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Abstract
Famously, mathematical finance was started by Bachelier in his 1900 PhD thesis
where – among many other achievements – he also provided a formal derivation
of the Kolmogorov forward equation. This also forms the basis for Dupire’s (again
formal) solution to the problem of finding an arbitrage-free model calibrated to a
given volatility surface. The latter result has rigorous counterparts in the theorems of
Kellerer and Lowther. In this survey article, we revisit these hallmarks of stochastic
finance, highlighting the role played by some optimal transport results in this context.
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1 Bachelier’s work relating Brownian motion to mass transport
and the heat equation

In this section, which is mainly dedicated to the historic point of view, we follow
Schachermayer [53] and point out that Bachelier already had some thoughts on “hor-
izontal transport of probability measures” in his dissertation “Théorie de la Spécula-
tion” [4], which he defended in Paris in 1900.

In this thesis, he was the first to consider a mathematical model of Brownian mo-
tion. Bachelier argued using infinitesimals by visualising Brownian motion (Wt )t�0
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as an infinitesimal version of a random walk. His 19th-century-style argument runs
as follows. Suppose that the grid in space is given by

. . . , xn−2, xn−1, xn, xn+1, xn+2, . . .

with the same (infinitesimal) distance �x = xn − xn−1 for all n, and such that at
time t , these points have (infinitesimal) probabilities

. . . , pt
n−2, pt

n−1, pt
n, pt

n+1, pt
n+2, . . .

for the random walk under consideration. What are then the probabilities

. . . , pt+�t
n−2 , pt+�t

n−1 , pt+�t
n , pt+�t

n+1 , pt+�t
n+2 , . . .

of these points at time t + �t?
The random walk moves half of the mass pt

n sitting at time t in xn to the point
xn+1. En revanche, it moves half of the mass pt

n+1 sitting at time t in xn+1 to the
point xn. We thus may calculate the net difference between pt

n/2 and pt
n+1/2, which

Bachelier identifies with

−1

2

∂pt

∂x
(x),

where we let x = xn = xn+1 which is legitimate for Bachelier as xn and xn+1 only
differ by an infinitesimal.

This amount of mass is transported from the interval (−∞, xn] to [xn+1,∞) dur-
ing the time interval (t, t +�t). In Bachelier’s own words, this is very nicely captured
by the following quote from his thesis:

“Chaque cours x rayonne pendant l’élément de temps vers le cours voisin une
quantité de probabilité proportionelle à la différence de leurs probabilités. Je dis
proportionnelle, car on doit tenir compte du rapport de �x à �t . La loi qui précède
peut, par analogie avec certaines théories physiques, être appelée la loi du rayon-
nement ou de diffusion de la probabilité.”

In the English translation:

“Each price x during an element of time radiates towards its neighbouring price
an amount of probability proportional to the difference of their probabilities. I say
proportional because it is necessary to account for the relation of �x to �t . The
above law can, by analogy with certain physical theories, be called the law of radia-
tion or diffusion of probability.”

Passing formally to the continuous limit and – using today’s terminology – denot-
ing by

Pt (x) =
∫ x

−∞
pt(z)dz
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the distribution function associated to the density function pt(x), Bachelier thus de-
duces in this intuitively convincing way the relation

∂P

∂t
= 1

2

∂p

∂x
, (1.1)

where we have normalised the relation between �x and �t to obtain the constant
1/2. By differentiating (1.1) with respect to x, one obtains the usual heat equation

∂p

∂t
= 1

2

∂2p

∂x2 (1.2)

for the density function pt(x), which then is Gaussian. Of course, the heat equa-
tion was known to Bachelier, and he notes regarding (1.2) “C’est une équation de
Fourier.”

Bachelier thus derived, on a formal level, the Kolmogorov forward equation, also
known as Fokker–Planck equation, for the propagation of a probability density p

under Brownian motion. The forward equation will also play an important role sub-
sequently, and we take the opportunity to note that Bachelier’s argument can equally
well be applied to the more general process with increments dXt = σ(t,Xt ) dWt to
arrive at the PDE

∂

∂t
P = 1

2

∂

∂x
(σ 2p),

∂

∂t
p = 1

2

∂2

∂x2
(σ 2p). (1.3)

But let us still remain with the form (1.1) of the heat equation and analyse its
message in terms of “horizontal transport of probability measures”. One may ask:
what is the “velocity field”, acting on the set of probabilities on R, which moves the
probability density pt ( · ) to the probability density pt+dt ( · )? Following Bachelier’s
intuition and keeping in mind that the mass sitting at time t in x equals pt(x), the
velocity of this move at the point x must be equal to

−1

2

∂pt

∂x
(x)

pt (x)
, (1.4)

which has the natural interpretation as the “speed” of the horizontal transport induced

by pt(x). We thus encounter in nuce the “score function” p′
t (x)

pt (x)
= ∇pt (x)

pt (x)
, where the

nabla notation ∇ indicates that this is a vector field which makes perfect sense in the
n-dimensional case, too.

At this stage, we can relate Bachelier’s work with the more recent notion of the
Wasserstein metric W2( · , · ), at least intuitively and at an infinitesimal level. One
may ask: what is the necessary kinetic energy needed to transport pt( · ) to pt+dt ( · )?
Knowing the speed (1.4) and the usual formula for the kinetic energy, we obtain
for the Wasserstein distance between the two infinitesimally close probabilities pt

and pt+dt as

W2(pt ,pt+dt )

dt
= 1

2

(∫
R

(p′
t (x)

pt (x)

)2
dx

) 1
2

.
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For a formal definition of the Wasserstein distance W2( · , · ), we refer e.g. to Vil-
lani [56, Definition 6.1]. While for the finite version of the Wasserstein distance be-
tween two probability measures, one has to find an optimal transport plan, the situa-
tion is simpler – and very pleasant – in the case of the infinitesimal transport induced
by the vector field (1.4). This infinitesimal transport is automatically optimal in an
asymptotic sense. Indeed, under suitable regularity conditions, the vector field induc-
ing the optimal transport between pt and pt+h converges, after normalising by 1

h
,

to the vector field (1.4). Intuitively, this corresponds to the geometric insight in the
one-dimensional case that the transport lines of infinitesimal length cannot cross each
other. For a thorough treatment of the geometry of absolutely continuous curves of
probabilities such as (pt ( · ))t≥0 above, we refer to the lecture notes by Ambrosio et
al. [3, Chap. II].

We finish the section by returning to Bachelier’s thesis. The rapporteur of Bache-
lier’s dissertation was no lesser a figure than Henri Poincaré. Apparently he was aware
of the enormous potential of the section “Rayonnement de la probabilité” in Bache-
lier’s thesis, when he added to his very positive report the handwritten phrase “On
peut regretter que M. Bachelier n’ait pas développé davantage cette partie de sa
thèse.” That is: One might regret that Mr Bachelier did not develop further this part
of his thesis. Truly prophetic words!

2 Dupire’s formula

We now turn to a well-known and more recent topic in mathematical finance contin-
uing the early achievements of Bachelier.

Suppose that in a financial market, we know the prices of “many” European op-
tions on a given (highly liquid) stock S. What can we deduce from this data about the
prices of exotic, i.e., path-dependent options?

This question leads to the following mathematical idealisation. Suppose we know
the prices of all European call options, i.e., the price C(t, x) of every call option with
strike price x and maturity t , for every 0 ≤ t ≤ T and x ∈ R+. Our task is to analyse
the set of all possible (local) martingale measures for the stock price process which
are compatible with this data. Once we have a hand on the relevant set of martingale
measures, we can price arbitrary exotic options by taking expectations.

