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Abstract
It is proved that monetary utility functions that are commonotonic and time-consistent
are conditional expectations. We also give additional results on atomless and condi-
tionally atomless probability spaces. These notions describe that in a filtration, there
are many new events at each time step.
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1 Introduction and notation

Although our results are valid in more general filtrations, we start with a two-period
model. In this setting, we work with a probability space equipped with three sigma-
algebras, (�,F0 ⊆ F1 ⊆ F2,P). The sigma-algebra F0 is supposed to be trivial, i.e.,
every A ∈ F0 satisfies P[A] = 0 or 1, whereas F2 is supposed to express innova-
tions with respect to F1. Since we do not put topological properties on the set �, we
make precise definitions later that do not use conditional probability kernels. But es-
sentially, we could say that we suppose that conditionally on F1, the probability P is
atomless on F2. We shall show that such a hypothesis implies that there is an atomless
sigma-algebra B ⊆ F2 which is independent of F1. The space L∞(Fi ) is the space of
bounded Fi -measurable random variables modulo equality almost surely (a.s.). We
say that two random variables ξ, η are commonotonic1 if there are two nondecreas-
ing functions f,g : R → R and a random variable ζ such that ξ = f (ζ ), η = g(ζ ).

1When using the prefix co, coming from Latin, the English grammar suggests that you double the conso-
nants l, m, n, r.
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Commonotonicity can be seen as the opposite of diversification. If ζ increases, then
both ξ and η increase (or, better, do not decrease). By the way, if ξ and η are com-
monotonic, then one can choose ζ = ξ + η; see Delbaen [7, Chap. 2.4]. It can be
shown that in this case one can choose representatives — still denoted by (ξ, η) —
such that (ξ(ω) − ξ(ω′))(η(ω) − η(ω′)) ≥ 0 for all ω,ω′. Since we do not need this
result, we do not include a proof. We say that a set E ⊆ R

2 is commonotonic if
(x, y), (x′, y′) ∈ E implies (x − x′)(y − y′) ≥ 0. In convex function theory, such sets
are also called monotone or monotonic sets. Random variables ξ, η are commono-
tonic if and only if the support of the image measure of (ξ, η) is a commonotonic
set.

The present paper deals with time-consistent utility functions. This means that
for 0 ≤ i < j ≤ 2, there are functions ui,j : L∞(Fj ) → L∞(Fi ) such that we have
u0,2 = u0,1 ◦ u1,2. These utility functions satisfy the following properties; see [7,
Chap. 11] for more information on the relation between these properties:

1) ui,j : L∞(Fj ) → L∞(Fi ), and if ξ ≥ 0, then also ui,j (ξ) ≥ 0, and ui,j (0) = 0.
2) For ξ, η ∈ L∞(Fj ) and 0 ≤ λ ≤ 1 and Fi -measurable, we have

ui,j

(
λξ + (1 − λ)η

) ≥ λui,j (ξ) + (1 − λ)ui,j (η).

3) Since commonotonicity implies (as easily seen) positive homogeneity, we use
a stronger property and suppose coherence. For ξ ∈ L∞(Fj ) and λ ≥ 0 and Fi -mea-
surable, we have

ui,j (λξ) = λui,j (ξ).

4) For ξ ∈ L∞(Fj ) and a ∈ L∞(Fi ), we have

ui,j (ξ + a) = ui,j (ξ) + a.

5) We need Lebesgue-continuity which means that if (ξn) ⊆ L∞(Fj ) is a uni-
formly bounded sequence such that ξn → η in probability, then ui,j (ξn) tends to
ui,j (η) in probability.

6) The Lebesgue property is stronger than the Fatou property which says that for
a sequence (ξn) ⊆ L∞ such that a.s. ξn ↓ η ∈ L∞, we have uij (ξn) → uij (η) a.s.

The utility functions we need are coherent and hence we can use their dual rep-
resentation; see Delbaen [6, end of the proof of Theorem 6]. This means that there
is a uniquely defined convex closed set S ⊆ L1 of probability measures, absolutely
continuous with respect to P, such that

u0,2(ξ) = inf
Q∈S

EQ[ξ ].

The set S is viewed as a subset of L1 via the Radon–Nikodým theorem. The
Lebesgue-continuity is equivalent to the weak compactness of S . We suppose that our
utility functions are relevant, i.e., for each A with P[A] > 0, we have u(−1A) < 0;
see [7, Chap. 4.14]. By the Halmos–Savage theorem, this means that S contains an



Commonotonicity and time-consistency 599

equivalent probability measure. We need this property in order to avoid some prob-
lems with negligible sets appearing in the definition and with comparisons of condi-
tional expectations.

Without further notice, we always assume that our utility functions are rel-
evant and Lebesgue-continuous. These assumptions are not always needed; some-
times Fatou-continuity is sufficient. Since we want to put more emphasis on the meth-
ods of proof, we do not aim for the most general results.

One may ask in which way the utility functions ui,j can be constructed from the
utility function u0,2. The construction is easier when u0,2 is relevant. The Fatou or
Lebesgue property is less important for this development. As shown in [7, Chap. 11],
there is a way to check whether the utility function u0,2 can be embedded in a time-
consistent family of utility functions. To do this, we introduce the acceptability cones

A0,2 = {ξ ∈ L∞(F2) : u0,2(ξ) ≥ 0},
A0,1 = {ξ ∈ L∞(F1) : u0,2(ξ) ≥ 0},
A1,2 = {ξ ∈ L∞(F2) : for all A ∈F1, u0,2(ξ1A) ≥ 0}.

