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Abstract This paper defines a new class of fractional differential operators alongside
a family of random variables whose density functions solve fractional differential
equations equipped with these operators. These equations can be further used to con-
struct fractional integro-differential equations for the ruin probabilities in collective
renewal risk models, with inter-arrival time distributions from the aforementioned
family. Gamma-time risk models and fractional Poisson risk models are two specific
cases among them, whose ruin probabilities have explicit solutions when claim size
distributions exhibit rational Laplace transforms.
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1 Introduction

The concept of first passage time is widely used in financial mathematics and actuarial
science. It could model various things, from the time to dividend payments of a stock
to the exercise date of an American put option or the ruin probability of an insurance
company. In this paper, we focus on the ruin time of an insurance business, namely
the first time in which the business surplus (capital) becomes negative. Our analysis
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is aimed at solving equations for the probability of ruin expressed as a function of the
initial capital (surplus) of the risk process.

Motivated by risk theory applications, we consider a new class of risk processes,
while extending those from Li and Garrido [23], Albrecher et al. [2] and Biard and
Saussereau [6] into a fractional derivative framework. It has been proved that ruin
probabilities are exponential functions when claim sizes follow an exponential distri-
bution, for various inter-arrival time distributions; see e.g. Asmussen and Albrecher
[4, Theorem 2.1]. The present paper derives explicit ruin probabilities in risk mod-
els with claim sizes whose distributions have rational Laplace transforms, and with
inter-arrival time densities solving fractional differential equations. Gamma-time risk
models and fractional Poisson risk models are two particular cases among them. All
the results are obtained due to the introduction of a new class of fractional differen-
tial operators, which extends those from Podlubny [28, Sect. 6.3.2]. These operators
generalise the results from Albrecher et al. [2] to a fractional derivative framework,
in which their explicit results concerning ruin probabilities become particular cases.
Some existing ruin probability results are retrieved (see Examples 4.2 and 4.5 for de-
tails), and new results are derived. For instance, in the gamma-time risk model with
Erlang(2)-distributed claim sizes, the ruin probability has the form

A1e
−B1u + A2e

−B2u, u > 0,

where A1,B1,A2 and B2 are constants that can be calculated on a case-by-case basis
(see Example 4.4).

The classical collective insurance risk model describes the surplus R(t) of an in-
surance company over time as

R(t) = u + ct −
N(t)∑

i=1

Xi, t > 0, (1.1)

where u > 0 is the initial capital and c > 0 is the premium rate. The claims occur
randomly. The positive random variable Xi describes the size of the ith claim, which
happened after waiting Ti units of time since the last claim. The quantity N(t) gives
the number of claims that have happened up to time t . In the classical model (1.1),
dating back to Lundberg [25, 26], Cramér [11], all random variables are assumed
independent and identically distributed. Moreover, the waiting times are usually as-
sumed to be exponentially distributed, with the resulting counting process N thus
being a Poisson process. The ruin probability of this compound Poisson risk model,
for an initial capital u, is defined as

ψ(u) = P [inf{R(t) : t > 0} < 0 |R(0) = u] .

The net profit condition

cE [Ti] > E [Xi] (1.2)

is imposed to ensure that ruin does not happen with certainty. Various generalisations
of the classical risk model (1.1) have been considered over time. Sparre Andersen [32]
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introduced the renewal risk model. This model accounts for claim number processes
N not necessarily Poisson, but verifying the renewal property. The ruin probabili-
ties ψ(u) in renewal models still solve integral equations derived from the renewal
property, namely

ψ(u) =
∫ ∞

0
fT (t)

(∫ u+ct

0
ψ(u + ct − y)dFX(y) +

∫ ∞

u+ct

dFX(y)

)
dt (1.3)

with the universal boundary condition limu→∞ ψ(u) = 0, as in Feller [17, Sect. 6.7].
Here fT and FX denote the probability density of the waiting time and the distribution
function of the claim size, respectively. This notation is used throughout the paper.

There is a large actuarial literature analysing renewal risk processes. Expressions
for the Laplace transform of the ruin probability for risk models with Erlang(2, β)

or mixture of 2-exponential waiting times were derived in Dickson [12] and Dick-
son and Hipp [13, 14] as solutions of second-order differential equations. Lin and
Willmot [24] calculated the joint and marginal moments of the time of ruin, the
surplus before ruin and the deficit at ruin, whenever the inter-arrival time distribu-
tions have rational Laplace–Stieltjes transforms. Subsequently, Dufresne [16] com-
puted the Laplace transform of the non-ruin probability for inter-arrival time dis-
tributions exhibiting rational Laplace transforms. Li and Garrido [23] used a sim-
ilar approach as Gerber and Shiu [18] to derive a defective renewal equation for
the expected discounted penalty due at ruin in a risk model with Erlang(n) inter-
arrival times. Finally, Chen et al. [8] derived linear ordinary differential equations
for ruin probabilities in Poisson jump-diffusion processes with phase-type jumps
and obtained explicit results in a few instances. The common thread of these pa-
pers consists of deriving the ruin probabilities as solutions of (integro-)differential
equations.

In an attempt to develop a general method, Rosenkranz and Regensburger [29, 30]
introduced two algebraic structures for treating integral operators in conjunction with
derivatives, integro-differential operators and integro-differential polynomials. Their
method allows the description of the associated differential equations, boundary con-
ditions and solution operators (Green operator) in a uniform, yet formal language.
Their algebraic symbolic structures have immediate applications in ruin theory. For
instance, as an extension of the Erlang risk model, Albrecher et al. [2] transformed
the integral equation for the expected-discounted-penalty-due-at-ruin function into an
integro-differential equation whenever the inter-arrival time distributions have ratio-
nal Laplace transforms. Rational Laplace transform densities are equivalent to den-
sities that are solutions of ordinary differential equations with constant coefficients.
If the claim size distributions also have rational Laplace transforms, these integro-
differential equations can be further reduced to linear boundary value problems. Their
symbolic computation approach permits extensions to models with premia dependent
on reserves (also discussed in Djehiche [15] regarding the upper and lower bounds of
finite-time ruin probabilities), the associated boundary problems then involving lin-
ear ordinary differential equations with variable coefficients; see Albrecher et al. [1].
A similar duality idea has been studied in Kolokoltsov and Lee [21] and the refer-
ences therein.
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We show that the probability density function of a sum of independent, heteroge-
neous gamma and Mittag-Leffler random variables satisfies a fractional differential
equation, which we write in an operator/symbolic form. As an application, we con-
sider a family of risk models with inter-arrival times from this family of distributions
and derive the corresponding fractional integro-differential equations satisfied by the
corresponding ruin probabilities. We consider the case of claim sizes described by
sums of heterogeneous gamma random variables and show that the corresponding
ruin probabilities solve fractional differential equations with constant coefficients.
These equations contain both left and right fractional differential operators. We also
remark that Eq. (3.6) presented in this paper can be seen as a generalised case of the
fractional boundary problems treated by Jin and Liu [20], where critical point the-
ory is used to analyse the fractional differential equations with Dirichlet boundary
conditions.

