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Abstract The aim of this paper is to define the market-consistent multi-period value
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repeated one-period capital requirements but has the option to terminate the own-
ership at any time. The value of the liability is defined as the no-arbitrage price of
the cash flow to the policyholders, optimally stopped from the owner’s perspective,
taking capital requirements into account. The value is computed as the solution to a
sequence of coupled optimal stopping problems or, equivalently, as the solution to a
backward recursion.
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1 Introduction

The aim of this paper is to define the market-consistent multi-period value of a liabil-
ity cash flow in discrete time subject to repeated capital requirements in accordance
with current regulatory frameworks, and explore its properties. The valuation pro-
cedure will be studied within an insurance liability context. However, the valuation
procedure could be used for any liability where the debtor has limited liability and
faces capital requirements.

Essentially, given an optimally selected replicating portfolio, the externally im-
posed capital requirements define the market-consistent value of a liability as the
value it would have if it were transferred to an empty corporate entity, called a ref-
erence undertaking, whose owner has the option to terminate the ownership (limited
liability, option to default).

The transfer of liabilities is a hypothetical transfer considered for the sake of valu-
ation. In particular, possible existing liabilities of the eventual owner of the reference
undertaking are not considered since it is not known at the time of valuation who
the owner might be. By not considering existing liabilities of the receiver, there may
be a loss of diversification benefits leading to a conservative liability value. On the
other hand, the liability to be valued should be interpreted as the aggregate liability
of a company, i.e., at the level on which capital requirements are imposed. There-
fore, compared to the valuation of cash flows of individual contracts, which is not
considered here, there may be substantial diversification benefits.

The transfer and the valuation procedure can be summarised as follows:
(1) We assume that the following items are transferred to a reference undertaking

that has no other assets or liabilities: (i) the liability to be valued, (ii) an asset portfo-
lio, called the replicating portfolio, with a cash flow meant to, at least partially, offset
the liability cash flow, and (iii) an amount in a numéraire asset, which is such that the
reference undertaking precisely meets the imposed capital requirement at the time of
the transfer.

(2) We assume that the owner of the reference undertaking has limited liability and
therefore can choose to not further finance the reference undertaking at any future
time—an option to default. We assume that the reference undertaking cannot change
the transferred replicating portfolio.

(3) We assume that the market is arbitrage-free in the sense that an equivalent pric-
ing measure exists. We derive the value of the reference undertaking by identifying
it with the price of a particular American-type financial derivative: the price of the
optimally stopped cash flow to the owner of the reference undertaking, taking lim-
ited liability and capital requirements into account. This value is the price paid to the
owner of the original insurance company for ownership of the reference undertak-
ing. Similarly, the value of the liability is defined as the price of the cash flow to the
policyholders, optimally stopped from the perspective of the owner of the reference
undertaking. Due to the option to default, the cash flow the policyholders are entitled
to is not identical to the cash flow they receive.

(4) The procedure outlined above results in a liability value that depends on the
composition of the replicating portfolio and the capital requirements. We focus pri-
marily on capital requirements in terms of conditional monetary risk measures such
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as value-at-risk and expected shortfall. We consider several criteria for choosing the
replicating portfolio. Although the liability values obtained from the valuation pro-
cedure are market-consistent only if the replicating portfolio criterion is chosen ap-
propriately, see Remark 2.7, the valuation procedure does not assume a particular
replicating portfolio criterion nor a particular sequence of conditional monetary risk
measures.

The approach to market-consistent liability valuation presented in Möhr [19] has
been the main source of inspiration for the current paper. In [19], a valuation frame-
work based on dynamic replication and cost-of-capital arguments was presented. In
Engsner et al. [10], a valuation framework inspired by [19], based on dynamic mone-
tary risk measures and dynamic monetary utility functions was presented and explicit
valuation formulas were derived under Gaussian model assumptions. An essential
difference between [19] and [10] is that in the latter setup the replicating portfolio
transferred to the reference undertaking together with the liability is not allowed to
be modified after the transfer of the liability, throughout the run-off of the liability.
The same applies to the valuation approach presented in this paper. The owner of the
reference undertaking only has the option to make a decision to terminate ownership
of the reference undertaking (option to default). In [10], the replicating portfolio was
assumed to be given and the analysis only focused on the multi-period valuation of the
liability cash flow. Criteria for selection of a replicating portfolio were not analysed.
A large part of the current paper focuses on presenting properties of criteria for selec-
tion of the replicating portfolio. The criterion advocated as most natural in this paper,
in Sect. 2.3, says that a good replicating portfolio is one that makes the need for
large equity capital in the reference undertaking small throughout the run-off of the
liability. Moreover, in the current paper the value of the liability, see Definitions 2.3
and 2.4, is implied by no-arbitrage pricing of a derivative security with optionality
written on the cumulative cash flow to the owner of the reference undertaking. We
demonstrate, in Remark 2.13, that there is a correspondence between the choice of
pricing measure used for pricing the derivative security and an adapted process of
cost-of-capital rates that defines the capital providers’ acceptability criteria for pro-
viding solvency capital throughout the run-off of the liability. In [10], all models were
specified with respect to the real-world probability measure including the unspecified
process of cost-of-capital rates defining the capital provider’s acceptability criterion.
In contrast, valuation of the owner’s option to default given a pricing measure is an
essential part of the current paper that is unrelated to the analysis in [10].

Replicating portfolio theory for capital requirement calculation has attracted much
interest in recent years. There, the value of a liability cash flow at a future time is mod-
elled as a conditional expected value, with respect to the market’s pricing measure, of
the sum of discounted future liability cash flows. Since computation of this liability
value is typically not feasible, one seeks an accurate approximation by replacing the
liability cash flow (or its value) by that of a portfolio of traded replication instruments.
Then a risk measure is applied to the approximation of the liability value, yielding
an approximation of the capital requirement. In Cambou and Filipović [4] and the
works [20–22] of Natolski and Werner, various aspects of this replicating portfolio
approach to capital calculations are studied. A fact that somewhat complicates the
analysis is that risk measures defining capital requirements are defined with respect
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to the real-world probability measure P, whereas the replication criteria are usually
expressed in terms of the market’s pricing measure Q. Comparisons of properties and
effects of different replication criteria are presented in [20–22]. In [4], it is shown how
replicating portfolio theory can be formulated in order to allow efficient replication
of liability values exhibiting path-dependence.

Dynamic risk measures and dynamic risk-adjusted values have been analysed in
great detail during the last decade; see e.g. Detlefsen and Scandolo [9], Cheridito
et al. [8], Artzner et al. [1], Bion-Nadal [3], Cheridito and Kupper [6, 7] and the ref-
erences therein for important contributions. Much of the research in this area has been
aimed at establishing properties and representation results for dynamic risk measures
in general functional-analytic settings, particularly for bounded stochastic processes
and under convexity requirements for the risk measures. We want to allow models
for unbounded liability cash flows. Moreover, limited liability for the owner of the
reference undertaking in our setting implies that the dynamic valuation mappings ap-
pearing here will in general be nonlinear, nonconvex and nonconcave regardless of
any additional structure imposed on the conditional risk measures defining the capital
requirements. We only assume very basic properties of the conditional risk measures
defining capital requirements, namely so-called translation invariance, monotonicity
and normalisation. In particular, these weaker requirements allow conditional ver-
sions of the risk measure value-at-risk that is extensively used in practice. Structural
results for the selection of replicating portfolios are enabled by assuming that the con-
ditional risk measures also satisfy so-called positive homogeneity; see Theorems 2.28
and 2.30.

Another approach to market-consistent liability valuation is presented by Pelsser
and Stadje [23], combining no-arbitrage valuation and actuarial valuation into a gen-
eral framework. The authors introduce the notion of a two-step market valuation.
First, actuarial pricing of the residual risk remaining after conditioning on the future
development of prices of traded assets is done. Second, noticing that the outcome of
the first step is a random variable expressed in terms of prices of traded assets, the
classical linear financial pricing operator is applied to the outcome of the first step.
Further, it is shown in [23] how the two-step market valuation can be extended to a
dynamic time-consistent valuation. Our approach to valuation is a two-step market-
consistent valuation in a different sense, based on a hypothetical transfer of a repli-
cating portfolio and the liability to a reference undertaking subject to repeated capital
requirements. First, a replicating portfolio is chosen. Then the liability is valued by
applying a linear pricing operator to the cumulative cash flow that the policyholders
will receive, taking capital requirements and the option to default of the owner of the
reference undertaking into account. The economic value of the option to default and
its effect on the value of an insurance liability is well known by insurers; see e.g.
Hancock et al. [14] and Remark 2.12 in Sect. 2 below. It should be emphasised that
in our setting, the pricing measure is just one out of infinitely many that correctly
prices traded financial instruments in an incomplete arbitrage-free financial market.
In particular, the flexibility to choose the pricing operator allows it to be chosen so
that the pricing of nonreplicable insurance risk can be interpreted as a cost-of-capital
valuation with risk-averse capital providers; see Remark 2.13 in Sect. 2 for details.
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In Schweizer [24] and Malamud et al. [18], two general multi-period frameworks
for the pricing of insurance liabilities are developed. The approaches rely on utility
indifference pricing and optimal trading in the financial market.

Motivated by the regulatory framework of Solvency II, and in a multi-period
incomplete-market setting, best-estimate reserves are studied in depth in Happ et al.
[15] as part of valuing a liability as the sum of a best estimate and a risk margin. The
best-estimate reserves are obtained by sequential local risk minimisation as defined
in C̆erný and Kallsen [5]. The value of a liability in our setting can be expressed
as the sum of the market price of the replicating portfolio and a term depending on
the residual (after replication) liability cash flow; see Definition 2.4. However, the
best-estimate reserve is not an object that appears naturally in the present paper.

Approaches to market-consistent valuation based on multi-period mean–variance
hedging of insurance liabilities corresponding to a cash flow at a terminal time T

are presented in Tsanakas et al. [27] and Barigou and Dhaene [2]. In [27], the hedg-
ing instruments are derivatives with binary payoff written on the claims development
results, and the liability value is defined as the optimal initial endowment correspond-
ing to the optimal self-financing trading strategy. In [2], the value of the liability is
defined as the sum of the financial market price of the mean–variance hedge and a
so-called actuarial value of the terminal hedging error. The valuation approaches in
both [27] and [2] build upon results found in Schweizer [24, 26], Heath et al. [16]
and C̆erný and Kallsen [5] for mean–variance hedging in a general setting.

Repeated capital requirements together with the option to default form the basis
for valuation of liability cash flows in the present paper. Since the option to default
does not appear in the approaches to valuation of liabilities in [24, 18, 27, 15, 2],
these approaches are quite different from the one in the present paper.

Grosen and Jørgensen [13] consider a derivatives pricing approach to market-
consistent valuation of participating life insurance liabilities in a Black–Scholes
model where policyholders are guaranteed a certain payoff at a fixed maturity date.
An important feature of the model is that default occurs if the asset value of the insur-
ance company prior to maturity falls below a regulatory boundary corresponding to a
fraction of the policyholders’ initial deposit compounded with a guaranteed interest
rate. Hieber et al. [17] consider a derivatives pricing approach to market-consistent
valuation of heterogeneous participating life insurance portfolios with return guaran-
tees. The approach in [17] is similar in spirit to that in [13], but considers general
asset-value dynamics for the reference portfolio and possible default at integer times
defined as the occurrence of the event that the value of the reference portfolio (asset
value) is less than the total policyholder account value (liability value). The run-off
scenario in [17, Sect. 3.2] gives a valuation framework that is on the one hand con-
ceptually similar to the one in the present paper, but on the other hand rather different.
An essential difference is that in the present paper, externally imposed repeated cap-
ital requirements are key drivers of the dynamics of asset and liability values and of
occurrence of default.

The paper is organised as follows. The general liability valuation framework is
presented in Sect. 2. The three main ingredients are as follows: (1) the value of own-
ership of the reference undertaking is defined, consistently with classical financial
arbitrage valuation, as the no-arbitrage value of the optimally stopped (discounted)
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net cash flow to the owner of the reference undertaking; (2) the value of the liability is
defined as the no-arbitrage value of the (discounted) cash flow to the policyholders,
stopped optimally from the perspective of the owner of the reference undertaking;
and (3) these definitions are shown to be equivalent to two coupled backward recur-
sions for the two values in (1) and (2), and the optimal stopping times are determined
explicitly. Sections 2.2 and 2.3 make the general framework operational, in Sect. 2.2
by linking the capital requirements to the liability cash flow in terms of conditional
monetary risk measures, and in Sect. 2.3 by presenting criteria for optimal (in various
senses) selection of the replicating portfolio. Applying the valuation framework leads
to numerical challenges similar to those appearing when valuing American-type fi-
nancial derivatives. In particular, closed-form solutions are rare exceptions. In Sect. 3,
it is shown that under Gaussian model assumptions for the dynamics under both P

and Q, everything can be computed explicitly. Conclusions are found in Sect. 4, and
all proofs are found in Sect. 5.

2 The valuation framework

We consider time periods 1, . . . , T , corresponding time points 0,1, . . . , T , and a
filtered probability space (�,F ,F,P), where the filtration is F = (Ft )

T
t=0 with

{∅,�} = F0 ⊆ · · · ⊆FT = F and where P denotes the real-world measure. We write
Lp(Ft ,P) for the normed linear space of Ft -measurable random variables X with
norm E

P[|X|p]1/p . Equalities and inequalities between random variables should be
interpreted in the P-almost sure sense. We use the conventions

∑k−1
�=k := 0 and

inf∅ := +∞ for sums over an empty index set and the infimum of an empty set.
We use the notation x+ := max(0, x).