The necessary and sufficient condition for the existence of a time-consistent extension
is A0,2 = A0,1 +A1,2. If this is fulfilled, we put

u1,2(ξ) = ess inf{η ∈ L∞(F1) : ξ − η ∈ A1,2},
and u0,1 is simply the restriction of u0,2 to L∞(F1). This gives sense to expressions
such as “u0,2 is time-consistent”.

Already in the case where the utility functions are expected value and conditional
expectations, the main theorem leads to the following result. (The notion “condition-
ally atomless” will be explained and analysed in the next section.)

Theorem 1.1 If F2 is atomless conditionally to F1, then for any couple (f, g) of
F1-measurable finite-valued random variables, there is a commonotonic couple
(ξ, η) of F2-measurable random variables such that (in an extended sense, made pre-
cise later) f = E[ξ |F1], g = E[η |F1]. Furthermore, for every norm on R

2, there is
a constant C such that ‖(ξ, η)‖ ≤ C‖(f, g)‖ almost surely.

Both concepts, time-consistency and commonotonicity, are important in the theory
of risk evaluation. The concept of time-consistency (and -inconsistency) was intro-
duced and investigated by Koopmans [12]. The role of commonotonicity found its
way into insurance and is present in several papers. The use of Choquet integration
as premium principle was emphasised by Denneberg [9] who was inspired by the pi-
oneering work of Yaari [21]. Schmeidler proved the relation between commonotonic
principles, convex games and Choquet integration [14]. Modern uses can be found
for instance in Wang et al. [17] and Wang [18]. For more references and different
proofs of these results, we refer to [7, Chap. 7]. Although commonotonicity seems to
be a desirable property, there might be some difficulties when insurance contracts are
priced in this way; see Castagnoli et al. [5] for some unexpected consequences.

The concept of risk measures (up to sign changes monetary utility functions) was
introduced in Artzner et al. [1, 2].
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Using the general version of Theorem 1.1, we shall show that except in very re-
strictive cases, a utility function u0,2 cannot be time-consistent and commonotonic
at the same time. It seems that time-consistency is a strong property that excludes
some other desirable properties. For instance in Kupper and Schachermayer [11], it
is shown that in a filtration with innovations (comparable to the requirement of being
conditionally atomless), utility functions that are time-consistent and law-determined
are necessarily of entropic type. We refer to [11] for the details and the precise form
of the innovations. The present paper studies time-consistent utility functions that
might depend on past history and are not necessarily law-determined. The methods
we use are different from the approaches used for law-determined or law-invariant
utility functions. Among the many papers on these utility functions, we could refer
the reader to the cited papers and to e.g. Bellini et al. [3], Bellini et al. [4], Wang and
Ziegel [19], Weber [20] and Ziegel [22].

2 Atomless extension of sigma-algebras

In this section, we work with a probability space (�,F2,P) equipped with the filtra-
tion F0 ⊆ F1 ⊆ F2.

Definition 2.1 We say that F2 is atomless conditionally to F1 if for every A ∈ F2,
there exists a set B ⊆ A, B ∈ F2, such that 0 < E[1B |F1] < E[1A |F1] on the set
{E[1A |F1] > 0}.

If the conditional expectation can be calculated with a – under extra topological
conditions – regular probability kernel, say K(ω,A), then the above definition is a
measure-theoretic way of saying that the probability measure K(ω, ·) is atomless for
almost every ω ∈ �. The precise relation between these two notions is not the topic
of this paper. See Delbaen [8] for the details.

Theorem 2.2 F2 is atomless conditionally to F1 if for every A ∈ F2 with P[A] > 0,
there is B ⊆ A, B ∈ F2, such that

P
[
0 < E[1B |F1] < E[1A |F1]

]
> 0.

Proof The proof is a standard exhaustion argument. For completeness, we give the
details. Let D be the collection of F1-measurable sets given by

D = {{0 < E[1B |F1] < E[1A |F1]} : B ⊆ A,B ∈F2
}
.

We show that there is a biggest set in D and this must then equal {E[1A |F1] > 0}.
To show that there is a biggest set in D, it is sufficient to show that D is stable for
countable unions. Let (Dn) be a sequence in D and suppose that for each n, we have
a set Bn ⊆ A, Bn ∈ F2, such that Dn = {0 < E[1Bn |F1] < E[1A |F1]}. Now take

B =
⋃

n∈N

(
Bn ∩

(
Dn \ ( n−1⋃

k=1

Dk

))
)

.
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It is easy to check that {0 < E[1B |F1] < E[1A |F1]} = ⋃
n∈N Dn and therefore⋃

n∈N Dn ∈ D. Let now D = {0 < E[1B |F1] < E[1A |F1]} be a maximum in D.
Suppose that P[{E[1A |F1] > 0} \ D] > 0. This implies that P[A \ D] > 0. Accord-
ing to the hypothesis of the theorem, there will be a set B ′ ⊆ A \ D, B ′ ∈ F2, with
D′ = {0 < E[1B ′ |F1] < E[1A\D |F1]} having nonzero probability. Since D∪D′ ∈D
and D ∩ D′ = ∅, the element D is not a maximum, which is a contradiction. �

The main result of this section is the following.

Theorem 2.3 F2 is atomless conditionally to F1 if and only if there exists an atomless
sigma-algebra B ⊆ F2 that is independent of F1.