To make the question more tractable, it is a good idea to restrict the class of pro-
cesses under consideration e.g. to continuous, Markovian martingales. We also make
the economically meaningful assumptions that the function (t, x) �→ C(t, x) is suffi-
ciently smooth, as well as strictly convex in the variable x and strictly increasing in
the variable t , to allow subsequent formal manipulations.

The first observation is that the knowledge of C(t, x) for 0 ≤ t ≤ T and x > 0 is
tantamount to the knowledge of the marginal probabilities (μt )0≤t≤T of the underly-
ing stock price process under a martingale measure which determines the prices via
the formula

C(t, x) = Eμt [(St − x)+]. (2.1)

This observation goes back to Breeden and Litzenberger [12].
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If the measures μt are absolutely continuous with respect to Lebesgue measure
with a continuous density function pt (x), then (2.1) amounts to the relation

pt (x) = Cxx(t, x), x > 0, (2.2)

as one verifies via integration by parts.
In a very influential and highly cited paper from 1994 (compare also the work of

Derman and Kani [16]), Dupire [17] considered diffusion processes of the form

dSt

St

= σ(t, St ) dWt , 0 ≤ t ≤ T , (2.3)

where the “local volatility” σ( · , · ) is modelled as a deterministic function of t and
x, and (Wt ) is a Brownian motion adapted to its natural filtration (Ft )0≤t≤T . It turns
out that there is the beautiful and strikingly simple “Dupire formula” which relates
σ( · , · ) to the given option prices C(t, x), namely

σ 2(t, x)

2
= Ct(t, x)

x2Cxx(t, x)
. (2.4)

Indeed, the Fokker–Planck equation implies – at least on a formal level, cf. (1.3) –
that pt (x) satisfies the PDE

∂

∂t
pt (x) = ∂2

∂x2

(
σ 2(t, x)

2
pt (x)

)
.

Integrating with respect to x, using (2.2) and changing the order of derivatives quickly
yields (2.4).

We note that this beautiful argument is very much in line with Bachelier’s reason-
ing in (1.1) and (1.2) above pertaining to the case of constant volatility σ . We note
in passing that Bachelier used instead of the wording “volatility” the more colourful
term “nervousness of the market”.

Of course, Dupire’s formal arguments need proper regularity assumptions in or-
der to be justified. There are two aspects: existence and uniqueness of the martin-
gales fitting the given option prices C(t, x). As regards the former, the question
of existence amounts to a remarkable theorem by Kellerer [38, 39]: Given a fam-
ily (μt )0≤t≤T of probability distributions on R which is increasing in the convex
order, there is a Markov martingale having these probabilities as marginals. By “in-
creasing in the convex order”, we mean that each μt has finite first moment and
that μt(f ) = ∫

R
f (x)μt (dx) is nondecreasing in t , for every convex function f

on R. Kellerer’s theorem extends earlier work of Strassen [54] who established a
discrete-time version of the result. We also note that the convex order condition on
the marginal distributions is necessary, as easily follows from Jensen’s inequality.

Kellerer’s theorem goes far beyond the simple formula (2.4) and has been further
refined, notably by Lowther [46, 45, 47] in an impressive series of papers. We shall
review these results in the subsequent sections.

However, from an application point of view, the existence question is not of pri-
mordial relevance. After all, the function C(t, x) is an idealisation of reality which
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has to be estimated from a finite set of given European option prices. In this context,
it does not harm to make strong regularity assumptions on the smoothness and con-
vexity (in the variable x) of the function C(t, x) which justify the above argument.
Under such assumptions, Dupire’s solution (2.4) does make sense and the issue of
existence is settled.

A different issue is the question of uniqueness. As we shall see below, this question
is challenging and relevant – at least from a mathematical point of view – even in very
regular settings, such as the Bachelier or the Black–Scholes model.

In order to formulate existence and uniqueness results for a process with given
marginals, one has to specify the class of processes with respect to which we want to
establish existence and uniqueness. Under proper regularity assumptions, the unique
solution should of course equal Dupire’s solution. Dupire’s process is a martingale
with continuous paths, enjoying the Markov property. Is Dupire’s solution unique
within this class? In a veritable tour de force, Lowther [46, 45] has shown that the
answer is yes, provided that we replace the word Markov by the words strong Markov
and one restricts to continuous processes.

We also refer to Hirsch et al. [30, Theorem 6.1] where a slightly different version
of this theorem, credited to Morgan Pierre, is proved. These theorems settle the ques-
tion of uniqueness in a very satisfactory way. We shall discuss Lowther’s theorem in
more detail in Sect. 6.

To the best of our knowledge, the following question remained open: Is it really
necessary to add the adjective strong to the word Markov in Lowther’s uniqueness
theorem? At least if one is willing to accept strong regularity assumptions on the
function C( · , · ) and the resulting process S as defined in (2.3), one may ask whether
the Markov property alone is sufficient. We focus on this question in the next section.

3 An eye-opening example

The subsequent example is known since the work by Dynkin and Jushkevich [18] in
the 1950s.

Example 3.1 There is an R+-valued, continuous, Markov martingale which fails to
be strongly Markovian.

Proof We define the process S = (St )0≤t≤1 by starting at S0 = 1 and subsequently
proceeding in two steps. For t ∈ [0, 1

2 ], the process S is a stopped geometric Brownian
motion, i.e.,

St = exp

(
Bt∧τ − t ∧ τ

2

)
, 0 ≤ t ≤ 1

2
,

where B is a standard Brownian motion and τ is the first moment when S hits the
level 2. For 1

2 ≤ t ≤ 1, we distinguish two cases. If S has been stopped, i.e., if S 1
2

= 2,
the process S simply remains constant at the level 2. If this is not the case, the process
continues to follow a geometric Brownian motion, i.e.,

St = exp

(
Bt − t

2

)
,

1

2
≤ t ≤ 1, on the set

{
τ >

1

2

}
. (3.1)
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Obviously, S is a continuous martingale. The crucial feature is its Markovian na-
ture: The Markov property follows from the fact that for every fixed (deterministic)
time 1

2 ≤ t ≤ 1, the probability for the geometric Brownian motion St to be equal to 2
is zero on the set {τ > 1

2 }. Hence, for every fixed 1
2 ≤ t ≤ 1, the conditional law of

(Su)t≤u≤1 is almost surely determined by the present value St of the process.
Why does S fail to be strongly Markovian? On the set {τ > 1

2 }, define the stopping
time ϑ as the first instance u > 1

2 when Su equals the value 2, which happens with
positive probability during the interval ( 1

2 ,1). At time ϑ ∧ 1, the process S therefore
takes the value 2 on a non-negligible part of the set {τ > 1

2 }. Of course, the random
variable Sτ equals 2 on the set {τ ≤ 1

2 }, too. Hence there is no strongly Markovian
prescription for the process S what to do after time ϑ : Without further information on
the past, the process S cannot decide whether it should remain constant or continue
to move on as a geometric Brownian motion. �

Let us apply this example to the pricing of options of the form (S1 − x)+. Fix
x ≥ 2. It is straightforward to calculate its price P x(t, z) at time t , conditionally on
St = z, which is defined via

P x(t, z) = E[(S1 − x)+|St = z], 0 ≤ t ≤ 1, z ∈R.

Letting z = 2, we find

P x(t,2) = (2 − x)+, 0 < t ≤ 1.

Indeed, this is clear for t ≤ 1
2 because then τ ≤ t ≤ 1

2 and S1 = 2. For t > 1
2 , the

set {St = 2, τ > 1
2 } has probability 0 so that again S1 = 2 P-a.s. on {St = 2}. On

the other hand, for z �= 2 and 1
2 ≤ t < 1, the prices P x(t, z) are given by the usual

Black–Scholes formula and therefore strictly positive. Hence, for 1
2 ≤ t < 1, the op-

tion prices z �→ P x(t, z) are discontinuous at z = 2. They also fail to be increasing
and convex in the variable z which a reasonable option pricing regime should cer-
tainly satisfy. On the other hand, we note that these option prices – strange as they
might be – do not violate the no-arbitrage principle as they were legitimately derived
from a martingale.