We assume a given numéraire process (Nt )
T
t=0 and that all financial values are

discounted by this numéraire. Although the choice of numéraire is irrelevant for the
analysis, we take the numéraire to be the bank account numéraire, i.e., N0 = 1 and
Nt is the amount at time t from rolling forward an initial unit investment in a locally
risk-free traded bond, i.e., a sequence of one-period bonds corresponding to a pre-
dictable spot-rate process. In particular, by this choice of numéraire, the time value
of money does not appear explicitly at any place. By a risk-free cash flow, we mean
a nonrandom sequence in units of the numéraire, i.e., the discounted cash flow is
deterministic.

We assume that there exists a strictly positive (P,F)-martingale (Dt )
T
t=0 with

E
P[DT ] = 1 defining the equivalent pricing measure Q of an arbitrage-free incom-

plete financial market via Dt = dQ/dP|Ft
, i.e., for u > t and a sufficiently integrable

Fu-measurable Z,

E
Q

t [Z] = 1

Dt

E
P

t [DuZ],

where the subscript t in E
Q

t and E
P
t means conditioning on Ft .

In Sect. 2.1 below, we present the valuation framework for general capital require-
ments in terms of an arbitrary discrete-time stochastic process (Rt )

T
t=0 with RT = 0,

where Rt ∈ L1(Ft ,Q) for all t . In Sect. 2.2, we express Rt in terms of conditional
monetary risk measures, consistently with current regulatory frameworks.
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2.1 Valuation of liability cash flows under general capital requirements

We suppose that in the financial market, there exists an insurance company with
an aggregate insurance liability corresponding to a liability cash flow given by the
F-adapted stochastic process Xo = (Xo

t )
T
t=1, the original liability cash flow. Regu-

lation forces the insurance company to comply with externally imposed capital re-
quirements. The requirements put restrictions on the asset portfolio of the insurance
company. A set of traded assets is used to form a replicating portfolio intended to off-
set, to some extent, the liability cash flow. The cash flow of the replicating portfolio is
given by an F-adapted stochastic process Xr = (Xr

t )
T
t=1. Depending on the degree of

replicability of the liability cash flow, the replicating portfolio could be simply a long
position in the numéraire asset that is turned into payments over time, but also the
cash flow from a more sophisticated dynamic hedging strategy. For the latter, we may
consider (pre-)strategies in the sense of Heath et al. [16, Definition 2.1] or Schweizer
[25, Definition 1.1], taking into account that the hedging strategy aims to hedge an
entire cash flow process and not just a payoff at a fixed terminal time. The choice of
hedging strategy may be determined by e.g. local risk minimisation or mean–variance
hedging. We refer to [16] and [25] for further details and comparisons.

For realistic applications of the valuation framework considered here, it is reason-
able to put further restrictions on the set of allowed replicating portfolios. We return
to criteria for selection of the replicating portfolio in Sect. 2.3.

The value of the replicating portfolio may be expressed as
∑T

t=1 E
Q

0 [Xr
t ]. How-

ever, the liability cash flow cannot be valued as
∑T

t=1 E
Q

0 [Xo
t ] since Xo is the cash

flow the policyholders are entitled to, but not necessarily (due to the option to default
held by the owner of the reference undertaking) the cash flow they will receive. We
define, in accordance with current solvency regulation (Möhr [19] and prescribed by
EIOPA, see [11, Article 38]), the value of the liability cash flow Xo by considering a
hypothetical transfer of the liability and the replicating portfolio to a separate entity
referred to as a reference undertaking. The reference undertaking has initially neither
assets nor liabilities, and its sole purpose is to manage the run-off of the liability.
Ownership of the reference undertaking is achieved by buying it from the insurance
company which has transferred its liabilities together with the replicating portfolio
and a position R0 in the numéraire asset to the reference undertaking. This R0 is an
amount that makes the reference undertaking meet the imposed capital requirements.
Classical arbitrage pricing arguments will determine the price C0, specified below,
for ownership of the reference undertaking. The benefit of ownership is the right to
receive certain dividends, defined below, until either the run-off of the liability cash
flow is complete or until letting the reference undertaking default on its obligations to
the policyholders. The term default means termination of ownership of the reference
undertaking. The precise details are as follows, and illustrated in Fig. 1 below.

– At time t = 0, the liabilities corresponding to the cash flow Xo, the replicating
portfolio corresponding to the cash flow Xr and an amount R0 in the numéraire
are transferred from the insurance company to the reference undertaking, where
R0 is the amount making the reference undertaking precisely meet the externally
imposed capital requirement.
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– At time t = 0, by paying the amount C0 to the original insurance company, the
owner receives full ownership of the reference undertaking. Consequently, the net
value of assets transferred from the original insurance company along with the
liability is

E
Q

0

[ T∑

t=1

Xr
t

]

+ R0 − C0.

Therefore, in effect, there is no net transfer of capital between the original insur-
ance company and the owner of the reference undertaking. The above is seen to be
equivalent to the original insurance company transferring the liabilities, the repli-
cating portfolio and R0 − C0 to the reference undertaking, followed by the owner
of the reference undertaking injecting C0 in the reference undertaking—a require-
ment for the ownership.

– At time t = 1, the owner has the option to either default on his obligations to the
policyholders or not to default.

The decision to default means to give up ownership and transfer R0 and the
replicating portfolio to the policyholders. The owner neither receives any dividend
payment nor incurs any loss upon a decision to default.

If T > 1 and given the decision not to default, a new amount R1 in the numéraire
asset is needed to make the reference undertaking precisely meet the externally im-
posed capital requirement at time 1. If R0 − R1 − Xo

1 + Xr
1 ≥ 0, then the positive

surplus R0 −R1 −Xo
1 +Xr

1 ≥ 0 is paid to the owner and Xo
1 , which the policyhold-

ers are entitled to, is paid to the policyholders. If R0 −R1 −Xo
1 +Xr

1 < 0, then the
owner faces a deficit that must be offset by injecting −R0 + R1 + Xo

1 − Xr
1 > 0.

Also in this case, Xo
1 is paid to the policyholders.

If T = 1, then the above description of cash flows to policyholders and owner
applies upon setting R1 = 0.

– At time t ∈ {2, . . . , T }, if the owner has not defaulted on his obligations, then the
situation is completely analogous to that at time t = 1 described above.

From the above follows that the owner of the reference undertaking has to decide
on a decision rule defining under which circumstances default occurs. The default
time is a stopping time τ ∈ S1,T +1, where St,T +1 denotes the set of F-stopping times
taking values in {t, . . . , T + 1}. The event {τ = T + 1} is to be interpreted as a com-
plete liability run-off without default at any time.

The cumulative cash flow to the owner can be written as

τ−1∑

t=1

(Rt−1 − Rt − Xt), with Xt := Xo
t − Xr

t . (2.1)

The value of this cash flow (2.1) is, according to standard arbitrage theory,

E
Q

0

[ τ−1∑

t=1

(Rt−1 − Rt − Xt)

]

. (2.2)
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We assume that the owner of the reference undertaking chooses a default time τ

maximising (2.2). Consequently, the value at time 0 of the reference undertaking is

sup
τ∈S1,T +1

E
Q

0

[ τ−1∑

t=1

(Rt−1 − Rt − Xt)

]

. (2.3)

For t ∈ {1, . . . , T }, the (discounted) value of the reference undertaking at time t , given
no default at times ≤ t , is given by the completely analogous expression upon replac-
ing sup in (2.3) by the essential supremum ess sup with respect to Q (see Föllmer and
Schied [12, Appendix A.5] for details) and conditioning on Ft rather than F0. Notice
that since no cash flows occur at times > T , the value of the reference undertaking is
zero at time T . The value of the reference undertaking can thus be identified as the
value of an American-type derivative. Details on arbitrage-free pricing of American
derivatives can be found in [12, Sect. 6.3].

Definition 2.1 Consider sequences (Xt )
T
t=1 and (Rt )

T
t=0 with Xt ∈ L1(Ft ,Q) for

t ∈ {1, . . . , T }, RT = 0 and Rt ∈ L1(Ft ,Q) for t ∈ {0, . . . , T − 1}. Define

Ct := ess sup
τ∈St+1,T +1

E
Q

t

[ τ−1∑

s=t+1

(Rs−1 − Rs − Xs)

]

, t ∈ {0, . . . , T − 1}, (2.4)

CT := 0.

We call Ct the value of the reference undertaking at time t given no default at
times ≤ t .

Example 2.2 It may be instructive to consider the owner’s option to default in the sim-
ple one-period setting corresponding to T = 1. The decision to default at time t = 1
means that the policyholders receive the cash flow R0 + Xr

1 and that the owner of the
reference undertaking neither pays nor receives anything. Given the decision not to
default at time t = 1, the policyholders receive Xo

1 and the owner receives the surplus
R0 − Xo

1 + Xr
1 if this amount is nonnegative, and otherwise pays −(R0 − Xo

1 + Xr
1)

to offset the deficit. Since the owner has no obligation to pay the policyholders to
offset a deficit at time t = 1, it is clear that the option to default is exercised if and
only if R0 − Xo

1 + Xr
1 < 0. Consequently, the value of the reference undertaking at

time t = 0 is EQ

0 [(R0 − Xo
1 + Xr

1)
+]. Notice that

τ =
{

1 if R0 − Xo
1 + Xr

1 < 0,

2 if R0 − Xo
1 + Xr

1 ≥ 0

gives

E
Q

0 [(R0 − Xo
1 + Xr

1)
+] = E

Q

0 [01{τ=1} + (R0 − Xo
1 + Xr

1)1{τ=2}]

= sup
τ∈S1,2

E
Q

0

[ τ−1∑

t=1

(Rt−1 − Rt − Xt)

]

which is seen to coincide with (2.4) when T = 1 and t = 0.
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Consider t = 0 and let τ ∗
0 denote an optimal default time such that the supremum

in (2.3) is attained for τ = τ ∗
0 . Then the cumulative cash flow to the policyholders is,

with X := Xo − Xr ,

τ∗
0 −1∑

t=1

Xo
t +

T∑

t=τ∗
0

Xr
t + Rτ∗

0 −1 =
T∑

t=1

Xr
t +

τ∗
0 −1∑

t=1

Xt + Rτ∗
0 −1

=
T∑

t=1

Xr
t + R0 −

τ∗
0 −1∑

t=1

(Rt−1 − Rt − Xt).

Therefore, the arbitrage-free value of the cash flow to the policyholders, i.e., the value
of the original insurance company’s liabilities, is

E
Q

0

[ T∑

t=1

Xr
t

]

+E
Q

0

[

R0 −
τ∗

0 −1∑

t=1

(Rt−1 − Rt − Xt)

]

,

where the first term is the market price of the replicating portfolio and the second
term will be referred to as the residual liability value. For t ∈ {0, . . . , T }, the residual
liability value at time t given no default at times ≤ t is given by the completely
analogous expression upon replacing τ ∗

0 by a default time τ ∗
t that is optimal as seen

from time t , i.e.,

Rt −E
Q

[ τ∗
t −1∑

s=t+1

(Rs−1 − Rs − Xs)

]

= Rt − Ct .

Notice that

Rt − Ct = Rt − ess sup
τ∈St+1,T +1

E
Q

t

[ τ−1∑

s=t+1

(Rs−1 − Rs − Xs)

]

= ess inf
τ∈St+1,T +1

E
Q

t

[

Rt −
τ−1∑

s=t+1

(Rs−1 − Rs − Xs)

]

= ess inf
τ∈St+1,T +1

E
Q

t

[ τ−1∑

s=t+1

Xs + Rτ−1

]

.

Definition 2.3 Consider sequences (Xt )
T
t=1 and (Rt )

T
t=0 with Xt ∈ L1(Ft ,Q) for

t ∈ {1, . . . , T }, RT = 0 and Rt ∈ L1(Ft ,Q) for t ∈ {0, . . . , T − 1}. Define

Vt := ess inf
τ∈St+1,T +1

E
Q

t

[ τ−1∑

s=t+1

Xs + Rτ−1

]

, t ∈ {0, . . . , T − 1}, (2.5)

VT := 0.

We call Vt the value of the residual liability at time t given no default at times ≤ t .
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Definition 2.4 Consider sequences (Xo
t )

T
t=1, (Xr

t )
T
t=1, (Rt )

T
t=0 with the proper-

ties that Xo
t ,X

r
t ∈ L1(Ft ,Q) for t ∈ {1, . . . , T }, RT = 0 and Rt ∈ L1(Ft ,Q) for

t ∈ {0, . . . , T − 1}. Set Xt := Xo
t − Xr

t . Then

Lt := E
Q

t

[ T∑

s=t+1

Xr
s

]

+ Vt , t ∈ {0, . . . , T }, (2.6)

where Vt is given by Definition 2.3. We call Lt the liability value at time t given no
default at times ≤ t .

Remark 2.5 Notice that L0 equals

L0 = E
Q

0

[ T∑

t=1

Xr
t

]

+ V0

= E
Q

0

[ T∑

t=1

Xr
t

]

+E
Q

0

[ τ∗
0 −1∑

t=1

(Xo
t − Xr

t ) + Rτ∗
0 −1

]

= E
Q

0

[ T∑

t=1

Xo
t

]

+E
Q

0

[ T∑

t=τ∗
0

(Xr
t − Xo

t )

]

+E
Q

0 [Rτ∗
0 −1],

i.e., the sum of the Q-expectations of the original liability cash flow, of the difference
from default time onwards between cash flows from the replicating portfolio and
original liability, and of the risk capital available at the default time.

