. �

7.5 Computational complexity of the MC and MLMC estimators

In this subsection, we address the application of our previous results to esti-
mate the expectation E[f (χ

T
)] for various real-valued functions f satisfying

E[f (χ
T
)2] < ∞. By definition, an estimator ϒ of E[f (χ

T
)] has L2-accuracy of

level ε > 0 if it satisfies E[(ϒ − E[f (χ
T
)])2] < ε2. We assume in this subsection

that X has jumps of infinite activity, i.e., ν(R \ {0}) = ∞. If the jumps of X are of
finite activity, both Algorithm 2 and SBG-Alg are exact with the latter outperforming
the former in practice by a constant factor, which is a function of the total number of
jumps, T ν(R \ {0}) < ∞; see Sect. 6.2 for a numerical example.

7.5.1 MC complexity

As above, for any κ ∈ (0,1], let the sequence χκ,i
T

, i ∈ N, be i.i.d. with the same

distribution as χ(κ)
T

simulated by SBG-Alg with n ∈ N ∪ {0} sticks. Recall that the
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MC estimator in (4.2), based on N ∈N independent samples, is given by

ϒMC = 1

N

N∑

i=1

f (χκ,i

T
).

The requirements on the bias and variance of the estimator ϒMC (see Appendix A.1),
together with Theorem 3.4 and the bounds in (3.11) as well as Propositions 3.7, 3.9
and 3.12, imply Corollary 7.14. By expressing κ in terms of ε via Corollary 7.14
and (3.5), (3.8), (3.9), the formulae for the expected computational complexity
CMC(ε) in Table 1 (see Sect. 4.2) follow.

Corollary 7.14 For any ε ∈ (0,1), define first κ for given f as in one of (a)–(d) below
and then N := �2ε−2

V[f (χ(κ)
T

)]� as in Appendix A.1. Then the MC estimator ϒMC

of E[f (χ
T
)] has L2-accuracy of level ε and expected cost CMC(ε) bounded by a

constant multiple of (1 + ν(κ)T )N .
(a) For any K > 0, g ∈ LipK(R2) (resp. g ∈ locLipK(R2)) and the function

f : (x, z, t) 
→ g(x, z), set

κ := sup{κ ′ ∈ (0,1] : 2μ1(κ
′, T ) < ε/

√
2}

(
resp. κ := sup

{
κ ′ ∈ (0,1] : 8K2μ2(κ

′, T )
(
1 + exp(2T σ 2

κ ′)
)

×E[exp(2XT )] < ε2/2
})

.

(b) Pick y < 0 and let Assumption 3.8 hold for some C,γ > 0. Suppose
that f : R3 →R is given by f (x, z, t) = h(x)1[y,∞)(z), where h ∈ LipK(R) and
0 ≤ h ≤ M for some K,M > 0. Then

κ := sup

{
κ ′ ∈ (0,1] : M(Cγ )2/(2+γ )

(
1 + 2

γ

)
μ2(κ

′, T )2γ /(2+γ )

+ Kμ1(κ
′, T ) < ε/

√
2

}
.

(c) Let δ ∈ (0,2] satisfy Assumption 3.2. Let f (x, z, t) = g(t), g ∈ LipK(R),
K > 0. Then

κ := sup{κ ′ ∈ (0,1] : Kμτ∗(κ ′, T ) < ε/
√

2}.
(d) Fix s ∈ (0, T ) and let δ ∈ (0,2] satisfy Assumption 3.2. Then there exists a

constant C > 0 such that for f ∈ BT2(s,K,M), K,M > 0, we have

κ := sup{κ ′ ∈ (0,1] : C√Kμτ∗(κ ′, T ) < ε/
√

2}.
The constant C in Corollary 7.14 (d) depends on a value of the density of τ t at

s which is not known a priori. The purpose of Corollary 7.14 (d) is to specify the
dependence of κ on ε up to the constant C for all considered payoffs. In practice, κ is
determined adaptively from some initial preliminary samples, and Corollary 7.14 (d)
only serves as a theoretical guarantee (see e.g. Giles [29, Sect. 2.1]).
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7.5.2 MLMC complexity