The marginal distributions of the process S have an atom at the point 2 which
is rather unpleasant. One may ask whether it is possible to construct variants of the
above example which have more regular marginals.

Here is a fairly straightforward modification. Fix an uncountable compact K in
R+ with zero Lebesgue measure. For example, one may take the classical Cantor
set K = {1 + ∑∞

n=1
εn

3n : εn ∈ {0,2}} and c−1 : [0,1] → K as the (strictly increasing)
right-continuous generalised inverse of the Cantor function associated with K . We
can modify the construction of Example 3.1 in three steps: (1) For 0 ≤ t ≤ 1

3 , let
(St )0≤t≤ 1

3
be geometric Brownian motion starting at S0 = 1. (2) For 1

3 ≤ t ≤ 2
3 , let

(St ) 1
3 ≤t≤ 2

3
continue to be geometric Brownian motion, but stopped at the stopping

time τ = inf{u > 0 : Su = c−1(u)} when τ ∈ [ 1
3 , 2

3 ]. Clearly, the probability that τ

takes any fixed value vanishes, but the set {τ ∈ [ 1
3 , 2

3 ]} has positive probability. To see
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this, denote the running maximum of S by S∗
u := maxr≤u Sr and consider the event

E := {S∗
1
3

≤ 1, S∗
2
3

≥ 2} which has positive probability. Since S∗ and c−1 are increas-

ing and continuous resp. right-continuous, there exists on E a minimal t∗ ∈ [ 1
3 , 2

3 ]
with S∗

t∗ ≥ c−1(t∗). We deduce from (right-)continuity of the involved functions and
minimality of t∗ that S∗

t∗ = c−1(t∗) on E. Finally, since c−1 is increasing, we also
have S∗

t < c−1(t) ≤ S∗
t∗ for t < t∗ and hence by continuity that S∗

t∗ = St∗ on E. This
implies that τ = t∗ ∈ [ 1

3 , 2
3 ] with positive probability. (3) For 2

3 ≤ t , we now distin-
guish two cases. On {τ ∈ [ 1

3 , 2
3 ]}, the process S remains constant, i.e., St = Sτ , and

on {τ /∈ [ 1
3 , 2

3 ]}, S continues to follow geometric Brownian motion. The process S

thus enjoys all the features of Example 3.1 and in addition has continuous marginals;
this uses that c−1 is strictly increasing so that the stopped process does not get stuck
in some point with positive probability. Note, however, that these marginals are not
given by densities as they are not absolutely continuous with respect to Lebesgue
measure.

Turning back to the context of Example 3.1, there is another continuous Markovian
martingale with the same marginals as S, inducing reasonable option prices. In fact,
there is a continuous strongly Markovian martingale with this property and which is
unique in this latter class (Theorem 4.1 below).

We only give an informal, verbal description of this strong Markov process. On
the stochastic interval where 0 ≤ t ≤ 1

2 ∨ τ , let S be defined as in Example 3.1. For
1
2 ∨ τ ≤ t ≤ 1, we have to define S in a way that keeps the probability of the event
{St = 2} constant and preserves the strong Markov property. For this reason, we stop
paths at the level 2 and at the same time start excursions from the set of paths stopped
at the level 2 with a certain intensity rate. We are free to choose this rate in such a
way that the mass remaining at the atom {St = 2} equals precisely the constant mass
which is prescribed by the given marginals of the process S.

We thus have indicated the construction of another continuous martingale having
the same marginals as the process S in Example 3.1. One may check that the latter
construction is strongly Markovian – as opposed to the above construction in Exam-
ple 3.1 – and that the option prices are increasing and strictly convex in the variable z

as they should be. It will follow from Theorem 4.1 below that the latter martingale is
the unique strong Markov solution for the given marginals.

Note that this answers the question raised at the end of Sect. 2. In Lowther’s
uniqueness theorem, it is not sufficient to consider Markovian (but not necessarily
strongly Markovian) martingales; as we have just seen, there exist two distinct con-
tinuous Markov martingales with the same one-dimensional marginal distributions.

In view of Dupire’s formula, this leads to the next question. It seemed natural to
conjecture (but turned out to be wrong, as seen above) that, provided the call prices
are sufficiently regular in t and x, there should be only one continuous Markov mar-
tingale matching these prices. Correspondingly one would ask: can one obtain similar
examples as above, i.e., a continuous strongly Markovian martingale and a continu-
ous Markov martingale failing the strong Markov property with the same absolutely
continuous (or even more regular) marginals?

To the surprise of the present authors, it turned out that the answer is “yes”, even
when we pass to the “most regular” situation when S is a Brownian motion, i.e., in
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the Bachelier model (or the Black–Scholes model). The construction is more involved
but rests on the above developed intuition; see the companion paper by Beiglböck et
al. [10].

4 Uniqueness of Dupire’s diffusion

There is a huge literature on one-dimensional processes inducing a given family
of one-dimensional marginal distributions (see Kellerer [38], Madan and Yor [48],
Hirsch and Roynette [29], Hirsch et al. [30], Beiglböck et al. [7], Lowther [45],
Hamza and Klebaner [26], Fan et al. [19], Hobson [32], Oleszkiewicz [49], Albin
[2], Baker et al. [6], Källblad et al. [36], among others). In particular, the late Marc
Yor and his co-authors Hirsch, Profeta and Roynette wrote the beautiful book [28]
on “peacocks”. This is a pun on the French acronym PCOC, for “processus croissant
pour l’ordre convexe”, and a peacock is a stochastic process (Xt )t≥0 for which the
family of laws law(Xt ), t ≥ 0, is increasing in the convex order. We take here the lib-
erty to use the word peacock also for a family of probabilities (μt )t≥0 that increases
in the convex order.1

To connect with this literature, we find it more natural to pass from the multiplica-
tive setting (2.3) to the additive setting of a martingale diffusion

dXt = σ(t,Xt ) dWt , 0 ≤ t ≤ T . (4.1)

Hence we consider now processes taking possibly values in all of R and switch to the
notation X instead of the “stock price” S. We note, however, that this change is only
for notational reasons, and everything below could also be done in the multiplicative
setting of the previous sections.

Given a peacock (μt )t≥0, we may define option prices via

C(t, x) = Eμt [(Xt − x)+], (4.2)

where μt , t ≥ 0, denote the one-dimensional marginals of Xt, t ≥ 0, and x ∈ R. The
“multiplicative” formula (2.4) becomes in the additive setting

σ 2(t, x)

2
= Ct(t, x)

Cxx(t, x)
. (4.3)

We can now cite Lowther’s complete solution for the uniqueness problem within
the class of continuous, strong Markov martingales. We stress (and admire) that this
theorem does not require any additional regularity assumptions.

Theorem 4.1 (Lowther [46, Theorem 1.2]) Let X = (Xt )0≤t≤1 and Y = (Yt )0≤t≤1
be R-valued, continuous, strong Markov martingales. If X and Y have the same
one-dimensional marginal distributions, they also have the same distributions (as
stochastic processes).

1Fortunately, “probabilités croissantes pour l’ordre convexe” still yields the same acronym.
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The proof of this theorem is highly technical and its presentation goes far beyond
the scope of the present paper. Instead, we formulate a “toy” version of the theo-
rem under strong regularity assumptions. We then analyse why the notion of strong
Markovianity is key in the above theorem and finally give some hints on the strategy
for the proof of Theorem 4.1.