The “if” part is easy, but requires some continuity argument. Because B is atom-
less, there is a B-measurable random variable U uniformly distributed on [0,1]. The
sets Bt = {U ≤ t},0 ≤ t ≤ 1, form an increasing family of sets with P[Bt ] = t .
Fix A ∈ F2 and let F = {0 < E[1A |F1]}. We may suppose that P[F ] > 0 since
otherwise there is nothing to prove. We now show that there is t ∈ (0,1) with
P[0 < E[1A∩Bt |F1] < E[1A |F1]] > 0. According to Theorem 2.2, F2 is atomless
conditionally to F1. Obviously for 0 ≤ s ≤ t ≤ 1, we have by independence of B and
F1 that

‖E[1A∩Bt |F1] −E[1A∩Bs |F1]‖∞ ≤ ‖E[1Bt\Bs |F1]‖∞ = t − s.

It follows that there is a set of measure 1, say �′, such that for all s ≤ t , s, t rational,
and all ω ∈ �′, E[1A∩Bt |F1](ω) can be taken to satisfy

|E[1A∩Bt |F1](ω) −E[1A∩Bs |F1](ω)| ≤ t − s.

For each ω ∈ �′, we can extend the function

[0,1] ∩Q � q �→ E[1A∩Bq |F1](ω)

to a continuous function on [0,1]. The resulting continuous extension then represents
the equivalence classes of random variables (E[1A∩Bt |F1])t∈[0,1]. For t = 0, we have
zero, and for t = 1, we find E[1A |F1]. Because the trajectories are continuous for
ω ∈ �′, a simple application of Fubini’s theorem shows that the real valued function

t �→ P
[
0 < E[1A∩Bt |F1] < E[1A |F1]

]

becomes strictly positive for some t . With some extra work – done later –, one can
even show that there is G ⊆ A such that E[1G |F1] = (1/2)E[1A |F1].

For completeness, let us now give the details of the application of Fubini’s theo-
rem. Suppose to the contrary that for all t ∈ [0,1], we have

P
[
0 < E[1A∩Bt |F1] < E[1A |F1]

] = 0.

Then on the product space [0,1] × �′, we find that the (clearly measurable) set

{(t,ω) : 0 < E[1A∩Bt |F1](ω) < E[1A |F1](ω)}
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has (m × P)-measure zero (m denotes Lebesgue measure). By Fubini’s theorem, we
have that for almost all ω ∈ �′, the set

{t : 0 < E[1A∩Bt |F1](ω) < E[1A |F1](ω)}
must have Lebesgue measure zero. However, for ω ∈ �′, this contradicts the conti-
nuity of the mapping

t �→ E[1A∩Bt |F1](ω).

The proof of the “only if” part is broken down into several steps stated in the
lemmas that follow. Without further notice, we always suppose that F2 is atomless
conditionally to F1.

Lemma 2.4 Suppose A ∈ F1 and C ⊆ A, C ∈ F2, is such that E[1C |F1] > 0 on A.
Then we can construct a decreasing sequence (Bn)n≥0 of sets Bn ⊆ C, Bn ∈F2, such
that 0 < E[1Bn |F1] ≤ 2−n on A.

Proof The statement is obviously true for n = 0 since we can take B0 = C. We now
proceed by induction and suppose the statement holds for n. So the set Bn ⊆ A sat-
isfies 0 < E[1Bn |F1] ≤ 2−n on A. Clearly, A ⊆ {E[1Bn |F1] > 0}. By assumption,
there is a set D ⊆ Bn, D ∈F2, such that on A ⊆ {E[1A |F1] > 0}, we have

0 < E[1D |F1] < E[1Bn |F1].
We now take

Bn+1 =
(

D ∩
{
E[1D |F1] ≤ 1

2
E[1Bn |F1]

})

∪
(

(Bn \ D) ∩
{
E[1D |F1] >

1

2
E[1Bn |F1]

})
.

The set Bn+1 satisfies the requirements. �

Lemma 2.5 Let C ∈ F2 and let h : � → [0,1] be F1-measurable. Then there is a set
B ⊆ C, B ∈F2, such that E[1B |F1] = hE[1C |F1].
Proof Let B0 = ∅. Inductively, we define for n ≥ 1 classes Bn and sets Bn ∈ Bn. For
n ≥ 1, let

Bn = {Bn−1 ⊆ B ⊆ C : B ∈F2, E[1B |F1] ≤ hE[1C |F1]}.
Let βn = sup{P[B] : B ∈ Bn} and take Bn ∈ Bn such that P[Bn] ≥ (1 − 2−n)βn.
Clearly, (Bn) is nondecreasing, and we set B∞ = ⋃

n≥0 Bn. Obviously,

P[B∞] ≥ lim sup
n→∞

βn ≥ lim inf
n→∞ βn ≥ lim

n→∞P[Bn] = P[B∞].

We claim that E[1B∞ |F1] = hE[1C |F1]. We have E[1B∞ |F1] ≤ hE[1C |F1] by
construction. If P[E[1B∞ |F1] < hE[1C |F1]] > 0, then P[B∞] < P[C] and there
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must be m ≥ 1 such that P[E[1B∞ |F1] < hE[1C |F1] − 2−m] > 0. Lemma 2.4 al-
lows us to find D ⊆ C \ B∞, D ∈ F2, P[D] = η > 0, with 0 < E[1D |F1] ≤ 2−m on
the set {E[1B |F1] < hE[1C |F1] − 2−m} and zero elsewhere. The set D ∪ B∞ is in
all classes Bn, and for n big enough, we have

βn ≥ P[D ∪ B∞] ≥ P[Bn] + η ≥ (1 − 2−n)βn + η ≥ βn + η − 2−n > βn,

yielding a contradiction. So we must have E[1B∞ |F1] = hE[1C |F1]. �

Remark 2.6 Lemma 2.5 is a variant of Sierpiński’s theorem [15]. This theorem
states that in an atomless probability space (�,E,P), for every set A ∈ E and ev-
ery 0 < t < 1, there is a set B ⊆ A, B ∈ E , with P[B] = tP[A]. The usual proof –
presented in many probability courses – uses the axiom of choice (AC). A referee
pointed out that for many people AC – or Zorn’s lemma – is an extra assumption. To
prove Sierpiński’s theorem, we only need the axiom of countable dependent choice,
which is a countable form of the axiom of choice. In analysis, this is the axiom that
is usually needed and used. The proof above follows the approach given by Lorenc
and Witula [13].

