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Abstract
In this work, we consider optimal stopping problems with model uncertainty incorpo-
rated into the formulation of the underlying objective function. Typically, the robust,
efficient hedging of American options in incomplete markets may be described as
optimal stopping of such kind. Based on a generalisation of the additive dual repre-
sentation of Rogers (Math. Financ. 12:271–286, 2002) to the case of optimal stop-
ping under model uncertainty, we develop a novel regression-based Monte Carlo al-
gorithm for the approximation of the corresponding value function. The algorithm
involves optimising a penalised empirical dual objective functional over a class of
martingales. This formulation allows us to construct upper bounds for the optimal
value with reduced complexity. Finally, we carry out a convergence analysis of the
proposed algorithm and illustrate its performance by several numerical examples.
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1 Introduction

In this paper, we consider optimal stopping problems under model uncertainty in
terms of ambiguity aversion. By representation results, this means that we look at
stochastic optimisation problems of the form

sup
τ∈T

sup
Q∈Q

(
EQ[Yτ ] − β(Q)

)
, (1.1)

where T and Q denote the set of stopping times and a set of probability measures,
respectively, whereas β stands for a convex penalty function (see Maccheroni et al.
[27]). In the special case

sup
τ∈T

sup
Q∈Q

EQ[Yτ ], (1.2)

the optimal value represents the superhedging price of some American option in an
incomplete financial market (see e.g. Trevino-Aguilar [34, Sect. 1.4], Föllmer and
Schied [20, Chap. 7]). In the general form, the solution of (1.1) might be interesting
for robust, efficient hedging of some American option in an incomplete financial
market (see Trevino-Aguilar [34, Sect. 2.1], Föllmer and Schied [20, Chap. 8]). If the
seller of this American option is only willing to invest an amount c strictly smaller
than the superhedging price, then for any stopping time τ ∈ T , the random variable
Yτ may represent the shortfall risk of a hedging strategy with initial investment c

when the American option is exercised at τ . Then

sup
Q∈Q

(
EQ[Yτ ] − β(Q)

)

gives a robust quantification of the shortfall risk at time τ reflecting the seller’s model
uncertainty.

The aim of the present paper is to solve the stopping problem (1.1) numerically.
We restrict ourselves to penalty functions in the form of divergence functionals with
respect to a reference probability measure. In this case, (1.1) reads as

sup
τ∈T

sup
Q∈Q

(
EQ[Yτ ] − E[�(dQ/dP )]), (1.3)

where � : [0,∞) → [0,∞] denotes a lower semicontinuous convex function and Q
consists of all probability measures Q which are absolutely continuous with respect
to some reference probability measure P . Besides the standard optimal stopping,
prominent specialisations of (1.3) are optimal stopping under average value at risk
and the family of entropic risk measures.

Our investigations are built upon a specific representation of (1.3) established in
Belomestny and Krätschmer [8] (with a refinement in Belomestny and Krätschmer
[9]). The crucial point is that we may reformulate the optimal stopping problem in
terms of a family of standard optimal stopping problems parametrised by a set of real
numbers. This allows us to derive a so-called additive dual representation generalising
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the well-known dual representation of Rogers [30] for the standard optimal stopping
problems, given by

V ∗ := inf
M∈M

E
[

sup
t∈[0,T ]

(Zt − Mt)
]
, (1.4)

where (Zt ) is an adapted cash-flow process and M is the set of all (Ft )-martingales
starting in 0 at t = 0. We use this new generalised dual representation to efficiently
construct Monte Carlo upper bounds for the value of the optimal stopping prob-
lems under model uncertainty. As to the standard optimal stopping problems, several
Monte Carlo algorithms for constructing upper biased estimators for V ∗ based on
(1.4) were suggested in the literature. They typically consist of two steps:

a) apply some numerical method to construct a martingale M̂ which is close to opti-
mality;

b) estimate E[supt∈[0,T ](Zt − M̂t )] by the sample mean, using a new independent
sample (testing sample).

All the existing dual Monte Carlo algorithms can be divided into two broad categories
depending on how the martingale M̂ is constructed. In the first class of algorithms,
see for example Andersen and Broadie [2] and Glasserman [22, Chap. 8], Belomestny
and Schoenmakers [10, Part III] for further references, the choice of the martingale
M̂ is based on approximating the so-called Doob martingale. A particular feature of
the Doob martingale is that it solves (1.4) and, moreover, satisfies

V ∗ = sup
t∈[0,T ]

(Zt − M∗
t ) almost surely. (1.5)

Because of (1.5), we say that the Doob martingale is surely or strongly optimal. In the
second class of algorithms, one tries to solve the dual optimisation problem (1.4) di-
rectly by using methods of stochastic approximation and some parametric subclasses
of M. Let us mention Desai et al. [18], where the authors essentially applied the
stochastic average approximation (SAA) approach and used a nested Monte Carlo
method to construct a suitable finite-dimensional linear space of martingales, thus
casting the resulting minimisation problem into a linear program. However, it was
demonstrated later in Belomestny [6] that the approach in Desai et al. [18] may end
up with martingales M̂ that are close to optimal but only in expectation, with the
variance of the random variable supt∈[0,T ](Zt − M̂t ) being relatively high. In con-
trast, due to (1.5), for a martingale that is close to the Doob martingale M∗ (in an
L2 sense, for instance), this variance will be close to zero. Consequently, the estima-
tion in step b) can be done more efficiently for such a martingale. Thus it is essential
to find martingales that are “close” to the Doob martingale, or at least “close” to a
surely optimal martingale. In this respect, Belomestny [6] proposed a modification of
the plain SAA based on variance penalisation. The convergence analysis of this algo-
rithm reveals that the variance of the random variable supt∈[0,T ](Zt − M̂t ) converges
to zero as the number of paths used to build M̂ increases.
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The contribution of the current work is twofold. First, we generalise the approach
of Belomestny [6] to the case of optimal stopping problems under model uncertainty
by using the dual representation by Belomestny and Krätschmer [8]. Second, we pro-
vide a thorough convergence analysis of the proposed algorithm. The main theoretical
challenge is to extend the analysis of Belomestny [6] to objective functions involving
empirical expectations and empirical variances of much more complicated objects
than in Belomestny [6]; see Sect. 3. We use essentially different techniques (e.g. dif-
ferent concentration inequalities) and derive faster convergence rates that improve
upon those in Belomestny [6] for standard optimal stopping problems. We also illus-
trate our results for the case of martingales in a diffusion setting defined as integrals
with respect to the corresponding Brownian motion by the martingale representation
theorem. As compared to Belomestny [6], we consider here not only parametric linear
families of martingales, but rather general nonparametric ones defined as stochastic
integrals with smooth integrands.

Putting our contribution into perspective, it should be emphasised that one can-
not utilise any general device that is suggested in the literature to analyse the opti-
mal stopping problem (1.1) or even (1.3). To the best of our knowledge, there ex-
ist two general strategies both based on some underlying filtered probability space
(�,F , (Ft )0≤t≤T ,P ). The first focuses on sets Q where we may find conditional
nonlinear expectations extending the functional

X �→ sup
Q∈Q

(
EQ[X] − β(Q)

)

and satisfying a property called time-consistency which extends the tower property of
conditional expectations. Time-consistency, sometimes also called recursiveness, al-
lows extending the dynamic programming principle from standard optimal stopping
problems to optimal stopping problems of the form (1.1). Studies following this line
of reasoning may be found e.g. in Trevino-Aguilar [34, Sects. 4.1 and 4.2], Bayrak-
tar and Yao [3], Bayraktar and Yao [4], Ekren et al. [19] and Bayraktar and Yao [5]
(see also Riedel [29], Krätschmer and Schoenmakers [25] and Föllmer and Schied
[20, Chap. 6] for the discrete-time case). Unfortunately, this approach requires very
restrictive conditions that Q should satisfy, at least for optimal stopping (1.2) (see
e.g. Delbaen [17], or Belomestny et al. [7] for the case where Q consists of prob-
ability measures that are equivalent to P ). Even worse, it is known from Kupper
and Schachermayer [26] that for the optimal stopping problem (1.3), Q meets this
requirement in two cases only. These choices of � correspond to standard optimal
stopping and optimal stopping under entropic risk measures.

The second approach proposed very recently in Huang and Yu [24] and Huang
et al. [23] offers a way to solve the optimal stopping problem (1.2) when a dynamic
programming principle cannot be applied. The main idea in these papers is to tackle
optimal stopping within a game-theoretic framework and look for Nash subgame
perfect equilibria. This line of reasoning refers to a long history in economics on how
to deal with time-inconsistent dynamic utility maximisation, going back to Strotz
[33], Selten [31] and Selten [32]. It has become popular for applications in stochastic
finance due to the contributions by Björk and Murgoci [13] and Björk et al. [12],
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where the authors treat stochastic control problems which do not admit a Bellman
optimality principle. Formally, the expected payoffs corresponding to the equilibria
approximate the optimal values of (1.2) from below. However, this approach cannot
be used directly for the optimal stopping problem (1.3) since this reduces to (1.2)
only in a few cases (see Ben-Tal and Teboulle [11]), with optimal stopping under
average value at risk as the outstanding representative. Moreover, a numerical method
to calculate the payoffs at the equilibria is missing.

In conclusion, the existing literature on robust optimal stopping does not lead in
general to a constructive numerical approach to calculate the optimal values of (1.3).
This paper offers a method to deal with this problem and is completed by studying
its theoretical properties.

The paper is organised as follows. In Sect. 2, we introduce convex risk measures
and give some examples. Then we introduce primal and dual representations for our
optimal stopping problems under model uncertainty. In Sect. 3, we develop a Monte
Carlo functional optimisation algorithm based on the derived dual representation.
Then we analyse its convergence towards the solution, depending on the number of
Monte Carlo paths and complexity of the underlying functional class. The results are
specified to a setting of diffusion processes in Sect. 4. Afterwards, we present some
numerical results in Sect. 5. The proofs of the results from Sects. 3 and 4 are given in
Sects. 6–8.

2 Setup

Let 0 < T < ∞ and let (�,F , (Ft )0≤t≤T ,P ) be a filtered probability space, where
(Ft )t∈[0,T ] is a right-continuous filtration with F0 complete and trivial. We also im-
pose the following requirements:

– (�,Ft , P |Ft
) is atomless for t > 0.

– The L1-space L1(�,Ft , P |Ft
) is weakly separable for t > 0.

Consider a lower semicontinuous convex mapping � : [0,∞) → [0,∞] satisfying
�(x0) < ∞ for some x0 > 0, infx≥0 �(x) = 0 and limx→∞ �(x)

x
= ∞. Its Fenchel–

Legendre transform

�∗(y) := sup
x≥0

(
xy − �(x)

)

is a finite nondecreasing convex function whose restriction to [0,∞) is a finite Young
function, that is, �∗ : [0,∞) → [0,∞) is convex and satisfies

lim
x→∞

�∗(x)

x
= ∞, lim

x→0

�∗(x)

x
= 0.

Consider the space

H�∗ = {X ∈ L0 : E[�∗(c|X|)] < ∞ for all c > 0},
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where L0 is the class of all (equivalence classes of) finite-valued random variables.
For abbreviation, let us introduce the functional ρ : H�∗ → R defined by

ρ(X) = sup
Q∈Q�

(
EQ[X] − E[�(dQ/dP )]),

where Q� stands for the set of all probability measures Q which are absolutely
continuous with respect to P and such that �(dQ/dP ) is P -integrable. Note that
XdQ/dP is P -integrable for every Q ∈ Q� and any X ∈ H�∗

due to Young’s in-
equality.

Example 2.1 Let us illustrate our setup in the case of the so-called average value at
risk, also known as expected shortfall or conditional value at risk. The average value
at risk at level α ∈ (0,1] is defined as the functional

AV @Rα(X) := 1

1 − α

∫ 1

α

F←
X (β)dβ,

where X is P -integrable and F←
X denotes the left-continuous quantile function of

the distribution function FX of X defined by F←
X (α) = inf{x ∈ R : FX(x) ≥ α} for

α ∈ (0,1). Note that AV @R1(X) = E[X] for any P -integrable X. Moreover, for
α ∈ (0,1), it is well known that

AV @Rα(X) = sup
Q∈Q�α

EQ[X] for P -integrable X,

where �α stands for the function defined by �α(x) = 0 for x ≤ 1/(1 − α), whereas
�α(x) = ∞ otherwise (cf. Föllmer and Schied [20, Theorem 4.52]). Observe that the
set Q�α consists of all probability measures on F with dQ/dP ≤ 1/(1 − α) P -a.s.