Assumption 4.2 We suppose that the process X is given by X0 = z0 and (4.1), where
σ(t, x) is sufficiently smooth to guarantee that there is a unique strong solution X.
We also suppose that XT has finite second moment. Denoting by μt the law of Xt , we
assume that the function C(t, x) defined in (4.2) is strictly convex in the variable x,
strictly increasing in the variable t and satisfies standard Itô smoothness assumptions,
i.e., it is twice continuously differentiable in x and once continuously differentiable
in t . We also assume that for every x ∈ R, the pricing function (t, z) �→ P X,x(t, z)

defined via

P X,x(t, z) = E[(XT − x)+|Xt = z], 0 ≤ t ≤ T , z ∈R, (4.4)

also satisfies these standard Itô assumptions (of course, now with respect to z and t).

Assumption 4.2 is strong enough to guarantee that the function C(t, x) indeed
satisfies (4.3). Here is then the “toy” version of Theorem 4.1 with strong regularity
assumptions which make life easier.

Theorem 4.3 Let X = (Xt )0≤t≤T satisfy Assumption 4.2. Let Y = (Yt )0≤t≤T be an-
other continuous Markov (but not necessarily strongly Markovian) martingale such
that Xt and Yt have the same distribution for every 0 ≤ t ≤ T . For fixed strike price
x ∈ R, let P Y,x(t, z) be the corresponding option prices defined via

P Y,x(t, z) = E[(YT − x)+|Yt = z], 0 ≤ t ≤ T , z ∈R, (4.5)

and assume that for every x, the function (t, z) �→ P Y,x(t, z) also satisfies the above
standard Itô smoothness assumptions. Then P X,x(t, z) = P Y,x(t, z) for all t, x, z,
and the processes X and Y have the same distributions (as stochastic processes).

Proof As the function (t, z) �→ P Y,x(t, z) is assumed to satisfy the standard Itô con-
ditions, we may apply Itô’s formula to obtain

dP Y,x(t, Yt ) = P
Y,x
t (t, Yt ) dt + P Y,x

z (t, Yt ) dYt + 1

2
P Y,x

zz (t, Yt ) d〈Y 〉t ,

where 〈Y 〉 denotes the quadratic variation process of the continuous, square-inte-
grable martingale Y . By (4.5), the process (P Y,x(t, Yt ))0≤t≤T is a martingale. Indeed,
since Y is Markovian, we get

P Y,x(t, Yt ) = E[(YT − x)+|FY
t ],

which is a martingale in the filtration of Y . The martingale condition implies that the
drift term vanishes so that the equality 1

2P
Y,x
zz (t, Yt ) d〈Y 〉t = −P

Y,x
t (t, Yt ) dt holds
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true in the sense that for any predictable set A ⊆ [0, T ] × C[0, T ], we have

1

2
E

[
1A

∫ T

0
P Y,z

zz (t, Yt ) d〈Y 〉t
]

= −E

[
1A

∫ T

0
P

Y,x
t (t, Yt ) dt

]
.

Because t �→ P Y,x(t, z) is strictly increasing and z �→ P Y,x(t, z) is strictly convex,
we may define the function

ρ2(t, z)

2
:= P

Y,x
t (t, z)

P
Y,x
zz (t, z)

and then conclude that d〈Y 〉t = ρ2(t, Yt ) dt . We therefore must have that Y may be
represented as in (4.1), with σ replaced by ρ.

Recall that X and Y have by assumption the same one-dimensional marginals μt ,
t ≥ 0. Denoting the option prices of Y , for x ∈R and t ≥ 0, by

CY (t, x) := Eμt [(Yt − x)+],
we therefore have CY = C. On the other hand, the same reasoning as for (4.3) implies
that CY satisfies

ρ2

2
= CY

t (t, x)

Cxx(t, x)
.

Comparing with (4.3), we obtain ρ2 = σ 2 which shows the identity of the processes
X and Y in distribution. �

Theorem 4.3 provides a sufficient set of regularity assumptions to substantiate the
statement in Dupire’s paper [17] that “. . . we can recover, up to technical regularity
assumptions, a unique diffusion process”.

Of course, one could do some massaging of the above argument to somewhat
weaken the very strong Assumption 4.2 which we have imposed. But there is a long
and thorny road, going far beyond simple cosmetic changes, to arrive at Lowther’s
result in Theorem 4.1.

In Theorem 4.3, the strong regularity assumptions imply in particular the strong
Markov property of the process X (although this is not used in the simple proof
above). We stress once more that in the setting of Lowther’s result in Theorem 4.1,
the strong Markov property is the key assumption.

Passing to Lowther’s notation and looking at (4.4), a crucial step in the above
argument is to start from a convex, increasing and 1-Lipschitz function g, such as
g(z) = (z − x)+, and pass to its conditional expectations

f (t, z) = E[g(YT )|Yt = z], 0 ≤ t ≤ T , z ∈R. (4.6)

In order to start a chain of arguments, one has to verify that f (t, z) is a “nice” func-
tion. When looking at Example 3.1 and its variants, we have seen that in that case, for
g(z) = (z − x)+, this is not at all the case. Its conditional expectation f (t, z) lacked
each of the following desired properties: continuity, monotonicity, and convexity in z.
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Contrary to this lamentable breakdown of regularity, we shall verify in Corol-
lary 5.3 that the strong Markov property guarantees that the following three proper-
ties are inherited from g( · ) by each f (t, · ): convexity, monotonicity, and 1-Lipschitz
continuity (which serves as a more quantitative version of continuity). This preserva-
tion of regularity is a decisive feature of Lowther’s proof.

5 Coupling strong Markov processes

What is the salient property which distinguishes the strong Markov property from
the Markov property in our context? While the former condition allows Lowther’s
uniqueness theorem to hold true, we have seen in Example 3.1 that there may be
different continuous Markov martingales inducing the same marginals. The following
well-known concept is the key to understanding the difference.

Definition 5.1 For probability measures π1 and π2 on R, we say that π2 dominates
π1 to first order if for every a ∈ R, we have π1[[a,∞)] ≥ π2[[a,∞)].

We show in the next proposition that the strong Markov property of a continuous
martingale implies that the transition probabilities (π

s,t
x )x∈R given by

πs,t
x [A] = P[Xt ∈ A|Xs = x],

where s < t and A is a Borel set in R, are increasing to first order in the variable x,
for every s < t .

We follow Hobson [31] who applied a well-known technique, namely the “joys of
coupling” (to quote his paper), in the present context.

Proposition 5.2 Let X = (Xt )0≤t≤T be a continuous strong Markov process with
transition probabilities π

s,t
x [ · ]. Then for 0 ≤ s < t ≤ T and x < y, the probability

π
s,t
y dominates π

s,t
x to first order.

Proof Fix s, t and x < y as above and let (Xx
u)s≤u≤t and (X

y
u)s≤u≤t be independent

copies of the process X, starting at Xx
s = x and X

y
s = y, both defined on the same

filtered probability space. Define the stopping time τ as the first moment u when Xx
u

equals X
y
u , if this happens for some u ∈ [s, t]; otherwise we let τ = ∞. Define the

process X̃x by

X̃x
u =

{
Xx

u for s ≤ u ≤ τ,

X
y
u for τ < u ≤ t.

We clearly have

X̃x
t ≤ X

y
t for all 0 ≤ t ≤ T . (5.1)

Indeed, if τ = ∞, the paths of (Xx
u)s≤u≤t = (X̃x

u)s≤u≤t and (X
y
u)s≤u≤t never touch,

so that we even have strict inequality by continuity of the processes. If τ < ∞, then



From Bachelier to Dupire via optimal transport 71

X̃x and Xy have “joined” at time τ and subsequently follow the same trajectory.
Hence X̃x

u = X
y
u for τ ≤ u ≤ t .