Lemma 2.7 There is an increasing family (Bt )t∈[0,1] of sets such that E[1Bt |F1] = t .
The sigma-algebra B generated by the family (Bt ) is independent of F1. The system
(Bt ) can also be described as Bt = {U ≤ t}, where U is a random variable that is
independent of F1 and uniformly distributed on [0,1].

Proof The proof is a repeated use of Lemma 2.5 where we take h = 1/2. We start
with B0 = ∅,B1 = �. Suppose that for the dyadic numbers k2−n, k = 0, . . . ,2n,
the sets are already defined. Then we consider the set B(k+1)2−n \ Bk2−n and ap-
ply Lemma 2.5 with h = 1/2. We get a set D ⊆ B(k+1)2−n \ Bk2−n , D ∈ F2, with
E[1D |F1] = 2−(n+1). We then define B(2k+1)2−(n+1) = Bk2−n ∪ D. For non-dyadic
numbers t , we find a sequence (dn) of dyadic numbers such that dn ↑ t . Then we
define Bt = ⋃

n∈N Bdn . This completes the construction. Since the system (Bt ) is
trivially stable under intersections, the relation E[1Bt |F1] = t shows that the sigma-
algebra B generated by (Bt ) is independent of F1. The construction of U is standard.
At level n, we put Un = ∑2n

k=1 k2−n1Bk2−n\B(k−1)2−n . Then (Un) decreases to a ran-
dom variable U that satisfies the needed properties. The proof of Theorem 2.3 is now
completed. �

Remark 2.8 Suppose that for the probability P, there is an atomless sigma-algebra
B ⊆ F2 that is independent of F1. Suppose now that Q ≈ P is an equivalent proba-
bility measure. Clearly, the definition of being conditionally atomless is invariant for
equivalent measure changes. Hence there is an atomless sigma-algebra B′ ⊆ F2 that
is independent of F1 for the probability Q. Proving this directly does not seem easy.

The following proposition is Lemma 2.5 where we take C = �. For didactic rea-
sons, we give another proof that directly uses the existence of an independent sigma-
algebra. We use the same assumptions and notations as in Theorem 2.3.
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Proposition 2.9 For every F1-measurable function h : � → [0,1], there is a set
Bh ∈ F2 such that E[1Bh

|F1] = h.

Proof The idea is to use the set Bt on the set {h = t}, i.e., B = ⋃
t ({h = t} ∩ Bt).

However, because the set of real numbers is uncountable, this definition is not good
enough to obtain a set in F2. So we need a trick. Let φ be the mapping

φ : (�,F2) → (�,F1) × (�,B), φ(ω) = (ω,ω).

This mapping is obviously measurable and the image measure is because of indepen-
dence the product measure. We also define h1(ω,ω′) = h(ω) and U2(ω,ω′) = U(ω′).
For A ∈ F1, we set A1 = A × �. We define Bh = {U ≤ h} = φ−1{U2 ≤ h1}. We now
verify that E[1Bh

|F1] = h. To do this, we calculate for a set A ∈F1 the probability

P[Bh ∩ A] = (P× P)[{U2 ≤ h1} ∩ A1]
=

∫
P[dω′]

∫
P[dω]1{U2≤h1}(ω,ω′)1A1(ω,ω′)

=
∫

P[dω′]P[{h ≥ U(ω′)} ∩ A]

=
∫ 1

0
dt P[{h ≥ t} ∩ A]

= E[h1A],
showing E[1Bh

|F1] = h. �

Remark 2.10 Proposition 2.9 is not actually needed. We need the stronger version
where the conditional expectation is replaced by the utility function u1,2. To prove
this stronger version, we use a slightly different approach. However, if we are only
interested in conditional expectations, the above proof might be of some didactic
interest.

Remark 2.11 After the first version of this paper was made available, we got the re-
mark that the paper of Shen et al. [16] contains similar concepts and results.2 In
their notation, they work with a measurable space (�,A) on which they have a finite
number of probability measures Q1, . . . ,Qn. Their paper also considers an infinite
number of measures, but to clarify the relation between their paper and our approach,
we only consider a finite number of measures. They introduce

Definition 2.12 The set (Q1, . . . ,Qn) is conditionally atomless if there exist a domi-
nating measure Q (i.e., Qk � Q for each k ≤ n) as well as a continuously distributed
random variable X (for the measure Q) such that the vector of Radon–Nikodým
derivatives (

dQk

dQ
)k=1,...,n is independent of X.

They then prove the following result.

2We thank Ruodu Wang for pointing out these relations and for subsequent discussions on the topic.
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Proposition 2.13 The following are equivalent:

1) (Q1, . . . ,Qn) is conditionally atomless.
2) In the definition, we can take Q = 1

n
(Q1 + · · · +Qn).

3) X can be taken as uniformly distributed over [0,1].