Consider now a right-continuous nonnegative stochastic process (Yt ) adapted to
(Ft ). Furthermore, let T consist of all [0, T ]-valued stopping times τ with respect to
(Ft ). The main object of our study is the optimal stopping problem

V0 = sup
τ∈T

ρ(Yτ ). (2.1)

For fixed x ∈ R, we denote by V x = (V x
t )t∈[0,T ] the Snell envelope of the process

(�∗(x + Yt ) − x)t∈[0,T ] defined via

V x
t := ess sup

τ∈T ,τ≥t

E
[(

�∗(x + Yτ ) − x
) ∣∣Ft

]
.

Let int(dom(�)) denote the topological interior of the effective domain of the map-
ping � : [0,∞) → [0,∞]. We assume that � is a lower semicontinuous convex func-
tion satisfying 1 ∈ int(dom(�)). Denote by M0 the set of all martingales (Mt)t∈[0,T ]
with M0 = 0 such that supt∈[0,T ] |Mt | is P -integrable. The following result was
proved in Belomestny and Krätschmer [8] along with Belomestny and Krätschmer
[9]. We point out that this uses that (�,Ft , P |Ft

) is atomless and L1(�,Ft , P |Ft
) is

weakly separable, for each t > 0.



Solving optimal stopping problems under model uncertainty 467

Theorem 2.2 If there is some p > 1 such that supt∈[0,T ] |�∗(x + Yt )| is P -integrable
of order p for any x ∈ R, then we have the dual representations

sup
τ∈T

ρ(Yτ ) = inf
x∈R inf

M∈M0

E
[

sup
t∈[0,T ]

(
�∗(x + Yt ) − x − Mt

)]

= inf
x∈RE

[
sup

t∈[0,T ]
(
�∗(x + Yt ) − x − M

∗,x
t

)]

= inf
x∈K

E
[

sup
t∈[0,T ]

(
�∗(x + Yt ) − x − M

∗,x
t

)]

= ess inf
x∈K

sup
t∈[0,T ]

(
�∗(x + Yt ) − x − M

∗,x
t

)
P -a.s. (2.2)

Here M∗,x is the martingale part of the Doob–Meyer decomposition of the Snell
envelope V x and K ⊆ R denotes a suitably chosen compact set.

Remark 2.3 The above dual representation is remarkable for at least two reasons.
Firstly, it allows one to construct upper bounds for the value V0 by choosing a mar-
tingale M from the set M0. Secondly, if the optimal martingale M∗,x is found, then
we need a single trajectory of the reward process Y and the martingale M∗,x to com-
pute V0 with no error. In this sense, such a dual representation can be computationally
more efficient than the primal one.

Remark 2.4 We may describe more precisely how to choose the compact set K in
Theorem 2.2. First of all, observe that under the assumptions of this theorem, the
representation results imply

sup
τ∈T

ρ(Yτ ) ≤ inf
x∈RE

[
sup

t∈[0,T ]
(
�∗(x + Yt ) − x

)]
< ∞.

Secondly,

E
[

sup
t∈[0,T ]

(
�∗(x + Yt ) − x − M

∗,x
t

)]≥ �∗(x + Y0) − x

holds for any real number x. Next, by assumption we may find 0 ≤ x0 < 1 < x1 such
that x0, x1 belong to the effective domain of �. Then by the definition of �∗,

�∗(x + Y0) − x ≥ max
i=0,1

(
(xi − 1)x + Y0 xi − �(xi)

)
for x ∈ R.

Then it is easy to check that

E
[

sup
t∈[0,T ]

(
�∗(x + Yt ) − x

)]
> sup

τ∈T
ρ(Yτ )

whenever

x < a� := min
i=0,1

supτ∈T ρ(Yτ ) + �(xi) − xiY0

xi − 1
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or

x > au := max
i=0,1

supτ∈T ρ(Yτ ) + �(xi) − xiY0

xi − 1
.

Hence any compact set K ⊇ [a�, au] may be used in Theorem 2.2. We can derive a
more accessible choice for the set K in the case of average value at risk AV @Rα . By
nonnegativity of the process (Yt ),

sup
τ∈T

AV @Rα(Yτ ) ≤ sup
τ∈T

E[Yτ ]/(1 − α).

Furthermore, �∗(x) = x+/(1 − α) holds for x ∈ R so that

�∗(x + Y0) − x > sup
τ∈T

E[Yτ ] for R \ [aα
� , aα

u ],

where

aα
� := − sup

τ∈T
E[Yτ ] and aα

u :=
(
(1 − α) sup

τ∈T
E[Yτ ] − Y0

)
/α.

Thus any compact K ⊇ [aα
� , aα

u ] is a proper choice in Theorem 2.2 for ρ = AV @Rα .

In the next section, we propose a Monte Carlo method for solving the dual opti-
misation problem (2.2) empirically.

3 Dual empirical minimisation

The representation result in Theorem 2.2, in particular (2.2), is the starting point for
our method to solve the optimal stopping problem (2.1). We start by fixing a metric
space 	 and a family (Mt(ψ))t∈[0,T ] of martingales parametrised by ψ ∈ 	 , adapted
to (Ft )t∈[0,T ] and satisfying M0(ψ) = 0. Define the process Z = (Z(x,ψ)) via

Z(x,ψ) := sup
s∈[0,T ]

(
�∗(x + Ys) − x − Ms(ψ)

)
for x ∈ R,ψ ∈ 	.

We shall find the “best” ψ ∈ 	 by solving the empirical optimisation problem on
a set of trajectories. To this end, we define the product space (�N,FN,PN) and its
natural projections

�i(ω) = ωi, ω = (ωn)n∈N ∈ �N,

as well as the processes Z(i), i = 1,2, . . ., on �N ×R× 	 via

Z(i)(ω, x,ψ) := sup
s∈[0,T ]

(
�∗(x + Ys ◦ �i(ω)

)− x − Ms

(
�i(ω);ψ)

)
.
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Fix some λ > 0 and let (xn,ψn) denote one of the random solutions of the random
optimisation problem

min
(x,ψ)∈K×	

(
1

n

n∑

i=1

Z(i)( · , x,ψ)

+ λ

n(n − 1)

∑

1≤i<j≤n

(
Z(i)( · , x,ψ) − Z(j)( · , x,ψ)

)2
)

,

where K is a compact set in R as in Theorem 2.2. If n → ∞, this optimisation
problem becomes PN-a.s. close to the optimisation problem

min
(x,ψ)∈K×	

(
E[Z(x,ψ)] + λVar[Z(x,ψ)]), (3.1)

and we denote by (x∗,ψ∗) one of the latter’s (deterministic) solutions. The intuition
behind (3.1) is simple. Setting ξ(x,M) := supt∈[0,T ](�∗(x +Yt )− x −Mt), we min-
imise the expectation of ξ(x,M) over a family of martingales M and x ∈ K . At the
same time, we penalise the variance of this random variable. We also have in mind
that the variance of ξ(x,M) is zero if the chosen family of martingales contains the
martingale M∗,x∗

defined in Theorem 2.2 (see Rogers [30]). In this way, a variance
reduction effect can be achieved, as we shall illustrate in Sect. 5.

Let us now analyse the properties of the measurable selector (xn,ψn). For any
n ∈N, set

Dn : �N → (Rn)K×	, ω �→ (
Z(1)(ω, x,ψ), . . . ,Z(n)(ω, x,ψ)

)
(x,ψ)∈K×	

.

The mapping Dn can be interpreted as a set of Monte Carlo paths of the process Z

used to construct (xn,ψn). In order to formulate our main results, we introduce the
function, for a selector (xn,ψn),

Qλ(xn,ψn) := E[Z(xn,ψn)|Dn] + λVar[Z(xn,ψn)|Dn], (x,ψ) ∈ K × 	.

With a slight abuse of notation, we set for (x,ψ) ∈ K × 	 ,

Qλ (x,ψ) := E[Z(x,ψ)] + λVar[Z(x,ψ)].
Now let (K × 	)η denote the set of centres of a covering of K × 	 by a minimal
number of η-balls with respect to the (semi)metric

d
(
(x,ψ), (x′,ψ ′)

) := E[|Z(x,ψ) − Z(x′,ψ ′)|].
Then define

γ (K × 	,n) := inf {ε > 0 : logN (K × 	,ε) ≤ nε} ,

where N (K × 	,ε) stands for the minimal number to cover the set K × 	 by open
d-balls with radius ε > 0. We tacitly set N (K × 	,ε) = ∞ if no finite cover is
available.
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Theorem 3.1 Let δ ∈ (0,1) and λ > 0. Assume that |Z| ≤ b < ∞ with probability 1.
Then it holds for all n ∈N that

PN[Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ 8 R0(n,λ, δ)] ≥ 1 − δ,

where

R0(n,λ, δ) := b(1 + 8λb)

(√
log(8/δ)

n
+√

γ (K × 	,n)

)

+ (1 + 4bλ)γ (K × 	,n).

Corollary 3.2 Let all assumptions of Theorem 3.1 be valid and further assume that

lim
n→∞γ (K × 	,n) = 0.

Then for all ε > 0, it holds that

lim
n→∞PN[|Qλ(xn,ψn) −Qλ(x

∗,ψ∗)| ≥ ε] = 0.

In some situations, the bounds of Theorem 3.1 can be improved. Suppose that

min
(x,ψ)∈K×	

(
E[Z(x,ψ)] + λVar[Z(x,ψ)])= sup

τ∈T
ρ(Yτ ),

that is, the set 	 is assumed to be rich enough such that the solution (x∗,ψ∗) satisfies
M(ψ∗) = M∗,x∗

, where M∗,x∗
is the martingale part of the Doob–Meyer decompo-

sition of V x∗
. As already mentioned above, in this case it holds that

Var[Z(x∗,ψ∗)] = 0. (3.2)

In the case that M(ψ∗) = M∗,x∗
for some ψ∗, the selectors (xn,ψn) are nothing else

but so-called M-estimators. So we may invoke the established theory on asymptotics
of M-estimation. The reader is referred to van der Vaart and Wellner [35, Chap. 3]
for comprehensive information. In this theory, a starting point is the so called “well-
separated minimum” condition

inf
d((x,ψ),(x∗,ψ∗))≥ε

E[Z(x,ψ)] > E[Z(x∗,ψ∗)] for every ε > 0. (3.3)

Property (3.3) is a basic assumption to find general criteria which ensure that the
sequence (xn,ψn)n∈N converges in probability to (x∗,ψ∗) (see van der Vaart and
Wellner [35, Corollary 3.2.3]).

Since our metric d is assumed to be totally bounded, the topological closure of the
set {Z(x,ψ) : (x,ψ) ∈ K × 	} with respect to the L1-norm is compact. Note then
that condition (3.3) is satisfied if and only if the restriction of the expectation operator
to the L1-closure cl({Z(x,ψ) : (x,ψ) ∈ K × 	}) of {Z(x,ψ) : (x,ψ) ∈ K × 	} has
a unique minimum at Z(x∗,ψ∗).

If we are interested in convergence rates, we must complete the “well-separated
minimum condition”. The following type of identifiability condition is now standard
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in the literature of M-estimation (see van der Vaart and Wellner [35, Theorem 3.2.5]):
There exist C,δ > 0 such that

E[Z(x,ψ) − Z(x∗,ψ∗)] ≥ C d
(
(x,ψ), (x∗,ψ∗)

)

for d
(
(x,ψ), (x∗,ψ∗)

)
< δ. (3.4)

Now we are prepared to improve the convergence rates.

Theorem 3.3 Let δ ∈ (0,1), λ > 0, Cλ,b := 64b3λ2 +2λ and |Z| ≤ b < ∞ with prob-
ability 1. Then under (3.2)–(3.4), for all n ∈ N satisfying

n > 4b
(
γ (K × 	,n) + Cλ,b log(8/δ)/n + 2/3

)
log(8/δ),

it holds that

PN[Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ c1R1(n, δ) + c2R2(n,λ, δ)] ≥ 1 − δ, (3.5)

where c1, c2 > 0 are some universal constants,

R1(n, δ) := γ (K × 	,n) + log(8/δ)

n
(3.6)

and

R2(n,λ, δ) :=
√

b(γ (K × 	,n) + Cλ,b log(8/δ)

n
+ 1) log(8/δ)

n
. (3.7)

Remark 3.4 Note that if γ (K × 	,n) → 0 as n → ∞ in such a way that

lim
n→∞nγ (K × 	,n) = ∞,

then

lim
n→∞

R1(n, δ) + R2(n,λ, δ)

R0(n,λ, δ)
= 0

(see Sect. 7). In this sense, the bound in Theorem 3.3 is better than the one in Theo-
rem 3.1.