Example 2.6 As a continuation of Example 2.2, it may be instructive to consider
the cash flow to the policyholders in the simple one-period setting corresponding to
T = 1. As demonstrated in Example 2.2, optimal exercise of the owner’s option to
default implies that at time t = 1, the policyholders receive

(R0 + Xr
1)1{R0−Xo

1+Xr
1<0} + Xo

11{R0−Xo
1+Xr

1≥0} = Xr
1 + R0 − (R0 − Xo

1 + Xr
1)

+,

where the first term on the left-hand side is the cash flow to the policyholders upon
default and the second is the no-default cash flow. Consequently, the value of the
liability, i.e., the Q-expectation of the cash flow to the policyholders, is

E
Q

0 [Xr
1 + R0 − (R0 − Xo

1 + Xr
1)

+] = E
Q

0 [Xr
1] + V0

which is seen to coincide with (2.6) when T = 1 and t = 0. Notice that if the owner
of the reference undertaking had unlimited liability, i.e., no option to default, then the
value of the liability would be

E
Q

0 [Xr
1 + R0 − (R0 − Xo

1 + Xr
1)] = E

Q

0 [Xo
1],

i.e., the Q-expectation of the cash flow the policyholders are entitled to and also, due
to unlimited liability, the cash flow they will receive.
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Remark 2.7 A necessary requirement in order to say that the valuation approach is
market-consistent is the requirement that replicable financial liabilities should be val-
ued by their market prices. If Xo is fully replicable and the replicating portfolio is
chosen so that Xr = Xo, then the residual liability cash flow is X := Xo − Xr = 0.
If the capital requirements are such that X = 0 implies Rt = 0 for all t , then V0 = 0
follows from Definition 2.3. This property holds by choosing, as in Sect. 2.2 below,
Rt := ρt (−Xt+1 − Vt+1) for all t , where ρt is a conditional monetary risk measure
in the sense of Definition 2.14. Consequently,

L0 := E
Q

0

[ T∑

t=1

Xr
t

]

+ V0 = E
Q

0

[ T∑

t=1

Xo
t

]

is simply the market price of the replicable cash flow Xo. Hence, market consistency
requires that the valuation framework is combined with an appropriate criterion for
selection of the replicating portfolio. The criterion for selecting the replicating portfo-
lio does not enter in the mathematics of the general valuation framework considered
up to this point. However, the choice of criterion is important to ensure good eco-
nomic properties and make the framework fully operational. It is necessary that the
insurance regulator clearly prescribes the criterion that must be applied in order to
obtain unique liability values. Suitable criteria for replicating portfolio selection and
further details are presented in Sect. 2.3. See also Remark 2.25 in Sect. 2.3 for further
comments on market consistency.

We are now ready to state a key result. It says that the sequences (Ct )
T
t=0 and

(Vt )
T
t=0 of values of the reference undertaking and residual liability, respectively,

defined in Definitions 2.1 and 2.3, can equivalently be defined as solutions to a pair
of backward recursions. Moreover, it provides an explicit expression for the stopping
times that are optimal from the perspective of the owner of the reference undertaking.

Theorem 2.8 Consider sequences (Xo
t )

T
t=1, (Xr

t )
T
t=1, (Rt )

T
t=0 with the proper-

ties that Xo
t ,X

r
t ∈ L1(Ft ,Q) for t ∈ {1, . . . , T }, RT = 0 and Rt ∈ L1(Ft ,Q) for

t ∈ {0, . . . , T − 1}. Set Xt := Xo
t − Xr

t .
(i) If the sequences (Ct )

T
t=0 and (Vt )

T
t=0 are given by Definitions 2.1 and 2.3, then

Ct = E
Q

t [(Rt − Xt+1 − Vt+1)
+], CT = 0, (2.7)

Vt = Rt −E
Q

t [(Rt − Xt+1 − Vt+1)
+], VT = 0. (2.8)

(ii) The stopping times (τ ∗
t )T −1

t=0 given by

τ ∗
t = inf{s ∈ {t + 1, . . . , T } : Rs−1 − Xs − Vs < 0} ∧ (T + 1)

are optimal in (2.4) and (2.5).
(iii) If the sequences (Ct )

T
t=0 and (Vt )

T
t=0 are given by (2.7) and (2.8), then for

t ∈ {0, . . . , T − 1}, Ct and Vt are given by (2.4) and (2.5).
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Fig. 1 Illustration of the
valuation procedure. At time t ,
the required capital
Rt = Vt + Ct is available. The
upper and middle plots show
developments to time t + 1 not
leading to default at time t + 1
since Xt+1 + Vt+1 < Rt . In the
upper plot, there is a surplus
Rt − Rt+1 − Xt+1 > 0, giving a
dividend payment at time t + 1,
whereas in the middle plot,
a capital injection is needed to
ensure solvency. The lower plot
illustrates a default event at time
t + 1 since Xt+1 + Vt+1 > Rt

Example 2.9 At time t , given that the owner has not exercised the option to de-
fault, the balance sheet of the reference undertaking is as follows: the value of the
assets is At := E

Q

t [∑T
s=t+1 Xr

s ] + Rt , the value of the liability to policyholders is

Lt := E
Q

t [∑T
s=t+1 Xr

s ] + Vt , and the value of the liability to the owner of the ref-
erence undertaking (equity) is At − Lt = Rt − Vt = Ct . Figure 1 shows possible
evolutions from time t to t + 1. Just before time t + 1, the value of the assets
is Xr

t+1 + E
Q

t+1[
∑T

s=t+2 Xr
s ] + Rt and the value of the liability to policyholders is

Xo
t+1 + E

Q

t+1[
∑T

s=t+2 Xr
s ] + Vt+1. If the difference (the net asset value) at that time

is nonnegative, Rt − Xt+1 − Vt+1 ≥ 0, then a rational owner will not exercise the
option to default. In this case, at time t + 1, a positive surplus Rt − Rt+1 − Xt+1 > 0
is paid as a dividend to the owner, and a negative surplus Rt −Rt+1 −Xt+1 < 0 must
be offset by the owner by making a capital injection.

Remark 2.10 The characterisation of the optimal stopping time in Theorem 2.8(ii)
says that it is optimal from the owner’s perspective to stop (exercise the option
to default) at the first time t when the risk capital Rt−1 rolled forward to time
t and reduced by the residual liability cash flow Xt falls below the value Vt of
the remaining residual liability cash flow (the lower plot in Fig. 1 illustrates a sit-
uation where stopping at time t + 1 is optimal). From the perspective of policy-
holder protection, we may consider the consequences of nonoptimal early stopping
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at time t when Rt−1 − Xt − Vt > 0. At such a time t , the value of the assets trans-
ferred to the policyholders would be At− := Rt−1 + Xr

t + E
Q

t [∑T
s=t+1 Xr

s ] and the

value of the liabilities would be Lt− := Xo
t + E

Q

t [∑T
s=t+1 Xr

s ] + Vt . In particular,
At− −Lt− = Rt−1 −Xt −Vt > 0 so the value of the assets transferred to policyhold-
ers would exceed the value of the liabilities towards policyholders.

The following remark clarifies how Theorem 2.8 leads to a procedure for sequen-
tially determining the residual liability values (Vt )

T
t=0.

Remark 2.11 We choose in the sequel Rt := ρt (−Xt+1 −Vt+1) for conditional mon-
etary risk measures ρt such as value-at-risk VaRt,u or expected shortfall ESt,u that
are introduced below in Sect. 2.2. Given that (Xt )

T
t=1 and (ρt )

T −1
t=0 are chosen so that

Rt ∈ L1(Ft ,Q), the definition of (Vt )
T
t=0 in Definition 2.3 together with the optimal

stopping times in Theorem 2.8(ii) leads to the following procedure for sequentially
determining (Vt )

T
t=0:

– t = T : RT = 0 and VT = 0.
– t = T − 1, . . . ,0: Rt = ρt (−Xt+1 − Vt+1),

τ ∗
t = inf{s ∈ {t + 1, . . . , T } : Rs−1 − Xs − Vs < 0} ∧ (T + 1),

Vt = E
Q

t

[ τ∗
t −1∑

s=t+1

Xs + Rτ∗
t −1

]

.

The following remark shows that due to limited liability for the owner of the ref-
erence undertaking, the cumulative residual value process is a (Q,F)-submartingale,
which further leads to an upper bound on the value of the original liability.

Remark 2.12 Notice from (2.8) that the cumulative residual liability value process

V S
t :=

t∑

s=1

Xs + Vt , t = 0, . . . , T , (2.9)

is a (Q,F)-submartingale; indeed,

E
Q

t [V S
t+1] =

t∑

s=1

Xs + Rt −E
Q

t [Rt − Xt+1 − Vt+1]

≥
t∑

s=1

Xs + Rt −E
Q

t [(Rt − Xt+1 − Vt+1)
+]

= V S
t .
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Equivalently, Vt ≤ E
Q

t [∑T
s=t+1 Xs] for all t . In particular, V0 ≤ E

Q

0 [∑T
t=1 Xt ] and

consequently

L0 = E
Q

0

[ T∑

t=1

Xr
t

]

+ V0 ≤ E
Q

0

[ T∑

t=1

Xo
t

]

,

regardless of the choice of replicating portfolio. In Hancock at al. [14], the nonnega-
tive value EQ

0 [∑T
t=1 Xo

t ]−L0 is referred to as the value of the option to default. This
value exists due to limit liability which leads to the possibility that the policyholders
do not receive the full payment they are entitled to.

The following remark illustrates that our approach to valuation has a natural cost-
of-capital-valuation interpretation.

Remark 2.13 Notice that

Vt = Rt −E
Q

t [(Rt − Xt+1 − Vt+1)
+]

= Rt − 1

1 + ηt

E
P

t [(Rt − Xt+1 − Vt+1)
+] (2.10)

upon defining

ηt := E
P
t [(Rt − Xt+1 − Vt+1)

+]
E
Q

t [(Rt − Xt+1 − Vt+1)+]
− 1.

A cost-of-capital valuation results from considering the owner’s (capital provider’s)
time-t one-period acceptability criterion

E
P

t [(Rt − Xt+1 − Vt+1)
+] = (1 + ηt )(Rt − Vt )

which corresponds to an expected excess rate of return ηt for providing capital with
value Ct = Rt −Vt at time t . Hence, given a pricing measure Q, the market-consistent
value of the liability cash flow can always be interpreted as a cost-of-capital value. It
is reasonable to choose Q consistent with cost-of-capital valuation where the capital
provider demands a cost-of-capital rate ηt ≥ 0 for all t . If Vt ≥ E

P
t [∑T

s=t+1 Xs] for
all t , which is equivalent to saying that V S in (2.9) is a (P,F)-supermartingale, then
ηt ≥ 0 for all t ; indeed, if V S is a (P,F)-supermartingale, then

Vt ≥ E
P

t [Xt+1 + Vt+1] = Rt −E
P

t [Rt − Xt+1 − Vt+1]
which together with the representation (2.10) for Vt gives

ηt ≥ E
P
t [(Rt − Xt+1 − Vt+1)

+]
E
P
t [Rt − Xt+1 − Vt+1]

− 1 ≥ 0.

By Remark 2.12, Vt ≤ E
Q

t [∑T
s=t+1 Xs] for all t . Thus, if Vt ≥ E

P
t [∑T

s=t+1 Xs] for

all t , then E
Q

t [∑T
s=t+1 Xs] ≥ E

P
t [∑T

s=t+1 Xs] for all t . A further consequence of



140 H. Engsner et al.

assuming that Vt ≥ E
P
t [∑T

s=t+1 Xs] for all t is the following lower bound on the
liability value L0:

L0 = E
Q

0

[ T∑

t=1

Xr
t

]

+ V0 ≥ E
Q

0

[ T∑

t=1

Xr
t

]

+E
P

0

[ T∑

t=1

Xt

]

.

2.2 Capital requirements in terms of conditional monetary risk measures

The valuation framework presented above is not operational without specifying how
the sequence (Rt )

T −1
t=0 depends on the sequences (Xo

t )
T
t=1, (Xr

t )
T
t=1 and (Vt )

T −1
t=0 . In

what follows, we define Rt in terms of a conditional monetary risk measure ρt by
setting Rt := ρt (−Xt+1 − Vt+1).

Definition 2.14 For p ∈ [0,∞] and t ∈ {0, . . . , T − 1}, a conditional monetary risk
measure is a mapping ρt : Lp(Ft+1,P) → Lp(Ft ,P) satisfying

if λ ∈ Lp(Ft ,P) and Y ∈ Lp(Ft+1,P), then ρt (Y + λ) = ρt (Y ) − λ; (2.11)

if Y, Ỹ ∈ Lp(Ft+1,P) and Y ≤ Ỹ , then ρt (Y ) ≥ ρt (Ỹ );
ρt (0) = 0.

Remark 2.15 Notice that the capital requirements are defined in terms of character-
istics of (Xt )

T
t=1 and (Vt )

T
t=1 with respect to the probability measure P, whereas the

values Vt are obtained as solutions to the recursion (2.8) expressed in terms of condi-
tional Q-expectations. This fact give rise to computational challenges. In particular,
we need to express the Q-expectations in terms of P-expectations in order to solve
the backward recursions in (2.8).