Let (κj )j∈N (resp. (nj )j∈N∪{0}) be a decreasing (resp. increasing) sequence in (0,1]
(resp. N) such that limj→∞ κj = 0. Let χ0,i d= χ(κ1)

T
and (χ

j,i

1 , χ
j,i

2 ) ∼ �
κj ,κj+1
nj ,T ,

i, j ∈ N, be independent draws constructed by SBG-Alg. As in Sect. 4.2.2, recall
that the sequence (nj ) appears as a parameter in the coupling �

κj ,κj+1
nj ,T (which is

the law that the pair of vectors (χ
j,i

1 , χ
j,i

2 ) follow). The number nj specifies the
number n of sticks used in SBG-Alg for the level j . Recall that for the parameters
m,N0, . . . ,Nm ∈N, the MLMC estimator in (4.3) takes the form

ϒML =
m∑

j=0

1

Nj

Nj∑

i=1

Di
j , where Di

j :=
⎧
⎨

⎩
f (χ

j,i

2 ) − f (χ
j,i

1 ), j ≥ 1,

f (χ0,i ), j = 0.

The bias of the MLMC estimator is equal to that of the MC estimator in (4.2) with
κ = κm. Given the sequences (nj )j∈N∪{0} and (κj )j∈N which determine the simula-
tion algorithms used in the estimator (4.3), Appendix A.2 derives the asymptotically
optimal (as ε ↘ 0) values for the integers m and (Nj )

m
j=0 minimising the expected

computational complexity of (4.3) under the constraint that the L2-accuracy of ϒML
is of level ε. The key quantities are the bounds B(j), V (j) and C(j) on the bias,
level variance and the computational complexity of SBG-Alg at level j (i.e., run with
parameters κj and nj ). The number m of levels in (4.3) is determined by the bound
on the bias B(j), while the number Nj of samples used at level j is given by the
bounds on the complexity and level variances; see the formulas in (A.1), (A.2) below.
Proposition 7.15, which is a consequence of Theorem 3.4 and Propositions 3.7, 3.9
and 3.12 (for the bias), Theorem 7.10 (for the level variance) and Corollary 4.2 (for
the complexity), summarise the relevant bounds B(j), V (j) and C(j) established
in this paper (suppressing the unknown constants as we are only interested in the
asymptotic behaviour as ε ↘ 0).

Proposition 7.15 Given sequences (κj )j∈N and (nj )j∈N∪{0} as above, we define
C(j) := nj + ν(κj+1)T . Then the following choices of functions B and V ensure
that for any ε > 0, the MLMC estimator ϒML, with integers m and Nj , j = 0, . . . ,m,
given by (A.1)–(A.2), has L2-accuracy of level ε with complexity asymptotically pro-
portional to CML(ε) = 2ε−2(

∑m
j=0

√
C(j)V (j))2.

(a) If K > 0, g ∈ LipK(R2) (resp. g ∈ locLipK(R2)) and f (x, z, t) = g(x, z), then
for any j ∈ N,

B(j) := μ1(κj , T ) and V (j) := σ 22−nj + σ 2
κj

(
resp. B(j) := μ2(κj , T ) and V (j) := (2/3)nj /21R\{0}(σ ) + σ 2

κj
+ σκj

κj

)
.

(b) Pick y < 0 and suppose that Assumption 3.8 holds for some C,γ > 0. If
f ∈ BT1(y,K,M), K,M > 0, then for any j ∈ N,

B(j) := min
{
μ1(κj , T )

γ
1+γ ,μ2(κj , T )

2γ
2+γ
}

and V (j) := σ
2γ

2+γ 2− nj γ

2+γ + σ

2γ
2+γ
κj

.
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(c) Let Assumption 3.2 hold for some δ ∈ (0,2] and f (x, z, t) = g(t) for some
g ∈ LipK(R), K > 0. Then for any j ∈ N,

B(j) := μτ∗(κj , T ) and V (j) := 2−nj + σmin{1/2,2δ/(2−δ)}
κj

(
1 + | logκj |1{2/5}(δ)

)
.