The gamma-time risk model considered here is the first generalisation of the case
of Erlang(n)-distributed waiting times considered in Li and Garrido [23] to that of
waiting times distributed as �(r,λ), r being now any positive real number. This is
of significance since in practice, parameter estimation methods usually yield non-
integer-valued shape parameters for the gamma distributions that best fit the avail-
able data. It thus becomes necessary to study the ruin theory related to real-valued
gamma-distributed random variables. Thorin [33] dealt with a special case of claims
with a non-integer shape gamma �(1/b,1/b), b > 1, distribution, and Constantinescu
et al. [10] provided three equivalent expressions for ruin probabilities in a Cramér–
Lundberg model with gamma-distributed claims. The fractional Poisson risk model
has been previously treated in Beghin and Macci [5] and Biard and Saussereau [6]
for exponential claim sizes, but here, via this fractional calculus approach, we are
able to derive expressions for the ruin probability for a larger class of claim sizes in
fractional Poisson models.

The paper is organised as follows. In Sect. 2, we introduce the concept of frac-
tional integro-differential operators. In Sect. 3, we present the main result, and finally,
in Sect. 4, we perform some illustrative numerical calculations and compare the be-
haviour of the ruin probabilities as a function of the model parameters, for both the
gamma-distributed waiting times and the fractional Poisson risk models. Appendix A
contains all necessary background on fractional calculus.

2 Fractional integro-differential operators

Let L(y) denote the nth degree polynomial yn + p1y
n−1 + · · · + pn−1y + pn and

consider the associated homogeneous ordinary differential equation with constant
coefficients, given by

L
(

d

dx

)
f (x) = f (n)(x) + p1f

(n−1)(x) + · · · + pn−1f
′(x) + pnf (x) = 0. (2.1)

Suppose further that (2.1) can be expressed in the form

m⊙

j=0

(
d

dx
+ λj

)kj

f (x) = 0 (2.2)
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for positive real numbers λj and integers kj , j = 1, . . . ,m. In (2.1) and henceforth,⊙
denotes left-composition of operators, namely

m⊙

j=1

Lj f := (Lm ◦ · · · ◦L1)f.

The solution f (x) to (2.2) is the probability density function of either a sum of Erlang
random variables or a mixed Erlang random variable, depending on the boundary con-
ditions (see Albrecher et al. [2]). We should like to generalise (2.2) and characterise
its solutions in the case where the exponents kj are no longer integers.

2.1 Left and right fractional differential operators

In order to generalise (2.1), it is necessary to explore the world of fractional calculus.
Solving fractional differential equations has become an essential issue as fractional-
order models appear to be more adequate than previously used integer-order mod-
els in various fields. A large number of available analytical methods for solving-
fractional order integral and differential equations is discussed in Podlubny [28,
Chaps. 5 and 6], including the Mellin transform method, the power series method
and the symbolic method.

The symbolic method generalises the Laplace transform method. It uses a specific
expansion (e.g. binomial or geometric) on the differential operator and writes it as
an infinite sum of fractional derivatives. However, it is always necessary to check
the validity of the formal expansion since the interchange of infinite summation and
integration requires justification. It is nevertheless a powerful tool for determining the
possible form of the solution, and there are numerous examples of the application of
this method to heat and mass transfer problems.

In this section, we define a new family of operators based on the binomial ex-
pansion. All relevant definitions and results of fractional calculus can be found in
Appendix A. The important motivation underlying the following definition comes
from realising that for positive integer n and α ∈ R,

(
d

dx
+ α

)n

[f ](x) = e−αx dn

dxn

(
eαxf (x)

)
,

and similarly for (− d
dx

+ α)n. We thus define the following operators as the natural
generalisation in terms of fractional derivatives.

Definition 2.1 Let r > 0, α ∈R, a ∈ [−∞,∞) and b ∈ (−∞,∞]. The left fractional
differential operator (LFDO) α

aRr
x is defined by

α
aRr

x[f ](x) := e−αx
aDr

x

(
eαx f (x)

)
,

and the right fractional differential operator (RFDO) α
xRr

b by
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α
xRr

b[g](x) := eαx C
xDr

b

(
e−αx g(x)

)
. (2.3)

The domains of definition of α
aRr

x and α
xRr

b are those of the left Riemann–Liouville
fractional derivatives aDr

x and right Caputo fractional derivatives C
xDr

b , respectively,
which are given in Appendix A, points 2) and 4).

In the case a = 0, integration by parts yields the following characterisation of the
formal adjoint of α

0Rr
x . Along with the integration by parts formula in (A.3), this is

the key calculation needed for the proof of our main result.

Proposition 2.2 Let α ∈R and r > 0. The formal adjoint with respect to integration
by parts of the LFDO α

0Rr
x is the RFDO α

xRr∞, i.e.,

∫ ∞

0

α
0Rr

x[f ](x)g(x)dx =
∫ ∞

0
f (x) α

xRr∞[g](x)dx,

for appropriate functions f and g; see (A.3).

Note that the LFDO can be used to construct differential equations for probability
density functions. Consider a gamma probability density function with shape param-
eter r ∈R+ and rate parameter λ ∈R+, i.e.,

fr(x) = λr

�(r)
xr−1e−λx, x > 0.

When r is not an integer, instead of an ordinary differential equation, the gamma
density function solves the fractional differential equation (see (A.1))

λ
0Rr

x[fr ](x) = e−λx
0Dr

x

(
eλx fr(x)

) = 0, x > 0, (2.4)

together with the boundary conditions λ
0Rr−1

x [fr ](0) = λr and λ
0Rr−k

x [fr ](0) = 0 for
k = 2, . . . , �r�. Another distribution related to the LFDO is the Mittag-Leffler dis-
tribution, which is the waiting time distribution in the fractional Poisson process
(see Appendix C). The Mittag-Leffler probability density function with parameters
μ ∈ (0,1] and λ ∈R+ is

fμ(x) = λxμ−1Eμ,μ(−λxμ), t > 0,

and solves the fractional differential equation

( 0
0Rμ

x + λ
)[fμ](x) = (

0Dμ
x + λ

)[fμ](x) = 0, x > 0, (2.5)

with the boundary condition 0Dμ−1
x [f ](0) = λ. Here, the function Eμ,μ is called

two-parameter Mittag-Leffler function; it is defined in (C.1).
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2.2 A generalised family of random variables

The next theorem introduces the family of random variables to which the approach
presented in this paper applies. In its full generality, we consider random variables
that can be written as finite sums of independent heterogeneous gamma and Mittag-
Leffler random variables. At the moment, there is no known explicit formula for
the probability density function of such a random variable, but one can always ex-
press it in a convolution form. Notice that if only gamma random variables with
integer shape parameters are involved in the summation, this random variable is
the generalised integer gamma distribution (GIG) [9]. We now characterise the frac-
tional boundary value problem satisfied by the density function of such random vari-
ables.