4 Specification analysis for the class �

In this section, we specify the convergence rates in (3.5) depending on the properties
of the parameter space 	 . The convergence rate strongly depends on the quantity
γ (K ×	,n). This quantity in turn depends on the set 	 . Thus to analyse the conver-
gence rate, we have to study the covering number of 	 . In what follows, we consider
parametric families of martingales arising in the setting of diffusion processes. Let
(St )t∈[0,T ] denote a d-dimensional diffusion process solving the system of SDEs

dSt = μ(t, St )dt + σ(t, St ) dWt , S0 = x0, (4.1)
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where μ : [0, T ] ×R
d → R

d and σ : [0, T ] ×R
d → R

d×m are Lipschitz-continuous
in space and 1/2-Hölder-continuous in time, with m denoting the dimension of the
Brownian motion W = (W1, . . . ,Wm)�. Then the martingale representation theorem
implies that any square-integrable martingale (Mt)t∈[0,T ] with respect to the filtration
(Ft )t∈[0,T ] generated by (Wt )t∈[0,T ] and with M0 = 0 can be represented as

Mt =
∫ t

0
Gs dWs, t ∈ [0, T ], (4.2)

where (Gs)s∈[0,T ] is an (Ft )t∈[0,T ]-adapted process which is square-integrable on
[0, T ] in the sense of (4.3) below. Under some conditions, it can be shown by the Itô
formula that the Doob martingale (M∗

t )t∈[0,T ] of the Snell process

V ∗
t = ess sup

τ∈T ,τ≥t

E[f (Sτ ) |Ft ], t ∈ [0, T ],

for a function f : Rd → R has a representation (4.2). More specifically, we may
choose Gs = G(s,Ss) for some measurable function G : [0, T ]×R

d → R
d such that

(Gs)s∈[0,T ] is square-integrable on [0, T ] as in (4.3) below; see Ye and Zhou [37,
Theorem 5]. Therefore it is reasonable to parametrise a subclass of square-integrable
martingales adapted to (Ft ) by functions ψ(t, x) = (ψ1(t, x), . . . ,ψm(t, x)), satisfy-
ing

∫ T

0
E[|ψ(t, St )|2]dt < ∞, (4.3)

via

Mt = Mt(ψ) =
∫ t

0
ψ(u,Su) dWu.

Note that this type of representations was already used to solve optimal stopping/ con-
trol problems in a dual formulation; see e.g. Wang and Caflisch [36] and Ye and Zhou
[37]. Denote by Hs

p(Rd) the Sobolev space consisting of all functions f ∈ Lp(Rd)

such that for every multi-index α with |α| ≤ s, the mixed partial derivative Dαf ex-
ists in the weak sense and is in Lp(Rd). Further let β ∈ R and 〈x〉β = (1 + |x|2)β/2,
where x ∈ R

d . For s − d/p > 0, we define the weighted Sobolev space

Hs
p(Rd, 〈x〉β) = {f : f 〈x〉β ∈Hs

p(Rd)}
and

Hs
p([0, T ] ×R

d , 〈x〉β) = {f : [0, T ] ×R
d →R

m : f ∈Hs
p(Rd+1, 〈x〉β)}.

Let πt denote the density function of St . We set

	π = {f : [0, T ] ×R
d → R

m, (t, x) �→√
πt (x)ψ(t, x) : ψ ∈ 	}.

Now let us first look at convergence rates in the case that Var[Z(x∗,ψ∗)] does not
vanish. Built upon an integrability condition on the density process (πt ), they will be
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described in terms of the degree s of smoothness that the functions in 	π fulfil, and
the dimension d of their domain. Recalling the process Z = (Z(x,ψ)) introduced at
the beginning of Sect. 3, the following result is an application of Theorem 3.1.

Theorem 4.1 Let p = 2, β ∈ R, s ∈ N, δ ∈ (0,1), λ > 0 and d ∈ N. Further, let 	 be
a set such that 	π ⊆ Hs

2([0, T ] ×R
d, 〈x〉β) is bounded with respect to the norm

‖f ‖ =
∑

0≤|α|≤s

√∫

[0,T ]

∫

Rd

|Dαf (t, x)|2 dxdt.

In addition, suppose that

√∫

[0,T ]

∫

Rd

〈x〉α−βπt (x)dxdt < ∞ (4.4)

for some α > 0. If |Z| ≤ b < ∞ with probability 1 for some b ∈ R, then for
s > (d + 1)/2, there exist constants η1, η2, η3 and η4, depending on λ,b, d, s and
δ as well as on the compact set K and the function �, such that

1) for α > s − (d + 1)/2 and s/(s + d + 1) ≤ 1/2,

PN
[
Qλ(xn,ψn) −Qλ(x

∗,ψ∗) ≤ η1 n− 1
2

s
s+d+1

]≥ 1 − δ;
2) for α > s − (d + 1)/2 and s/(s + d + 1) > 1/2,

PN
[
Qλ(xn,ψn) −Qλ(x

∗,ψ∗) ≤ η2 n− 1
4
]≥ 1 − δ;

3) for α < s − (d + 1)/2 and (α/(d + 1) + 1/2)/(α/(d + 1) + 3/2) ≤ 1/2,

PN
[
Qλ(xn,ψn) −Qλ(x

∗,ψ∗) ≤ η3 n
− 1

2
α/(d+1)+1/2
α/(d+1)+3/2

]≥ 1 − δ;
4) for α < s − (d + 1)/2 and (α/(d + 1) + 1/2)/(α/(d + 1) + 3/2) > 1/2,

PN
[
Qλ(xn,ψn) −Qλ(x

∗,ψ∗) ≤ η4 n− 1
4
]≥ 1 − δ.

The parameter α in Theorem 4.1 may be viewed as a degree of integrability for the
density process (πt ). The terms s/(s+d+1) and (α/(d+1)+1/2)/(α/(d+1)+3/2)

occurring in the result are nondecreasing in s and α, respectively, with

sup
s<α+(d+1)/2

s

s + d + 1
= α/(d + 1) + 1/2

α/(d + 1) + 3/2

and

sup
α<s−(d+1)/2

α/(d + 1) + 1/2

α/(d + 1) + 3/2
= s

s + d + 1
.
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So Theorem 4.1 tells us that for a fixed degree of integrability, the convergence rates
are nondecreasing with respect to the degree of smoothness. However, the second and
fourth cases show that in case of a significant degree of smoothness in comparison
with the dimension d , there is always a point of saturation where the convergence
rates cannot be improved by higher degrees of smoothness. In addition, for a given
degree of smoothness, the higher the degree of integrability, the better the conver-
gence rates, with certain points of saturation.

Let us turn to the situation when the assumptions of Theorem 3.3 hold. We may
derive from Theorem 3.3 the next result which is qualitatively of the same nature as
Theorem 4.1, but with doubled convergence rates.

Theorem 4.2 Let all conditions of Theorem 4.1 be satisfied and in addition sup-
pose that properties (3.2)–(3.4) are valid. For s > (d + 1)/2, there exist constants
η̃1, η̃2, η̃3, η̃4, depending on λ,b, d, s and δ as well as on the compact set K and the
function �, such that

1) for α > s − (d + 1)/2 and s/(s + d + 1) ≤ 1/2,

PN
[
Qλ(xn,ψn) −Qλ(x

∗,ψ∗) ≤ η̃1 n− s
s+d+1

]≥ 1 − δ;
2) for α > s − (d + 1)/2 and s/(s + d + 1) > 1/2,

PN
[
Qλ(xn,ψn) −Qλ(x

∗,ψ∗) ≤ η̃2 n− 1
2
]≥ 1 − δ;

3) for α < s − (d + 1)/2 and (α/(d + 1) + 1/2)/(α/(d + 1) + 3/2) ≤ 1/2,

PN
[
Qλ(xn,ψn) −Qλ(x

∗,ψ∗) ≤ η̃3 n
− α/(d+1)+1/2

α/(d+1)+3/2
]≥ 1 − δ;

4) for α < s − (d + 1)/2 and (α/(d + 1) + 1/2)(α/(d + 1) + 3/2) > 1/2,

PN
[
Qλ(xn,ψn) −Qλ(x

∗,ψ∗) ≤ η̃4 n− 1
2
]≥ 1 − δ.

Remark 4.3 Theorem 4.1 implies that Qλ (xn,ψn) converges to Qλ (x∗,ψ∗) at a rate
depending on the smoothness of the density πt (x) and its decay for |x| → ∞. It is
well known (see Friedman [21, Theorem 9.8]) that if the diffusion coefficient σ is uni-
formly elliptic and the coefficients μ and σ are infinitely differentiable in [0, T ]×R

d

with bounded derivatives of any order, then ∂s
t ∂

r
xπt (x) exists for all positive integers

r and s. Moreover, it holds for all x ∈ R
d and t > 0 that

|∂s
t ∂

r
xπt (x)| � 1

t (d+|r|)/2+s
exp

(
−c

|x − x0|2
t

)
for some c > 0.

Here � means that the above inequality holds up to a constant only depending on s

and r . Hence (4.4) holds for an arbitrarily large α ≥ β and

PN
[
Qλ(xn,ψn) −Qλ(x

∗,ψ∗) ≤ M2 n− 1
4
]≥ 1 − δ

for any norm-bounded class 	 ⊆ Hs
2([0, T ] × R

d, 〈x〉β) with arbitrary but fixed
β ≤ 0 and s > d + 1. Here we refer to the norm introduced in Theorem 4.1.



Solving optimal stopping problems under model uncertainty 475

5 Numerical results

We use the Euler scheme and L = 200 discretisation points to approximate the solu-
tion of the SDE

dSt = μ(t, St )dt + σ(t, St ) dWt , S0 = s0.

In particular, we discretise the interval [0, T ] with

0 = t0 < t1 < · · · < tL = T .

Then for computational reasons, we smooth our objective function

Z̃(x,ψ) := sup
s∈{t0,t1,...,tL}

(
�∗(x + Ys) − x − Ms(ψ)

)

using a soft-max type method to get

Z̃p(x,ψ) = p−1 log

( L∑

i=0

exp
(
p
(
�∗(x + Yti ) − x − Mti (ψ)

)))
, p > 0. (5.1)

Note that for p → ∞, the pointwise convergence Z̃p → Z̃ holds. This follows from
the observation that well-known relationships between Lp-norms (see e.g. Aliprantis
and Border [1, Lemma 13.1]) yield

lim
p→∞

( L∑

i=0

exp
(
�∗(x + Yti ) − x − Mti (ψ) − Z̃(x,ψ)

)p
)1/p

= max
s∈{t0,...,tL} exp

(
�∗(x + Ys) − x − Ms(ψ) − Z̃(x,ψ)

)= 1.

For our numerical study, we focus on the optimal stopping problems

sup
τ∈T

AV @R1−α(Yτ ), α ∈ [0,1),

where AV @R1−α denotes the risk measure average value at risk at level 1 − α as
introduced in Example 2.1. The real-valued martingale

Mt(ψ) =
∫ t

0
ψ(u,Su) dWu

can be approximated by the sum

M̃t (ψ) =
L∑

i=0

m∑

j=1

ψj(ti , Sti )(W
j
ti+1

− Wti )1{ti≤t}.

For the space 	 , we take a linear span of trigonometric basis functions and use a
gradient-based method to solve the resulting optimisation problem. Next, we present
numerical examples of pricing American put and Bermudan max-call options. Some
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Table 1 Dual upper bounds for
different values of λ together
with lower bounds in the case of
a one-dimensional American put
option

S0 λ = 0 λ = 1 Lower bounds

90 50.63312 (0.0918) 50.81375 (0.0892) 48.44087 (0.3971)

100 45.67513 (0.1190) 46.40012 (0.1051) 42.93341 (0.4241)

110 41.46382 (0.1076) 41.33101 (0.0901) 37.38727 (0.5420)

of these examples were discussed for standard optimal stopping in Glasserman [22,
Chap. 8] and in Belomestny [6]. Note also that for the stopping problems considered
in this section, some examples were presented in Belomestny and Krätschmer [8]
albeit with different parameters.

Example 5.1 Let St = S0 exp((r −δ−σ 2/2)t +σWt) with r = 0.05, δ = 0.1, σ = 0.2
and Yt = exp(−rt)(Kc,p − St )

+, where Kc,p denotes the strike price. Under these
conditions, our algorithm approximates the solution of the optimal stopping problem

sup
τ∈T

AV@R1−α(Yτ ).