We first recall the conditional monetary risk measures used in current regula-
tions and then consider a slightly more general class of risk measures providing
sufficient structure for the subsequent analysis. For t ≥ 0, x ∈ R, u ∈ (0,1) and an
Ft+1-measurable Z, let

Ft,−Z(x) := P[−Z ≤ x |Ft ],
F−1

t,−Z(1 − u) := ess inf{m ∈ L0(Ft ,P) : Ft,−Z(m) ≥ 1 − u},
and define conditional versions of value-at-risk and expected shortfall as

VaRt,u(Z) := F−1
t,−Z(1 − u), ESt,u(Z) := 1

u

∫ u

0
VaRt,v(Z)dv.

VaRt,u and ESt,u are special cases of the following more general type of conditional
monetary risk measure. Let M be a probability distribution on the Borel subsets of
(0,1) such that either M has a bounded density with respect to Lebesgue measure or
the support of M is bounded away from 0 and 1, and let

ρt (Z) :=
∫ 1

0
F−1

t,−Z(u)dM(u). (2.12)
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Notice that VaRt,u is obtained by choosing M such that M({1 − u}) = 1, and ESt,u

is obtained by choosing M with density v �→ u−11(1−u,1)(v).

Theorem 2.16 For p ∈ [1,∞], ρt in (2.12) is a conditional risk measure in the sense
of Definition 2.14. In particular, for p ∈ [1,∞], VaRt,u and ESt,u are conditional
monetary risk measures in the sense of Definition 2.14. Moreover, ρt (λ·) = λρt (·) for
nonnegative constants λ.

The statement of Theorem 2.16 follows from combining Proposition 4(i) and Re-
mark 5 in Engsner et al. [10]; the proof is therefore omitted.

From (2.7) and (2.8), it follows that Ct and Vt are determined recursively from
Xt+1 and Vt+1 via

Ct = γt (Xt+1 + Vt+1), CT = 0,

Vt = ϕt (Xt+1 + Vt+1), VT = 0, (2.13)

where

γt (Y ) := E
Q

t

[(
ρt (−Y) − Y

)+]
,

ϕt (Y ) := ρt (−Y) − γt (Y ). (2.14)

The following result analyses the mappings ϕt and how they inherit properties
from the conditional monetary risk measures ρt .

Theorem 2.17 (i) Fix t ∈ {0, . . . , T − 1} and p ∈ [1,∞]. Suppose that we have
Dt+1/Dt ∈ L∞(Ft+1,P) and that ρt is a conditional monetary risk measure in
the sense of Definition 2.14. Then ϕt in (2.14) is a mapping from Lp(Ft+1,P) to
Lp(Ft ,P) having the properties

if λ ∈ Lp(Ft ,P) and Y ∈ Lp(Ft+1,P), then ϕt (Y + λ) = ϕt (Y ) + λ; (2.15)

if Y, Ỹ ∈ Lp(Ft+1,P) and Y ≤ Ỹ , then ϕt (Y ) ≤ ϕt (Ỹ ); (2.16)

ϕt (0) = 0. (2.17)

(ii) Fix t ∈ {0, . . . , T − 1} and 1 ≤ p1 < p2. Suppose Dt+1/Dt ∈ Lr(Ft+1,P) for
every r ≥ 1. Suppose further that for any p ∈ [p1,p2], ρt is a conditional monetary
risk measure in the sense of Definition 2.14. Then for any ε > 0 such that p − ε ≥ p1,
ϕt in (2.14) can be defined as a mapping from Lp(Ft+1,P) to Lp−ε(Ft ,P) having
the properties (2.15)–(2.17).

Remark 2.18 The value Vt = Vt (X) may be seen as the result of applying the
mapping Vt : Lp((Ft )

T
t=1,P) → Lp−ε(Ft ,P) to X ∈ Lp((Ft )

T
t=1,P) for a suitable

ε ≥ 0 according to Theorem 2.17. If (Vt )
T
t=0 satisfies (2.13), where ϕt satisfies

(2.15)–(2.17), then (Vt )
T
t=0 satisfies the property called time consistency: For ev-

ery pair of times (s, t) with s ≤ t , the two conditions (Xu)
t
u=1 = (X̃u)

t
u=1 and

Vt (X) ≤ Vt(X̃) together imply Vs(X) ≤ Vs(X̃). Detailed investigations of time con-
sistency and related concepts can be found in e.g. Cheridito and Kupper [6, 7].
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The requirement Dt+1/Dt ∈ L∞(Ft+1,P) in statement (i) of Theorem 2.17 leads
to a cleaner definition of the mappings γt , ϕt . However, the boundedness of Dt+1/Dt

may be a too restrictive requirement. Finiteness of all moments of Dt+1/Dt as in
statement (ii) is an appropriate requirement for the subsequent analysis here.

Under the assumptions of Theorem 2.17(i) or (ii), it follows from (2.13) and (2.15)
that

Vt = ϕt ◦ · · · ◦ ϕT −1

( T∑

s=t+1

Xs

)

, (2.18)

where ϕt ◦ · · · ◦ ϕT −1 denotes the composition of the mappings ϕt , . . . , ϕT −1. Defi-
nition 2.3 defines the residual liability values (Vt )

T −1
t=0 given the sequences (Rt )

T −1
t=0

and (Xt )
T
t=1 satisfying Rt ,Xt ∈ L1(Ft ,Q). However, typically one starts with condi-

tional monetary risk measures ρt of the kind in (2.12) and an adapted residual liability
cash flow defined with respect to P and not Q. The following result says that this ap-
proach to defining the value of the residual liability cash flow and the value of the
reference undertaking is fully consistent with Definitions 2.1 and 2.3.

Theorem 2.19 Fix p > 1 and for all t ∈ {1, . . . , T }, let Xt ∈ Lp(Ft ,P), let
Dt ∈ Lr(Ft ,P) for all r ∈ [0,∞), and for all t ∈ {0, . . . , T − 1}, let ρt be a con-
ditional monetary risk measure satisfying (2.12). Set ṼT := 0, R̃T := 0, C̃T := 0 and
for t ∈ {0, . . . , T − 1}, set

Ṽt := ϕt ◦ · · · ◦ ϕT −1

( T∑

s=t+1

Xs

)

,

R̃t := ρt (−Xt+1 − Ṽt+1),

C̃t := γt (Xt+1 + Ṽt+1).

Then Xt, R̃t ∈ L1(Ft ,Q) for t ∈ {1, . . . , T }, and for t ∈ {0, . . . , T − 1},

C̃t = ess sup
τ∈St+1,T +1

E
Q

t

[ τ−1∑

s=t+1

(R̃s−1 − R̃s − Xs)

]

,

Ṽt = ess inf
τ∈St+1,T +1

E
Q

t

[ τ−1∑

s=t+1

Xs + R̃τ−1

]

.

The following result essentially says the following: (1) Adding a nonrandom cash
flow to the original insurance company’s replicating portfolio will not affect the value
L0 of the liability cash flow. The reason is that V0 will change accordingly to offset
the effect of the added nonrandom cash flow. (2) The value of the ownership of the
reference undertaking is zero at all times if and only if

∑T
t=1 Xt = K for some con-

stant K . (3) If the replicating portfolio superreplicates the original liability cash flow,
then the value L0 of the liability is not greater than the market price of the replicat-
ing portfolio. Similarly, if the replicating portfolio subreplicates the original liability
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cash flow, then the value L0 of the liability is not smaller than the market price of the
replicating portfolio.

Theorem 2.20 Suppose that (Vt )
T
t=0 satisfies (2.13) with (ϕt )

T −1
t=0 given by (2.14)

satisfying one of the statements (i) or (ii) of Theorem 2.17.
(i) If X̃r = Xr + b, where bt is F0-measurable for all t ∈ {1, . . . , T }, then with

X̃ := Xo − X̃r ,

T∑

t=1

E
Q

0 [X̃r
t ] + V0(X̃) =

T∑

t=1

E
Q

0 [Xr
t ] + V0(X),

and for all t ∈ {0, . . . , T − 1},

C̃t = E
Q

t

[(
ρt

(− X̃t+1 − Vt+1(X̃)
)− X̃t+1 − Vt+1(X̃)

)+]

= E
Q

t

[(
ρt

(− Xt+1 − Vt+1(X)
)− Xt+1 − Vt+1(X)

)+]

= Ct .

(ii) If there is an F0-measurable K such that
∑T

t=1 Xt = K , then Ct = 0 for all
t ∈ {0, . . . , T − 1} and K = V0.

(iii) If for all t ∈ {0, . . . , T − 1}, Ct = 0 and ρt has the property

if Y ∈ Lp(Ft+1,P) and Pt [Y ≥ ρt (−Y)] = 1, then Y ∈ Lp(Ft ,P), (2.19)

then
∑T

t=1 Xt = V0.

(iv) If Xr
t ≥ Xo

t for all t ∈ {1, . . . , T }, then L0 ≤ E
Q

0 [∑T
t=1 Xr

t ].
(v) If Xr

t ≤ Xo
t for all t ∈ {1, . . . , T }, then L0 ≥ E

Q

0 [∑T
t=1 Xr

t ].

Corollary 2.21 Suppose that (Vt )
T
t=0 satisfies (2.13) with (ϕt )

T −1
t=0 given by (2.14)

with ρt = ESt,p for some p ∈ (0,1) and all t . Then Ct = 0 for all t ∈ {0, . . . , T − 1}
if and only if

∑T
t=1 Xt = V0.

The following example illustrates the valuation procedure under a strong indepen-
dence assumption.

Example 2.22 Consider a cash flow (Xt )
T
t=1 such that Xt is independent of Fs for

s < t and suppose that ρt is a conditional monetary risk measure satisfying (2.12).
Then, since XT is independent of FT −1,

VT −1 = ρT −1(−XT ) −E
Q

T −1

[(
ρT −1(−XT ) − XT

)+]

= ρ0(−XT ) −E
Q

0

[(
ρ0(−XT ) − XT

)+]
,
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and since VT −1 here is nonrandom and XT −1 is independent of FT −2,

VT −2 = ρT −2(−XT −1 − VT −1)

−E
Q

T −2

[(
ρT −2(−XT −1 − VT −1) − XT −1 − VT −1

)+]

= VT −1 + ρ0(−XT −1) −E
Q

0

[(
ρ0(−XT −1) − XT −1

)+]
.

Repeating the above arguments yields

Vt = Vt+1 + ρ0(−Xt+1) −E
Q

0

[(
ρ0(−Xt+1) − Xt+1

)+]
, VT = 0,

i.e., Vt =∑T
s=t+1(ρ0(−Xs) − E

Q

0 [(ρ0(−Xs) − Xs)
+]) is nonrandom for all t . In

particular,

Rt = ρ0(−Xt+1 − Vt+1) = ρ0(−Xt+1) + Vt+1,

Ct = E
Q

0

[(
ρ0(−Xt+1 − Vt+1) − Xt+1 − Vt+1

)+]= E
Q

0

[(
ρ0(−Xt+1) − Xt+1

)+]
.

If further there exist an i.i.d. sequence (Zt )
T
t=1 and nonrandom sequences (μt )

T
t=1 and

(σt )
T
t=1, with σt nonnegative, such that Xt and μt + σtZt are equal in distribution,

then

Ct = σtE
Q

0

[(
ρ0(−Z1) − Z1

)+]
,

Vt =
T∑

s=t+1

(

μs + σs

(
ρ0(−Z1) −E

Q

0

[(
ρ0(−Z1) − Z1

)+])
)

.

In particular, whereas there is a recursive relation (2.8) relating Vt to Vt+1, there is in
general no similar relation relating Ct to Ct+1.

2.3 Replicating portfolios

Definition 2.4 defines the initial value L0 of the liability cash flow as the sum of the
market price E

Q

0 [∑T
t=1 Xr

t ] of a replicating portfolio and the value V0 of the residual
liability cash flow. Alternatively, L0 is the Q-expectation of the cash flow to the pol-
icyholders, optimally stopped by the owner of the reference undertaking. As stated
in Remark 2.7, in order to talk about the value of the liability cash flow, a choice of
replicating portfolio must be made. The original insurance company selects a repli-
cating portfolio earmarked for the liability cash flow before an eventual transfer of
liabilities to the reference undertaking. It should be emphasised that the cash flow
Xr of the replicating portfolio may in principle come from an arbitrarily sophisti-
cated dynamic strategy depending on the chosen criterion for replicating portfolio
selection and the set of replication instruments. The only hard restriction is that the
cash flow Xr is a result of a portfolio or strategy decided by the original insurance
company in accordance with rules decided by the regulator, and that the owner of the
reference undertaking may not in any way influence the outcome of Xr . Regardless
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of which replicating portfolio is selected, the position R0 in the numéraire asset will
always be such that the reference undertaking meets the externally imposed capital
requirement.

The sole purpose of the reference undertaking is to manage the run-off of the lia-
bilities. From a regulator’s perspective, there are no reasons to accept an unnecessary
large balance sheet of the reference undertaking due to C0 being large as a conse-
quence of poor replication of the liabilities. Recall Example 2.9 that explains the
balance sheet of the reference undertaking. Below we recall well-studied criteria for
selection of replicating portfolios and present a new criterion, see (2.23), that says
that a good replicating portfolio is one that makes it likely that all Ct are small. That
is, we advocate selecting the replicating portfolio such that the balance sheet of the
reference undertaking throughout the run-off period is likely to be small at all times.

Consider m (discounted) cash flows Xf,k = (X
f,k
t )Tt=1, k = 1, . . . ,m, of available

financial instruments and denote by Xf the R
m-valued process such that X

f
t de-

notes the (column) vector of time-t cash flows of the m instruments. A portfolio with
portfolio-weight vector v ∈ R

m, representing the number of units of the m instru-
ments, generates the cash flow vTX

f
t at time t .