Theorem 2.3 Consider a random variable T defined by

T =
m∑

i=1

Yi +
n∑

j=1

Zj , (2.6)

in terms of gamma random variables Yi ∼ �(ri, λ1,i ) and Mittag-Leffler random vari-
ables Zj ∼ ML(μj ,λ2,j ), all independent of each other, where ri , λ1,i , λ2,j ∈ R+
and μj ∈ (0,1]. Then the density function f

m,n
T (t) of T solves the fractional differ-

ential equation

Am,n

(
d

dt

)
[f m,n

T ](t) :=
n⊙

j=1

(
0D

μj

t + λ2,j

) m⊙

i=1

λ1,i

0Rri
t [f m,n

T ](t) = 0, (2.7)

with boundary conditions (when n 
= 0)

0Dμ1−1
t

n⊙

j=2

(
0D

μj

t + λ2,j

) m⊙

i=1

λ1,i

0Rri
t [f m,n

T ](t)
∣∣∣∣
t=0

= �m,n,

0Dμ1−k
t

n⊙

j=2

(
0D

μj

t + λ2,j

) m⊙

i=1

λ1,i

0Rri
t [f m,n

T ](t)
∣∣∣∣
t=0

= 0,

for k = 2, . . . , �∑n
j=1 μj + ∑m

i=1 ri�. Here and subsequently, �m,n denotes

�m,n :=
m∏

i=1

λ
ri
1,i

n∏

j=1

λ2,j . (2.8)

Proof We defer the proof of Theorem 2.3 to Appendix B. �

Remark 2.4 We further assume that all the λ1,i are different, i.e., λ1,i 
= λ1,k for all
i 
= k. In other words, each variable Yi has a gamma distribution with a different rate
parameter. The uniqueness of the λ1,i can be realised without any loss of generality.
Whenever we have λ1,i = λ1,k for some i 
= k, we can consider the sum of their
corresponding random variables, which is still a gamma random variable with the
same rate parameter.
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Remark 2.5 One can show that the boundary conditions in Theorem 2.3 have various
equivalent expressions. For any positive integer number k � �∑m

i=1 ri + ∑n
j=1 μj�,

by choosing nonnegative integers k1,i and k2,j such that
∑m

i=1 k1,i + ∑n
j=1 k2,j = k,

we have the boundary conditions of (2.7) as

( n⊙

j=1

(
0D

μj −k2,j

t + λ2,j 0I
k2,j

t

) m⊙

i=1

λ1,i

0R
ri−k1,i

t

)
[f m,n

T ](t)
∣∣∣∣
t=0

=
{

�m,n, k = 1,

0, k > 1.

Remark 2.6 Equation (2.7) along with its boundary conditions can be regarded as
the generalisation of a pair of boundary problems discussed in Rosenkranz and Re-
gensburger [30]. When the fractional differential algebra is properly defined, these
fractional-order boundary problems can be factorised and further solved by obtaining
their corresponding Green operators.

The solution to (2.7) depends on the boundary condition. When different bound-
ary conditions are given, we may obtain density functions for other possible random
variables. For instance, let us consider the differential equation

(
d

dt
+ λ

)2

f
2,0
T (t) = 0

with two distinct sets of boundary conditions. First, if we impose
⎧
⎪⎨

⎪⎩

(
d

dx
+ λ

)
f

2,0
T (t)

∣∣∣∣
t=0

= λ2,

λf
2,0
T (t)

∣∣
t=0 = 0,

the solution is the Erlang(2, λ) density function f
2,0
T (t) = λ2te−λt , which belongs to

the random variable family considered in (2.6). However, the solution to the above
equation would become f

2,0
T (t) = 1

2λe−λt + 1
2λ2te−λt if the boundary conditions

were changed to
⎧
⎪⎪⎨

⎪⎪⎩

(
d

dx
+ λ

)
f

2,0
T (t)

∣∣∣∣
t=0

= 1

2
λ2,

λf
2,0
T (t)

∣∣
t=0 = 1

2
λ2.

This solution is the density function of a mixture of an exponential and an Erlang
random variable, and the associated distribution does not satisfy (2.6).

3 Main results

The LFDO and RFDO give us the ability to study a very general family of distri-
butions that may find applications in various areas, e.g. queuing theory, risk theory
and control theory. Although many of the available techniques for the analysis of
the associated equations are numerical or asymptotic, the fractional differential ap-
proach still offers analytic insights to the related problems. In this section, we aim
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at accomplishing this with particular problems arising in risk theory. A special fam-
ily of renewal risk models of the form (1.1) is considered, including the Erlang(n)

and fractional Poisson risk models. We shall show that the ruin probabilities in these
models solve fractional integro-differential equations involving the LFDO and RFDO
operators.

Before moving on to the main result, we introduce a lemma that allows us to
change the argument of our operators on a bivariate function under certain circum-
stances.

Lemma 3.1 For positive real numbers α, r and c, we have the identity

α
xRr∞[f (x + cy)](x, y) = c−r αc

yRr∞[f (x + cy)](x, y), (3.1)

where x and y are real numbers and α
xRr∞ is defined in (2.3).

Proof We start from the left-hand side of (3.1). By definition, we have

α
xRr∞[f (x + cy)](x, y) = eαx 1

�(n − r)

∫ ∞

x

(t − x)n−r−1 dn

dtn

(
e−αtf (t + cy)

)
dt.

Letting s = 1
c
(t − x) + y leads to

1

�(n − r)

∫ ∞

y

eαcy(s − y)n−r−1c−r dn

dyn

(
e−αcsf (cs + x)

)
ds,

which is the right-hand side of (3.1). �

Now we are able to generalise the results from [23, 2, 6] to a risk model with
inter-arrival times of the form (2.6). The main result of this paper is the following.