In our implementation, we let 	 be a linear space of functions ψ : [0, T ] × R → R

such that

ψ(t, x) ∈ span
{
ξk

(
yt (x)

)
, ζk

(
yt (x)

)
, k = 0, . . . ,D

}

where

yt (x) = 1

2
√

T − t
log(x/Kc,p)

and

ξk(z) =

⎧
⎪⎨

⎪⎩

0, z < −2,

sin(kz), |z| ≤ 2,

1, z > 2,

ζk(z) =

⎧
⎪⎨

⎪⎩

0, z < −2,

cos(kz), |z| ≤ 2,

1, z > 2.

First we generate n = 10’000 paths to obtain the optimal values (xn,ψn). Then
we generate 100’000 new paths to test the solution. For Kc,p = 100, D = 10 and
α = 0.05, the results are presented in Table 1. It is interesting to see how the upper
bounds depend on α. Setting S0 = 100 and using the same parameter values as above,
we obtain Table 2. Here we solve the optimisation problem

E
[

sup
t∈[0,T ]

(
(Yt + x)+ − α(x + M

ψ
t )
)]

and then divide the result by α. This allowed us to increase p in (5.1) and to get better
results.
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Table 2 Dual upper bounds for
different values of α together
with lower bounds in the case of
a one-dimensional American put
option

α λ = 1 Lower bounds

0.001 63.15427 (0.4178) 54.9864 (1.5762)

0.01 54.01731 (0.1725) 49.6294 (0.8895)

0.1 41.27981 (0.0802) 38.4033 (0.3485)

0.2 35.01322 (0.0548) 31.7252 (0.2319)

0.5 19.68650 (0.0069) 19.5709 (0.2329)

0.7 14.48231 (0.0043) 14.3415 (0.1593)

0.8 12.3511 (0.0041) 12.2721 (0.1350)

1 9.9810 (0.0034) 9.8413 (0.1002)

Example 5.2 Now consider a Bermudan max-call option on two assets. For i = 1,2,
let

dSi
t = (r − δ)Si

t dt + σSi
t dWi

t , Si
0 = si

0,

where r, δ, σ are constants. This system of SDEs describes two identically distributed
assets, where each underlying yields a dividend rate δ. At any time t ∈ {t0, . . . , tI },
the holder of the option may exercise it and receive the payoff

Yt = exp(−rt)
(

max(S1
t , S2

t ) − Kc,p
)+

.

In our example, we set ti = iT /I , i = 0, . . . , I , and choose T = 3 as well as I = 9.
For the linear space 	D of functions ψ : [0, T ] ×R

2 → R
2, we consider

ψ1(t, x) ∈ span
{
ζk

(
y1
t (x)

)
, ξk

(
ky1

t (x)
)
, ζk

(
y1
t (x)

)
1{y1

t (x)≤y2
t (x)},

ξk

(
y1
t (x)

)
1{y1

t (x)≤y2
t (x)},

ζk

(
y1
t (x) + y2

t (x)
)
, ξk

(
y1
t (x) + y2

t (x)
)
, k = 0, . . . ,D

}

and

ψ1(t, x) ∈ span
{
ζk

(
y2
t (x)

)
, ξk

(
y2
t (x)

)
, ζk

(
y2
t (x)

)
1{y2

t (x)≤y1
t (x)},

ξk

(
y2
t (x)

)
1{y2

t (x)≤y1
t (x)},

ζk

(
y1
t (x) + y2

t (x)
)
, ξk

(
y1
t (x) + y2

t (x)
)
, k = 0, . . . ,D

}

where ξk and ζk are defined in Example 5.1. Now for Kc,p = 100, r = 0.05, δ = 0.1,
α = 0.05, σ = 0.2 and D = 6, we obtain Table 3. Like in Example 5.1, it is interesting
to vary α. By fixing S1

0 = S2
0 = 100, we get the results presented in Table 4. In order

to compare the current approach with the one used in Belomestny and Krätschmer [8,
Table 1], we take S1

0 = S2
0 = 90 and α ∈ {0.33,0.5,0.67,0.75}. The corresponding

results are presented in Table 5. The upper bounds are worse than those in [8]. Note
that in [8], a nested approach to compute martingales was used.
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Table 3 Dual upper bounds for different values of λ together with lower bounds in the case of a Bermudan
max-call option on two assets

S1
0 S2

0 λ = 0 λ = 1 Lower bound

90 90 65.73123 (0.2705) 65.67146 (0.2021) 56.4973 (1.0894)

100 100 82.30281 (0.3341) 83.31881 (0.2819) 72.1950 (1.4063)

110 110 97.70138 (0.4133) 98.69953 (0.3219) 91.6412 (1.2585)

Table 4 Dual upper bounds for
different values of α together
with lower bounds in the case of
a Bermudan max-call option on
two assets

α λ = 1 Lower bounds

0.2 51.17172 (0.0613) 46.1075 (0.4890)

0.5 27.79721 (0.0259) 26.8807 (0.2793)

0.7 20.20157 (0.0131) 19.4211 (0.2025)

0.8 17.55233 (0.0120) 16.9812 (0.1871)

1 14.17531 (0.0100) 13.6128 (0.1652)

Table 5 Bounds (with standard
deviations) for 2-dimensional
Bermudan max-call

α Lower bound Upper bound

0.33 23.64 (0.026) 24.13 (0.033)

0.50 16.06 (0.019) 16.44 (0.011)

0.67 12.05 (0.014) 12.37 (0.010)

0.75 10.71 (0.013) 11.01 (0.009)

Example 5.3 As in the example before, let

dSi
t = (r − δ)Si

t dt + σSi
t dWi

t , Si
0 = si

0.

We define our reward function as

Yt = exp(−rt)
(
Kc,p − min(S1

t , S2
t )
)+

.

For I = 9, T = 0.5, r = 0.06, δ = 0, Kc,p = 100, σ = 0.6 and with the basis functions
used in Example 5.2, we get the results presented in Table 6. By varying α, we get
the results for S1

0 = S2
0 = 100 which are presented in Table 7.

In all the above examples, it is important to find a suitable compact subset K of R
in Theorem 2.2. Using the notations of Remark 2.4, this can be reduced to finding a
lower estimate a1−α

� and an upper estimate of a1−α
u . For this purpose, note that in any

of the above examples, the desired estimates may be derived from upper estimates
for the quantity supτ∈T E[Sτ ], where for some μ,σ ∈ R,

dSt = μStdt + σSt dWt , S0 = s0.
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Table 6 Dual upper bounds for
different values of λ together
with lower bounds in the case of
a Bermudan min-put option on
two assets

S1
0 S2

0 λ = 2 Lower bounds

90 90 67.37609 (0.0823) 65.6176 (0.2549)

100 100 64.17487 (0.1012) 62.9017 (0.3104)

110 110 61.29599 (0.0976) 58.9233 (0.3924)

Table 7 Dual upper bounds for
different values of α together
with lower bounds in the case of
a Bermudan min-put option on
two assets

α λ = 2 Lower bounds

0.1 61.10305 (0.0723) 58.0466 (0.2514)

0.2 56.20361 (0.0601) 52.5265 (0.2259)

0.5 42.20143 (0.0254) 41.4453 (0.2299)

0.7 34.89802 (0.0139) 34.7331 (0.2279)

0.8 31.31908 (0.0128) 31.2061 (0.2508)

1 24.99311 (0.0101) 24.9135 (0.1833)

We may invoke the reflection principle for Brownian motion to get

sup
τ∈T

E[Sτ ] ≤ s0 exp(|μ − σ 2/2|T )E
[

exp
(
σ sup

t∈[0,T ]
Wt

)]

≤ s0 exp(|μ − σ 2/2|T )
(
1 + 2E[exp(σWT )])

≤ s0 exp(|μ − σ 2/2|T )3 exp(T σ 2/2).

Once we have found a suitable interval K := [a�, au], we proceed in the following
way. First we fix a grid X = {a� = x0 < x1 < · · · < xJ = au}. Then for a fixed x ∈ X,
we use the Longstaff–Schwartz algorithm to approximate the value

sup
τ∈T

E
[(

f (Xτ ) + x
)+

/α − x
]
,

where X is the underlying Markov process with values in R
d and f : Rd → R. To

this end, we use a time discretisation by fixing a time grid 0 = t0 < t1 < · · · < tL = T

on [0, T ]. The LS algorithm is now used to obtain estimates Ĉx
0 , . . . , Ĉx

L for the corre-
sponding continuation functions based on polynomials of degree 3 and with 100’000
Monte Carlo paths of the process X. After that, we approximate the value of

sup
τ∈T

AV@R1−α(Yτ )

via

inf
x∈X

1

n

n∑

i=1

(
(Y

(i)

τ (i)(x)
+ x)+/α − x

)
(5.2)

with τ (i)(x) = min{0 ≤ � ≤ L : f (X
(i)
t�

) ≥ Ĉx
� (X

(i)
t�

)}. Here X
(i)
t0

, . . . ,X
(i)
tL

with
i = 1, . . . , n are n trajectories of the process X independent of those used to approxi-
mate the continuation values. Note that due to the discretisation in x, we may incur an
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additional upward bias in the estimate (5.2). On the other hand, the time discretisation
introduces a downward bias that can compensate. Our numerical experiments suggest
that both biases are negligible (for large enough J and L) compared to the downward
bias due to the error of approximating the underlying continuation functions.

6 Proof of the main results

6.1 Preparations and notations

To prove Theorems 3.1 and 3.3, we need some preparation. Since the way of proving
both theorems is the same at the beginning, the preparation is valid for both proofs.
Let η > 0. With (K ×	)η, we denote the space of centres of minimal η-balls needed
to cover K × 	 , with respect to the semimetric

d
(
(x,ψ), (x′,ψ ′)

)= E[|Z(x,ψ) − Z(x′,ψ ′)|].

Fix n ∈ N and λ > 0. By (xn,η,ψn,η), we denote a measurable selector of the set

arg min
(x,ψ)∈(K×	)η

(
1

n

n∑

i=1

Z(i)(x,ψ) + λ

n(n − 1)

∑

1≤i<j≤n

(
Z(i)(x,ψ) − Z(j)(x,ψ)

)2
)

,

and by (x∗
η ,ψ∗

η ), we denote an element of the set (K × 	)η satisfying

d
(
(x∗,ψ∗), (x∗

η ,ψ∗
η )
)≤ η (6.1)

for a solution (x∗,ψ∗) of (3.1). Due to the construction of (K × 	)η, there always
exists such an (x∗

η ,ψ∗
η ), but it need not be unique. For (x,ψ) ∈ K × 	 , let

gn(x,ψ) := 1

n(n − 1)

∑

1≤i<j≤n

((
Z(i)(x,ψ) − Z(j)(x,ψ)

)2

− (
Z(i)(x∗,ψ∗) − Z(j)(x∗,ψ∗)

)2)
,

hn,λ(x,ψ) := 1

n

n∑

i=1

(
Z(i)(x,ψ) − Z(i)(x∗,ψ∗)

)+ λgn(x,ψ),

as well as

g(x,ψ) = (
Z(x,ψ) − Z̃(x,ψ)

)2 − (
Z(x∗,ψ∗) − Z̃(x∗,ψ∗)

)2
,

hλ(x,ψ) = 2
(
Z(x,ψ) − Z(x∗,ψ∗)

)+ λg(x,ψ),
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where Z̃ = (Z̃(x,ψ)) is an independent copy of Z. With the above definitions, we
have PN-a.s. for c ≥ 0 that

E[hλ(xn,η,ψn,η)|Dn]
≤ E[hλ(xn,η,ψn,η)|Dn] − (1 + c)hn,λ(xn,η,ψn,η) + (1 + c)hn,λ(x

∗
η ,ψ∗

η )

≤ sup
(x,ψ)∈(K×	)η

(
2E[hn,λ(x,ψ)] − (1 + c)hn,λ(x,ψ)

)+ (1 + c)hn,λ(x
∗
η ,ψ∗

η ).

Indeed, the first inequality holds due to

hn,λ(xn,η,ψn,η) ≤ hn,λ(x
∗
η ,ψ∗

η ) PN-a.s.,

which follows directly from the definitions of (xn,η,ψn,η) and hn,λ. Now we have to
analyse

sup
(x,ψ)∈(K×	)η

(
2E[hn,λ(x,ψ)] − (1 + c)hn,λ(x,ψ)

)

and

(1 + c)hn,λ(x
∗
η ,ψ∗

η ).