(d) Let f ∈ BT2(s,K,M) for some s ∈ (0, T ) and K,M ≥ 0. If δ ∈ (0,2] satisfies
Assumption 3.2, then for any j ∈N,

B(j) :=√μτ∗(κj , T ) and V (j) := 2−nj /2 + σ
min{ 1

4 , δ
2−δ

}
κj

(
1 +√| logκj |1{2/5}(δ)

)
.

Remark 7.16 By (3.5) and (A.2), we note that κm in Proposition 7.15 (a) is bounded
by (and typically proportional to) C0ε/| log ε|. Moreover, if κm = e−r(m−1) for some
r > 0, then the constant C0 does not depend on the rate r . A similar statement holds
for (b), (c) and (d); see Table 1 in Sect. 4.2.

It remains to choose the parameters (nj )j∈N∪{0} and (κj )j∈N for the estimator
in (4.3). Since we require the bias to vanish geometrically fast, we set κj = e−r(j−1)

for j ∈ N and some r > 0. The value of the rate r in Theorem 7.17 below is obtained
by minimising the multiplicative constant in the complexity CML(ε). Note that nj

does not affect the bias (nor the bound B(j)) of ϒML. By Proposition 7.15, nj may
be as small as a multiple of log(1/σ 2

κj
) without affecting the asymptotic behaviour of

the level variances V (j), and as large as ν(κj+1) without increasing the asymptotic
behaviour of the cost C(j) of each level. Moreover, to ensure that the term σ 22−nj in
the level variances (see Theorem 7.10) decays geometrically, it suffices to let nj grow
at least linearly in j . In short, there is a large interval within which we may choose nj

without it having any effect on the asymptotic performance of the MLMC estimation
(see Theorem 7.17 below). The choice nj = n0 + �max{j, log2(1 + ν(κj+1)T )}� for
j ∈ N in the numerical examples of Sect. 6 falls within this interval.

Theorem 7.17 Suppose q ∈ (0,2] and c > 0 satisfy ν(κ) ≤ cκ−q and σ 2
κ ≤ cκ2−q for

all κ ∈ (0,1]. Pick r > 0, set κj := e−r(j−1) and assume that for some C > 0 and
all sufficiently large j ∈ N, we have max{j, log2/3(σ

4
κj

)} ≤ nj ≤ Cν(κj+1). Then
in the cases (a)–(d) below, there exists a constant Cr such that for ε ∈ (0,1), the
MLMC estimator ϒML defined in (4.3), with parameters given by (A.1), (A.2) below,
is L2-accurate at level ε with the stated expected computational complexity CML(ε).
Moreover, Cr is minimal for r := (2/|a|) log(1 + |a|/q)1R\{0}(a) + (2/q)1{0}(a),
with a ∈R given explicitly in each case (a)–(d).

(a) Let g ∈ LipK(R2) ∪ locLipK(R2) for K > 0 and f (x, z, t) = g(x, z). Define

b := 1{σ=0} + 1{σ �=0}
(
1{g∈LipK(R2)}

1

3 − q
+ 1{g/∈LipK(R2)}

2

4 − q

)

and a := 2(q − 1). Then

CML(ε) ≤ Cr

ε2+a+b

(
1 + (log2 ε)1{1}(q) + | log ε|(a/2)(1+1{g∈LipK(R2)})1(1,2](q)

)
.
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(b) Let f (x, z, t) = g(x, z), where g ∈ BT1(y,K,M) for some y < 0 ≤ K,M ,
such that Assumption 3.8 is satisfied by y and some C,γ > 0. Define

b :=
(

1

2
+ 1

γ

)(
1{σ=0} + 1{σ �=0,q<1}

4

9 − 3q
+ 1{σ �=0,q≥1}

2

4 − q

)

and a := 2 q(1+γ )−γ
2+γ

∈ (− 2γ
2+γ

,2]. Then

CML(ε) ≤ Cr

ε2+a+b

(
1 + (log2 ε)1{q=γ /(1+γ )}

+ | log ε|a1{q∈(γ /(1+γ ),1)} + | log ε|a/21{q∈[1,2]}
)
.