Theorem 3.2 Consider a renewal risk model

Rm,n(t) = u + ct −
Nm,n(t)∑

i=1

Xi, t > 0,

where the inter-arrival times Tk are assumed to be a finite sum of independent
gamma random variables Yi ∼ �(ri, λ1,i ) and Mittag-Leffler random variables
Zj ∼ ML(μj ,λ2,j ) as in (2.6). Then the ruin probability ψ(u) under the model Rm,n

satisfies the fractional integro-differential equation

A∗
m,n

(
c

d

du

)
[ψ](u) = �m,n

(∫ u

0
ψ(u − y)dFX(y) +

∫ ∞

u

dFX(y)

)
(3.2)

with the universal boundary condition limu→∞ ψ(u) = 0. Here, the constant �m,n is
given by (2.8), and A∗

m,n is the formal adjoint of Am,n (see (2.7)) and is given by

A∗
m,n

(
c

d

du

)
:=

n⊙

j=1

(
cμj C

uD
μj∞ + λ2,j

) m⊙

i=1

(
cri λ1,i /c

uRri∞
)
. (3.3)
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Proof For a general renewal risk model, the ruin probability solves the renewal equa-
tion (1.3) (see Feller [17, Sect. 6.7]). Denoting the terms in parentheses of (1.3) by

h(u + ct) =
∫ u+ct

0
ψ(u + ct − y)dFX(y) +

∫ ∞

u+ct

dFX(y),

we now apply A∗
m,n(c

d
du

) on both sides of the renewal equation and use Lemma 3.1
to obtain

A∗
m,n

(
c

d

du

)
[ψ](u) =

∫ ∞

0
f

m,n
T (t)A∗

m,n

(
d

dt

)
[h(u + ct)](u, t)dt.

The fractional integration by parts rule in (A.3) is applicable here, and yields

∫ ∞

0
f

m,n
T (t)A∗

m,n

(
d

dt

)
[h(u + ct)](u, t)dt

=
∫ ∞

0

(
0Dμ1

t + λ2,1
) [f m,n

T ](t)A∗
m,n−1

(
d

dt

)
[h(u + ct)](u, t)dt

+
�μ1∑

k=0

(
(−1)�μ1+1+k

0Dμ1+k−�μ1−1
t [f m,n

T ](t)

A∗
m,n−1

( d

dt

)
[h(u + ct)](u, t)

∣∣∣∣
∞

0

)
.

The boundary condition term evaluated at t = 0 could be computed by using the
initial value theorem of Laplace transforms,

0I1−μ1
t [f m,n

T ](0) = lim
s→∞

(
sμ1

n∏

j=1

λ2,j

sμj + λ2,j

m∏

i=1

( λ1,i

s + λ1,i

)ri
)

= 0.

Another boundary condition term evaluated at t = ∞ also equals zero due to the fact
that the definition of the right Caputo fractional derivative is an integral from t to
∞. Analogously, we are able to move the first n operators

⊙n
j=1(

C
tD

μj∞ + λ2,j ) from
function h to f

m,n
T with all boundary conditions vanishing, which leads to

A∗
m,n

(
c

d

du

)
[ψ](u)

=
∫ ∞

0

n⊙

j=1

(
0D

μj

t + λ2,j

)[f m,n
T ](t)

m⊙

i=1

λ1,i

tR
ri∞[h(u + ct)](u, t)dt.

Now we use the integration by parts formula in Proposition 2.2 to take the first RFDO
λ1,1

tR
r1∞ off h. Furthermore, it can be shown that its adjoint

λ1,1
0Rr1

t commutes with
(0D

μj

t + λ2,j ) for all j = 1, . . . , n when applied on the density function f
m,n
T . We

therefore get the right-hand side equal to
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∫ ∞

0

n⊙

j=1

(
0D

μj

t + λ2,j

) λ1,1
0Rr1

t [f m,n
T ](t)

m⊙

i=2

λ1,i

tR
ri∞[h(u + ct)](u, t)dt

+
�r1∑

k=0

(
(−1)�r1+1+k

m⊙

i=2

λ1,i

tR
ri∞[h(u + ct)](u, t)

n⊙

j=1

(
0D

μj

t + λ2,j

) λ1,i

0Rr1+k−�r1−1
t [f m,n

T ](t)
)∣∣∣∣

∞

0
.

The boundary condition at t = 0 can be computed by applying the initial value theo-
rem to give

n⊙

j=1

(
0D

μj

t + λ2,j

) λ1,1
0Rr1+k−�r1−1

t [f m,n
T ](0)

=
n∏

j=1

λ2,j lim
s→∞

(
λ

r1
1,1s

(s + λ1,1)�r1+1−k

m∏

i=2

( λ1,i

s + λ1,i

)ri

− s

k−1∑

�=0

(s + λ1,1)
�
(

0Dr1+k−�r1−�−2
t

(
eλ1,1f

m,0
T (t)

))∣∣∣
t=0

)
.

We continue to iteratively use the initial value theorem on the terms

s(s + λ1,1)
�
(

0Dr1+k−�r1−�−2
t

(
eλ1,1t f

m,0
T (t)

))∣∣∣
t=0

,

until it eventually gives us

s(s + λ1,1)
�r1−1

(
0I�r1+1−r1

t

(
eλ1,1t f

m,0
T (t)

))∣∣∣
t=0

= s(s + λ1,1)
r1−2

m∏

i=1

(
λ1,i

s

)ri

,

which tends to zero when s → ∞. The boundary condition term evaluated at t = ∞
yields zero since the right Caputo derivatives vanish at infinity. Analogously, we are

able to move the rest of the operators
⊙m

i=1
λ1,i

tR
ri∞ from the function h to f

m,n
T with

all boundary conditions vanishing, which leads to

A∗
m,n

(
c

d

du

)
[ψ](u) =

∫ ∞

0
Am,n

(
d

dt

)
[f m,n

T ](t)[h(u + ct)](u, t)dt

+
(

h(u + ct)Am−1,n

( d

dt

)
[f m,n

T ](t)
∣∣∣∣
t=0

)
.

Since the inter-arrival time density satisfies (2.7), the integral term of the above equa-
tion vanishes. The boundary conditions of f

m,n
T ensure that the lower summand is, at

t = 0,
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h(u)

n⊙

j=1

(
0D

μj

t + λ2,j

) λ1,n

0Rrn−1
t

m−1⊙

i=1

λ1,i

0Rri
t [f m,n

T ](0) = �m,nh(u).

This completes the proof. �

Corollary 3.3 The non-ruin probability φ(u) = 1 − ψ(u) for the risk model in The-
orem 3.2 satisfies the fractional integro-differential equation

A∗
m,n

(
c

d

du

)
[φ](u) = �m,n

(∫ u

0
φ(u − y)dFX(y)

)
(3.4)

with the universal boundary condition limu→∞ φ(u) = 1 (see (2.8) and (3.3) for the
definitions of the constant �m,n and the operator A∗

m,n(c
d

du
)).