Inequality (5.1) implies that the law of X
y
t dominates the law of X̃x

t to first order.
We conclude by observing that Xx

t and X̃x
t have the same law due to the strong

Markov property. �

Corollary 5.3 Let X = (Xt )0≤t≤T be a continuous strong Markov process with
marginal laws μt and transition probabilities π

s,t
x [ · ]. Let 0 ≤ s ≤ t ≤ T and

z �→ g(z) be a measurable μt -integrable function, and define the conditional expec-
tation similarly as in (4.6) by

f (s, x) = E[g(Xt )|Xs = x], x ∈R.

Then the following assertion holds true:
(i) If z �→ g(z) is increasing, then so is x �→ f (s, x), for every 0 ≤ s ≤ t ≤ T .

If we assume in addition that X is a martingale, we also have the following two
assertions:

(ii) If z �→ g(z) is 1-Lipschitz, then so is x �→ f (s, x), for every 0 ≤ s ≤ t ≤ T .
(iii) If z �→ g(z) is convex, then so is x �→ f (s, x), for every 0 ≤ s ≤ t ≤ T .

Proof (i) This is just a reformulation of Proposition 5.2.
(ii) If g is 1-Lipschitz, then x �→ g(x) + x is increasing. As X is a martingale, we

have E[Xt |Xs = x] = x. By (i), x �→ f (s, x) + x is increasing. By the same token,
x �→ f (s, x) − x is decreasing, which readily shows that x → f (s, x) is 1-Lipschitz.

(iii) We follow the proof of Hobson [31, Theorem 3.1]. For convex g and fixed
x < y < z, we have to show that

(z − x)f (s, y) ≤ (z − y)f (s, x) + (y − x)f (s, z). (5.2)

Choose three independent copies Xx,Xy,Xz of the process X, starting at time s from
the initial values x, y and z. To simplify notation, we denote the resulting triple of
processes (Xx,Xy,Xz) by (X,Y,Z). We define coupling times similarly as above.
Let τx be the first moment u > s when Xu = Yu; similarly, τ z is defined as the
first moment when Z and Y meet. Finally, let τ = τx ∧ τ z ∧ t . This time, we leave
the processes unchanged; we rather argue on the three disjoint (up to null sets) sets
{τ = τx}, {τ = τ z} and {τ = t}.

We start with the latter set on which we have Xt < Yt < Zt . By the convexity of g,
we have

(Zt − Xt)g(Yt ) ≤ (Zt − Yt )g(Xt ) + (Yt − Xt)g(Zt ) (5.3)

so that

E
[
(Zt − Xt)g(Yt ) − (

(Zt − Yt )g(Xt ) + (Yt − Xt)g(Zt )
)
I{τ=t}

] ≤ 0.

On {τ = τx}, we have Xt = Yt so that the last term in (5.3) vanishes. Moreover, the
first and the middle term are equal so that (5.3) holds true (with equality) on the set
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{τ = τx}. In particular,

E
[
(Zt − Xt)g(Yt ) − (

(Zt − Yt )g(Xt ) + (Yt − Xt)g(Zt )
)
I{τ=τx }

] ≤ 0.

Analogous reasoning applies to {τ = τ z} so that

E
[
(Zt − Xt)g(Yt ) − (

(Zt − Yt )g(Xt ) + (Yt − Xt)g(Zt )
)
I{τ=τ z}

] ≤ 0.

Summing up, we obtain

E
[
(Zt − Xt)g(Yt ) − (

(Zt − Yt )g(Xt ) + (Yt − Xt)g(Zt )
)] ≤ 0.

Finally, we use independence and the martingale property of X,Y and Z to obtain

(z − x)E[g(Yt )|Ys = y] ≤ (z − y)E[g(Xt )|Xs = x] + (y − x)E[g(Zt )|Zs = z],

which is tantamount to (5.2). �

We can reformulate the message of Corollary 5.3 (ii) in the spirit of Bachelier by
considering the Wasserstein cost W1(π

s,t
x [ · ],πs,t

y [ · ]) of the horizontal transport of
the conditional probability measures π

s,t
x [ · ] to π

s,t
y [ · ]. Recall that for probabilities

μ,ν on the real line, the Wasserstein-1 distance is given by

W1(μ, ν) := inf
π∈cpl(μ,ν)

∫
|x − y|dπ(x, y),

where cpl(μ, ν) denotes the set of all probabilities on R
2 having μ,ν as marginal

measures; see e.g. Villani [56] for an extensive overview of the field of optimal trans-
port.

Definition 5.4 Let π be a probability on R
2 and write μ for its projection onto the

first coordinate and (πx)x for the respective disintegration so that π = ∫
R

πxdμ(x).
Then π is called a Lipschitz-kernel if for all x, y in a set X with μ[X] = 1, we have

W1(πx,πy) ≤ |x − y|.

We call π a martingale coupling if
∫

y dπx(y) = x μ-a.s. It is then straight-
forward to see that for a martingale coupling π , the following are equivalent:

(i) π is a Lipschitz-kernel.
(ii) For all x, y in a set X with μ[X] = 1, we have W1(πx,πy) = |x − y|.
(iii) For all x, y in a set X with μ[X] = 1 and x ≤ y, the measure πx is dominated

to first order by πy .

Definition 5.5 Let X be an R-valued Markov process. Then X has the Lipschitz–
Markov property if for all s ≤ t , the law of (Xs,Xt ) is a Lipschitz-kernel.
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To give yet another characterisation of Lipschitz–Markov processes, recall that
a process X is Markov if and only if for all s ≤ t and every bounded measurable
function f , there is a measurable function g such that

E[f (Xt )|Fs] = g(Xs).

A process X is Lipschitz–Markov if and only if for all s ≤ t and every 1-Lipschitz
function f , there is a 1-Lipschitz function g such that

E[f (Xt )|Fs] = g(Xs).

This is a straightforward consequence of the Kantorovich–Rubinstein theorem which
provides a dual characterisation of the Wasserstein-1 distance through 1-Lipschitz
functions.

We now can resume the crucial role of the strong Markov property.

Corollary 5.6 Let M be a continuous Markov martingale. Then M is Lipschitz–
Markov if and only if it is strong Markov.

Proof Due to Proposition 5.2 and Corollary 5.3, every strong Markov martingale is
Lipschitz–Markov. That a Lipschitz–Markov martingale is strongly Markov is proved
in the same way as one establishes the strong Markov property for Feller processes.
See e.g. Liggett [44, Theorem 1.68]. �

To the best of our knowledge, Lipschitz-kernels play a crucial role in all known
proofs of Kellerer’s theorem. The decisive property is the following.

Proposition 5.7 Consider the space P(D[0,1]) of probability measures on the Sko-
rokhod space equipped with the convergence of finite-dimensional distributions. Then
the set of Lipschitz–Markov martingales is closed.

In contrast, the set of Markov martingales is not closed. See e.g. Beiglböck et
al. [7] for the (simple) proof of Proposition 5.7.

6 Continuity of the martingale solution

An important question in the present context is the following: Under which condi-
tions on a peacock (μt )0≤t≤1, as defined in Sect. 4 above, is there a strong Markov
martingale with continuous trajectories having the given marginals? We only focus
on the one-dimensional case as we have done throughout this paper. It is important to
mention that the corresponding question of “mimicking” a peacock by a “nice” mar-
tingale remains wide open for dimensions d ≥ 2. The one-dimensional case, however,
is fully understood by now, again by the definitive work of Lowther.

Theorem 6.1 (Lowther [45, Theorem 1.3]) Let (μt )t≥0 be a peacock and assume that
t �→ μt is weakly continuous and that each μt has convex support. Then there exists
a unique strongly continuous Markov martingale X such that Xt ∼ μt , t ≥ 0.
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We do not show Lowther’s theorem in full generality, but again we want to isolate
a sufficient set of assumptions that allows us to present a (comparably simple) self-
contained proof of the existence theorem.