(c) Let f (x, z, t) = g(t), g ∈ LipK(R), K > 0, and let Assumption 3.2 hold for
some δ ∈ (0,2]. Set a := q − (1 − q

2 )min{ 1
2 , 2δ

2−δ
} and b := min{2/δ,max{3/2,1/δ}}.

Then

CML(ε) ≤ Cr

ε2+a+b

⎧
⎪⎪⎨

⎪⎪⎩

1 + (log2 ε)(1{δ<2/5,q=δ} + 1{δ=2,q=2/5}), δ /∈ { 2
5 , 2

3 },
| log ε|1{q∈(2/5,2]} + | log ε|31{q=2/5}, δ = 2/5,

| log ε|a, δ = 2/3.

(d) Fix s ∈ (0, T ) and let δ ∈ (0,2] satisfy Assumption 3.2. Define the constants
a := q − (1 − q

2 )min{ 1
4 , δ

2−δ
} and b := min{4/δ,max{3,2/δ}}. Then for K,M ≥ 0

and f ∈ BT2(s,K,M),

CML(ε) ≤ Cr

ε2+a+b

{
1 + (log2 ε)1{q=2/9}, δ = 2,

1 + √| log ε|1{δ=2/5} + | log ε| a
2 1{δ=2/3}, δ ∈ (0,2).

Remark 7.18 For most models, either β = δ or σ > 0, implying a+b ∈ [0,2] in parts
(a) and (c), a+b ∈ [0,2(1/2 + 1/γ )] in part (b) (with γ typically equal to 1) and
a+b ∈ [0,4] in part (d).

Proof of Theorem 7.17 Note that κ1 = 1 by definition independently of r > 0, thus
making both the variance V[Di

0] and the cost of sampling of Di
0 independent of r .

We may thus ignore the 0th term in the bound ε−2(
∑m

j=0
√

V (j)C(j))2 on the com-
plexity CML(ε) derived in Appendix A.2. Since m is given by (A.1) below, by Table 1
and Remark 7.16, the function m : (0,1) → (0,∞) given by

m(ε) :=

⎧
⎪⎨

⎪⎩

(b| log ε| + c log | log ε|)/r in (a) and (b) and,

if δ = 2
3 , in (c) and (d),

b| log ε|/r in (c) and (d) if δ �= 2
3 ,

(7.27)

where

c =
{

1 in (a) and (c),

1/2 in (b) and (d),
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satisfies m ≤ m(ε) + C′/r for all ε ∈ (0,1) and r > 0, where the constant C′ > 0 is
independent of r > 0. Thus we need only study the growth rate of

φ(ε) :=
�m(ε)�∑

j=1

√
C(j)V (j) =

�m(ε)�∑

j=1

√(
nj + ν(κj+1)T

)
V (j) as ε → 0,

because CML(ε) is bounded by a constant multiple of ε−2φ(ε)2. In the cases where
V (j) contains a term of the form e−snj for some s > 0 (only possible if σ �= 0), the
product nj e

−snj ≤ e−snj /2 vanishes geometrically fast since nj ≥ j for all large j .
Thus the corresponding component in φ(ε) is bounded as ε → 0 and may thus be
ignored. By Proposition 7.15, we may assume in all cases that V (j) is bounded by a
multiple of a power of σ 2

κj
and C(j) is dominated by a multiple of ν(κj+1).