Theorem 3.2 characterises a fractional integro-differential equation satisfied by
the ruin probability ψ for a large class of waiting time distributions. The solvability
of this fractional integro-differential equation depends on the particular form of the
claim size distribution function FX .

We now restrict the rest of the analysis to claim sizes Xi distributed as a sum of an
arbitrary number of independent gamma random variables. The next theorem shows
that under this assumption, (3.2) can be written as a boundary value problem with
only fractional derivatives. It is important to note that if the claim sizes include any
Mittag-Leffler components, as is the case of T in Theorem 3.2, we have E[Xi] = ∞
and ruin happens with probability one since the net profit condition is violated.

Theorem 3.4 Consider the renewal risk model in Theorem 3.2. Assume fur-
ther that the claim sizes Xi are each distributed as a sum of � independent
�(sk,αk)-distributed random variables for some sk, αk > 0, k = 1, . . . , �, i.e., fX

satisfies

A�

(
d

du

)[
fX

]
(u) :=

�⊙

k=1

αk

0Rsk
u

[
fX

]
(u) = 0, (3.5)

with boundary conditions (see Theorem 2.3)

(
α1

0Rs1−1
u

�⊙

k=2

αk

0Rsk
u

)
[fX](u)

∣∣∣∣
u=0

=
�∏

k=1

α
sk
k ,

(
α1

0Rs1−q
u

�⊙

k=2

αk

0Rsk
u

)
[fX](u)

∣∣∣∣
u=0

= 0,

for q = 2, . . . , �∑�
k=1 sk�. Let A∗

m,n(c
d

du
) and �m,n be as in (3.3) and (2.8), respec-

tively. Then the non-ruin probability φ(u) satisfies

A�

(
d

du

)
A∗

m,n

(
c

d

du

)
[φ](u) = �m,n

�∏

k=1

α
sk
k φ(u) (3.6)
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with the universal boundary condition limu→∞ φ(u) = 1 and initial values

(
α1

0Rs1−k′
u

�⊙

k=2

αk

0Rsk
u

n⊙

j=1

(
cμj C

uD
μj∞ + λ2,j

) m⊙

i=1

(
cri λ1,i /c

uRri∞
))[φ](0) = 0, (3.7)

for k′ = 1, . . . , �∑�
k=1 sk� − 1.

Proof Taking the operator A�(
d

dy
) on both sides of (3.4) leads to

A�

(
d

du

)
A∗

m,n

(
c

d

du

)
[φ](u) = �m,nA�

(
d

du

)(∫ u

0
φ(u − y)fX(y)dy

)
.

Recall from Theorem 2.3 that the non-ruin probability function φ(u) is supported on
[0,∞); so the identity

A�

(
d

du

)(∫ u

0
φ(u − y)fX(y)dy

)
=

�⊙

k=1

αk

0Rsk
u [φ ∗ fX](u) =

�∏

k=1

αskφ(u)

holds in this case, giving (3.6). For the boundary conditions, we compute

(
α1

0Rs1−k′
u

�⊙

k=2

αk

0Rsk
u

n⊙

j=1

(
cμj C

uD
μj∞ + λ2,j

) m⊙

i=1

(
cri λ1,i /c

uRri∞
))[φ](0)

= �m,n

�∏

k=2

α
sk
k

α1
0Rs1−k′

u

(
φ(u) ∗ f1(u)

) ∣∣∣∣
u=0

,

where f1 stands for the density function of �(s1, α1). Using (A.2), one has

�m,n

�∏

k=2

α
sk
k e−α1u

0Ds1−k′
u

(∫ u

0
eα1(u−y)φ(u − y)eα1yf1(y)dy

)∣∣∣∣
u=0

= �m,n

�∏

k=2

α
sk
k

(
e−α1u

(
eα1uφ(u) ∗ α

s1
1

�(k′)
uk′−1

)∣∣∣
u=0

+ φ(0)
α

s1
1

�(k′ + 1)
yk′

∣∣∣∣
y=0

)
,

which equals zero for k′ = 1, . . . , �∑�
k=1 sk� − 1. This completes the proof. �

3.1 The characteristic equation method

Our next goal is to solve the fractional differential boundary value problem in Theo-
rem 3.4 via a characteristic equation starting from the ansatz φ(u) = e−zu. The main
technical difficulty in dealing with the full generality of Theorem 3.4 arises from the
fact that the operators in (3.6) combine two different types of differential operators:
A∗

m,n(c
d

du
) is a composition of right Caputo fractional derivatives, while the opera-

tors in A�(
d

du
) are LFDOs which are ultimately defined in terms of left Riemann–

Liouville fractional derivatives (see (3.5), (3.3) and (2.1)). The proposed ansatz is an
eigenfunction only for the operators in A∗

m,n(c
d

du
) (see (A.4)). When restricting to

the case of sk ∈N, k = 1, . . . , �, we simplify things greatly since
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A�

(
d

du

)
=

�⊙

k=1

αk

0Rsk
u =

�⊙

k=1

(
d

du
+ αk

)sk

reduces to a combination of ordinary differential operators.
Note that assuming sk ∈ N, k = 1, . . . , �, in (3.5) is equivalent to assuming that

the claim sizes Xi are each distributed as a sum of � independent Erlang random
variables. Moreover, in this case, the operator A�(

d
du

)A∗
m,n(c

d
du

) on the left-hand side
of (3.6) is a composition of right Caputo fractional derivatives. Furthermore, with the
ansatz φ(u) = e−zu, (3.6) yields for z the characteristic equation

�∏

k=1

(−z + αk)
sk

n∏

j=1

(cμj zμj + λ2,j )

m∏

i=1

(cz + λ1,i )
ri = �m,n

�∏

k=1

α
sk
k . (3.8)

Note that from the definition of �m,n in (2.8), z = 0 is always a root of (3.8). If (3.8)
has N > 0 additional distinct complex roots with positive real parts, say z1, . . . , zN ,
then the non-ruin probability φ that solves (3.6) is

φ(u) = 1 +
N∑

p=1

Kpe−zpu, (3.9)

where the constants Kp , p = 1, . . . ,N , are to be determined from the boundary con-
ditions in (3.7), which are characterised in the following result.

Proposition 3.5 Suppose sk ∈N, k = 1, . . . , �, in Theorem 3.4. The number of initial-
value boundary conditions of φ(u) is N = ∑�

k=1 sk , and they are given explicitly by

�⊙

k=1

αk

0R
sp,k
u

n⊙

j=1

(
cμj C

uD
μj∞ + λ2,j

) m⊙

i=1

(
cri λ1,i /c

uRri∞
)[φ](0) = 0, p = 1, . . . ,N,

(3.10)
where the values of sp,k are to be computed as follows: let

L(p) = inf

{
� ∈ N :

�∑

k=1

sk � p

}
, p = 1, . . . ,N,

and define

sp,k =

⎧
⎪⎨

⎪⎩

sk, if k < L(p),

p − ∑L(p)−1
i=1 si − 1, if k = L(p),

0, if k > L(p).