Let us start with the first term. Observe that

sup
(x,ψ)∈(K×	)η

(
2E[hn,λ(x,ψ)] − (1 + c)hn,λ(x,ψ)

)

= sup
(x,ψ)∈(K×	)η

(
2D(x,ψ) + 2λE[gn(x,ψ)] − (1 + c)

(
ξn(x,ψ) + λgn(x,ψ)

))

≤ sup
(x,ψ)∈(K×	)η

(
2D(x,ψ) − (1 + c)ξn(x,ψ)

)

+ sup
(x,ψ)∈(K×	)η

(
2λE[gn(x,ψ)] − (1 + c)λgn(x,ψ)

)
,

where

D(x,ψ) = E[Z(x,ψ)] − E[Z(x∗,ψ∗)],

ξn(x,ψ) = 1

n

n∑

i=1

(
Z(i)(x,ψ) − Z(i)(x∗,ψ∗)

)
.

Note that for all n ∈ N,

D(x,ψ) = E [ξn(x,ψ)] .

At this point, it makes sense to separate the further steps of the proofs for the two
theorems. But to prove both theorems, we have to analyse the following terms, where
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the aim is to find upper bounds holding within a given probability:

T1 = sup
(x,ψ)∈(K×	)η

(
2D(x,ψ) − (1 + c)ξn(x,ψ)

)
, (6.2)

T2 = sup
(x,ψ)∈(K×	)η

(
2λE[gn(x,ψ)] − (1 + c)λgn(x,ψ)

)
, (6.3)

T3 = (1 + c)hn,λ(x
∗
η ,ψ∗

η ). (6.4)

6.2 Outline for the proof of Theorem 3.1

The idea is to derive bounds for T1, T2, T3. Therefore we use some concentration
inequalities like the Hoeffding inequality, the Bernstein inequality and a new one
which is based on a bounded differences approach.

Let c = 1 and fix n ∈N and η > 0. We show in Sect. 6.6.1 that

PN[T1 ≥ ε] ≤ 2N (K × 	,η) exp

(−nε2

8 b2

)
for ε > 0, (6.5)

PN[T2 ≥ ε] ≤ 2N (K × 	,η) exp

( −nε2

512 λ2b4

)
for ε > 0. (6.6)

For the analysis of T3, we notice that

T3 = 2
(
ξn(x

∗
η ,ψ∗

η )−D(x∗
η ,ψ∗

η )+λgn(x
∗
η ,ψ∗

η )−λE[gn(x
∗
η ,ψ∗

η )]+E[hn,λ(x
∗
η ,ψ∗

η )])

and in Sect. 6.6.1, we obtain for ε > 0 that

PN[2ξn(x
∗
η ,ψ∗

η ) − 2D(x∗
η ,ψ∗

η ) ≥ ε] ≤ 2 exp

(−nε2

32 b2

)
, (6.7)

PN
[
2λgn(x

∗
η ,ψ∗

η ) − 2λE[gn(x
∗
η ,ψ∗

η )] ≥ ε
]≤ 2 exp

( −nε2

512 b4λ2

)
. (6.8)

With the help of these concentration inequalities, we can derive bounds for T1, T2, T3

within a given probability if we choose ε well. After deriving bounds for T1, T2, T3,
we can easily find a bound for T1 +T2 +T3 within a given probability. Then the same
bound holds for 2Qλ(xn,ψn) − 2Qλ(x

∗,ψ∗) within the given probability because
2Qλ(xn,ψn) − 2Qλ(x

∗,ψ∗) ≤ T1 + T2 + T3 PN-a.s.

6.3 Proof of Theorem 3.1

Fix n ∈ N and η > 0, as well as δ ∈ (0,1). Further, we impose that we have

logN (K × 	,η) ≤ nη.
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Then we set

a1 := a1(c, b,n,λ, δ, η) := √
8b

(√
log(8/δ)

n
+ √

η

)
,

a2 := a2(c, b,n,λ, δ, η) := 16
√

2λb2
(√

log(8/δ)

n
+ √

η

)
,

and we derive with the inequalities (6.5) and (6.6) the estimates

PN[T1 ≥ a1] ≤ δ/4 and PN[T2 ≥ a2] ≤ δ/4.

Therefore, by elementary calculations, we arrive at

PN [T1 + T2 ≤ a1 + a2] ≥ 1 − δ/2. (6.9)

Concerning T3, let us set

a3 := a3(b,n,λ, δ) := 16
√

2λb2

√
log(8/δ)

n
,

a4 := a4(b,n, δ) := 4
√

2b

√
log(8/δ)

n
.

Then we can derive first

PN[2ξn(x
∗
η ,ψ∗

η ) − 2D(x∗
η ,ψ∗

η ) ≥ a4] ≤ δ/4,

PN
[
2λgn(x

∗
η ,ψ∗

η ) − 2λE[gn(x
∗
η ,ψ∗

η )] ≥ a3
]≤ δ/4.

This leads again with elementary calculations to

PN
[
T3 ≤ a3 + a4 + 2E[hn,λ(x

∗
η ,ψ∗

η )]]≥ 1 − δ/2. (6.10)

Now we only need an upper estimate of E[hn,λ(x
∗
η ,ψ∗

η )], which is presented via

E[hn,λ(x
∗
η ,ψ∗

η )]
= E[Z(x∗

η ,ψ∗
η )] − E[Z(x∗,ψ∗)]

+ λ

2
E
[(

Z(x∗
η ,ψ∗

η ) − Z̃(x∗
η ,ψ∗

η )
)2 − (

Z(x∗,ψ∗) − Z̃(x∗,ψ∗)
)2]

≤ E[|Z(x∗
η ,ψ∗

η ) − Z(x∗,ψ∗)|]
+ 2bλE[|Z(x∗

η,ψ∗
η ) − Z̃(x∗

η ,ψ∗
η ) − Z(x∗,ψ∗) + Z̃(x∗,ψ∗)|]

≤ E[|Z(x∗
η ,ψ∗

η ) − Z(x∗,ψ∗)|] + 4bλE[|Z(x∗
η ,ψ∗

η ) − Z(x∗,ψ∗)|]
≤ (1 + 4bλ)η. (6.11)

Above, the equality follows directly by definition. The first inequality is derived by
using the third binomial formula x2 − y2 = (x − y)(x + y) backwards in connection
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with the boundedness of Z and Z̃. The second inequality holds because Z and Z̃ are
independent with identical distribution. The final inequality results from the definition
of (x∗

η ,ψ∗
η ); see (6.1). So by (6.10) and (6.11), we get for T3 that

PN [T3 ≤ a3 + a4 + 2(1 + 4bλ)η] ≥ 1 − δ/2. (6.12)

Now, combining (6.9) and (6.12), we derive

PN [T1 + T2 + T3 ≤ a1 + a2 + a3 + a4 + 2(1 + 4bλ)η] ≥ 1 − δ,

and since we have PN-a.s. that

2
(
Qλ(xn,ψn) −Qλ(x

∗,ψ∗)
)≤ 2

(
Qλ(xn,η,ψn,η) −Qλ(x

∗,ψ∗)
)≤ T1 + T2 + T3,

we finish with

PN
[
2
(
Qλ(xn,ψn) −Qλ(x

∗,ψ∗)
)≤ a1 + a2 + a3 + a4 + 2(1 + 4bλ)η

]≥ 1 − δ.

Setting η = γ (K × 	,n), the assumption

logN (K × 	,η) ≤ nη

is always satisfied, and we have

PN
[
2
(
Qλ(xn,ψn) −Qλ(x

∗,ψ∗)
)≤ A(n, c,λ, δ)

]≥ 1 − δ,

where

A(n, c,λ, δ) = b(4
√

2 + 16λ
√

2b)

(
2

√
log(8/δ)

n
+√

γ (K × 	,n)

)

+ 2(1 + 4bλ)γ (K × 	,n).

Now the statement of Theorem 3.1 follows immediately. �

6.4 Outline for the proof of Theorem 3.3

The proof of Theorem 3.3 is similar to the proof of Theorem 3.1, but relies on some
different concentration inequalities given below. Let c ≥ 2, n ∈ N and η > 0, as well
as ε > 0. With L from (6.18) below, we have

PN [T1 ≥ ε] ≤ 2N (K × 	,η) exp

( −nε

(1 + c)2L

)
, (6.13)

PN [T2 ≥ ε] ≤ 2N (K × 	,η) exp

( −nε

32b2(1 + c)2λ + 8(1 + c)2λ

)
(6.14)

(see Sect. 6.6.2). Moreover, with Cλ,b as in Theorem 3.3, we derive in Sect. 6.6.2 the
estimates

PN
[
gn(x

∗
η ,ψ∗

η ) − E[gn(x
∗
η ,ψ∗

η )] ≥ η/λ
]≤ 2 exp

(−nη

Cλ,b

)
(6.15)
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and

PN[ξn(x
∗
η ,ψ∗

η ) − D(x∗
η ,ψ∗

η ) ≥ κ] ≤ 2 exp

( −nκ2

4 bη + 8 b
3 κ

)
for κ > 0. (6.16)

6.5 Proof of Theorem 3.3

In the following, let δ ∈ (0,1), c ≥ 2 and let n ∈ N and η > 0 satisfy the condition

logN (K × 	,η) ≤ nη. (6.17)

Let us introduce

L := sup
(x,ψ)∈K×	,

E[Z(x,ψ)]>E[Z(x∗,ψ∗)]

2Var[Z(x,ψ)]
(c − 1)(E[Z(x,ψ)] − E[Z(x∗,ψ∗)]) + 8

3
b. (6.18)

Lemma 6.1 If (3.2)–(3.4) hold, then L < ∞.

Proof Let (xk,ψk)k∈N be any sequence in K × 	 satisfying the strict inequality
E[Z(xk,ψk)] > E[Z(x∗,ψ∗)] for k ∈N and

lim
k→∞

2Var[(Z(xk,ψk)]
(c − 1)(E[Z(xk,ψk)] − E[Z(x∗,ψ∗)]) + 8

3
b = L.

First of all, the sequence (Var[Z(xk,ψk)]) is bounded because the random variables
Z(x,ψ) are PN-essentially bounded, uniformly in (x,ψ) ∈ K × 	 . Therefore, in
order to show the finiteness of L, it suffices to restrict our considerations to the case
E[Z(xk,ψk)] − E[Z(x∗,ψ∗)] → 0. In this situation, the “well-separated minimum”
property (3.3) implies the convergence d((xk,ψk), (x

∗,ψ∗)) → 0. Therefore by the
identifiability condition (3.4), we may find some C > 0 and k0 ∈N such that

E[Z(xk,ψk)] − E[Z(x∗,ψ∗)] ≥ C d
(
(xk,ψk), (x

∗,ψ∗)
)

for k ≥ k0.

Next, in view of (3.2),

Var[Z(xk,ψk)] = Var[Z(xk,ψk) − Z(x∗,ψ∗)]
≤ E

[(
Z(xk,ψk) − Z(x∗,ψ∗)

)2]

≤ 2b d
(
(xk,ψk), (x

∗,ψ∗)
)

for k ∈N, and thus

2Var[Z(xk,ψk)]
(c − 1)(E[Z(xk,ψk)] − E[Z(x∗,ψ∗)]) + 8

3
b ≤ 4b

(c − 1) C
+ 8

3
b for k ≥ k0.

This completes the proof due to the choice of the sequence (xk,ψk)k∈N. �
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From now on, we assume that the conditions (3.2)–(3.4) are satisfied so that the
constant L defined in (6.18) is finite. In particular, we may introduce

a5 := a5(c, δ, η,L,n) := (1 + c)2L

(
η + log(8/δ)

n

)
.

Furthermore, we set

a6 := a6(b, c, δ, η,λ,n) := (
32b2(1 + c)2λ + 8(1 + c)2λ

)
(

η + log(8/δ)

n

)
.

Then we may derive from (6.13) and (6.14) along with (6.17) that

PN[T1 ≥ a5] ≤ δ/4 and PN[(T2 ≥ a6] ≤ δ/4. (6.19)

In addition, if

η ≥ Cλ,b log(8/δ)

n
, (6.20)

we get from (6.15) that

PN

[
gn(x

∗
η ,ψ∗

η ) − E[gn(x
∗
η ,ψ∗

η )] ≥ η

λ

]
≤ δ/4. (6.21)

Setting

κ(n) =

⎧
⎪⎨

⎪⎩

4b(η+2/3) log(8/δ)
n

for n ≤ 4b(η + 2/3) log(8/δ),

√
4b(η+2/3) log(8/δ)

n
for n > 4b(η + 2/3) log(8/δ),

we may conclude from (6.16) that

PN[ξn(x
∗
η ,ψ∗

η ) − D(x∗
η ,ψ∗

η ) ≥ κ(n)] ≤ δ/4. (6.22)

Next, recall that in view of (6.11), the inequality E[hn,λ(x
∗
η ,ψ∗

η )] ≤ (1+4bλ)η holds.
Then combining (6.19) and (6.22) with (6.21), we obtain under condition (6.20) that

PN
[
T1 + T2 + T3 ≤ a5 + a6 + (1 + c)

(
η + κ(n) + (1 + 4bλ)η

)]≥ 1 − δ

and therefore

PN
[
2
(
Qλ(xn,ψn) −Qλ(x

∗,ψ∗)
)≤ a5 + a6 + (1 + c)

(
η + κ(n) + (1 + 4bλ)η

)]

≥ 1 − δ.