Various criteria for selection of replicating portfolio have been considered in the
literature. The optimisation problem

inf
v∈Rm

T∑

t=1

E
Q

0

[
(Xo

t − vTX
f
t )2]1/2 (2.20)

is referred to as cash flow matching in Natolski and Werner [21]. Under mild con-
ditions, it is shown in Theorems 1 (and 2) in [21] that an optimal (unique optimal)
solution exists. An alternative cash-flow-matching problem is

inf
v∈Rm

T∑

t=1

E
Q

0

[
(Xo

t − vTX
f
t )2]. (2.21)

Comparisons between (2.20) and (2.21) are found in Natolski and Werner [20]. The
optimisation problem

inf
v∈Rm

E
Q

0

[( T∑

t=1

(Xo
t − vTX

f
t )

)2]1/2

(2.22)

is referred to as terminal-value matching in [20–22]. It is a standard quadratic opti-
misation problem with explicit solution

v̂ = E
Q

0

⎡

⎢
⎣

⎛

⎜
⎝

X
f,1· X

f,1· . . . X
f,1· X

f,m·
...

...

X
f,m· ,X

f,1· . . . X
f,m· X

f,m·

⎞

⎟
⎠

⎤

⎥
⎦

−1

E
Q

0

⎡

⎢
⎣

⎛

⎜
⎝

Xo· X
f,1·

...

Xo· X
f,m·

⎞

⎟
⎠

⎤

⎥
⎦ ,

provided that the matrix inverse exists, where the subscript · means summation over
the index t .
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A replicating portfolio selection criterion should have the property that if perfect
replication is possible, then the optimal replicating portfolio cash flow v̂TXf satisfies
Xo = v̂TXf . This requirement ensures market-consistent liability values, because
then L0 =∑T

t=1 E
Q

0 [Xo
t ] for a replicable liability cash flow.

Remark 2.23 The versions of the optimisation problems (2.20)–(2.22) obtained by
replacing the expectation E

Q

0 by E
P

0 may also be reasonable. Notice that if the only
available replication instruments are zero-coupon bonds in the numéraire asset of
all maturities t = 1, . . . , T (or, equivalently, European call options on the numéraire
asset with maturities t = 1, . . . , T and common strike price 0), then m = T and Xf

is the T × T identity matrix. In this case,

inf
v∈Rm

T∑

t=1

E
P

0

[
(Xo

t − vTX
f
t )2]= inf

v∈Rm

T∑

t=1

E
P

0

[
(Xo

t − vt )
2],

and the unique optimal solution is v̂ = E
P

0 [Xo] which is referred to as the actuarial
best-estimate reserve.

Notice that given the above set of replication instruments, any v̂ which satisfies∑T
t=1 v̂t =∑T

t=1 E
P

0 [Xo
t ] is a solution to the version of the terminal value problem

(2.22) obtained by replacing the expectation E
Q

0 by E
P

0 .

In our setting, the value of the reference undertaking at time t is

Ct = E
Q

t

[(
ρt (−Xt+1 − Vt+1) − Xt+1 − Vt+1

)+]
.

The amount Ct must be provided by the owner of the reference undertaking in order
to meet the externally imposed capital requirements. From the above representation
of Ct together with (2.18), it is seen that a high uncertainty in the outcome of the ag-
gregate residual cash flow (replication error)

∑T
s=t+1 Xs corresponds to a large value

of Ct . It is in the policyholders’ interest that the cash flow they are entitled to is likely
to be close to the cash flow they will receive. Therefore, the regulator should enforce
a selection of replicating portfolios that makes it likely that all the Ct are small, i.e.,
that the values of the reference undertaking throughout the run-off of the liabilities
are likely to be uniformly small. Recall from Theorem 2.20 and Corollary 2.21 that
under mild conditions,

∑T
t=1 Xt is nonrandom if and only if Ct = 0 for all t . We

therefore consider the optimisation problem

inf
v∈Rm

ψ(v) with ψ(v) := E
Q

0

[
max

t∈{0,...,T −1}
Cv

t

]
, (2.23)

where for t = 0, . . . , T − 1,

Cv
t := E

Q

t [(Rv
t − Xv

t+1 − V v
t+1)

+]
with Xv := Xo − vTXf , V v

t := Vt (X
v), Rv

t := ρt (−Xv
t+1 − V v

t+1).
From Theorem 2.20(i), it follows that Cv

t for all t and consequently also ψ(v) in
(2.23) are invariant under translations of Xv by nonrandom sequences (risk-free cash



The value of a liability cash flow subject to capital requirements 147

flows). Therefore the optimisation problem (2.23) will not have a unique solution if
risk-free cash flows are included as replication instruments.

Remark 2.24 If (RS
t )Tt=0 given by RS

t := Rt +∑t
s=1 Xs is a (Q,F)-supermartingale,

then (Ct )
T
t=0 is a (Q,F)-supermartingale; indeed,

Ct = E
Q

t [(Rt − Xt+1 − Rt+1 + Ct+1)
+]

≥ Rt −E
Q

t [Xt+1 + Rt+1] +E
Q

t [Ct+1]
≥ E

Q

t [Ct+1],

and then C0 = 0 implies that Ct = 0 for all t . Notice that (RS
t )Tt=0 is a (Q,F)-super-

martingale exactly when E
Q

t [Rt − Rt+1 − Xt+1] ≥ 0 for all t . From this observation
and (2.1), it follows that the assumption that (RS

t )Tt=0 is a (Q,F)-supermartingale
means that at every time t , the financial value of the next-period cash flow to the
owner of the reference undertaking is nonnegative. Finally, it should be noted that it
is easy to find examples where (Ct )

T
t=0 is not a (Q,F)-supermartingale; see Exam-

ple 2.22 above.

The optimisation problems (2.20)–(2.23) can all be expressed as

inf
v∈Rm


(Xo − vTXf )

for a mapping 
 : Lp((Ft )
T
t=1,Q) → R+ satisfying 
(0) = 0, i.e., optimality of

perfect replication. Existence of a minimiser X̂r := v̂TXf can be expressed as


(Xo − X̂r ) = inf
v∈Rm


(Xo − vTXf ). (2.24)

Conditions for the existence of a minimiser v̂ in (2.23) are presented in Theorem 2.30
below.

Remark 2.25 Consider a liability cash flow Xo that is not fully replicable and assume
the existence of a unique minimiser v̂ to (2.24). Writing V0 = V0(X

o − Xr) to make
explicit the dependence of V0 on the residual liability cash flow Xo − Xr , the value
of Xo, optimally replicated, is

L0 = v̂T
E
Q

0

[ T∑

t=1

X
f
t

]

+ V0(X
o − v̂TXf ).

Consider another liability cash flow X̃o := Xo + Yo which only differs from Xo by a
fully replicable term Yo = vT

Y Xf . Since

inf
v∈Rm


(X̃o − vTXf ) = inf
v∈Rm



(
X̃o − (v + vY )TXf

)= inf
v∈Rm


(Xo − vTXf ),
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the optimal replicating portfolio weights are given by v̂ + vY which implies that the
value of X̃o, optimally replicated, is

L̃0 = (̂v + vY )T
E
Q

0

[ T∑

t=1

X
f
t

]

+ V0
(
X̃o − (̂v + vY )TXf

)

= (̂v + vY )T
E
Q

0

[ T∑

t=1

X
f
t

]

+ V0(X
o − v̂TXf )

= E
Q

0

[ T∑

t=1

Yo
t

]

+ L0,

i.e., the value of X̃o differs from that of Xo by the market price of Yo. This property
of L0 seen as a valuation operator is essentially market consistency in the sense of
Pelsser and Stadje [23, Definition 3.1].

Remark 2.26 The deterministic replicating portfolio cash flow X̂r = E
P

0 [Xo] corre-
sponds to a classical actuarial best-estimate reserve, and solves a cash-flow-matching
problem with only risk-free cash flows in the numéraire asset as replication instru-
ments; see Remark 2.23. In this case, by Theorem 2.20,

L0 =
T∑

t=1

E
P

0 [Xo
t ] + V0(X

o −E
P

0 [Xo]) = V0(X
o).

In particular, if V0(X
o) ≥∑T

t=1 E
P

0 [Xo
t ], then L0 ≥∑T

t=1 E
P

0 [Xo
t ]. As noted in Re-

mark 2.23, any deterministic cash flow X̂r with
∑T

t=1 X̂r
t =∑T

t=1 E
P

0 [Xo
t ] is a solu-

tion to the (alternative) terminal value problem

inf
v∈Rm

E
P

0

[( T∑

t=1

(Xo
t − vTX

f
t )

)2]

,

with only risk-free cash flows in the numéraire asset as replication instruments. In
this case, by Theorem 2.20,

L0 =
T∑

t=1

E
Q

0 [X̂r
t ] + V0(X

o − X̂r ) = V0(X
o).

We now address the questions of existence of an optimal replicating portfolio ac-
cording to the portfolio selection criterion (2.23), and continuity of the value of the
liability cash flow as a function of the portfolio weights of the replicating portfolio.
For t ∈ {1, . . . , T }, define

Zt := (Xo
t ,−(X

f
t )T)T (2.25)
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and, for w ∈ R
m+1, X̃w

t := wTZt . Notice that a residual liability cash flow corre-
sponds to X̃w with w(1) = 1. The reason for introducing this notation is primarily that
it allows us to formulate sufficient conditions for coerciveness that lead to sufficient
conditions for the existence of an optimal replicating portfolio; see Theorem 2.28
below.

Theorem 2.27 Let (Dt )
T
t=0 satisfy either of the conditions (i) or (ii) in Theorem 2.17.

Suppose that for each t ∈ {0, . . . , T − 1}, ρt : L1(Ft+1,P) → L1(Ft ,P) in (2.14)
is a conditional monetary risk measure in the sense of Definition 2.14 such that
for every p ∈ [1,∞], we have ρt (Y ) ∈ Lp(Ft ,P) if Y ∈ Lp(Ft+1,P), and ρt is
L1-Lipschitz-continuous in the sense that

|ρt (−Y) − ρt (−Ỹ )| ≤ KE
P

t [|Y − Ỹ |], Y, Ỹ ∈ L1(Ft+1,P),

for some K ∈ (0,∞). If (Zt )
T
t=1 ∈ Lp((Ft )

T
t=1,P) for some p > 1, then

R
m+1 
 w �→ ϕ0 ◦ · · · ◦ ϕT −1

( T∑

t=1

X̃w
t

)

and R
m 
 v �→ V0(X

v) are Lipschitz-continuous.

Notice that the Lipschitz property of ρt in Theorem 2.27 holds for ESt,p , but not
for VaRt,p . If the latter risk measure is chosen, then conditions need to be imposed
on the models for the cash flows in order to establish continuity properties.

For t = 0, . . . , T − 1, set

Ṽ w
t := ϕt ◦ · · · ◦ ϕT −1

( T∑

s=t+1

X̃w
s

)

,

R̃w
t := ρt (−X̃w

t+1 − Ṽ w
t+1),

C̃w
t := E

Q

t [(R̃w
t − X̃w

t+1 − Ṽ w
t+1)

+],
ψ̃(w) := E

Q

0

[
max

t∈{0,...,T −1}
C̃w

t

]
.

Under mild conditions, it can be shown that ψ̃ and ψ given by (2.23) are coercive, i.e.,

lim|w|→∞ ψ̃(w) = ∞, lim|v|→∞ψ(v) = ∞.

Theorem 2.28 Suppose for t = 0, . . . , T − 1 that ρt is positively homogeneous in
the sense that ρt (λY ) = λρt (Y ) for λ ∈ R+. Suppose further that inf|w|=1 ψ̃(w) > 0.
Then lim|w|→∞ ψ̃(w) = ∞ and lim|v|→∞ ψ(v) = ∞, where ψ is given by (2.23).

Remark 2.29 Notice that the condition inf|w|=1 ψ̃(w) > 0 means that perfect repli-
cation is not possible. It also disqualifies risk-free cash flows as replication instru-
ments. The argument is as follows. If one of the replication instruments has a risk-
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free cash flow x so that Xf,k = x P-a.s., then Xf,k = x Q-a.s. and wTZ = x for some
w ∈R

m+1 with |w| = 1. Then ψ̃(w) = 0.

For t ∈ {0, . . . , T − 1}, set

ρ◦
t,T −1 :=

{
ρt , t = T − 1,

ρt ◦ (−ρt+1) ◦ · · · ◦ (−ρT −1), t < T − 1.

Theorem 2.30 Suppose for t = 0, . . . , T −1 that ρt is positively homogeneous in the
sense that ρt (λY ) = λρt (Y ) for λ ∈ R+. Suppose further that ψ in (2.23) is continu-
ous and that for all w ∈R

m+1 \ {0}, there exists t ∈ {0, . . . , T − 1} such that

P

[

(ρ◦
t,T −1 − ρ◦

t+1,T −1)

(

− wT
T∑

s=t+1

Zs

)

> 0

]

> 0, (2.26)

where Zt+1, . . . ,ZT are given by (2.25) and ρ◦
T ,T −1(−wTZT ) := wTZT . Then there

exists a solution v̂ ∈ R
m to (2.23).

Remark 2.31 The conditions of Theorem 2.30 are sufficient, but not necessary for
the existence of a solution to (2.23). For instance, including risk-free cash flows as
replication instruments would violate the condition that (2.26) holds for some t and
all nonzero w without affecting either the optimal portfolio weights in the original
replication instruments or the value of the liability cash flow; see Theorem 2.20.

Condition (2.26) is not very transparent. The following lemma essentially says
that (2.26) is satisfied for commonly encountered risk measures whenever the cash
flows Z1, . . . ,ZT are linearly independent.