Proof We consider the pth boundary condition

L(p)⊙

k=1

αk

0R
sp,k
u A∗

m,n

(
c

d

du

)
[φ](0)

= �m,n

L(p)−1∏

k=1

α
sk
k

αL(p)

0R
sp,L(p)
u [φ ∗ fL(p) ∗ fL(p)+](0),
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where fL(p) stands for the density function of a �(sL(p), αL(p)) random variable
and fL(p)+ for the density function of a sum of random variables with distributions
�(sk,αk), k = L(p) + 1, . . . ,L. Let 
 = φ ∗ fL(p)+ and apply (A.2) to compute

αL(p)

0R
sp,L(p)
u [
 ∗ fL(p)](u) = 
(u) 0D

sp,L(p)−1
y

(
eαL(p)yfL(p)(y)

)∣∣
y=0

+ e−αL(p)u
(
eαL(p)(u)
(u) ∗ 0D

sp,L(p)
u eαL(p)ufL(p)(u)

)
.

Note that sp,L(p)−1 < sL(p) and we have

αL(p)

0R
sp,L(p)
u [
 ∗ fL(p)](0) =

∫ u

0

(u − y)

αL(p)

0R
sp,L(p)
y fL(p)(y)dy

∣∣∣∣
u=0

= 0.

Since this holds for all 1 � p � N , we complete the proof. �

Substituting the expression in (3.9) for φ(u) into the boundary conditions (3.10)
yields explicit linear equations for the unknown constants Kp , p = 1, . . . ,N . First,
denote

�p :=
n∏

j=1

(cμj z
μj
p + λ2,j )

m∏

i=1

(czp + λ1,i )
ri , p = 1, . . . ,N.

Then the constants Kp , p = 1, . . . ,N in (3.9) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�m,n +
N∑

p=1

�pKp = 0,

α1�m,n + �

N∑

p=1

(−zp + α1)Kp = 0,

...

α
s1
1 �m,n +

N∑

p=1

�p(−zp + α1)
s1Kp = 0,

α
s1
1 α2�m,n +

N∑

p=1

�p(−zp + α1)
s1(−zp + α2)Kp = 0,

...

α
s1
1 α

s2
2 �m,n +

N∑

p=1

�p(−zp + α1)
s1(−zp + α2)

s2Kp = 0,

...
�−1∏

k=1

α
sk
k α

s�−1
� �m,n +

N∑

p=1

�p

�−1∏

k=1

(−zp + αk)
sk (−zp + α�)

s�−1Kp = 0.
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4 Explicit expressions for ruin probabilities in gamma-time
and fractional Poisson risk models

The class of models considered in Theorem 3.2 is very general. In this section, we
thus focus on two specific models which might be of interest to applications, and
where explicit forms of ruin (non-ruin) probabilities can be derived.

Remark 4.1 It has been shown in Asmussen and Albrecher [4, Theorem 2.1] that for
any renewal risk model, the ruin probability always has an exponential form when
the claim distribution is exponential. However, the fractional differential equation
approach bridges a solid connection between the classical risk model and a class of
renewal models which might be applied in a more sophisticated model.

4.1 Gamma-time risk model

A gamma-time risk model describes the reserve process Rr of an insurance company
by replacing the Poisson process N in the classical model (1.1) with a renewal count-
ing process Nr with �(r,λ1)-distributed waiting times. This is a natural extension of
the Erlang(n) risk model considered by Li and Garrido [23].

Being a special case of Theorem 3.2, the equation for the ruin probability ψr(u)

in the gamma-time risk model is

cre
λ1
c

u C
uDr∞

(
e− λ1

c
uψr(u)

) = λr
1

(∫ u

0
ψr(u − y)dFX(y) +

∫ ∞

u

dFX(y)

)
.

When the claim sizes in this model have rational Laplace transforms, one could use
the characteristic equation method mentioned in Sect. 3.1 to derive explicit ruin prob-
abilities.

Example 4.2 In the gamma-time risk model with �(r,λ1)-distributed inter-arrival
times and Exp(α)-distributed claim sizes, the ruin probability equals

ψr(u) =
(

λ1

cx2

)r

e−(x2− λ1
c

)u, u > 0, (4.1)

where x2 > λ1
c

is the larger root of the equation

crxr

(
x −

(λ1

c
+ α

))
+ αλr

1 = 0.

Remark 4.3 Letting s = x2 − λ1
c

in (4.1), one has

(
MX(s)MT (−cs)

)−1 − 1 =
(

1 − s

α

)(
1 + cs

λ1

)r

− 1

= cr

λr
1α

((
α + λ1

c
− x2

)
xr

2 − λr
1

cr

)

= −1

λr
1α

(
crxr+1

2 − (cr−1λ1 + αcr)xr
2 + αλr

1

) = 0,
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Fig. 1 (a) Ruin probabilities in the case of Example 4.2 for λ1 = r ∈ {0.5,1,1.5,2,2.5}. Claim sizes
are exponentially distributed with mean α = 1 and c = 1.2 in order to ensure the net profit condition.
(b) Natural logarithm of u5 (see (4.2)) for the ruin probability in Example 4.2 with continuously varying
parameters r, λ1. The claim sizes have a fixed exponential distribution with mean α = 1 and premium rate
c = 1.2. The dotted line limits the region where the net profit condition r/λ1 < c holds (see (1.2))

where MX and MT are the moment-generating functions of the claim sizes and inter-
arrival times. This means that x2 − λ1

c
is the unique positive solution γ of Lundberg’s

fundamental equation. This finding coincides with the result from [4, Theorem 2.1]
for renewal risk models with exponential claims.

In order to compare the classical compound Poisson with a gamma-time risk
model, we show in Fig. 1(a) numerically computed ruin probabilities in the case
of Example 4.2 with different combinations of r and λ1 when the mean claim inter-
arrival time is fixed to r/λ1 = 1.