Let us set

η = γ (K × 	,n) + Cλ,b log(8/δ)

n
.
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Then (6.20) and (6.17) are fulfilled. By elementary calculation and the definition of
κ(n), we may find for n > 4b(γ (K × 	,n) + Cλ,b log(8/δ)/n + 2/3) log(8/δ) some
universal constants c1, c2 > 0 such that

PN[Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ c1R1(n, δ) + c2R2(n,λ, δ)] ≥ 1 − δ,

where R1(n, δ), R2(n,λ, δ) are as in (3.6) and (3.7), respectively. The proof is com-
plete. �

6.6 Proofs of the concentration inequalities

Let us at first give an auxiliary result which will turn out to be useful.

Lemma 6.2 Let �(x,ψ) be a random variable parametrised by (x,ψ) ∈ K × 	 . If
N (K ×	,η) < ∞, then for every z ∈ R, there is a pair (x,ψ) ∈ (K ×	)η (depend-
ing on z) such that

P
[

sup
(x,ψ)∈(K×	)η

�(x,ψ) ≥ z
]

≤N (K × 	,η) P [�(x,ψ) ≥ z].

Proof Since (K × 	)η has finite cardinality N (K × 	,η), we have

P
[

sup
(x,ψ)∈(K×	)η

�(x,ψ) ≥ z
]

= P

[ ⋃

(x,ψ)∈(K×	)η

{�(x,ψ) ≥ z}
]

≤
∑

(x,ψ)∈(K×	)η

P [�(x,ψ) ≥ z]

≤N (K × 	,η)P [�(x,ψ) ≥ z],

where (x,ψ) ∈ arg max(x,ψ)∈(K×	)η
P [�(x,ψ) ≥ z]. �

6.6.1 Proofs of the concentration inequalities for Theorem 3.1

Let us now prove the concentration inequalities used to prove Theorem 3.1. We start
with (6.5).

Proof of (6.5) Due to Lemma 6.2, there exists (x,ψ) ∈ (K × 	)η such that

PN

[
sup

(x,ψ)∈(K×	)η

(
2D(x,ψ) − 2ξn(x,ψ)

)≥ ε
]

≤ N (K × 	,η) PN[2D(x,ψ) − 2ξn(x,ψ) ≥ ε].
Using Corollary A.3, we derive

PN[|ξn(x,ψ) − D(x,ψ)| ≥ ε/2] ≤ 2 exp

(−nε2

8 b2

)
.
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So finally, we get

PN

[
sup

(x,ψ)∈(K×	)η

(
2D(x,ψ) − 2ξn(x,ψ)

)≥ ε
]

≤ 2N (K × 	,η) exp

(−nε2

8 b2

)
.

This shows (6.5) since we have chosen c = 1. �

To prove (6.6), we need the following result for preparation.

Theorem 6.3 For (x,ψ) ∈ K × 	 and t > 0, it holds that

PN [|gn(x,ψ) − E [gn(x,ψ)]| > t] ≤ 2 exp

( −nt2

128b4

)
.

Proof We want to apply the bounded differences inequality (see Boucheron et al. [14,
Theorem 6.2]) to the function gn : ([−b, b] × [−b, b])n →R defined by

gn

(
(z1, z1), . . . , (zn, zn)

) := 1

n(n − 1)

∑

1≤i<j≤n

(
(zi − zj )

2 − (zi − zj )
2).

Therefore it suffices to show that gn satisfies the so-called bounded differences con-
dition (cf. [14]). For this purpose, let k ∈ {1, . . . , n} and consider arbitrary pairs
(z1, z1), . . . , (zn, zn) and (z′

k, z
′
k) from [−b, b]2. With z := ((z1, z1), . . . , (zn, zn))

and

z′ := (
(z1, z1), . . . , (zk−1, zk−1), (z

′
k, z

′
k), (zk+1, zk+1), . . . , (zn, zn)

)
,

we then have

∣∣gn(z) − gn(z
′)
∣∣≤ 1

n(n − 1)

n∑

i=1
i �=k

|(zi − zk)
2 − (zi − z′

k)
2|

+ 1

n(n − 1)

n∑

i=1
i �=k

|(zi − zk)
2 − (zi − z′

k)
2|

≤ 1

n(n − 1)

(
8(n − 1)b2 + 8(n − 1)b2)= 16b2

n
.

So obviously gn satisfies the bounded differences condition with ck := 16b2/n for
k ∈ {1, . . . , n}, and

v := 1

4

n∑

k=1

c2
k = 64b4

n
.

Now [14, Theorem 6.2] provides the estimate

P [|gn − E [gn]| > t] ≤ 2 exp

(−t2

2v

)
= 2 exp

( −nt2

128b4

)
. �
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We are ready to prove (6.6)

Proof of (6.6) First of all, by Lemma 6.2,

PN

[
sup

(x,ψ)∈(K×	)η

(
2λE[gn(x,ψ)] − 2λgn(x,ψ)

)≥ t
]

≤ N (K × 	,η)PN
[
E[gn(x,ψ)] − gn(x,ψ) ≥ t/(2λ)

]

for some (x,ψ) ∈ (K × 	)η. Then the inequality follows immediately from Theo-
rem 6.3. �

Finally, (6.7) may be proved by an application of Corollary A.3, whereas (6.8)
follows from Theorem 6.3.

6.6.2 Proofs of the concentration inequalities for Theorem 3.3

Let us now prove the inequalities used for the proof of Theorem 3.3. Under the ad-
ditional assumption that Var[Z(x∗,ψ∗)] = 0, we first give a lemma, recalling the
semimetric d on K × 	 introduced in Sect. 6.1.

Lemma 6.4 Under the condition (3.2), we have

E[g2(x,ψ)] ≤ 4b2E [|g(x,ψ)|] ≤ 32b3d
(
(x,ψ), (x∗,ψ∗)

)
for (x,ψ) ∈ K × 	.

Proof Assumption (3.2) means that Z(x∗,ψ∗) and Z̃(x∗,ψ∗) coincide P -a.s. Hence

E[g2(x,ψ)] = E
[((

Z(x,ψ) − Z̃(x,ψ)
)2 − (

Z(x∗,ψ∗) − Z̃(x∗,ψ∗)
)2)2]

= E
[(

Z(x,ψ) − Z̃(x,ψ)
)4]

≤ 4b2E
[(

Z(x,ψ) − Z̃(x,ψ)
)2]= 4b2E[g(x,ψ)].

Since Z and Z̃ are bounded by the constant b and are identically distributed, using
x2 − y2 = (x − y)(x + y) along with the triangle inequality yields

E [g(x,ψ)] ≤ 4b E[|Z(x,ψ) − Z(x∗,ψ∗) + Z̃(x∗,ψ∗) − Z̃(x,ψ)|]
≤ 8b E[|Z(x,ψ) − Z(x∗,ψ∗)|].

This completes the proof. �

The following auxiliary result is a useful consequence of Lemma 6.4.

Lemma 6.5 If (3.2) is satisfied, then for (x,ψ) ∈ K × 	 and ε > 0,

PN
[|gn(x,ψ) − E[gn(x,ψ)]| > ε

]≤ 2 exp

( −nε2

8b2E[g(x,ψ)] + 4ε/3

)
.
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Proof Let (x,ψ) ∈ K × 	 and ε > 0. Condition (3.2) implies that

2gn(x,ψ) = 1

n(n − 1)

n∑

i,j=1
i �=j

(
Z(i)(x,ψ) − Z(j)(x,ψ)

)2
.

In particular, 2gn(x,ψ) is a so-called U-statistic with kernel q : R2 → R defined by
q(s, t) = (s − t)2. Hence we may draw on a Bernstein inequality for U-statistics (see
e.g. Clémençon et al. [16, Appendix A]) to conclude that

PN
[|gn(x,ψ) − E[gn(x,ψ)]| > ε

]

≤ 2 exp

( −�n/2�(2ε)2

2Var[q(Z(x,ψ), Z̃(x,ψ))] + 2(2ε)/3

)

≤ 2 exp

( −nε2

2E[q(Z(x,ψ), Z̃(x,ψ))2] + 4ε/3

)
,

where �n/2� denotes the integer part of n/2. By using (3.2) again, we obtain

E
[
q
(
Z(x,ψ), Z̃(x,ψ)

)2]= g2(x,ψ)

(see e.g. the proof of Lemma 6.4). Then the statement of Lemma 6.5 follows imme-
diately from Lemma 6.4. �

Now we are ready to verify the concentration inequalities. Let us start with (6.13),
recalling that L as defined in (6.18) is finite by Lemma 6.1.

Proof of (6.13) Note first that in view of (3.2),

PN[2D(x∗,ψ∗) − (1 + c)ξn(x
∗,ψ∗) ≥ ε] = 0.

Hence we may assume without loss of generality that (K × 	)η \ {(x∗,ψ∗)} �= ∅. In
view of Lemma 6.2, there is some (x,ψ) ∈ K × 	 such that

PN

[
sup

(x,ψ)∈(K×	)η

(
2D(x,ψ) − (1 + c)ξn(x,ψ)

)≥ ε
]

≤N (K × 	,η) PN[2D(x,ψ) − (1 + c)ξn(x,ψ) ≥ ε].
If (x,ψ) = (x∗,ψ∗), then (6.13) is shown. So let (x,ψ) be different from (x∗,ψ∗).
Then D(x,ψ) �= 0 in view of (3.3). This allows us to use the Bernstein inequality
(see Corollary A.4 below). Thanks to Var[Z(x∗,ψ∗)] = 0, we then arrive at

PN

[
D(x,ψ) − ξn(x,ψ) ≥ ε + (c − 1)D(x,ψ)

1 + c

]

≤ 2 exp

( −n(ε + (c − 1)D(x,ψ))2

(1 + c)2(2Var[Z(x,ψ)] + 8
3b

ε+(c−1)D(x,ψ)
1+c

)

)
.
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Since L satisfies for all (x,ψ) ∈ (K × 	)η with D(x,ψ) �= 0 the inequality

2Var[Z(x,ψ)] + 8

3
b
(
ε + (c − 1)D(x,ψ)

)≤ L
(
ε + (c − 1)D(x,ψ)

)
,

we get

exp

( −n(ε + (c − 1)D(x,ψ))2

(1 + c)2(2Var[Z(x,ψ)] + 8
3b

ε+(c−1)D(x,ψ)
1+c

)

)

≤ exp

(−n(ε + (c − 1)D(x,ψ))

(1 + c)2L

)
≤ exp

( −nε

(1 + c)2L

)
.

Then (6.13) may be derived immediately. �

Let us turn now to (6.14).

Proof of (6.14) For c ≥ 2, we may select by Lemma 6.2 some (x,ψ) ∈ (K × 	)η
with

PN

[
sup

(x,ψ)∈(K×	)η

(
2λE[gn(x,ψ)] − (1 + c)λgn(x,ψ)

)≥ t
]

≤N (K × 	,η) PN

[
E[gn(x,ψ)] − gn(x,ψ) ≥ t + λ(c − 1)E[gn(x,ψ)]

λ(1 + c)

]

≤N (K × 	,η) PN

[
E[gn(x,ψ)] − gn(x,ψ) ≥ t + λ(c − 1)E[g(x,ψ)]

2λ(1 + c)

]
.

Now with ε := (t + λ(c − 1)E[g(x,ψ)])/2λ(1 + c), we may invoke Lemma 6.5 to
observe that

PN

[
E[gn(x,ψ)] − gn(x,ψ) ≥ t + λ(c − 1)E[g(x,ψ)]

2λ(1 + c)

]

≤ 2 exp

( −n(t + λ(c − 1)E[g(x,ψ)])2

32b2λ2(1 + c)2E[g(x,ψ)] + 8λ(1 + c)(t + λ(c − 1)E[g(x,ψ)])/3

)
.

By (3.2), the expectation E[g(x,ψ)] is nonnegative. Since in addition c ≥ 2, we may
conclude that

−n(t + λ(c − 1)E[g(x,ψ)])2

32b2λ2(1 + c)2E[g(x,ψ)] + 8λ(1 + c)(t + λ(c − 1)E[g(x,ψ)])/3

≤ −n(t + λ(c − 1)E[g(x,ψ)])
32b2λ(1 + c)2 + 8λ(1 + c)/3

≤ −nt

8λ(1 + c)2(4b2 + 1)
.