Lemma 2.32 Let Z1, . . . ,ZT be given by (2.25). Consider the following statements:
(i) wT∑T

t=1 Zt /∈F0 for all w ∈ R
m+1 \ {0},

(ii) ρt (−wT∑T
s=t+1 Zs) ≥ E

P
t [wT∑T

s=t+1 Zs] for all w ∈ R
m+1 \ {0} and

t ∈ {0, . . . , T − 1}.
Then (i) and (ii) together imply (2.26) for all w ∈R

m+1 \{0} and t ∈{0, . . . , T − 1}.

From Lemma 2.32, it follows that Theorem 2.30 simplifies considerably for the
specific choice of conditional risk measure ESt,p .

Corollary 2.33 For t = 0, . . . , T − 1, suppose ρt = ESt,p for some p ∈ (0,1) and,
for all w ∈R

m+1 \ {0}, that wT∑T
t=1 Zt /∈F0, where Z1, . . . ,ZT are given by (2.25).

Then there exists a solution v̂ ∈R
m to (2.23).

3 Gaussian cash flows

This section serves one purpose: it demonstrates that if the residual cash flow and
the processes generating the filtration can be represented by a (possibly multivariate)
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Gaussian process with respect to P, and if the change of measure between P and Q

is given by a standard Girsanov transformation, then everything can be computed ex-
plicitly. It is likely that in many situations, the benefits of having interpretable explicit
closed-form expression outweighs the disadvantages of having to impose these rather
strong assumptions.

Let (εt )
T
t=1 be a sequence of n-dimensional independent random vectors that are

standard normally distributed under P. For t = 1, . . . , T and nonrandom At ∈ R
n,

Bt,1, . . . ,Bt,t ∈R
n×n, let

Gt := At +
t∑

s=1

Bt,sεs .

Let (Gt )
T
t=0, with G0 = {∅,�}, be the filtration generated by the Gaussian process

(Gt )
T
t=1. In what follows, EP

t and E
Q

t mean conditional expectations with respect
to Gt . (Gt )

T
t=1, seen as a column vector valued process, is the result of applying an

affine transformation x �→ A+Bx to (εt )
T
t=1, where B is a lower-triangular block ma-

trix with blocks Bi,j and determinant
∏T

t=1 det(Bt,t ). In order to avoid unnecessary
technicalities, we assume that det(Bt,t ) �= 0 for all t . This implies that the filtration
generated by (εt )

T
t=1 equals the filtration generated by (Gt )

T
t=1.

A natural interpretation of the Gaussian model is as follows: Xo = G(1) is the
discounted liability cash flow, G(2), . . . ,G(m+1) represent discounted cash flows of
replication instruments, and G(m+2), . . . ,G(n) are application-specific Gaussian pro-
cesses contributing to the filtration.

For a nonrandom sequence (λt )
T
t=1, λt ∈ R

n, let

Dt := exp

( t∑

s=1

(
λT

s εs − 1

2
λT

s λs

))

, t = 1, . . . , T .

We let the measure Q be defined in terms of the (P,G)-martingale (Dt )
T
t=1: for

any Gt -measurable sufficiently integrable Z and s < t , EQ

s [Z] = D−1
s E

P
s [DtZ]. This

choice has several pleasant consequences: for arbitrary vectors gs ∈R
n and u > t ,

E
Q

t

[ u∑

s=1

gT
s Gs

]

−E
P

t

[ u∑

s=1

gT
s Gs

]

∈ G0,

VarQt

[ u∑

s=1

gT
s Gs

]

= VarPt

[ u∑

s=1

gT
s Gs

]

∈ G0,

i.e., the conditional expectations with respect to Q and P only differ by a constant
and the conditional variances with respect to Q and P are equal and nonrandom.

Definition 3.1 The triple ((Gt )
T
t=1, (Dt )

T
t=1, (Gt )

T
t=0) as defined above is called a

Gaussian model.

The Gaussian model leads to explicit expressions for the quantities Rt , Ct and
Vt when combined with conditional monetary risk measures satisfying (2.12). No-
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tice that for u > t ,
∑u

s=1 gT
s Gs − E

P
t [∑u

s=1 gT
s Gs] is independent of Gt , and if

VarPt [∑u
s=1 gT

s Gs] �= 0,

VarPt

[ u∑

s=1

gT
s Gs

]−1/2( u∑

s=1

gT
s Gs −E

P

t

[ u∑

s=1

gT
s Gs

])

is standard normally distributed with respect to P. Since a risk measure ρt sat-
isfying (2.12) has the additional property that ρt (λY ) = λρt (Y ) if λ ∈ R+ and
Y ∈ Lp(Ft+1,P) (positive homogeneity), it follows that

ρt

( u∑

s=1

gT
s Gs

)

= −E
P

t

[ u∑

s=1

gT
s Gs

]

+ VarPt

[ u∑

s=1

gT
s Gs

]1/2

r0,

where

r0 :=
∫ 1

0
�−1(u)dM(u). (3.1)

We first derive an explicit expression for the value of a general Gaussian liability
cash flow; the generality lies in that Xt is allowed to be an arbitrary linear combi-
nation gT

t Gt , where gt ∈ R
n may be time-dependent. Then we return to the relevant

special case when gt = g for all t and g(1) = 1, (g(k))m+1
k=2 = v ∈ R

m and g(k) = 0 for
k > m + 1.

Theorem 3.2 Let ((Gt )
T
t=1, (Dt )

T
t=1, (Gt )

T
t=0) be a Gaussian model and define the

process X by Xt := gT
t Gt for t = 1, . . . , T . For t = 0, . . . , T −1, let ρt be conditional

monetary risk measures satisfying (2.12) for a common probability distribution M .
Let r0 be given by (3.1). Then

Vt =
T∑

s=t+1

E
Q

t [Xs] + K
Q

t =
T∑

s=t+1

E
P

t [Xs] + KP

t ,

where, with e1 standard normally distributed with respect to P,

K
Q

t =
T∑

s=t+1

(

σsr0 −
T∑

u=s

gT
uBu,sλs −E

P

0

[(

σs(r0 − e1) −
T∑

u=s

gT
uBu,sλs

)+])
,

KP

t =
T∑

s=t+1

(

σsr0 −E
P

0

[(

σs(r0 − e1) −
T∑

u=s

gT
uBu,sλs

)+])
,

σ 2
s = VarPs−1

[ T∑

u=s

Xu

]

− VarPs

[ T∑

u=s

Xu

]

=
T∑

j=s

T∑

k=s

gT
j Bj,sB

T
k,sgk.

Moreover,

Ct := ρt (−Xt+1 − Vt+1) − Vt = E
P

0

[(

σt+1
(
r0 − e1

)−
T∑

u=t+1

gT
uBu,t+1λt+1

)+]
.
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Remark 3.3 Notice that

Ct = E
Q

t

[(
ρt (−Xt+1 − Vt+1) − Xt+1 − Vt+1

)+]

= 1

1 + ηt

E
P

t

[(
ρt (−Xt+1 − Vt+1) − Xt+1 − Vt+1

)+]
,

where, given the setting in Theorem 3.2,

1

1 + ηt

= E
P

0 [(σt+1(r0 − e1) −∑T
u=t+1 gT

uBu,t+1λt+1)
+]

E
P

0 [(σt+1(r0 − e1))+] .

In particular, ηt ≥ 0 for every t if
∑T

u=t+1 gT
uBu,t+1λt+1 ≥ 0 for every t . Since

T∑

u=t+1

E
Q

t [Xu] −
T∑

u=t+1

E
P

t [Xu] =
T∑

u=t+1

u∑

s=t+1

gT
uBu,sλs =

T∑

s=t+1

T∑

u=s

gT
uBu,sλs,

we see that ηt ≥ 0 for every t holds if
∑T

u=t+1 E
Q

t [Xu] ≥∑T
u=t+1 E

P
t [Xu] for every t .

The following result presents the value of the liability cash flow when the repli-
cating portfolio is a static portfolio with portfolio weights solving (2.23).

Theorem 3.4 Let m,n ∈ N be such that n ≥ 2 and 1 ≤ m ≤ n − 1 and consider an
n-dimensional Gaussian model ((Gt )

T
t=1, (Dt )

T
t=1, (Gt )

T
t=0). Let Xo = G(1) denote

a discounted liability cash flow and Xf,k := G(k+1), k = 1, . . . ,m, discounted cash
flows of replication instruments. For t = 0, . . . , T − 1, let ρt be conditional monetary
risk measures satisfying (2.12) for a common probability distribution M . Then there
exists a solution to (2.23), and the value of the liability is given by

L0 =
T∑

t=1

E
Q

0 [Xo
t ] + K̂

Q

0 ,

where, with St :=∑T
u=t Bu,t , e1 standard normally distributed with respect to P, and

r0 given by (3.1),

K̂
Q

0 =
T∑

t=1

(
σ̂t r0 − ĝTStλt −E

P

0

[(
σ̂t (r0 − e1) − ĝTStλt

)+])
,

σ̂ 2
t = ĝTStS

T
t ĝ,

where ĝ is the minimiser in {g ∈ R
n : g(1) = 1, g(k) = 0 for k > m + 1} of

g �→
T −1∑

t=0

E
P

0

[(
(gTSt+1S

T
t+1g)1/2(r0 − e1) − gTSt+1λt+1

)+]
.
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4 Conclusions

We have presented a framework for market-consistent multi-period valuation of lia-
bility cash flows in discrete time subject to repeated capital requirements, taking into
account capital requirements in terms of conditional monetary risk measures, (par-
tial) replication of the liability cash flow, and limited liability for the owner of the
entity managing the run-off of the liability (the reference undertaking). The frame-
work is general in the sense that it allows a wide range of conditional monetary risk
measures, arbitrary liability cash flows and arbitrary replication criteria, although we
emphasise that the choice of replicating portfolio criterion is important for the val-
uation framework to have sound economic implications. We advocate choosing the
replicating portfolio such that the market-consistent value of the entity managing the
liability run-off is minimised. This choice ensures good replication of the liability
cash flow when this is possible. To the best of our knowledge, our valuation frame-
work is the first that combines all the above features consistently with the underlying
principles of the current regulatory frameworks.

5 Proofs

Proof of Theorem 2.8 We first prove that Ct = E
Q

t [(Rt − Xt+1 − Vt+1)
+] for any

t ∈ {0, . . . , T − 1}, from which (2.7) follows. We have

Ct = ess sup
τ∈St+1,T +1

E
Q

t

[ τ−1∑

s=t+1

(Rs−1 − Rs − Xs)

]

= ess sup
τ∈St+1,T +1

E
Q

t

[

1{τ>t+1}
( τ−1∑

s=t+1

(Rs−1 − Rs − Xs)

)]

= ess sup
τ∈St+1,T +1

E
Q

t

[

1{τ>t+1}
(

(Rt − Rt+1 − Xt+1)

+E
Q

t+1

[ τ−1∑

s=t+2

(Rs−1 − Rs − Xs)
])]

= ess sup
A∈Ft+1

E
Q

t

[

1A

(

(Rt − Rt+1 − Xt+1)

+ ess sup
τ∈St+2,T +1

E
Q

t+1

[ τ−1∑

s=t+2

(Rs−1 − Rs − Xs)
])]

= ess sup
A∈Ft+1

E
Q

t [1A(Rt − Rt+1 − Xt+1 + Ct+1)]

= ess sup
A∈Ft+1

E
Q

t [1A(Rt − Xt+1 − Vt+1)]

= E
Q

t [(Rt − Xt+1 − Vt+1)
+],



The value of a liability cash flow subject to capital requirements 155

where we have used the relation Vt+1 = Rt+1 − Ct+1 and that the ess sup in the
second to last expression above is attained by choosing A = {Rt −Xt+1 −Vt+1 ≥ 0}.
Notice that (2.8) now follows immediately from the relation Vt = Rt −Ct . Moreover,
the sequence of stopping times (̂τt )

T
t=0 given by τ̂T := T + 1 and

τ̂t := (t + 1)1{Rt−Xt+1−Vt+1<0} + τ̂t+11{Rt−Xt+1−Vt+1≥0}, t < T ,

is optimal. Since (̂τt )
T −1
t=0 = (τ ∗

t )T −1
t=0 , the proof of statements (i) and (ii) is complete.

We now show statement (iii). Let the sequences (Ct )
T
t=0 and (Vt )

T
t=0 be given

by (2.7) and (2.8) and the sequences (C̃t )
T
t=0 and (Ṽt )

T
t=0 by (2.4) and (2.5). From

statement (i), we then know that (C̃t )
T
t=0 and (Ṽt )

T
t=0 also satisfy (2.7) and (2.8).

Hence (C̃t )
T
t=0 = (Ct )

T
t=0 and (Ṽt )

T
t=0 = (Vt )

T
t=0 and thus statement (iii) follows. �

The following remark illustrates that Theorem 2.8 can be proved by identifying
the cash flows considered here with processes and stopping times that form key in-
gredients in the framework for valuation of American contingent claims in Föllmer
and Schied [12, Chap. 6].

Remark 5.1 Let

Ht :=
t−1∑

s=1

(Rs−1 − Rs − Xs), t ∈ {0, . . . , T + 1},

UT +1 := HT +1, Ut := Ht ∨E
Q

t [Ut+1], t ∈ {0, . . . , T }.

By [12, Theorem 6.18] and Definitions 2.1 and 2.3,

Ut = ess sup
τ∈St,T +1

E
Q

t [Hτ ]

= ess sup
τ∈St+1,T +1

E
Q

t [Hτ ] ∨ Ht

= (Ht+1 + Ct) ∨ Ht

= (Ht + Rt−1 − Rt − Xt + Ct) ∨ Ht

= Ht + (Rt−1 − Xt − Vt )
+.