Note the substantial impact on ψr(u) when changing the Poisson assumption
(r = 1). Ruin is more likely to happen in the gamma-time risk model with a larger
shape parameter r of inter-arrival times, and vice versa. The reason is that in this
case, the expected inter-arrival time r/λ1 is fixed whereas the variance r/λ2

1 of the
inter-arrival time decreases as r increases, which means that the chance of having
shorter waiting periods between claims will decrease. Since ruin is usually caused by
not enough capital, the model with a larger shape parameter r is more likely to sur-
vive. Figure 1(a) coincides with the findings from [23], which focuses on Erlang(n)

risk models.
In Fig. 1(b), we illustrate the sensitivity to the parameters r and λ1 of the ruin

probability ψr(u) in Example 4.2. In order to do this, we define the statistic

u5 := inf {u ≥ 0 : ψr(u) < 0.05} . (4.2)

Namely, u5 is the minimum capital needed to ensure a ruin probability of less
than 5%. Note that any combinations of r and λ1 on or above the dashed line marking
the net profit condition will make the ruin certain. The value of u5 tends to infinity
as the parameters approach the dashed line since the safety loading cE[T ]

E[X] − 1 tends
to zero. When r takes large enough values or λ1 takes small enough values (in darker
blue areas), the ruin probability might be less than 5% even with zero initial capital.
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Note that along contour lines, dλ1 ≈ 1
c

dr so that the sensitivity of the ruin probability
to its parameters depends almost exclusively on c.

The next example goes a step further and assumes gamma distributions for both
the inter-arrival times and the claim sizes. This case is simple enough that the two
positive roots of the characteristic equation can be bounded.

Example 4.4 In the gamma-time risk model with �(r,λ1)-distributed inter-arrival
times and �(2, α)-distributed claim sizes, the ruin probability equals

ψr(u) =
λ1
c

− z3

z2 − z3

(
λ1

cz2

)r

e(
λ1
c

−z2)u +
λ1
c

− z2

z3 − z2

(
λ1

cz3

)r

e(
λ1
c

−z3)u, u > 0,

where z3 > λ1
c

+ α > z2 > λ1
c

are the two largest roots of the equation

crzr

(
z −

(λ1

c
+ α

))2

− α2λr
1 = 0.

4.2 Fractional Poisson risk model

The fractional (compound) Poisson risk model is a special case of the classic com-
pound Poisson risk model (1.1) where the counting process is chosen as fractional
Poisson process Nμ. Namely, the inter-arrival times are Mittag-Leffler-distributed
T ∼ ML(μ,λ2) with λ2 > 0, 0 < μ � 1. Since for μ = 1, the fractional Poisson pro-
cess reduces to a Poisson process, we need the net profit condition to compute the ruin
probability. The following examples are derived under the assumption 0 < μ < 1 (in
the fractional Poisson risk model). Note that in this case E[Ti] = ∞, so the net profit
condition (1.2) holds whenever E[Xi] < ∞. It follows from Theorem 3.2 that the
ruin probability ψμ of a fractional Poisson risk model satisfies the fractional integro-
differential equation

cμ C
uDμ∞ψμ(u) + λ2ψμ(u) = λ2

(∫ u

0
ψμ(u − y)dFX(y) +

∫ ∞

u

dFX(y)

)
,

with the universal boundary condition limu→∞ ψμ(u) = 0. Explicit expressions for
ruin probabilities in the fractional Poisson risk model with exponential claims have
been derived in [6]. The same result can be obtained via the fractional differential
equation approach introduced in this paper.

Example 4.5 In the fractional Poisson risk model with T ∼ ML(μ,λ2) and exponen-
tially distributed claim sizes with parameter α, the ruin probability equals

ψμ(u) =
(

1 − x2

α

)
e−x2u, u > 0,

where x2 is the unique positive solution of cμx − αcμ + λ2x
1−μ = 0.



An application of fractional differential equations to risk theory 1019

Fig. 2 (a) Ruin probabilities in the case of Example 4.5 for different combinations of λ2,μ. Claim
sizes are taken exponentially distributed with mean α = 1 and c = 1.2. (b) Natural logarithm of u5 (see
Eq. (4.2)) for the ruin probability in Example 4.5 with continuously varying parameters μ,λ2. The claim
sizes have fixed exponential distribution with mean α = 1 and premium rate c = 1.2

Figure 2(a) shows the ruin probability ψμ(u) for various combinations of the pa-
rameters λ2,μ, with fixed exponential claim size distribution.

Note the substantial impact on ψμ(u) when the classical Poisson assumption
(μ = 1) is changed. Increasing either λ2 or μ increases the chances for ruin to happen.
The reason is that for large enough t , the expected number of jumps before time t in
the fractional Poisson process (see (C.2)) is an increasing function of both λ2 and μ.
Figure 2(b) shows the values of the natural logarithm of u5 as a function of μ and λ2.
Note that the contour lines in this plot are not parallel to each other. As the values
of μ decrease, the parameter λ2 plays a less significant role in the ruin probability
function.

Notice that the operator C
uDμ∞ tends to the identity operator when μ → 0+. Thus

we obtain the following result.

Corollary 4.6 In the fractional Poisson risk model, the ruin probability ψμ(u) con-
verges to a function ψ0(u) as μ → 0. Moreover, the function ψ0(u) satisfies the inte-
gral equation

(1 + λ2)ψ0(u) = λ2

∫ u

0
ψ0(u − y)dFX(y) + λ2

∫ ∞

u

dFX(y), (4.3)

with the universal boundary condition limu→∞ ψ0(u) = 0.

Substituting u = 0 into (4.3) gives ψ0(0) = λ2
λ2+1 which only depends on the value

of λ2. Taking Laplace transforms of both sides with respect to u leads to

ψ̂0(s) = 1 − f̂ (s)

(λ2 + 1)s − λ2sf̂ (s)
,

which can be explicitly inverted back in some cases.
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Appendix A: Basic facts from fractional calculus

The fractional calculus is the theory of integrals and derivatives of arbitrary order,
which unifies and generalises the notions of integer-order differentiation and n-fold
integration; see e.g. Podlubny [28, Chap. 2]. The following fractional integrals and
derivatives, defined as in Hilfer et al. [19], are present in the paper:

1) The left Riemann–Liouville fractional integral of order r > 0 with lower limit
a ∈R is defined on locally integrable functions f as

aIrxf (x) = 1

�(r)

∫ x

a

(x − y)r−1f (y)dy, x > a,

and the right Riemann–Liouville fractional integral of order r > 0 with upper limit
b ∈ R is defined as

xIrbf (x) = 1

�(r)

∫ b

x

(y − x)r−1f (y)dy, x < b.

2) The left Riemann–Liouville fractional derivative of order r > 0 with lower limit
a is defined as the integer-order derivative of fractional integrals by

aDr
xf (x) = 1

�(n − r)

dn

dxn

∫ x

a

(x − y)n−r−1f (y)dy, x > a,

where n = �r + 1 and �r denotes the floor function. Similarly, the right Riemann–
Liouville fractional derivative of order r > 0 with upper limit b is defined as

xDr
bf (x) = (−1)n

1

�(n − r)

dn

dxn

∫ b

x

(y − x)n−r−1f (y)dy, x < b.