Since ν(κ) ≤ cκ−q and σ 2
κ ≤ cκ2−q for κ ∈ (0,1], Proposition 7.15 yields

φ(ε) ≤ K∗

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑�m(ε)�
j=1 (κ

−q

j+1κ
2−q
j )

1
2 in (a),

∑�m(ε)�
j=1 (κ

−q

j+1κ
(2−q)γ /(2+γ )

j )
1
2 in (b),

∑�m(ε)�
j=1 (κ

−q

j+1κ
(2−q)min{ 1

2 , 2δ
2−δ

}
j (1 + | logκj |1{δ=2/5}))

1
2 in (c),

∑�m(ε)�
j=1 (κ

−q

j+1κ
(2−q)min{ 1

4 , δ
2−δ

}
j (1 +√| logκj |1{δ=2/5}))

1
2 in (d),

for some constant K∗ > 0 independent of r and all ε ∈ (0,1), where we used in part
(a) the fact that σκκ ≤ √

cκ2−q/2 for all κ ∈ (0,1].
(a) Recall that κj = e−r(j−1) and κj+1 = e−r(j−1)−r , implying

κ
−q

j+1κ
2−q
j = erqear(j−1) for all j ∈N, where a = 2(q − 1). (7.28)

Suppose first a < 0, implying q ∈ (0,1). By (7.28), the sequence (κ
−q

j+1κ
2−q
j )j∈N de-

cays geometrically fast. This implies that limε↓0 φ(ε) < ∞ and gives the desired
result. Moreover, the leading constant Cr , as a function of r , is proportional to
erq/(1 − ear/2)2 as ε ↓ 0. Since a �= 0 for q ∈ (0,1), the minimal value of Cr is
attained when r = (2/|a|) log(1 + |a|/q).

If a = 0, hence q = 1, we have φ(ε) ≤ K∗er/2(b| log ε| + log | log ε|)/r by (7.28)
and (7.27), giving the desired result. As before, the leading constant Cr , as a function
of r , is proportional to er/r2 as ε → 0, attaining its minimum at r = 2.

Finally, suppose a > 0, implying q ∈ (1,2]. By (7.28) and (7.27), it follows that

φ(ε)2 ≤ K2∗erq

(ear/2 − 1)2
ea(b| log ε|+log | log ε|) = K2∗erq

(ear/2 − 1)2
ε−ab| log ε|a.

The corresponding result follows easily, where the leading constant Cr , as a func-
tion of r , is proportional to erq/(ear/2 − 1)2 as ε ↓ 0 and attains its minimum at
r = (2/a) log(1 + a/q), concluding the proof of (a).

(b) As before, we have

κ
−q

j+1κ
(2−q)γ /(2+γ )

j = erqear(j−1) for j ∈N, with a = 2
q(1 + γ ) − γ

2 + γ
. (7.29)
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Suppose a < 0, implying q < γ/(1 + γ ). Then limε↓0 φ(ε) < ∞ by (7.29), implying
the claim. Moreover, Cr is minimal for r = (2/|a|) log(1 + |a|/q) as in part (a).

Now suppose a = 0, implying q = γ /(1 + γ ). Then

φ(ε)2 ≤ K2∗r−2erq(b| log ε| + log | log ε|/2)2,

and the leading constant is minimised when r = 2/q = 2 + 2/γ .
Finally, suppose a > 0, implying q > γ/(1 + γ ). By (7.29), we have

φ(ε)2 ≤ K2∗erq

(ear/2 − 1)2
ea(b| log ε|+log | log ε|/2) = K2∗erq

(ear/2 − 1)2
ε−ab| log ε|a/2,

and the leading constant is minimal for r = (2/a) log(1 + a/q).
In parts (c) and (d), note that a < 0 if and only if δ = 2 (i.e., σ �= 0). Analogous

arguments as in (a) and (b) complete the proof of the theorem. �

Appendix: MC and MLMC estimators

A.1 Monte Carlo estimator

Consider square-integrable random variables P,P1,P2, . . . Let (P i
k )k,i∈N be inde-

pendent with P i
k

d= Pk for k, i ∈ N. Suppose |E[P ] − E[Pk]| ≤ B(k) for all k ∈ N

and assume that C(n) bounds the expected computational cost of simulating a sin-
gle value of Pn. Pick arbitrary ε > 0 and define m := inf{k ∈ N : B(k) < ε/