Remark 6.2 A key ingredient of the proof is that for probabilities μ,ν in convex order,
there exists a continuous martingale (Xt )0≤t≤1 with X0 ∼ μ and X1 ∼ ν which is
strongly Markovian (and hence Lipschitz–Markov). For instance, we can take X to
be a stretched Brownian motion, that is, a solution to a continuous-time martingale
transport problem; see Backhoff-Veraguas et al. [5]. Another possibility would be
to apply an appropriate deterministic time change to Root’s solution [52] (see Cox
and Wang [15] for the case of a non-trivial starting distribution) of the Skorokhod
embedding problem. We note that the martingale transport approach is also applicable
to measures μ,ν defined on R

d, d > 1. This could be interesting in view of a possible
multidimensional extension of Lowther’s result in Theorem 6.1, but this is not within
the scope of the present article.

Assumption 6.3 Let (μt )0≤t≤1 be a one-dimensional peacock centered at zero with
densities pt (x) and finite second moments

m2
2(μt ) =

∫ ∞

−∞
x2 dμt(x) =

∫ ∞

−∞
x2pt(x) dx

such that the function t �→ m2
2(μt ) is continuous. We assume that there is a – bounded

or unbounded – open interval I ⊆ R supporting all the μt such that for each compact
subset K ⊆ I , the Lebesgue densities x �→ pt(x) of μt are bounded away from zero,
uniformly in x ∈ K and t ∈ [0,1].

It will be convenient to suppose (without loss of generality via a determinis-
tic time change) that t �→ m2

2(μt ) is affine. More precisely, we may assume that
m2

2(μt+h) − m2
2(μt ) = h so that for all martingales M with law(Mt) = μt and

law(Mt+h) = μt+h, we have

E[(Mt+h − Mt)
2] = h. (6.1)

Theorem 6.4 Under Assumption 6.3 and (6.1), there is a continuous strong Markov
martingale M = (Mt)0≤t≤1 with one-dimensional marginals (μt )0≤t≤1.

There is an obvious and well-known strategy for the proof. We want to obtain the
desired martingale M as a limit of approximations which fit the peacock (μt )0≤t≤1
on finitely many points of time. As in Hirsch et al. [30], it is convenient to do so along
the partially ordered set S of finite subsets S ⊆ [0,1] naturally ordered by inclusion.

For each S ∈ S , we choose a continuous strong Markov martingale MS having the
given marginals at each time si ∈ S. The existence of MS is a direct consequence of
Remark 6.2.

Identifying the martingales MS with their induced measures on the path space
C[0,1], this family of measures is tight if considered on the Skorohod space D[0,1]
equipped with the topology of convergence of finite-dimensional distributions. Hence
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we can find a cluster point M in the set P(D[0,1]) of probability measures on
D[0,1]; see e.g. Beiglböck et al. [7] for the straightforward argument. By refining
the filter S , we may suppose that M is a limit point.

We fix such a limiting process M which by Proposition 5.7 is a Lipschitz–Markov
martingale. These arguments again are standard by now and e.g. well presented in the
papers by Hirsch et al. [30] or Beiglböck et al. [7]. A priori, the martingale M has
càdlàg trajectories. Our present task is to show the continuity of the trajectories of the
limiting process M under the above assumptions.

We first give a general criterion for the continuity of a limiting martingale M

which is somewhat reminiscent of the classical Kolmogorov continuity criterion; see
Revuz and Yor [50, Theorem I.1.8].

Proposition 6.5 Let (Mi)i∈I be a net of R-valued continuous strong Markov martin-
gales Mi = (Mi

t )0≤t≤1 and M its limit in the set P(D[0,1]) of probabilities on the
Skorohod space with respect to convergence of finite-dimensional distributions. Sup-
pose that there are constants C1 > 0 and β > 0 such that for every 0 ≤ t0 < t0 +h ≤ 1
and every i ∈ I ,

‖(Mi
t )t0≤t≤t0+h‖BMO1 := sup

τ

{∥∥E[|Mi
t0+h − Mi

τ |
∣∣Fτ

]∥∥∞
} ≤ C1h

β. (6.2)

Then the martingale M has continuous trajectories.

In (6.2), the argument τ runs through the [t0, t0 + h]-valued stopping times with
respect to the natural filtration of (Mi

t )t0≤t≤t0+h. As Mi is strong Markov, condition
(6.2) is tantamount to the requirement that the first moments m1(π

i,τ,t0+h
x ) of the

transition probabilities π
i,τ,t0+h
x from Mi

τ = x to Mi
t0+h satisfy

m1(π
i,τ,t0+h
x ) :=

∫ ∞

−∞
|y − x|dπi,τ,t0+h

x (y) ≤ C1h
β (6.3)

for μi
τ -almost all x ∈ R, where μi

τ denotes the law of Mi
τ .

An important feature of the BMO-norms for continuous martingales is that by
the John–Nirenberg inequality, all BMOq -norms are equivalent for 1 ≤ q < ∞ (see
e.g. Kazamaki [37, Corollary 2.1]). Applying this fact to the present context, (6.2)
is equivalent to the existence of a constant Cq > 0 (for some or, equivalently, for all
1 ≤ q < ∞) such that

‖(Mi
t )t0≤t≤t0+h‖BMOq := sup

τ

{∥∥E[|Mi
t0+h − Mi

τ |q
∣∣Fτ

] 1
q
∥∥∞

} ≤ Cqhβ. (6.4)

Proof of Proposition 6.5 Suppose that M fails to be continuous and let us work to-
wards a contradiction to (6.4) when q > 1

β
. Assume M has jumps of size bigger than

3a > 0 with probability bigger than κ > 0, i.e.,

P
[∃t ∈ [0,1] : |Mt − Mt−| ≥ 3a

]
> κ.
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As M has càdlàg paths, there is h0 > 0 such that for all 0 < h ≤ h0,

P[∃k ∈N : |M(kh)∧1 − M((k−1)h)∧1| ≥ 2a] > κ.

By the pigeonhole principle, we can find for each 0 < h ≤ h0 a time t0 ∈ [0,1] with

P[|M(t0+h)∧1 − Mt0 | ≥ 2a] > hκ.

In view of the convergence of finite-dimensional distributions of (Mi)i∈I to M , we
find for each 0 < h ≤ h0 a time t0 ∈ [0,1] (without loss of generality t0 + h ≤ 1) and
an index i ∈ I with

P[|Mi
t0+h − Mi

t0
| ≥ a] ≥ hκ.

Fixing such an index i ∈ I , it follows that there is a set A ⊆ R of positive measure
with respect to the law of Mi

t0
such that for all x ∈ A,

P[|Mi
t0+h − Mi

t0
| ≥ a|Mi

t0
= x] ≥ hκ.

For x ∈ A, we therefore have

mq(πi,t0,t0+h
x ) =

(∫ ∞

−∞
|y − x|q dπi,t0,t0+h

x (y)

) 1
q ≥ a(hκ)

1
q .

As q > 1
β

, we can choose 0 < h ≤ h0 sufficiently small, with a(κh)
1
q > Cqhβ , and

arrive at the desired contradiction to (6.4) via

Cqhβ ≥ ‖(Mi
t )t0≤t≤t0+h‖BMOq ≥ mq(πi,t0,t0+h

x ) ≥ a(hκ)
1
q > Cqhβ. �

Turning back to the family (MS)S∈S of martingales defined above, we next estab-
lish an inequality of the type (6.3) for the transition probabilities π

S,t0,t0+h
x , using the

fact that π
S,t0,t0+h
x is a Lipschitz-kernel.