This completes the proof. �
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Concerning (6.15) and (6.16), note first that d((x∗
η ,ψ∗

η ), (x∗,ψ∗)) ≤ η holds due
to (6.1). In particular, E[g(x∗

η ,ψ∗
η )] ≤ 8bη by Lemma 6.4. Then (6.15) follows easily

from Lemma 6.5. Moreover,

Var[Z(x∗
η ,ψ∗

η ) − Z(x∗,ψ∗)] ≤ E
[(

Z(x∗
η ,ψ∗

η ) − Z(x∗,ψ∗)
)2]

≤ 2bd
(
(x∗

η ,ψ∗
η ), (x∗,ψ∗)

)

≤ 2bη.

Thus (6.16) may be derived directly from the Bernstein inequality (see Corol-
lary A.4). Hence we have shown all concentration inequalities necessary for our proof
of Theorem 3.3.

7 Proof of Remark 3.4

It is easy to check that for a constant k not depending on n and γ , we have

R1 + R2

R0
≤ γ (K × 	,n)

k
√

γ (K × 	,n)
+ log(8/δ)

kn

√
log(8/δ)

n

+
√

b(γ (K × 	,n) + 1 + Cλ,b log(8/δ)/n) log(8/δ)

nk2γ (K × 	,n)
.

With the assumption that limn→∞ γ (K × 	,n) = 0, we get

lim
n→∞

R1 + R2

R0

≤ lim
n→∞

√(
b

k2n
+ b

k2nγ (K × 	,n)
+ b log(8/δ) Cλ,b

k2n2γ (K × 	,n)

)
log(8/δ).

Then by limn→∞ nγ (K × 	,n) = ∞, we end up with

lim
n→∞

√(
b

k2n
+ b

k2nγ (K × 	,n)
+ b log(8/δ) Cλ,b

k2n2γ (K × 	,n)

)
log(8/δ) = 0. �

8 Proofs of Theorems 4.1 and 4.2

Let the assumptions of Theorem 4.1 be fulfilled, retaking notation from its formu-
lation. To prove Theorems 4.1 and 4.2, we need some preparations. These mainly
concern estimates of different semimetrics, but may reveal some interesting results.
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8.1 Preparations and notations

Firstly, we endow the space K × 	 with the semimetric

d : (K × 	) × (K × 	) → [0,∞),
(
(x,ψ), (x′,ψ ′)

) �→ E[|Z(x,ψ) − Z(x′,ψ ′)|].
This is well defined because Z(x,ψ) is assumed to be essentially bounded uniformly
in (x,ψ) ∈ K × 	 . Secondly, by assumption, we may equip the set 	π with the
L2-metric d	π defined by

d	π (f1, f2) :=
(∫ T

0

∫

Rd

|f1(t, x) − f2(t, x)|2 dx dt

)1/2

.

Next, we want to find a suitable semimetric on the space 	 . It is based on the follow-
ing observation.

Lemma 8.1 There exists some C1 > 0 such that for ψ1,ψ2 ∈ 	 , the inequality

E
[

sup
t∈[0,T ]

|Mt(ψ1) − Mt(ψ2)|
]

≤ C1d	π (fψ1 , fψ2) (8.1)

holds, where fψi
(t, x) = ψi(t, x)

√
πt (x) for i = 1,2.

Proof By the Burkholder–Davis–Gundy inequality (for p = 1), we may find some
C1 > 0 such that for ψ1,ψ2 ∈ 	 , we have

E
[

sup
t∈[0,T ]

|Mt(ψ1) − Mt(ψ2)|
]

= E

[
sup

t∈[0,T ]

∣∣∣∣

∫ t

0
(ψ1 − ψ2)(u,Su)dWu

∣∣∣∣

]

≤ C1E

[(∫ T

0
|ψ1 − ψ2|2(u,Su)du

)1/2]
.

Invoking Jensen’s inequality, we end up with

E

[(∫ T

0
|ψ1 − ψ2|2(u,Su)du

)1/2]

≤
(

E

[∫ T

0
|ψ1 − ψ2|2(u,Su)du

])1/2

=
(∫ T

0

∫

Rd

|ψ1 − ψ2|2(u, x)πu(x) dx du

)1/2

.

This completes the proof. �

Lemma 8.1 allows us to introduce the mapping

d	 : 	 × 	 → [0,∞), (ψ,ψ ′) �→ E
[

sup
u∈[0,T ]

|Mu(ψ) − Mu(ψ
′)|
]
.
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Obviously, it satisfies the properties of a semimetric. The minimal number of open
d	 -balls of radius r > 0 to cover 	 is denoted by N (	, r), where N (	, r) := ∞ if
no finite cover is available.

Let us introduce the mappings

ρ1 : (K × 	)2 → [0,∞),
(
(x,ψ), (x′,ψ ′)

) �→ d	(ψ,ψ ′),

ρ2 : (K × 	)2 → [0,∞),
(
(x,ψ), (x′,ψ ′)

) �→ |x − x′|,
which are obviously alternative semimetrics on K × 	 . In the next step, we want to
find an upper estimate of the semimetric d in terms of the semimetrics ρ1 and ρ2.

Theorem 8.2 There exists a constant C > 1 such that for (x,ψ), (x′,ψ ′) ∈ K × 	 ,

d
(
(x,ψ), (x′,ψ ′)

)≤ Cρ2
(
(x,ψ), (x′,ψ ′)

)+ ρ1
(
(x,ψ), (x′,ψ ′)

)
.

Proof Set x := (maxK)+ + 1. The proof is based on a representation for convex
functions. We use that for any x, x0 ∈R with x0 < x, we have

�∗(x) = �∗(x0) +
∫ x

x0

�∗′
+(s)ds,

where �∗′
+ denotes the right derivative of �∗. Since �∗ and its right derivative are

both nondecreasing, we may observe for x, x′ ∈ K and η ≥ 0 that

|�∗(x + η) − �∗(x′ + η)| =
∫ x∨x′+η

x∧x′+η

�∗′
+(s) ds

≤ |x − x′|�∗′
+(x + η)

≤ |x − x′|
x

(
�∗(2x + η) − �∗(x + η)

)

≤ �∗(2x + η)|x − x′|,
where the last step additionally uses that x ≥ 1 and that �∗ is nonnegative on [0,∞).
As a consequence, we may conclude by nonnegativity of (Yt ) that

sup
t∈[0,T ]

|�∗(x + Yt ) − �∗(x′ + Yt )| ≤ sup
t∈[0,T ]

�∗(2x + Yt )|x − x′| for x, x′ ∈ K.

(8.2)
Since |Z| ≤ b P -a.s., we further obtain

|�∗(2x + Yt )| =
(
�∗(2x + Yt ) − 2x − Mt(ψ)

)+ 2x + Mt(ψ)

≤ b + 2x + Mt(ψ) (8.3)

for every ψ ∈ 	 and any t ∈ [0, T ]. Each martingale M(ψ) is continuous and square-
integrable on [0, T ] so that, by Doob’s L2-inequality,

Cψ := E
[

sup
t∈[0,T ]

|Mt(ψ)|
]

≤
(
E
[

sup
t∈[0,T ]

|Mt(ψ)|2
])1/2

< ∞ for ψ ∈ 	. (8.4)
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Now the proof is straightforward: We fix any ψ ∈ 	 . Combining (8.2) with (8.3) and
(8.4), we end up with

d
(
(x,ψ), (x′,ψ ′)

)= E[|Z(x,ψ) − Z(x′,ψ ′)|]
≤ |x − x′| + E

[
sup

u∈[0,T ]
|Mu(ψ) − Mu(ψ

′)|
]

+ E
[

sup
u∈[0,T ]

|�∗(x + Yu) − �∗(x′ + Yu)|
]

≤ (1 + b + 2x + Cψ)|x − x′| + d	(ψ,ψ ′)

for x, x′ ∈ K and ψ,ψ ′ ∈ 	 . The proof is complete. �

Let us introduce some further notation. For any semimetric d on K ×	 , we denote
by N (K × 	,r, d) the minimal number of open d-balls of radius r > 0 to cover
K × 	 . Here we set N (K × 	,r, d) := ∞ if no finite cover is available. These
covering numbers induce the numbers

γ (K × 	,n,d) := inf{r > 0 : logN (K × 	,r, d) ≤ nr}, n ∈ N.

Proposition 8.3 Let γ (	,n) := inf{r > 0 : logN (	, r) ≤ nr} → 0 for n → ∞. Then
for C > 1, it holds that

lim
n→∞γ (K × 	,n, d̄C

K×	) = 0,

where d̄C
K×	 denotes the semimetric on K × 	 defined by d̄C

K×	 := ρ1 + Cρ2.

Proof We use the notation N (K, r) for the minimal number of open intervals of
radius r > 0 to cover K . By Buldygin and Kozachenko [15, Lemma 3.2.1], we have

logN (K × 	,r, d̄C
K×	) ≤ logN (K × 	,r/4, ρ1) + logN

(
K × 	,r/(4C),ρ2

)

≤ logN (	, r/4) + logN
(
K,r/(4C)

)
for r > 0. (8.5)

By compactness, the set K is a subset of [−A,A] for some A > 0. In particular, the
inequality N (K, r) ≤ 1 + 2A/r holds for every r > 0. Moreover, the mapping

ϕ : (0,∞) → (0,∞), r �→ log(1 + 2A/r)/r

is strictly decreasing and differentiable and satisfies ϕ(r) → 0 for r → ∞ as well as
ϕ(r) → ∞ for r → 0. In particular, ϕ is a strictly decreasing bijection with inverse
ϕ−1. Then, defining γ (K,n) := inf{r > 0 : logN (K, r) ≤ nr}, we obtain

γ (K,n) ≤ ϕ−1(n) → 0 for n → ∞. (8.6)

Now let ε > 0. Since γ (	,n) → 0 for n → ∞ by assumption, we may find in view
of (8.6) some n0 ∈N such that

γ (K,n) < ε/(4C) and γ (	,n) < ε/4
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for n ∈ N with n ≥ n0. Then for n ∈ N with n ≥ n0, there exist rn ∈ (0, ε/(4C)) and
rn ∈ (0, ε/4) such that

logN
(
K,ε/(4C)

)≤ logN (K, rn) ≤ nrn ≤ nε/(4C)

and

logN (	, ε/4) ≤ logN (K, rn) ≤ nrn ≤ nε/C.

Hence by (8.5),

logN (K × 	,ε, d̄C
K×	) ≤ nε

(
1/4 + 1/(4C)

)
< nε for n ∈ N, n ≥ n0.

Hence γ (K × 	,n) ≤ ε for n ∈N with n ≥ n0. This completes the proof. �

Henceforth, we denote by N (	π, ε) the covering number of 	π by ε-balls with
respect to d	π . Furthermore, we define

γ (	π,n) := inf {ε > 0 : logN (	π, ε) ≤ nε} .

Finally, let us introduce the following notation: f (x) � g(x) for two functions
f,g :Rd →R means that there exists a constant C > 0 such that f (x) ≤ Cg(x) for
all x ∈R

d .

8.2 Proofs of Theorems 4.1 and 4.2

Setting d̄C
K×	 := ρ1 + Cρ2, we may find by Theorem 8.2 some C > 1 such that

γ (K × 	,n)� γ (K × 	,n, d̄C
K×	). (8.7)

The idea of the proofs of Theorems 4.1 and 4.2 is based on a result given by Nickl and
Pötscher [28]. Under the imposed assumptions, this result enables us to give analyti-
cal upper estimates for γ (K × 	,n, d̄C

K×	). Then we use these analytical estimates
and apply Theorems 3.1 and 3.3, respectively, to derive an analytical bound for the
deviations Qλ(xn,ψn) −Qλ(x

∗,ψ∗).
To calculate the bounds for γ (K × 	,n, d̄C

K×	), we already know by (8.5) that

γ (K × 	,n, d̄C
K×	) ≤ inf

{
ε > 0 : logN (	, ε/4) + logN

(
K,ε/(4C)

)≤ nε
}
,

and due to (8.1), there is C1 > 0 such that

γ (K × 	,n, d̄C
K×	) ≤ inf

{
ε > 0 : logN

(
	π, ε/(4C1)

)

+ logN
(
K,ε/(4C)

)≤ nε
}
.