There are several differences with our approach. There is the technical difference
that [16] suppose the existence of a continuously distributed random variable X. In
doing so, they avoid the technical points between the more conceptual definition us-
ing conditional expectations and the construction of a suitable sigma-algebra with a
uniformly distributed random variable. A further difference is that they use a dom-
inating measure that later can be taken as the mean of (Q1, . . . ,Qn). Of course,
their result together with the results here show that the definition of (Q1, . . . ,Qn)

being conditionally atomless is equivalent to the statement that for the measure
Q0 = 1

n
(Q1 + · · ·+Qn), the sigma-algebra A is atomless conditionally to the sigma-

algebra generated by the Radon–Nikodým derivatives (
dQk

dQ0
)k=1,...,n. In [16], it is also

shown that one can take any strictly positive convex combination of the measures
(Q1, . . . ,Qn). Below we show that the sigma-algebra A in some sense has a mini-
mality property, a result that clarifies the relation between the two approaches. Before
doing so, let us recall two easy results from introductory probability theory.

Exercise 2.14 For a probability space (�,A,Q), set N = {N ∈ A : Q[N ] = 0}. Sup-
pose that a sub-sigma-algebra F ⊆ A is given and that G with F ⊆ G, is another
sub-sigma-algebra which is included in the sigma-algebra generated by F and N .
Then for each ξ ∈ L1(�,A,Q),

EQ[ξ |F] = EQ[ξ |G] a.s.

Exercise 2.15 With the notation in Exercise 2.14, let F : � → R
n and F ′ : � → R

n

be two random vectors that are equal a.s. Let F be generated by F and G by F ′. Then
F and G are equal up to sets in N . More precisely, G is contained in the sigma-algebra
generated by F and N (and of course vice versa), i.e., σ(F ,N ) = σ(G,N ).

Proposition 2.16 Let Q1, . . . ,Qn be probability measures on a measurable space
(�,A). Let Q0 = ∑n

k=1 λkQk be a convex combination of these measures with each
λk > 0. Let fk denote an A-measurable version of dQk

Q0
. Let Q be another dominating

measure with gk an A-measurable version of dQk

dQ
. Let N = {N ∈ A : Q0[N ] = 0}.

Let F be generated by fk, k = 1, . . . , n, and let G be generated by gk, k = 1, . . . , n.
Then F ⊆ σ(G,N ).

Proof Clearly, Q0 � Q; so let h = dQ0
dQ

. It is now immediate that gk = fkh Q-a.s. To
see this, observe that the values of fk on {h = 0} do not matter. The functions gk and
h are G-measurable since h can be taken as h = ∑n

k=1 λkgk . Then we define f ′
k = gk

h

on {h > 0} and f ′
k = 0 on {h = 0}. This choice shows that the f ′

k are G-measurable.
It is immediate that fk = f ′

k Q0-a.s. The result now follows. �
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From Proposition 2.16, it follows that the sigma-algebra augmented with the class
N is the same for all strictly positive convex combinations. This shows that in the
definition of atomless conditionally to F , we can also add the nullsets N to F . To
check that A is atomless conditionally to a sigma-algebra F , it is clear that the smaller
F , the easier it is to satisfy the condition. In our opinion, the above clarifies the
relation between this paper and [16].

3 A continuity result

Let us recall the standing assumptions: F2 is atomless conditionally to F1, and U

is independent of F1 and uniformly distributed on [0,1]. Further, the utility function
u1,2 : L∞(F2) → L∞(F1) is coherent and Lebesgue-continuous. For each mapping
h : � → [0,1] that is F1-measurable, we put φ(h) = u1,2(1{U≤h}). Clearly, φ takes
values in the space L∞(F1). We have the following continuity result.

Proposition 3.1 If hn ↓ h or hn ↑ h, then φ(hn) → φ(h).

Proof If hn ↓ h, then 1{U≤hn} ↓ 1{U≤h} and the Fatou property gives the desired re-
sult. For the upward convergence, we must be more careful. Because U has a contin-
uous distribution function and is independent of F1, we conclude that P[U = h] = 0
and hence 1{U≤hn} ↑ 1{U≤h} a.s. The Lebesgue property then allows to conclude. �

Theorem 3.2 If h : � → [0,1] is F1-measurable, there is an F1-measurable function
g : � → [0,1] such that the set Bg = {U ≤ g} satisfies u1,2(1Bg ) = h.

Proof The statement can be rewritten as φ(g) = h. Let us introduce the class

G = {g : g is F1-measurable and u1,2(1Bg ) = φ(g) ≥ h}.
Then G is nonempty since 1 ∈ G. Furthermore, G is stable under taking minima.
Indeed, take g1, g2 ∈ G and put g = g11A + g21Ac , where A = {g1 < g2}. Since
u1,2(1Bg ) = 1Au1,2(1Bg1

) + 1Acu1,2(1Bg2
) ≥ h, we have g ∈ G. Let now gn ↓ g,

where (gn) ⊆ G and E[gn] ↓ inf{E[g′] : g′ ∈ G}. The continuity for decreasing se-
quences then shows that g ∈ G. The previous lines are enough to show that G has a
minimum. Let g be the smallest function in G. We claim that the continuity for in-
creasing sequences (the Lebesgue property) implies that actually u1,2(1Bg ) = h. In-
deed, suppose to the contrary that the set {u1,2(1Bg ) > h} has nonzero measure. This
assumption trivially implies that P[g > 0] > 0. Take now a sequence gn ↑ g such that
on {g > 0}, we have gn < g. By Proposition 3.1, u1,2(1Bgn

) ↑ u1,2(1Bg ). Hence there
must exist n such that An = {u1,2(1Bgn

) > h} has nonzero measure. On An, we have
gn > 0, hence also g > 0, and therefore also gn < g. Put now g′ = gn1An + g1Ac

n
.