Lemma 6.6 Let (μt )0≤t≤1 be a peacock satisfying Assumption 6.3. Fix a compact set
K ⊆ I . For all h > 0 sufficiently small and x ∈ K , there is a constant D > 0 such
that for all S ∈ S and 0 ≤ t0 ≤ t0 +h ≤ 1, with t0, t0 +h ∈ S , the first moments of the
transition measures π

S,t0,t0+h
x can be estimated by

m1(π
S,t0,t0+h
x ) := EP

[|MS
t0+h − MS

t0
|∣∣MS

t0
= x

]

=
∫ ∞

−∞
|y − x|dπS,t0,t0+h

x (y) ≤ Dh
1
4 , (6.5)

where P denotes the law of the martingale MS .

Proof We first suppose that I = R. By (6.1) and Jensen’s inequality, we have

EP[|MS
t0+h − MS

t0
|] ≤ h

1
2 .
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We may rewrite this inequality in the form

EP[|MS
t0+h − MS

t0
|] = EP

[
EP

[|MS
t0+h − MS

t0
|∣∣MS

t0

]]

=
∫ ∞

−∞
m1(π

S,t0,t0+h
x ) dμt0(x)

=
∫ ∞

−∞
F(x)dμt0(x) ≤ h

1
2 , (6.6)

where we alleviate the notation from π
S,t0,t0+h
x to πx and set

F(x) =
∫ ∞

−∞
|x − y|dπx(y).

We claim that the function x �→ F(x) satisfies the estimate

|F(x) − F(x + k)| ≤ 2k, x ∈R, k > 0. (6.7)

Indeed,

|F(x + k) − F(x)| =
∣∣∣∣
∫ ∞

−∞
|y − (x + k)|dπx+k(y) −

∫ ∞

−∞
|y − x|dπx(y)

∣∣∣∣
≤ k+

∣∣∣∣
∫ ∞

−∞
|y − (x + k)|dπx(y) −

∫ ∞

−∞
|y − x|dπx(y)

∣∣∣∣ ≤ 2k,

proving the claim. In the first inequality, we have used the fact that π is a Lipschitz-
kernel.

Now choose a compact interval [a, b] such that K ⊆ [a + 1, b − 1] and denote by

 > 0 a lower bound for the density function pt0 of μt0 on [a, b]. We want to estimate
F(x0) for x0 ∈ K and start by showing the rough estimate F(x0) ≤ 2. Using (6.7), we
otherwise have

∫ x0+1
x0

F(x)dx ≥ 1 and arrive at the following contradiction to (6.6):
for small enough h,

1 ≤
∫ x0+1

x0

F(x)dx ≤ 1




∫ x0+1

x0

F(x)dpt0(x)dx ≤ 1



h

1
2 .

From F(x0) ≤ 2, we may argue similarly, using again (6.7) and elementary geometry,
to obtain for x0 ∈ K that

1

8

(
F(x0)

)2 ≤
∫ x0+1

x0

F(x)dx ≤ 1




∫ x0+1

x0

F(x)dμt0(x) ≤ 1



h

1
2 ,

yielding for h sufficiently small the desired estimate

sup
x∈K

m1(πx) = sup
x∈K

F(x) ≤ Dh
1
4 ,

where the constant D > 0 only depends on the compact set K , but not on h.
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Finally, we have to come back to our assumption I = R which allowed us to
embed the compact set K into the interval [a, b] ⊆ I such that K ⊆ [a + 1, b − 1]. If
I is only one- or two-sided bounded, we have to reason slightly more carefully, as we
can embed the compact set K only into an interval [a, b] ⊆ I such that [a + ε, b − ε]
contains K . But no difficulties arise from replacing 1 by ε, and it is straightforward
to adapt the above argument also to this situation. �

Under the assumptions of Lemma 6.6, Tschebyscheff’s inequality and (6.5) allow
us to control the difference between medians and means since for fixed 0 < δ < 1

4 ,

πS,t0,t0+h
x [{y : |y − x| ≥ hδ}] ≤ Dh

1
4 −δ

for h > 0 sufficiently small, x ∈ K and feasible S ∈ S . Hence, we have in the setting
of Lemma 6.6 that

|median(πS,t0,t0+h
x ) − mean(πS,t0,t0+h

x )|≤ hδ. (6.8)

Lemma 6.7 Let 0 < δ < 1
4 . Under the assumptions of Lemma 6.6, the same conclu-

sion as in (6.5) holds true for every [t0, t0 + h]-valued stopping time τ : By possibly
changing the constant D to a different C, we have for x ∈ K that

m1(π
S,τ,t0+h
x ) := EP

[|MS
t0+h − MS

τ |∣∣MS
τ = x

]

=
∫ ∞

−∞
|y − x|dπS,τ,t0+h

x (y) ≤ Chδ. (6.9)

Proof By Corollary 5.6, π
S,t0,t
x is a Lipschitz-kernel for all t ∈ [t0, t0 + h]. From this,

we can deduce the continuity of the map

(x, t) �→
∫ ∞

−∞
|z − y|dπS,t,t0+h

x (z).

Therefore, it suffices to show (6.9) for deterministic τ ≡ t ∈ [t0, t0 + h] due to the
strong Markov property. To this end, let K̃ be a compact interval in I , containing the
compact set K in its interior, and fix the constant D from Lemma 6.6 applied to K̃ .

To argue (6.9) for τ ≡ t , find x ∈ I such that y equals the median of the measure
π

S,t0,t
x , that is,

πS,t0,t
x

[
(−∞, y)

] ≤ 1

2
≤ πS,t0,t

x

[
(−∞, y]].

Since π
S,t0,t
x is a Lipschitz-kernel by Corollary 5.6, such an x exists. We may use x

to obtain the estimate

EP

[|MS
t0+h − y|∣∣MS

t = y
] ≤ EP

[
(MS

t0+h − y)+
∣∣MS

t ≥ y,MS
t0

= x
]

+EP

[
(MS

t0+h − y)−
∣∣MS

t ≤ y,MS
t0

= x
]

≤ 2EP

[|MS,t0,t0+h − y|∣∣MS
t0

= x
]

≤ 2EP

[|MS,t0,t0+h − x|∣∣MS
t0

= x
] + 2|x − y|. (6.10)
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Here, we used (i) from Corollary 5.3 for the first inequality and y being the median of
π

S,t0,t
x for the second. Note that for h sufficiently small, we have by (6.8) that x ∈ K̃ .

Applying the estimates (6.5) and (6.8) to (6.10), we find

EP

[|MS
t0+h − y|∣∣MS

t = y
] ≤ 2Dh

1
4 + 2hδ ≤ (2D + 2)hδ,

which concludes the proof. �

Proof of Theorem 6.4 We have to combine Proposition 6.5 and Lemma 6.7 with a
stopping argument. To this end, let (Kn := [an, bn])n∈N be an increasing sequence
of compact intervals exhausting the interval I = (a, b), where a, b ∈ [−∞,∞]. We
let K1 = ∅. Define the stopping time τS,n as the first moment when the continuous
martingale MS leaves Kn, write MS,n for the stopped process, and denote the differ-
ences MS,n+1 − MS,n by �MS,n.