On the one hand, we can calculate with K ⊆ [−A,A] for some A > 0 that

N
(
K,ε/(4C)

)≤ 1 + 8CA/ε ≤ exp(8CA/ε) for ε > 0.
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On the other hand, Nickl and Pötscher [28, Corollary 4] gives for α > s − (d + 1)/2
that

logN (	π, ε) � ε−(d+1)/s

and for α < s − (d + 1)/2 that

logN (	π, ε) � ε−(α/(d+1)+1/2)−1
.

So in view of (8.7), we end up with

γ (K×, n) � inf
{
ε > 0 : logN

(
	π, ε/(4C1)

)+ logN
(
K,ε/(4C)

)≤ nε
}

� inf

{
ε > 0 : h�

2

ε�
+ h1

ε
≤ nε

}
, (8.8)

where � = (d + 1)/s in the case α > s − (d + 1)/2 and � = (α/(d + 1) + 1/2)−1

in the case α < s − (d + 1)/2 and h1 = 8CA as well as h2 = 4C1. To calculate
the convergence rates, we divide the set M := {ε > 0 : h�

2/ε
� + h1/ε ≤ nε} into the

subsets M1 and M2 satisfying M = M1 ∪ M2, where

M1 :=
{
ε ∈ (0,1) : h�

2

ε�
+ h1

ε
≤ nε

}
,

M2 :=
{
ε ≥ 1 : h�

2

ε�
+ h1

ε
≤ nε

}

and note that infM = min{infM1, infM2}. Further we distinguish the following two
cases:

Case 1: � ≥ 1. In this case, we have on M1 that

h�
2

ε�
+ h1

ε
≤ h�

2

ε�
+ h1

ε�
= h�

2 + h1

ε�
.

Therefore

M ′
1 :=

{
ε ∈ (0,1) : h�

2 + h1

ε�
≤ nε

}
⊆ M1

and so infM1 ≤ infM ′
1. With a bit of calculation, we have

M ′
1 =

⎧
⎨

⎩

[(h�
2 + h1)

1
�+1 n− 1

�+1 ,1) for n > h�
2 + h1,

∅ for n ≤ h�
2 + h1.

On M2, we have

h�
2

ε�
+ h1

ε
≤ h�

2

ε
+ h1

ε
= h�

2 + h1

ε
.
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With a bit of calculation, we have for n ≤ h�
2 + h1 that

M ′
2 :=

{
ε ≥ 1 : h�

2 + h1

ε
≤ nε

}
= (

(h�
2 + h1)

1/2 n−1/2,∞)
,

and for n > h�
2 + h1, we have M ′

2 = [1,∞). Combining these results and setting
inf∅ := ∞, we have

infM = min{infM1, infM2}

≤ min{infM ′
1, infM ′

2} =
⎧
⎨

⎩

(h�
2 + h1)

1
�+1 n− 1

�+1 for n > h�
2 + h1,

(h�
2 + h1)

1
2 n− 1

2 for n ≤ h�
2 + h1.

Case 2: � ∈ (0,1). On M1, we have

h�
2

ε�
+ h1

ε
≤ h�

2

ε
+ h1

ε
= h�

2 + h1

ε
,

and so we get

M ′′
1 :=

{

ε ∈ (0,1) : hl
2 + h1

ε
≤ nε

}

=
⎧
⎨

⎩

[(h�
2 + h1)

1
2 n− 1

2 ,1) for n > h�
2 + h1,

∅ for n ≤ h�
2 + h1.

On M2, we have

h�
2

ε�
+ h1

ε
≤ h�

2

ε�
+ h1

ε�
= h�

2 + h1

ε�
.

So we have for n ≤ h�
2 + h1 that

M ′′
2 :=

{
ε ≥ 1 : h�

2 + h1

εl
≤ nε

}
= [

(h�
2 + h1)

1/(l+1) n−1/(l+1),∞)

and for n > h�
2 +h1 that M ′′

2 = [1,∞). So in conclusion, we have for the second case
that

infM ≤ min{infM ′
1, infM ′

2} =
⎧
⎨

⎩

(h�
2 + h1)

1
�+1 n− 1

�+1 for n ≤ h�
2 + h1,

(h�
2 + h1)

1
2 n− 1

2 for n > h�
2 + h1.

Hence in view of (8.8), we end up with

γ (K × 	,n)�

⎧
⎨

⎩

(h�
2 + h1)

1
�+1 ( 1

n
)

1
�+1 , � ≥ 1,

(h�
2 + h1)

1
2 ( 1

n
)

1
2 , � ∈ (0,1),

for n > h�
2 + h1, (8.9)
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and

γ (K × 	,n) �

⎧
⎨

⎩

(h�
2 + h1)

1
�+1 ( 1

n
)

1
�+1 , � ∈ (0,1),

(h�
2 + h1)

1
2 ( 1

n
)

1
2 , � ≥ 1,

for n ≤ h�
2 + h1. (8.10)

From this point on, we want to apply the results of Theorems 3.1 and 3.3, respec-
tively. Therefore the assumptions made for Theorems 4.1 and 4.2 vary and meet the
requirements of Theorems 3.1 and 3.3, respectively.

Let us first prove Theorem 4.1. We apply Theorem 3.1 with the estimates (8.9),
(8.10). We may find constants η̂1, η̂2, η̂3, η̂4, depending on b,λ, δ, s, d,h1 and h2
(and thus also on the set K and �) such that the following inequalities hold with
probability at least 1 − δ:

Case 1: α > s − (d + 1)/2 and s/(s + d + 1) ≤ 1/2. Then � = (d + 1)/s ≥ 1 and

0 ≤ Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ η̂1(n

−1/2 + n−s/(2(s+d+1)) + n−s/(s+d+1))

≤ 3η̂1n
−s/(2(s+d+1)).

Case 2: α > s − (d + 1)/2 and s/(s + d + 1) > 1/2. Then � = (d + 1)/s < 1 and

0 ≤Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ η̂2(n

−1/2 + n−1/4 + n−1/2) ≤ 3η̂2n
−1/4.

Case 3: α < s − (d + 1)/2 and (α/(d + 1)+ 1/2)/(α/(d + 1)+ 3/2) ≤ 1/2. Then
� = (α/(d + 1) + 1/2)−1 ≥ 1 and

0 ≤ Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ η̂3(n

−1/2 + n−1/(2(�+1)) + n−1/(�+1))

≤ 3η̂3n
−1/(2(�+1))

≤ 3η̂3n
− 1

2
α/(d+1)+1/2
α/(d+1)+3/2 .

Case 4: α < s − (d + 1)/2 and (α/(d + 1)+ 1/2)/(α/(d + 1)+ 3/2) > 1/2. Then
� = (α/(d + 1) + 1/2)−1 < 1 and

0 ≤Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ η̂4(n

−1/2 + n−1/4 + n−1/2) ≤ 3η̂4n
−1/4.

Now the statement of Theorem 4.1 follows immediately. �
Let us now turn to the proof of Theorem 4.2. We can apply Theorem 3.3 for all

n ∈N satisfying

n > max

(
h�

2 + h1;4b
(
γ (K × 	,n) + 1 + Cλ,b log(8/δ)

n

)
log(8/δ)

)
,

where Cλ,b is as in Theorem 3.3. Hence we may select constants η1, η2, η3, η4, de-
pending on b,λ, δ, s, d,h1 and h2 (and thus also on the set K and �) such that the
following inequalities hold with probability at least 1 − δ:

Case 1: α > s − (d + 1)/2 and s/(s + d + 1) ≤ 1/2. Then � = (d + 1)/s ≥ 1 and

0 ≤Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ η1(n

−s/(s+d+1) + n−1/2) ≤ 2η1n
−s/(s+d+1).
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Case 2: α > s − (d + 1)/2 and s/(s + d + 1) > 1/2. Then � = (d + 1)/s < 1 and

0 ≤ Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ η2(n

−1/2 + n−1/2) ≤ 2η2n
−1/2.

Case 3: α < s − (d + 1)/2 and (α/(d + 1)+ 1/2)/(α/(d + 1)+ 3/2) ≤ 1/2. Then
� = (α/(d + 1) + 1/2)−1 ≥ 1 and

0 ≤ Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ η3(n

−�/(�+1) + n−1/2)

≤ 2η3n
−�/(�+1)

= 2η3n
−(α/(d+1)+1/2)/(α/(d+1)+3/2).

Case 4: α > s − (d + 1)/2 and (α/(d + 1)+ 1/2)/(α/(d + 1)+ 3/2) > 1/2. Then
� = (α/(d + 1) + 1/2)−1 < 1 and

0 ≤ Qλ(xn,ψn) −Qλ(x
∗,ψ∗) ≤ η4(n

−1/2 + n−1/2) ≤ 2η4n
−1/2.

Note that here, the bounds can even be derived for all n ∈ N. To see this, check the
definition of κ in the proof of Theorem 3.3. The proof of Theorem 4.2 is complete.

�

9 Proof of Remark 4.3

Let π(x, t) = πt (x) denote the density of the diffusion process given in (4.1). Fur-
thermore, let σ := 1

2σσ�, where σ� denotes the transposed matrix. Then the Fokker–
Planck equation states that

∂π(x, t)

∂t
= −

d∑

i=1

∂

∂xi

(
μi(x, t)π(x, t)

)+
d∑

i=1

d∑

j=1

∂2

∂xi∂xj

(
σ i,j (x, t)π(x, t)

)
. (9.1)

This is a parabolic partial differential equation. To show that, under some conditions
on μ and σ , the density π is infinitely differentiable in space and time, we want to
make use of Friedman [21, Theorem 3.11]. To apply that theorem, we need to impose
that σ is uniformly elliptic, i.e., there exists λ > 0 such that for all t, x ∈ [0, T ] ×R

d

and all ξ ∈R
d ,

1

λ
|ξ |2 ≤ ξT σ (t, x)ξ ≤ λ|ξ |2. (9.2)

Theorem 9.1 Let σ be uniformly elliptic and let σ and μ be p times Hölder-differen-
tiable in space and q times Hölder-differentiable in time. If p = q = ∞, then the
partial derivative

∂k+�

∂xk∂t�
π(x, t)

exists for all 0 ≤ k, � < ∞ and is Hölder-continuous.
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Proof To use [21, Theorem 3.11], we need a bit of calculation. For brevity, we set

bi(x, t) := −μi(x, t) + 2
d∑

j=1

∂σ i,j (x, t)

∂xj

, c(x, t) :=
d∑

i=1

−∂μi(x, t)

∂xi

.

With elementary analysis, we write (9.1) as

∂π(x, t)

∂t
=

d∑

i=1

d∑

j=1

σ i,j (x, t)
∂2π(x, t)

∂xi∂xj

+
d∑

i=1

∂π(x, t)

∂xi

bi(x, t) + π(x, t)c(x, t).

Due to our assumptions, b(x, t) and c(x, t) are infinitely Hölder-differentiable. Now
[21, Theorem 3.11] is applicable and our claim follows. �

Appendix

Let C > 0 and let X1, . . . ,Xn be independent random variables with 0 ≤ Xi ≤ C for
i = 1, . . . , n. Then we define

Sn :=
n∑

i=1

Xi, En := E [Sn] =
n∑

i=1

E [Xi] , Vn := Var [Sn] =
n∑

i=1

Var [Xi] .

Using Boucheron et al. [14, Theorem 2.8] and adapting this to our conditions, we
derive the Hoeffding inequality.

Theorem A.1 Under the above conditions, it holds for t > 0 that

P [|Sn − En| > t] < 2 exp
(− 2t2/(nC2)

)
.

The Bernstein inequality reads as follows (cf. van der Vaart and Wellner [35,
Lemma 2.2.9]).

Theorem A.2 Under the above conditions, it holds for t > 0 that

P [|Sn − En| > t] < 2 exp
(− t2/(2Vn + 2Ct/3)

)
.

In our setting, we consider random variables that are not only independent, but also
have the same distribution. The following corollaries can be derived as immediate
consequences of the Hoeffding respectively the Bernstein inequality.

Corollary A.3 Let X1, . . . ,Xn be i.i.d. on a probability space (�,F ,P ) and satisfy
sup1≤i≤n |Xi | ≤ b < ∞ P -a.s. Then

P

[∣∣∣∣
1

n

n∑

i=1

Xi − E[X1]
∣∣∣∣≥ t

]
≤ 2 exp(−nt2/2b2) for t > 0.
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Corollary A.4 Let X1, . . . ,Xn be i.i.d. random variables on some probability space
(�,F ,P ) and satisfy sup1≤i≤n |Xi | ≤ b < ∞ P -a.s. Then

P

[∣∣∣∣
1

n

n∑

i=1

Xi − E[X1]
∣∣∣∣≥ t

]
≤ 2 exp

(− nt2/(2Var[X] + 4 bt/3)
)

for t > 0.
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