We have E[g′] < E[g], but also g′ ∈ G, which is a contradiction to the minimality
of g. �

Remark 3.3 Although “intuitively clear”, the continuity of the process t �→ u1,2(1Bt )

is not an easy result. First of all, we are working with random variables identified
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under the equivalence a.s. That means that we must first select or construct mea-
surable functions instead of classes of measurable functions. Then we must show
that with respect to t , these outcomes are continuous. The general theory of stochas-
tic processes gives us the necessary tools to achieve this goal. We do not really
need these finer results so that if you do not belong to the amateurs of the general
theory of stochastic processes à la Dellacherie and Meyer [10], the remark can be
skipped. First we construct a process α(t,ω). For each rational point q ∈ [0,1],
we select an F1-measurable function α′(q) that represents u1,2(1Bq ). Because of
monotonicity we can – if needed – change these selections on a set of zero mea-
sure to make sure that a.s., the mapping Q∩[0,1] → R, q �→ α′(q) is increasing. For
each t ∈ [0,1], we now define α(t) = infq rational, q≥t α

′(q). The functions α(t) are of
course F1-measurable and represent u1,2(1Bt ) by the Fatou property. We may also
suppose that α(0) = 0, α(1) = 1 a.s. It is clear that α is a.s. nondecreasing in t and
right-continuous. This means there is a set (independent of t) such that on this set,
t �→ α(t,ω) is right-continuous and nondecreasing.

We claim that the function α also satisfies α(h) = u1,2(1{U≤h}) = φ(h) for each
F1-measurable function h : � → [0,1]. To avoid misunderstandings, the random
variable α(h) is defined as α(h)(ω) = α(h(ω),ω). Such a notation is common in
stochastic process theory. The above property of α is easy to verify for elementary
functions h, and the general statement trivially follows by approximating h from
above by elementary functions. Let us give the details. For an elementary function
h = ∑K

k=1 tk1Ak
(the sets Ak are disjoint and in F1), we have

α(h) =
K∑

k=1

α(tk)1Ak

=
K∑

k=1

u1,2(1Btk
)1Ak

=
K∑

k=1

u1,2(1Btk
1Ak

)1Ak

=
K∑

k=1

u1,2(1Btk
∩Ak

)1Ak

=
K∑

k=1

u1,2

(( K∑

�=1

1Bt�
∩A�

)
1Ak

)
1Ak

=
K∑

k=1

u1,2(1{U≤h}1Ak
)1Ak

= u1,2(1{U≤h}) = φ(h).

As indicated above, the Fatou property then completes the proof by using right-
continuity. Indeed, let h : � → [0,1] be F1-measurable and hn ↓ h a sequence of el-
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ementary functions that are F1-measurable. Since 1{U≤hn} ↓ 1{U≤h}, the Fatou prop-
erty and the right-continuity of t �→ α(t) give us φ(h) = u1,2(1{U≤h}).

The proof of the left-continuity can be done by using ideas from the general theory
of stochastic processes. For ε > 0, we define

r = inf
{
t : lim

s→t, s<t
α(s) ≤ α(t) − ε

}
∧ 1.

Observe that r > 0 by construction. Suppose now that at the point r , the probability
that α has a jump of size at least ε is nonzero. Take rn ↑ r , rn < r . The continuity
result in Proposition 3.1 gives us that α(rn) ↑ α(r) which is a contradiction to α

having a jump. So for almost every ω ∈ �, α(·,ω) has no jumps of size at least ε.
Since the latter was arbitrary, the a.s. continuity of the process α is proved.

4 Some special commonotonic set

In this section, we define a special norm on R
2. Part of its unit sphere will then be

used as a commonotonic set. The reader could make some drawings to help visualise
the constructions. The construction is done in several steps. The first step consists in
taking the curve obtained as the concatenation of the convex intervals that join the
points

(−4,−4) → (−4,−2) → (0,0) → (4,2) → (4,4).

The convex hull of this set is a parallelogram P0, with parallel vertical sides given by
the line segments

(−4,−4) → (−4,−2) and (4,2) → (4,4).

The set P0 will be used as the unit ball of a norm on R
2. More precisely, we use the

Minkowski functional

‖(x, y)‖ := inf{α > 0 : (x, y) ∈ αP0}.
Note that every point of P0 is the convex combination of points taken on the verti-
cal sides. An easy and continuous way to obtain such convex combination goes as
follows. Through a point in P0, take a line parallel to the “skew” sides of P0 and
see where it intersects the vertical sides. Elementary calculations give us that for
(x, y) ∈ P0, we may write (x, y) = (1 − λ0)(u

0
1, u

0
2) + λ0(v

0
1, v0

2) with u0, v0 ∈ P

and 0 ≤ λ0 ≤ 1, or more explicitly

(x, y) = 4 − x

8

(
−4, y − 3 − 3x

4

)
+ 4 + x

8

(
4, y + 3 − 3x

4

)
.

For each n ∈ Z, we now define Pn = 2nP0 and similarly as for n = 0, we define λn,
(un

1, un
2), (vn

1 , vn
2 ). These functions are obviously continuous. The set E consists of
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all the vertical segments with the origin added. It forms a commonotonic set. This
follows from the equality

E = {(0,0)} ∪
⋃

n∈Z

(
2n

([(−4,−4), (−4,−2)] ∪ [(2,4), (4,4)])
)
.

We now construct functions �,U,V on R
2 as follows. For (x, y) ∈ Pn \ Pn−1, we

define �(x,y) = λn(x, y), U(x,y) = un(x, y), V (x, y) = vn(x, y). At (0,0), we put
�(0,0) = 1, U(0,0) = (0,0) = V (0,0). These functions are no longer continuous,
but are certainly Borel-measurable. They satisfy the following properties:

1) � : R2 → [0,1].
2) U : R2 → E, V : R2 → E.
3) We have ‖U(x,y)‖ ≤ 2‖(x, y)‖ and ‖V (x, y)‖ ≤ 2‖(x, y)‖. Indeed, for

(x, y) ∈ Pn \ Pn−1, we have 2n = ‖U(x,y)‖ ≥ ‖(x, y)‖ ≥ 2n−1, and the same holds
for V .