For the processes �MS,n, the assumptions of Proposition 6.5 still hold true as
a consequence of Lemma 6.7 and the strong Markov property of MS . Consider the
process

M̃S
t := (�M

S,n
t )n∈N, t ∈ [0,1],

taking values in R
N. Moreover, let

mS := inf{k ∈ N : ‖�MS,k‖∞ = 0}
be the smallest integer such that the entire trajectory (MS

t (ω))0≤t≤1 is contained in
KmS . We know already that for every n ∈ N, MS,n (and therefore �MS,n) allows
finite-dimensional-distribution-convergent subnets along S , where the limits have
by Proposition 6.5 continuous versions. We want to argue that similarly, the pair
(M̃S,mS)S∈S taking values in C[0,1]N × N admits a convergent subnet, too. For
this, it is sufficient to show the following claim:

For every ε > 0, there is n ∈ N such that for every S ∈ S ,

sup
S∈S

P[mS > n] < ε. (6.11)

Indeed, for each n ∈ N (sufficiently large), there are maximal positive numbers αn,βn

with αn + βn ≤ 1 such that the probability measure

αnδan + βnδbn + (1 − αn − βn)δmean(μ1)−αnan−βnbn
1−αn−βn

is dominated by μ1 in the convex order. Since μ1 puts no mass onto the boundary
of I , there is for each ε > 0 an index N ∈N such that αn +βn < ε for all n ≥ N . The
law of MS,n is dominated in the convex order by μ1. By the maximality of αn and
βn, we find uniformly for all S ∈ S that

P[mS > n] = P[τS,n < ∞] = P[MS,n ∈ {an, bn}] ≤ αn + βn < ε,

which yields the claim (6.11).
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By passing to a subnet, still denoted by S , we thus obtain that (M̃S,mS)S∈S admits
a limit (M̃,m) with respect to convergence of finite-dimensional distributions, where

M̃t = (�Mn
t )n∈N, t ∈ [0,1],

and (�M
S,n
t )S∈S has �Mn

t as its finite-dimensional-distribution limit. Due to Propo-
sition 6.5, we may choose a version of M̃ taking values in C[0,1]N. Consider the
process

M̂t :=
m∑

n=1

�Mn
t , t ∈ [0,1],

which has continuous trajectories as m is integer-valued and finite. Note that finite-
dimensional-distribution convergence of M̃S to M̃ yields finite-dimensional-distri-
bution convergence

MS =
mS∑
n=1

�MS,n −→
m∑

n=1

�Mn = M̂.

We conclude that M̂ and M coincide in law, and thus the Lipschitz–Markov martin-
gale M has a version with continuous paths. To complete the proof, we recall that M

is the limit of (MS)S∈S with respect to convergence of finite-dimensional distribu-
tions. �

7 Overview of related results in the literature

In the last sections, we have focused on specific aspects of the theory of mimick-
ing processes. In this final section, we provide an overview of related results in the
literature and give some context for the theorems discussed above.

An early influential result is the work of Strassen [54] who established that there
exists a submartingale with marginals μ1, . . . ,μN if and only these measures are
increasing in the increasing convex order induced by increasing convex functions. He
also proved that there exists a martingale with values in R

d and marginals μ1, . . . ,μN

if and only if these measures are increasing in the convex order. Kellerer [38, 39]
managed to extend Strassen’s result on the existence of submartingales to an arbitrary
family of marginals. As an important particular case, this yields the existence of a
mimicking martingale if the marginals increase in the convex order. Over time, a
number of authors have given new approaches to Kellerer’s theorem; see Hirsch and
Roynette [29], Hirsch et al. [30], Lowther [46, 45, 47], Beiglböck et al. [7], Beiglböck
and Juillet [9]. As discussed extensively above, the work by Lowther [45, 46, 47] adds
substantial new developments. He characterises when the Markov martingale can be
chosen to be continuous, as well as adding a clear-cut uniqueness part to Kellerer’s
original result, complementing the formal uniqueness result of Dupire [17]. We also
recall from above that the question whether the natural extension of Kellerer’s result
to higher dimension holds true remains completely open.
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Given a continuum of marginals which increase in the convex order (and maybe
satisfy additional technical conditions), different authors have provided specific con-
structions of (not necessarily Markovian) martingales that match these marginals. A
main motivation stems from the calibration problem in mathematical finance. An ad-
ditional goal has often been to give constructions that optimise particular functionals,
given the martingale and marginal constraints, since this yields robust bounds on op-
tion prices. Madan and Yor [48] and Källblad et al. [36] establish a continuous-time
version of the Azéma–Yor embedding. Hobson [33] established a continuous-time
version of the martingale coupling constructed in Hobson and Klimmek [34]. Henry-
Labordère et al. [27] as well as Brückerhoff et al. [13] provide continuous-time ver-
sions of the shadow coupling (originally introduced in Beiglböck and Juillet [8]).
Richard et al. [51] give a continuous-time version of the Root solution to the Sko-
rokhod embedding problem. In a slightly different but related direction, Boubel and
Juillet [11] consider a continuum of marginals on the real line that do not satisfy an
order condition and construct a canonical Markov process matching these marginals.
We also refer to the book of Hirsch et al. [28] that collects a variety of related con-
structions.

The problem of finding martingales with given one-dimensional marginals has re-
ceived specific attention in the case where these marginals equal the ones of Brown-
ian motion. Hamza and Klebaner [26] posed the challenge of constructing martin-
gales with Brownian marginals that differ from Brownian motion, so-called fake
Brownian motions. Non-continuous solutions can be found in Madan and Yor [48],
Hamza and Klebaner [26], Hobson [32] and Fan et al. [19], whereas continuous (but
non-Markovian) fake Brownian motions were constructed by Oleszkiewicz [49], Al-
bin [2], Baker et al. [6] and Hobson [33]. As already noted, the companion article
Beiglböck et al. [10] establishes that there exists a Markovian martingale with con-
tinuous paths that has Brownian marginals. In this context, we also refer to the work
of Föllmer et al. [21] which establishes the existence of weak Brownian motions of
arbitrary order k > 0, that is, processes which have the same k-dimensional marginals
as Brownian motion, but are not Gaussian.

A somewhat different direction arises if one starts with marginals that do not
merely satisfy a structural condition (specifically, monotonicity in the convex order),
but rather assumes that a set of marginals is generated from an Itô diffusion

dXt = σt dBt + μt dt, (7.1)

and one seeks a Markovian diffusion

dX̂t = σ̂t (Xt ) dBt + μt(Xt ) dt

that mimics the evolution of X in the sense that law(Xt ) = law(X̂t ) for each t ≥ 0.
The process X̂ is then called a Markovian projection of X. This line of research goes
back essentially to the work of Krylov [41] and Gyöngy [25]. Of course, also the
work of Dupire [17] can be seen as a formal contribution to this line of research. A
rigorous justification of Dupire’s formula under rather general assumption is obtained
by Klebaner [40]. A very general theorem on mimicking aspects of Itô processes is
given by Brunick and Shreve [14]. Recently, Lacker et al. [43] show that the results
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of [25, 14] can be established directly from the superposition principle of Trevisan
[55] (or Figalli [20] in the case where (7.1) has bounded coefficients). (Notably, the
main focus of the work [43] is a mimicking result that shows that conditional time
marginals of an Itô process can be matched by a solution of a conditional McKean–
Vlasov SDE with Markovian coefficients.)

In the mathematical finance community, Markovian (local volatility) models are
often considered to exhibit dynamics that are not particularly realistic. There has been
significant interest to combine the convenience that the local volatility model offers in
terms of calibration with more realistic dynamics that are exhibited by other classes of
financial models. That is, given a Markovian model dX̂t = σ̂t (X̂t ) dSt that represents
market data, one would like to “reconstruct” a more realistic model dXt = σt dBt and
thus to “invert” the Markovian projection. A concrete way to perform this inversion
is the stochastic local volatility model; see the work of Guyon and Henry-Labordère
[22, 23] and [24, Chap. 11]. However, it is remarkably delicate to establish exis-
tence and uniqueness results for the resulting SDEs. Partial solutions where given
by Jourdain and Zhou [35] and by Lacker et al. [42]. The problem is also discussed
by Acciaio and Guyon [1] who consider it an important open problem to establish
existence of the stochastic local volatility model under fairly general assumptions.
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