√
2},

N := �2V[Pm]/ε2�. Then the Monte Carlo estimator

P̂ := 1

N

N∑

i=1

P i
m of E[P ] is L2-accurate at level ε, i.e., E

[
(P̂ −E[P ])2]1/2

< ε,

since E[(P̂ −E[P ])2] = V[P̂ ]+ (E[Pm]−E[P ])2 and V[P̂ ] < ε2/2 by the definition
of N , while (E[Pm]−E[P ])2 < ε2/2 by the definition of m. Thus if the bound B(m)

on the bias is asymptotically sharp, the formulae for the integers m,N ∈ N above
result in the computational complexity given by the formula

CMC(ε) = NC(m) = �2V[Pm]/ε2�C(m).

Although in practice one does not have access to the variance V[Pm], it is typically
close to V[P ] (which often has an a priori bound) or can be estimated via simulation.

A.2 Multilevel Monte Carlo estimator

This section is based on the works of Heinrich and Giles [37] and Giles [28].
Let P,P1,P2, . . . be square-integrable random variables and set P0 := 0. Suppose

that the array of independent random variables (Di
k)k∈N∪{0},i∈N satisfies Di

k

d= D1
k

and E[Di
k] = E[Pk+1 − Pk] for k ∈ N ∪ {0} and i ∈ N. For k ∈ N ∪ {0}, assume
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that the bias and level variance satisfy the inequalities B(k) ≥ |E[P ] − E[Pk]| and
V (k) ≥V[D1

k ] for some functions k 
→ B(k) and k 
→ V (k), respectively, and let
C(k) bound the expected computational complexity of simulating a single value of
D1

k . For m ∈ N∪ {0} and N0, . . . ,Nm ∈N, the MLMC estimator

P̂ :=
m∑

k=0

1

Nk

Nk∑

i=1

Di
k

satisfies E[(P̂ −E[P ])2] = V[P̂ ]+ (E[Pm]−E[P ])2, since E[P̂ ] = E[Pm]. Thus for
any ε > 0, the inequality E[(P̂ − E[P ])2] < ε2 holds if the number of levels in P̂

equals

m := inf{k ∈ N∪ {0} : B(k) < ε/
√

2}, (A.1)

and the variance is bounded by V[P̂ ] =∑m
k=0 V[D1

k ]/Nk ≤∑m
k=0 V (k)/Nk ≤ ε2/2.

Since the computational complexity of P̂ , CML(ε) =∑m
k=0 C(k)Nk , is linear in the

number of samples Nk on each level k, we only require that the variance V[P̂ ] be of
the same order as ε2/2 =∑m

k=0 V (k)/Nk . Then by the Cauchy–Schwarz inequality,
we have

CML(ε)ε2/2 =
( m∑

k=1

C(k)Nk

)( m∑

k=0

V (k)

Nk

)
≥
( m∑

k=0

√
C(k)V (k)

)2

,

where the lower bound does not depend on N0, . . . ,Nm and is attained if and only if

Nk :=
⌈

2ε−2

√
V (k)

C(k)

m∑

j=0

√
C(j)V (j)

⌉
for k ∈ {0, . . . , n}, (A.2)

ensuring that the expected cost is a multiple of

CML(ε) = 2ε−2
( m∑

k=0

√
C(k)V (k)

)2

. (A.3)

Moreover, if B , V and C are asymptotically sharp, the formulae in (A.2), up to con-
stants, minimise the expected computational complexity. Consequently, the compu-
tational complexity analysis of the MLMC estimator is reduced to the analysis of the
behaviour of

∑m
j=0

√
C(j)V (j) as ε ↓ 0.
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