Since H0 = H1 = 0, it follows that U0 = C0. Let

τ (t)
max := min{s ≥ t : EQ

s [Us+1] < Us} ∧ (T + 1), t ∈ {0, . . . , T }.

By [12, Theorem 6.21], τ
(t)
max is the largest optimal stopping time, i.e., the maxi-

mal solution to ess supτ∈St+1,T +1
E
Q

t [Hτ ] ∨ Ht . We observe, similarly to above, that
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for s > 0,

E
Q

s [Us+1] < Us ⇐⇒ E
Q

s [Us+1] < Hs

⇐⇒ Hs+1 + Cs < Hs

⇐⇒ Rs−1 − Xs − Vs < 0.

Similarly, for s = 0, EQ[U1] < U0 ⇔ C0 < 0, which is not possible in the current
setting. Hence, conditionally on {τ (t)

max > t}, we have τ
(t)
max = τ ∗

t , where τ ∗
t is defined

in Theorem 2.8. With this stopping strategy, conditionally on {τ (t)
max > t}, we obtain

Ut = (Ht + Rt−1 − Rt − Xt + Ct) ∨ Ht

= Ht + Rt−1 − Rt − Xt + Ct

= Ht+1 + Ct ,

Ut = Ht ∨E
Q

t [Ut+1]
= E

Q

t [Ut+1]
= E

Q

t [Ht+1 + (Rt − Xt+1 − Vt+1)
+]

= Ht+1 +E
Q

t [(Rt − Xt+1 − Vt+1)
+].

This implies (2.7), and therefore also (2.8).

Proof of Theorem 2.17 We prove the more involved statement (ii). Statement (i) is
proved with the same arguments. We have

E
P

[
E
Q

t

[(
ρt (−Y) − Y

)+]p]= E
P

[

E
P

t

[Dt+1

Dt

(
ρt (−Y) − Y

)+]p
]

≤ E
P

[

E
P

t

[(Dt+1

Dt

)p((
ρt (−Y) − Y

)+)p]
]

= E
P

[(
Dt+1

Dt

)p((
ρt (−Y) − Y

)+)p
]

,

where the inequality is due to Jensen’s inequality for conditional expectations. More-
over, for every r > 1, by Hölder’s inequality,

E
P

[(
Dt+1

Dt

)p((
ρt (−Y) − Y

)+)p
]

≤ E
P

[(
Dt+1

Dt

)pr] 1
r

E
P

[((
ρt (−Y) − Y

)+)p r
r−1
] r−1

r
.
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For r > 1 sufficiently large, it follows from the assumptions that the two expectations
exist and are finite. Finally, it follows from Minkowski’s inequality that

E
P

[(
ρt (−Y) −E

Q

t

[(
ρt (−Y) − Y

)+])p] 1
p

≤ E
P[|ρt (−Y)|p] 1

p +E
P

[
E
Q

t

[(
ρt (−Y) − Y

)+]p] 1
p
.

The finiteness of the first term follows from the assumptions, and the finiteness of the
second term has been proved above. This proves that the mapping is well defined.
The remaining part of statement (ii) follows, with minor modifications, from Engsner
et al. [10, Proposition 1]. �

Proof of Theorem 2.19 By Theorem 2.8(iii), it is sufficient to show that for any t , we
have Xt, R̃t ∈ L1(Ft ,Q). By Theorem 2.17, there exists ε ≥ 0 such that p − ε > 1
and Ṽt+1 ∈ Lp−ε(Ft+1,P). Moreover, Xt+1 ∈ Lp−ε(Ft+1,P). By Theorem 2.16, it
now follows that R̃t := ρt (−Xt+1 − Ṽt+1) ∈ Lp−ε(Ft ,P). By Hölder’s inequality,

E
Q

0 [|R̃t |] = E
P

0 [Dt |R̃t |] ≤ E
P

0 [Dr
t ]

1
r E

P

0

[|R̃t | r
r−1
] r−1

r ,

where r may be chosen sufficiently large for both factors to exist and be finite. The
completely analogous argument for showing E

Q

0 [|Xt |] < ∞ is omitted. �

Proof of Theorem 2.20 (i) The statement follows immediately from the properties
(2.11) and Vt(X̃) = Vt (X) −∑T

s=t+1 bs , which is due to (2.18).
(ii) Notice that for all t ∈ {1, . . . , T }, due to (2.15) and (2.17), we have

Vt +
t∑

s=1

Xs = ϕt ◦ · · · ◦ ϕT −1

( T∑

s=t+1

Xs

)

+
t∑

s=1

Xs

= ϕt ◦ · · · ◦ ϕT −1

( T∑

s=1

Xs

)

= K.

Hence for all t ∈ {1, . . . , T }, Xt + Vt = K −∑t−1
s=1 Xs is Ft−1-measurable. This in

turn, using (2.11), implies that for all t ,

Ct := E
Q

t

[(
ρt (−Xt+1 − Vt+1) − Xt+1 − Vt+1

)+]= 0.

(iii) By assumption, for t ∈ {0, . . . , T − 1},
E
Q

t

[(
ρt (−Xt+1 − Vt+1) − Xt+1 − Vt+1

)+]= 0.

Hence, with ϕ◦
u,v := ϕu ◦ · · · ◦ ϕv , for t ∈ {0, . . . , T − 1}, we have

E
Q

t

[(

ρt

(
− ϕ◦

t+1,T −1

( T∑

s=1

Xs

))
− ϕ◦

t+1,T −1

( T∑

s=1

Xs

))+]
= 0,
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where ϕ◦
T ,T −1(

∑T
s=1 Xs) =∑T

s=1 Xs . Hence, for t ∈ {0, . . . , T − 1},

Pt

[

ϕ◦
t+1,T −1

( T∑

s=1

Xs

)

≥ ρt

(

− ϕ◦
t+1,T −1

( T∑

s=1

Xs

))]

= 1. (5.1)

If ρt has the property (2.19), then (5.1) implies that ϕ◦
t+1,T −1(

∑T
s=1 Xs) is Ft -meas-

urable. Hence, for t ∈ {0, . . . , T − 1},

ϕ◦
t+1,T −1

( T∑

s=1

Xs

)

= ϕ◦
t,T −1

( T∑

s=1

Xs

)

.

In particular,

T∑

s=1

Xs = ϕ◦
T ,T −1

( T∑

s=1

Xs

)

= ϕ◦
0,T −1

( T∑

s=1

Xs

)

= V0.

(iv) and (v) The properties (2.16)–(2.18) together imply that V0 ≤ 0 if Xr
t ≥ Xo

t for
all t , and V0 ≥ 0 if Xr

t ≤ Xo
t for all t . The conclusion now follows from the definition

of L0. �

Proof of Corollary 2.21 Consider the representation

ESt,p(−Y) = 1

p

∫ 1

1−p

F−1
t,Y (u)du.

By Theorem 2.20, it is sufficient to verify the property (2.19) for ESt,p .
If Pt [Y ≥ F−1

t,Y (1 − p)] < 1, then

1 = Pt [Y ≥ ESt,p(−Y)] ≤ Pt [Y ≥ F−1
t,Y (1 − p)] < 1

which is a contradiction. Hence we have Pt [Y ≥ F−1
t,Y (1 − p)] = 1 and consequently

F−1
t,Y (q) = F−1

t,Y (1 − p) for all q ≤ 1 − p.

If F−1
t,Y (q) > F−1

t,Y (1 −p) for some q > 1 −p, then ESt,p(−Y) > F−1
t,Y (1 −p) and

1 = Pt [Y ≥ ESt,p(−Y)]
= Pt [Y ≥ ESt,p(−Y),Y > F−1

t,Y (1 − p)]
+ Pt [Y ≥ ESt,p(−Y),Y = F−1

t,Y (1 − p)]
= Pt [Y ≥ ESt,p(−Y),Y > F−1

t,Y (1 − p)]
≤ 1 − Ft,Y

(
F−1

t,Y (1 − p)
)

≤ p

< 1
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which is a contradiction. Hence we have F−1
t,Y (q) = F−1

t,Y (1 − p) for all q which im-
plies that Y is Ft -measurable. �

Proof of Theorem 2.27 For w ∈ R
m+1 and t ∈ {0, . . . , T − 1}, define

V w
t := ϕt ◦ · · · ◦ ϕT −1

( T∑

s=t+1

wTZs

)

.

We prove the statement inductively. Assume that for some Bt+2 ∈ L1(Ft+2,P) taking
nonnegative values, we have

|V w
t+1 − V v

t+1| ≤ ‖v − w‖1E
P

t+1[Bt+2],
where ‖ · ‖p denotes the Euclidean p-norm in R

m+1. We start by showing the induc-
tion step, noting that verifying the induction base is trivial since V w

T = 0. Defining
Yw

t+1 := wTZt+1 + V w
t+1 and applying Hölder’s inequality gives

|Yw
t+1 − Yv

t+1| ≤ |V w
t+1 − V v

t+1| + |wTZt+1 − vTZt+1|
≤ ‖v − w‖1E

P

t+1[Bt+2] + |wTZt+1 − vTZt+1|
≤ ‖v − w‖1E

P

t+1[‖Zt+1‖∞ + Bt+2].
Now due to the L1-Lipschitz-continuity of ρt ,

|ρt (−Yw
t+1) − ρt (−Yv

t+1)| ≤ KE
P

t [|Yw
t+1 − Yv

t+1|]
≤ K‖v − w‖1E

P

t [‖Zt+1‖∞ + Bt+2].

With Cw
t := E

Q

t [(ρt (−Yw
t+1) − Yw

t+1)
+], the subadditivity of x �→ x+ yields

Cw
t − Cv

t = E
Q

t

[(
ρt (−Yw

t+1) − Yw
t+1

)+ − (ρt (−Yv
t+1) − Yv

t+1

)+]

≤ E
Q

t

[(
ρt (−Yw

t+1) − Yw
t+1 − ρt (−Yv

t+1) + Yv
t+1

)+]

≤ E
Q

t [|ρt (−Yw
t+1) − Yw

t+1 − ρt (−Yv
t+1) + Yv

t+1|],
Cw

t − Cv
t ≥ E

Q

t

[− (ρt (−Yv
t+1) − Yv

t+1 − ρt (−Yw
t+1) + Yw

t+1

)+]

≥ −E
Q

t [|ρt (−Yw
t+1) − Yw

t+1 − ρt (−Yv
t+1) + Yv

t+1|],
from which it follows that

|Cw
t − Cv

t | ≤ E
Q

t [|ρt (−Yw
t+1) − Yw

t+1 − ρt (−Yv
t+1) + Yv

t+1|]
≤ |ρt (−Yw

t+1) − ρt (−Yv
t+1)| +E

Q

t [|Yw
t+1 − Yv

t+1|].
Moreover, we have

E
Q

t [|Yw
t+1 − Yv

t+1|] ≤ E
Q

t

[‖v − w‖1E
P

t+1[‖Zt+1‖∞ + Bt+2]
]

= ‖v − w‖1E
P

t

[
Dt+1

Dt

E
P

t+1[‖Zt+1‖∞ + Bt+2]
]

.
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Hence we get

|V w
t − V v

t | ≤ |ρt (−Yw
t+1) − ρt (−Yv

t+1)| + |Cw
t − Cv

t |
≤ 2K‖v − w‖1E

P

t [‖Zt+1‖∞ + Bt+2]

+ ‖v − w‖1E
P

t

[
Dt+1

Dt

E
P

t+1[‖Zt+1‖∞ + Bt+2]
]

= ‖v − w‖1E
P

t

[

E
P

t+1[‖Zt+1‖∞ + Bt+2]
(

2K + Dt+1

Dt

)]

= ‖v − w‖1E
P

t [Bt+1],
where

Bt+1 := E
P

t+1[‖Zt+1‖∞ + Bt+2]
(

2K + Dt+1

Dt

)

, BT +1 = 0.

In particular, |V w
0 − V v

0 | ≤ ‖v − w‖1E
P

0 [B1]. Now what remains is to show that
E
P

0 [B1] < ∞. For the Euclidean norms, the inequality ‖x‖p ≤ ‖x‖1 holds for
p ∈ [1,∞]. In particular, for each t = 1, . . . , T , we have 0 ≤ Bt ≤ B̃t , where

B̃t+1 := E
P

t+1[‖Zt+1‖1 + B̃t+2]
(

2K + Dt+1

Dt

)

, B̃T +1 = 0.

Recall that for t = 1, . . . , T , all the Z
(k)
t are in Lpt (Ft ,P) for some pt > 1. Moreover,

notice that if B̃t+2 ∈ Lqt+2(Ft+2,P) for qt+2 > 1, then E
P

t+1[B̃t+2] ∈ Lqt+2(Ft+1,P)

and, for rt+1 = min(pt+1, qt+2),

E
P

t+1[‖Zt+1‖1 + B̃t+2] ∈ Lrt+1(Ft+1).

Hence, for any ε > 0,

B̃t+1 = E
P

t+1[‖Zt+1‖1 + B̃t+2]
(

2K + Dt+1

Dt

)

∈ Lrt+1−ε(Ft+1).