4) For all (x, y) ∈ R
2, (x, y) = (1 − �(x,y))U(x, y) + �(x,y)V (x, y).

5) The coordinates V1(x, y) − U1(x, y) and V2(x, y) − U2(x, y) of V − U are
nonnegative.

5 The main result

We start by giving an extension of the usual definition of conditional expectation.

Definition 5.1 We say that an F2-measurable random variable ξ has an extended con-
ditional expectation with respect to F1 if there is a countable F1-measurable partition
(An) such that each 1Anξ is integrable. The conditional expectation is then defined as∑

n E[1Anξ |F1].

The reader can check that the existence and definition of an extended conditional
expectation are independent of the choice of the F1-measurable partition. We some-
times drop the word “extended”.

Again we suppose that F2 is atomless conditionally to F1. The utility function
u1,2 is Lebesgue-continuous.

Before giving the main result of the paper, we first prove a special case.

Theorem 5.2 For every couple (f, g) of F1-measurable finite-valued random vari-
ables, there is a commonotonic couple (ξ, η) of F2-measurable random variables
such that f = E[ξ |F1], g = E[η |F1]. Furthermore, ‖(ξ, η)‖ ≤ 2‖(f, g)‖ almost
surely.

Proof The proof is almost given in the previous sections. Let (f, g) : � → R
2 be

F1-measurable. Using the functions �,U,V of Sect. 4, we can then write

(f, g) = �(f,g)V (f,g) + (
1 − �(f,g)

)
U(f,g).
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Because �(f,g) : � → [0,1] is F1-measurable and F2 is atomless conditionally
to F1, there is a set B ∈ F2 such that E[1B |F1] = �(f,g). The random variables
(ξ, η) are now defined as

ξ = 1BV1(f, g) + 1BcU1(f, g), η = 1BV2(f, g) + 1BcU2(f, g),

or in other words

(ξ, η) = 1BV (f,g) + 1BcU(f,g).

Both random variables have extended conditional expectations, and because U(f,g),
V (f,g) are F1-measurable, we get (f, g) = E[(ξ, η) |F1]. Because (ξ, η) takes its
values in the commonotonic set E from Sect. 4, we get that ξ and η are commono-
tonic. The estimate of the norms follows from the estimates for U and V . �

Corollary 5.3 The random variable (ξ, η) has the same integrability properties as the
couple (f, g). In particular, if (f, g) is bounded, the couple (ξ, η) is bounded.

Remark 5.4 If one wants to use another norm than the Minkowski functional of P0,
one must adapt the constant. Because all norms on R

2 are equivalent, this is an exer-
cise in linear algebra. We did not try to find the best estimates for e.g. the Euclidean
norm, where a rough calculation gave 10

√
2. This problem would require to find a

better commonotonic set than the one used above.

The next theorem is an improvement of the preceding result in the sense that we
replace the conditional expectation by a more general utility function. The proof fol-
lows the same lines.

Theorem 5.5 For every couple (f, g) of F1-measurable bounded random variables,
there is a commonotonic couple (ξ, η) of F2-measurable random variables such that
f = u1,2(ξ), g = u1,2(η). Furthermore, ‖(ξ, η)‖ ≤ 2‖(f, g)‖ almost surely.

Proof We use the same notation (�,U,V ) as in the previous proof. But this time we
take a set B such that u1,2(1B) = �. Again we define

(ξ, η) = 1BV (f,g) + 1BcU(f,g) = U(f,g) + 1B

(
V (f,g) − U(f,g)

)
.

We then have

u1,2(ξ) = u1,2

(
U1(f, g) + 1B

(
V1(f, g) − U1(f, g)

))

= U1(f, g) + u1,2(1B)
(
V1(f, g) − U1(f, g)

)

= U1(f, g) + �(f,g)
(
V1(f, g) − U1(f, g)

) = f,

and similarly for g and the second coordinate. Note that we can apply the positive
homogeneity of u1,2 because V1(f, g) − U1(f, g) ≥ 0. �
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Remark 5.6 If (f, g) is only finite-valued, we can write

(f, g) = 1{(f,g)=(0,0)}(f, g) +
∑

n∈Z
1{(f,g)∈Pn\Pn−1}(f, g),

and this is a sum of bounded random variables. For each n, we can define ξn, ηn

as in Theorem 5.5. These random variables are zero outside {(f, g) ∈ Pn \ Pn−1},
and hence the sum (ξ, η) = ∑

n∈Z(ξn, ηn) is well defined. We could then extend
u1,2 as we did for conditional expectations. Finally, we get u1,2(ξ) = f,u1,2(η) = g.
This extension is important when the utility functions are defined on e.g. Orlicz or
Riesz spaces. Important for such extensions is the pointwise (almost sure) estimate
‖(ξ, η)‖ ≤ 2‖(f, g)‖.

6 Commonotonicity and time-consistency

In this section, we use the same hypothesis on the filtration (F0,F1,F2). In particu-
lar, we suppose that F2 is atomless conditionally to F1. We start with a monetary
coherent utility function u0,2 : L∞(F2) → R. We suppose – as in the rest of the
paper – that u0,2 is relevant.