Note that these two operators are well defined on the Lebesgue space L�r�([a, b])
(see [31, Definition 2.1]). Here, �r� denotes the ceiling function.

3) The Weyl–Liouville fractional derivatives are special cases of the Riemann–
Liouville derivatives, whenever a is replaced by −∞ or b is replaced by ∞ in 2)
above; see [31, Chap. 4, Sect. 19], [7]. The right Weyl–Liouville fractional derivative
is defined for functions f ∈ L�r�([a, b]) as

xDr∞f (x) = (−1)n
1

�(n − r)

dn

dxn

∫ ∞

x

(y − x)n−r−1f (y)dy, n = �r + 1.
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4) Finally, the Caputo fractional derivatives are defined as fractional integrals on
integer-order derivatives. The right Caputo fractional derivative is defined on func-
tions f ∈ L�r�([a, b]) as

C
xDr

bf (x) = 1

�(n − r)

∫ b

x

(y − x)n−r−1f (n)(y)dy, x < b, n = �r + 1.

Moreover, a few properties of fractional derivatives have been used in the paper,
as follows. The left fractional derivative aDr

x of the power function (x − a)p is (see
[28, Eq. (2.117)])

aDr
x(x − a)p = �(1 + p)

�(1 + p − r)
(x − a)p−r . (A.1)

The left Riemann–Liouville fractional derivatives 0Dr
x of the (positive density) con-

volution integral equals (see [28, Eq. (2.213)])

0Dr
x (K ∗ f ) (x) = (

0Dr
t K ∗ f

)
(t) + lim

t→0+f (x − t) 0Dr−1
t K(t). (A.2)

The Caputo and left Riemann–Liouville fractional derivatives relate via the integra-
tion by parts formula (see [3, Sect. 2.1])

∫ b

a

g(x) C
xDr

bf (x)dx

=
∫ b

a

f (x) aDr
xg(x)dx

+
�r∑

j=0

(
(−1)�r+1+j

(
aDr+j−�r−1

x g(x)
)(

aD�r−j
x f (x)

))∣∣∣∣
b

a

. (A.3)

The eigenfunction of the right fractional derivative xDr∞ (or C
xDr∞) with eigenvalue

λr is e−λx , where λ ∈ R+ (see [34, Sect. 4]), i.e.,

xDr∞e−λx = C
xDr∞e−λx = λre−λx. (A.4)

Appendix B: Proof of Theorem 2.3

Proof We use induction on both variables to validate (2.7) together with the following
extra statement: for any function g supported on [0,∞), we have

Am,n

(
d

dt

)
[f m,n

T ∗ g](t)=�m,ng(t).

(Base step) When m = 1, n = 0 or m = 0, n = 1, from (2.4) and (2.5), we have
A1,0(

d
dt

)[f 1,0
T ](t) = 0 and A0,1(

d
dt

)[f 0,1
T ](t) = 0. Furthermore, a simple calculation

yields
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A1,0

(
d

dt

)(
d

dt

)
[f 1,0

T ∗ g](x) = e−λ1,1t
0Dr1

t

(
eλ1,1t (f

1,0
T ∗ g)

)
(t) = λ

r1
1,1g(t),

A0,1

(
d

dt

)
[f 0,1

T ∗ g](t) = (
0Dμ1

t + λ2,1
)
(f

0,1
T ∗ g)(t) = λ2,1g(t).

(Inductive step) For nonnegative m and n, we assume that the statements

Am,n

(
d

dt

)
[f m,n

T ](t) = 0, Am,n

(
d

dt

)
[f m,n

T ∗ g](t) = �m,ng(t)

hold. We then compute

Am+1,n

(
d

dt

)
[f m+1,n

T ](t) = e−λ1,m+1t
0Drm+1

t

(
eλ1,m+1t cm,nf

1,0
T (t)

) = 0,

Am,n+1

(
d

dt

)
[f m,n+1

T ](t) = (
0Dμn+1

t + λ2,n+1
) (

cm,nf
0,1
T (t)

) = 0,

Am+1,n

(
d

dt

)
[f m+1,n

T ∗ g](t) = e−λ1,m+1t
0Drm+1

t

(
eλ1,m+1t cm,nf

1,0
T ∗ g

)
(t)

= cm+1,ng(t),

Am,n+1

(
d

dt

)
[f m,n+1

T ∗ g](t) = (
0Dμn+1

t + λ2,n+1
) (

cm,nf
0,1
T ∗ g

)
(t)

= cm,n+1g(t),

thereby showing that the m + 1 and n + 1 cases are true. To validate the boundary
conditions, we compute

0Dμ1−k
t

n⊙

j=2

(
0D

μj

t + λ2,j

) m⊙

i=1

λ1,i

0Rri
t [f m,n−1

T ∗ f
0,1
T ](0)

=
m∏

i=1

λ
ri
1,i

n∏

j=2

λ2,j 0Dμ1−k
t f

0,1
T (0) =

m∏

i=1

λ
ri
1,i

n∏

j=2

λ2,j λ2,1t
k−1Eμ1,k(−λ2,1t

μ
1 )

∣∣∣∣
t=0

,

which equals �m,n when k = 1, and 0 for k > 1. This completes the proof. �

Appendix C: Review of fractional Poisson process

The fractional Poisson process, denoted by Nμ(t), t > 0, μ ∈ (0,1], is a fractional
non-Markovian generalisation of the Poisson process N(t), t > 0. The distribution of
the fractional Poisson process, Pμ(n, t) = P[Nμ(t) = n], is defined in Laskin [22] as
a solution of a fractional generalisation of the Kolmogorov–Feller equation, namely

0Dμ
t Pμ(n, t) = λ

(
Pμ(n − 1, t) − Pμ(n, t)

) + t−μ

�(1 − μ)
δn,0, t > 0,
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where λ is the intensity parameter and δn,0 the Kronecker symbol. Moreover, Laskin
[22] showed that the inter-arrival times of a fractional Poisson process have the prob-
ability density function fμ(t) = λtμ−1Eμ,μ(−λtμ), t > 0. Here, Eμ,μ is the two-
parameter Mittag-Leffler function with

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
, α,β ∈C, �(α) > 0, �(β) > 0, z ∈C, (C.1)

which was first introduced by Mittag-Leffler [27] as a generalisation of the expo-
nential function. The Laplace transform of the inter-arrival time density fμ(t) is
L(fμ(t); s) = f̂μ(s) = λ

sμ+λ
. The mean and variance of Nμ(t) are

E[Nμ(t)] = λtμ

�(μ + 1)
(C.2)

and Var [Nμ(t)] = 2(λtμ)2

�(2μ+1)
− (λtμ)2

[�(μ+1)]2 + λtμ

�(μ+1)
, as in [22].
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