Since B̃T +1 = 0, we may choose ε > 0 small enough so that B̃t ∈ L1(Ft ,P)

for t = 1, . . . , T . Hence, also Bt ∈ L1(Ft ,P) for t = 1, . . . , T . Finally, notice
that Xv

t := Xo
t − vTX

f
t = wTZt if w ∈ R

m+1 is chosen such that w(1) = 1 and
(w(k))m+1

k=2 = v. Therefore, we have also shown that v �→ V0(X
v) is Lipschitz-

continuous. �

Proof of Theorem 2.28 Positive homogeneity of ρt implies positive homogeneity
of ϕt , which implies Ṽ w

t (λX̃w) = λṼ w
t (X̃w) and further that ψ̃(λw) = λψ̃(w). In

particular, we can write

ψ̃(w) = |w|ψ̃(w/|w|) ≥ |w| inf|w|=1
ψ̃(w)
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so that lim|w|→∞ ψ̃(w) = ∞ follows from inf|w|=1 ψ̃(w) > 0. For the second state-

ment, notice that Xv
t := Xo

t − vTX
f
t = wTZt if w ∈ R

m+1 is chosen such that
we have w(1) = 1 and (w(k))m+1

k=2 = v. Therefore, lim|w|→∞ ψ̃(w) = ∞ implies
lim|v|→∞ ψ(v) = ∞. �

Proof of Theorem 2.30 Take w ∈ R
m+1 \ {0}. Suppose C̃w

t = 0 Q-a.s. for all t . Then
Ṽ w

t = R̃w
t Q-a.s. for all t and R̃w

t − X̃w
t+1 − R̃w

t+1 ≤ 0 Q-a.s. for all t , which is equiv-
alent to R̃w

t − X̃w
t+1 − R̃w

t+1 ≤ 0 P-a.s. for all t since P and Q are equivalent. Notice
that

R̃w
t = ρt (−X̃w

t+1 − R̃w
t+1) = ρt

(− X̃w
t+1 − ρt+1(−X̃w

t+2 − R̃w
t+2)
)

= ρt ◦ (−ρt+1) ◦ · · · ◦ (−ρT −1)

(

−
T∑

s=t+1

X̃w
s

)

.

The inequality R̃w
t − X̃w

t+1 − R̃w
t+1 ≤ 0 P-a.s. can thus be expressed as

(ρ◦
t,T −1 − ρ◦

t+1,T −1)
(− wT(Zt+1 + · · · + ZT )

)≤ 0 P-a.s.

However, this contradicts the assumption in the statement of the theorem. Therefore
we conclude that C̃w

t > 0 Q-a.s. for some t , which implies that ψ̃(w) > 0. Therefore,
by Theorem 2.28, ψ is coercive; so if a minimum exists, it exists in some compact
set in R

m. However, a continuous function on a compact set attains its infimum. �

Proof of Lemma 2.32 We prove the statement by proving the reversed implication:
given (ii), if there exists some w such that (2.26) does not hold for any t , then (i) does
not hold.

Assume that (ii) holds and there exists some w such that (2.26) does not hold for
any t . We prove by induction that wT(Zt+1 + · · · + ZT ) ∈Ft for t = 0, . . . , T − 1.

Induction base: Since (2.26) does not hold, ρT −1(−wTZT ) ≤ wTZT . However,
due to (ii), ρT −1(−wTZT ) ≥ E

P

T −1[wTZT ]. Therefore we get

wTZT = ρT −1(−wTZT ) ∈ FT −1.

Induction step: Assume that wT(Zt+2 + · · · + ZT ) ∈ Ft+1. Since (2.26) does not
hold, (ρ◦

t,T −1 −ρ◦
t+1,T −1)(−wT(Zt+1 +· · ·+ZT )) ≤ 0. Using the translation invari-

ance property (2.11) of the ρt , the inequality simplifies to

ρt

(− wT(Zt+1 + · · · + ZT )
)≤ wT(Zt+1 + · · · + ZT ).

Then analogously to the proof for the induction base, (ii) implies that

wT(Zt+1 + · · · + ZT ) = ρt

(− wT(Zt+1 + · · · + ZT )
) ∈Ft ,

which completes the proof of the induction step.
Using the proved result for t = 0 yields wT(Z1 + · · · + ZT ) ∈ F0, i.e., (i) does not

hold. �
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Proof of Corollary 2.33 Note that expected shortfall is Lipschitz-continuous and for
any p satisfies the property ESt,p(−X) ≥ Et [X]. The conclusion then immediately
follows from combining Theorems 2.27, 2.28, 2.30 and Lemma 2.32. �

Lemma 5.2 For u < v, EQ

u [Gv] = E
P
u[Gv] +∑v

s=u+1 Bv,sλs .

Proof

E
Q

u [Gv] = Av +
u∑

s=1

Bv,sεs +
v∑

s=u+1

Bv,sE
P

u

[
Dv

Du

εs

]

= Av +
u∑

s=1

Bv,sεs +
v∑

s=u+1

Bv,sE
P

0

[

exp

(

λT
s ε1 − 1

2
λT

s λs

)

ε1

]

= Av +
u∑

s=1

Bv,sεs +
v∑

s=u+1

Bv,sλs

= E
P

u[Gv] +
v∑

s=u+1

Bv,sλs.
�

Lemma 5.3 If Xs := gT
s Gs for all s, then

E
P

t

[

E
Q

t+1

[ T∑

s=t+1

Xs

]]

= E
Q

t

[ T∑

s=t+1

Xs

]

−
T∑

s=t+1

gT
s Bs,t+1λt+1.

Proof For s ≥ t + 1, with an empty sum defined as 0, it follows from Lemma 5.2 that

E
Q

t+1[Xs] = E
P

t+1[Xs] + gT
s

s∑

u=t+2

Bs,uλu,

E
P

t

[

E
Q

t+1

[ T∑

s=t+1

Xs

]]

=
T∑

s=t+1

(

E
P

t

[
E
P

t+1[Xs]
]+ gT

s

s∑

u=t+2

Bs,uλu

)

= E
P

t

[ T∑

s=t+1

Xs

]

+
T∑

s=t+1

gT
s

s∑

u=t+2

Bs,uλu,

E
P

t

[ T∑

s=t+1

Xs

]

= E
Q

t

[ T∑

s=t+1

Xs

]

−
T∑

s=t+1

gT
s

s∑

u=t+1

Bs,uλu.
�

Proof of Theorem 3.2 We prove inductively that

Vt = E
Q

t

[ T∑

s=t+1

Xs

]

+ K
Q

t , (5.2)
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and derive the recursive form of the constant term K
Q

t via induction. The induction
base is trivial: VT = 0. Now assume that (5.2) holds for t + 1. Notice that

Vt = ϕt

(

Xt+1 +E
Q

t+1

[ T∑

s=t+2

Xs

]

+ K
Q

t+1

)

= ϕt

(

E
Q

t+1

[ T∑

s=t+1

Xs

]

+ K
Q

t+1

)

= K
Q

t+1 + ρt

(

−E
Q

t+1

[ T∑

s=t+1

Xs

])

−E
Q

t

[(

ρt

(
−E

Q

t+1

[ T∑

s=t+1

Xs

])
−E

Q

t+1

[ T∑

s=t+1

Xs

])+]
.

We first evaluate the risk measure part; this is

ρt

(

−E
Q

t+1

[ T∑

s=t+1

Xs

])

= E
P

t

[

E
Q

t+1

[ T∑

s=t+1

Xs

]]

+ VarPt

[

E
Q

t+1

[ T∑

s=t+1

Xs

]]1/2

r0

= E
Q

t

[ T∑

s=t+1

Xs

]

−
T∑

s=t+1

gT
s Bs,t+1λt+1 + VarPt

[

E
Q

t+1

[ T∑

s=t+1

Xs

]]1/2

r0,

where the final step uses Lemma 5.3. Moreover,

VarPt

[

E
Q

t+1

[ T∑

s=t+1

Xs

]]

= VarQt

[

E
Q

t+1

[ T∑

s=t+1

Xs

]]

= VarQt

[ T∑

s=1

Xs

]

− VarQt+1

[ T∑

s=1

Xs

]

=: σ 2
t+1.

For the remaining term, if σt+1 �= 0, there exists a random variable e∗
t+1 independent

of Gt and standard normally distributed with respect to Q such that

E
Q

t

[(

ρt

(
−E

Q

t+1

[ T∑

s=t+1

Xs

]
− K

Q

t+1

)
−E

Q

t+1

[ T∑

s=t+1

Xs

]
− K

Q

t+1

)+]

= E
Q

t

[(

σt+1r0 −
T∑

s=t+1

gT
s Bs,t+1λt+1 − σt+1e

∗
t+1

)+]

= E
P

0

[(

σt+1r0 −
T∑

s=t+1

gT
s Bs,t+1λt+1 − σt+1e1

)+]
.
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Putting the pieces together now yields

Vt = E
Q

t

[ T∑

s=t+1

Xs

]

+ K
Q

t+1 + σt+1r0 −
T∑

s=t+1

gT
s Bs,t+1λt+1

−E
P

0

[(

σt+1(r0 − e1) −
T∑

s=t+1

gT
s Bs,t+1λt+1

)+]
,

which proves the induction step and implies that

K
Q

t =
T∑

s=t+1

(

σsr0 −
T∑

u=s

gT
uBu,sλs −E

P

0

[(
σs(r0 − e1) −

T∑

u=s

gT
uBu,sλs

)+])
.

Finally,

Vt = E
Q

t

[ T∑

s=t+1

Xs

]

+ K
Q

t

= E
P

t

[ T∑

s=t+1

Xs

]

+
T∑

s=t+1

s∑

u=t+1

gT
s Bs,uλu + K

Q

t

= E
P

t

[ T∑

s=t+1

Xs

]

+ KP

t ,

where KP
t =∑T

s=t+1(σsr0 −E
P

0 [(σs(r0 − e1) −∑T
u=s gT

uBu,sλs)
+]). We now derive

an expression for σt+1. Recall that Xs := gT
s Gs . Then

VarPt

[ T∑

s=t+1

gT
s Gs

]

= VarPt

[ T∑

s=t+1

s∑

u=t+1

gT
s Bs,uεu

]

= VarPt

[ T∑

u=t+1

T∑

s=u

gT
s Bs,uεu

]

=
T∑

u=t+1

VarPt

[ T∑

s=u

gT
s Bs,uεu

]

=
T∑

u=t+1

( T∑

s=u

gT
s Bs,u

)( T∑

s=u

gT
s Bs,u

)T

=
T∑

u=t+1

T∑

j=u

T∑

k=u

gT
j Bj,uB

T
k,ugk
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and

σ 2
t+1 := VarPt

[ T∑

s=t+1

gT
s Gs

]

− VarPt+1

[ T∑

s=t+1

gT
s Gs

]

=
T∑

j=t+1

T∑

k=t+1

gT
j Bj,t+1B

T
k,t+1gk.

We now derive the expression for Ct . Using the same arguments as earlier in the
proof,

Ct = ρt (−Xt+1 − Vt+1) − Vt

= ρt

(

−E
Q

t+1

[ T∑

s=t+1

Xs

]

− K
Q

t+1

)

−E
Q

t

[ T∑

s=t+1

Xs

]

− K
Q

t

= σt+1r0 −
T∑

s=t+1

gT
s Bs,t+1λt+1 − K

Q

t + K
Q

t+1

= E
P

0

[(

σt+1(r0 − e1) −
T∑

s=t+1

gT
s Bs,t+1λt+1

)+]
.

�

Proof of Theorem 3.4 We prove that there exists a solution to (2.23). The remaining
part then follows from Theorem 3.2.

From Theorem 3.2, we immediately see that ψ is continuous. Once we show that
for all w ∈R

m+1 \{0}, there exists t ∈ {0, . . . , T −1} such that (2.26) holds, existence
of a solution to (2.23) follows. We prove this statement by first proving that there is
no w ∈ R

m+1 \ {0} such that
∑T

t=1 wTZt ∈ G0, where Zt := (Xo
t ,−(X

f
t )T)T. Notice

that for g ∈ R
n, we have

gT
T∑

t=1

Gt = gT
T∑

t=1

At + gT
T −1∑

s=1

T∑

t=s

Bt,sεs + gTBT,T εT .

The εs are independent and gTBT,T �= 0 for all g �= 0. Hence there is no g ∈R
n \ {0}

such that gT∑T
t=1 Gt ∈ G0, which in turn implies that there is no w ∈ R

m+1 \ {0}
such that

∑T
t=1 wTZt ∈ G0. We now prove that the latter statement implies that for

all w ∈ R
m+1 \ {0}, there exists t ∈ {0, . . . , T − 1} such that (2.26) holds.

Notice that

(ρ◦
t,T −1 − ρ◦

t+1,T −1)
(− wT(Zt+1 + · · · + ZT )

)

= (ρ◦
t,T −1 − ρ◦

t+1,T −1)
(− wT(Z1 + · · · + ZT )

)

= E
P

t [wT(Z1 + · · · + ZT )] −E
P

t+1[wT(Z1 + · · · + ZT )] + c
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for some constant c, where the last equality follows from calculations completely
analogous to the proof of Theorem 3.2. Now assume that for some
w ∈ R

m+1 \ {0}, (2.26) does not hold. In the current Gaussian setting, the
support of a Gaussian distribution is either infinite or a singleton. So
(ρ◦

t,T −1 − ρ◦
t+1,T −1)(−wT(Z1 + · · · + ZT )) = 0 P-a.s. for all t or, equivalently,

E
P

t [wT(Z1 + · · · + ZT )] −E
P

t+1[wT(Z1 + · · · + ZT )] ∈ G0 for all t. (5.3)

For t = 0, (5.3) implies that EP

1 [wT(Z1 + · · · + ZT )] ∈ G0 which together with (5.3)
for t = 1 implies that EP

2 [wT(Z1 + · · · + ZT )] ∈ G0. By repeating this argument, we
obtain that wT(Z1 +· · ·+ZT ) = E

P

T [wT(Z1 +· · ·+ZT )] ∈ G0, which contradicts the
assumption wT(Z1 + · · · + ZT ) /∈ G0. Hence we conclude that there exists a solution
to (2.23). �
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