Theorem 6.1 Suppose that

1) F2 is atomless conditionally to F1;
2) u0,2 is coherent and relevant;
3) u0,2 is time-consistent;
4) u0,2 is commonotonic, i.e., if the random variables ξ, η ∈ L∞(F2) are com-

monotonic, then u0,2(ξ + η) = u0,2(ξ) + u0,2(η);
5) u0,2 is Lebesgue-continuous.

Then there is a probability Q≈ P such that u0,1(f ) = EQ[f ] for all f ∈ L∞(F1).

Proof According to Theorem 5.5, for each f,g ∈ L∞(F1), there are commonotonic
ξ, η ∈ L∞(F2) with u1,2(ξ) = f, u1,2(η) = g and u1,2(ξ + η) = f + g. We then
have u0,1(f ) = u0,1(u1,2(ξ)) = u0,2(ξ) and similarly for g. The combination with
commonotonicity then gives

u0,1(f + g) = u0,1
(
u1,2(ξ + η)

)

= u0,2(ξ + η)

= u0,2(ξ) + u0,2(η)

= u0,1
(
u1,2(ξ)

) + u0,1
(
u1,2(η)

)

= u0,1(f ) + u0,1(g).

This shows that u0,1 is additive (therefore linear) and hence given by a finitely addi-
tive probability measure. But Lebesgue-continuity implies that this measure, say Q,
must be sigma-additive and absolutely continuous with respect to P. Because u0,2
and hence u0,1 are relevant, we must have Q ≈ P. �
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Remark 6.2 For general commonotonic ξ, η (not just for those used in the proof of
Theorem 6.1), we can now prove that u1,2(ξ + η) = u1,2(ξ) + u1,2(η). We already
know that u1,2(ξ +η) ≥ u1,2(ξ)+u1,2(η). If Q[u1,2(ξ +η) > u1,2(ξ)+u1,2(η)] > 0,
then we get

u0,2(ξ + η) = u0,1
(
u1,2(ξ + η)

)

= EQ[u1,2(ξ + η)]
> EQ[u1,2(ξ)] +EQ[u1,2(η)]
= u0,1

(
u1,2(ξ)

) + u0,1
(
u1,2(η)

)

= u0,2(ξ) + u0,2(η),

which is a contradiction to u0,2(ξ + η) = u0,2(ξ) + u0,2(η). The strict inequality in
the third line follows from the fact that u0,1 is the expectation with respect to the
equivalent probability measure Q.

Remark 6.3 If the assumption of relevance is dropped, we must start with a time-
consistent system of utility functions u0,2, u0,1, u1,2. In that case, we only obtain
Q � P, and the result of Remark 6.2 only holds Q-a.s.

Remark 6.4 There is no reason that u0,2 is additive on L∞(F2) as the following ex-
ample shows. We take � = [0,1] × [0,1], F2 is the product sigma-algebra of the
Borel sigma-algebras on [0,1], and the measure P is the product measure of the
usual Lebesgue measures. F0 is the trivial sigma-algebra and F1 is generated by the
first coordinate mapping. For ξ ∈ L∞(F2), ξ ≥ 0, we define

u0,2(ξ) =
∫ 1

0
dα

∫ ∞

0
dx

(
P[ξ(α, ·) ≥ x])1+α

.

For 0 ≤ ξ ∈ L∞(F2), the utility function u1,2 is then given by

u1,2(ξ)(α) =
∫ ∞

0

(
P[ξ(α, ·) > x])1+α

dx.

Such expressions are known as distortions or Choquet integrals. They are standard
examples of commonotonic utility functions; see [7, Chap. 7]. We need a bit less than
commonotonicity; in fact, we only need for ξ, η that u1,2(ξ + η) = u1,2(ξ) + u1,2(η)

as soon as for each α, the random variables ξ(α, ·), η(α, ·) are commonotonic. To
see that u0,2 is not linear, let us calculate the outcomes for ξ(α, y) = 1[0,1/2](y) and
η(α, y) = 1[1/2,1](y). For both random variables, we find 1

4 log 2 which do not sum up
to u0,2(ξ + η) = u0,2(1) = 1.

7 A continuous-time result

In this section, we use a filtration indexed by the time interval [0, T ]. This filtration
(Ft )0≤t≤T does not necessarily fulfil the usual assumptions. The only assumption
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is that FT is generated by
⋃

0≤t<T Ft . We also suppose that we are given a fam-
ily ut,s,0 ≤ t ≤ s ≤ T , ut,s : L∞(Fs) → L∞(Ft ), of coherent utility functions. We
assume the following time-consistency: for t ≤ s ≤ v, we have ut,v = ut,s ◦ us,v .

Theorem 7.1 With the notation introduced in this section, we suppose that for all
0 ≤ t < T , the sigma-algebra FT is atomless conditionally to Ft . If u0,T is rele-
vant, Lebesgue-continuous and commonotonic, there is a probability Q ≈ P such
that u0,T (ξ) = EQ[ξ ] for all ξ ∈ L∞(FT ).

Proof The results of Sect. 6 show that on each L∞(Ft ), the utility function u0,T is
linear. The utility function u0,T is therefore linear on the vector space

⋃
t<T L∞(Ft ).

This space is sequentially dense in L∞(FT ) for the Mackey topology (simply use the
martingale convergence theorem). Because of Lebesgue-continuity, the utility func-
tion u0,T is therefore linear on L∞(FT ). It is thus given by a probability measure
Q � P. But since the utility function is relevant, we find that Q ≈ P. �

Remark 7.2 The previous results can be applied for most filtrations used in finance
and insurance. This is for instance true for filtrations coming from a Brownian motion
in one or several dimensions, filtrations generated by most Lévy processes, and so on.
In other words, commonotonicity and time-consistency are not good friends.
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