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Abstract We incorporate a Markovian signal in the optimal trading framework
which was initially proposed by Gatheral et al. (Math. Finance 22:445-474, 2012)
and provide results on the existence and uniqueness of an optimal trading strategy.
Moreover, we derive an explicit singular optimal strategy for the special case of an
Ornstein—Uhlenbeck signal and an exponentially decaying transient market impact.
The combination of a mean-reverting signal along with a market impact decay is
of special interest, since they affect the short term price variations in opposite di-
rections. Later, we show that in the asymptotic limit where the transient market im-
pact becomes instantaneous, the optimal strategy becomes continuous. This result is
compatible with the optimal trading framework which was proposed by Cartea and
Jaimungal (Appl. Math. Finance 20:512-547, 2013). In order to support our mod-
els, we analyse nine months of tick-by-tick data on 13 European stocks from the
NASDAQ OMX exchange. We show that order book imbalance is a predictor of the
future price move and has some mean-reverting properties. From this data, we show
that market participants, especially high-frequency traders, use this signal in their
trading strategies.
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1 Introduction

The financial crisis of 2008/2009 raised concerns about the inventories kept by in-
termediaries. Regulators and policy makers took advantage of two main regulatory
changes (Reg NMS in the US and MiFID in Europe) which were followed by the
creation of worldwide trade repositories. They also enforced more transparency on
the transactions and hence on market participants’ positions, which pushed the trad-
ing processes towards electronic platforms [30, Introduction]. Simultaneously, con-
sumers and producers of financial products asked for less complexity and more trans-
parency.

This tremendous pressure on the business habits of the financial system shifted
it from a customised and high margins industry, in which intermediaries could keep
large (and potentially risky) inventories, to a mass market industry where logistics
have a central role. As a result, investment banks nowadays unwind their risks as fast
as possible. In the context of small margins and high velocity of position changes,
trading costs are of paramount importance. A major factor of the trading costs is the
market impact: the faster the trading rate, the more the buying or selling pressure will
move the price in a detrimental way.

Academic efforts to reduce the transaction costs of large trades started with the
seminal papers of Almgren and Chriss [6] and Bertsimas and Lo [11]. Both models
deal with the trading process of one large market participant (for instance, an asset
manager or a bank) who would like to buy or sell a large amount of shares or contracts
during a specified duration. The cost minimisation problem turned out to be quite
involved, due to multiple constraints on the trading strategies. On the one hand, the
market impact (see [8] and references therein) demands to trade slowly, or at least
at a pace which takes into account the available liquidity. On the other hand, traders
have an incentive to trade rapidly, because they do not want to carry the risk of an
adverse price move far away from their decision price.

The importance of optimal trading in the industry generated a lot of variations for
the initial mean-variance minimisation of the trading costs (see [17, Chaps. 6 and 7],
[25, Chap. 2.3] and [30, Chap. 3] for details). In this paper, we consider the mean—
variance minimisation problem in the context of stochastic control (see e.g. [29, 12]).
In this approach, some more realistic control variables which are related to order book
dynamics and specific stochastic processes for the underlying price can be used (see
[26, 32] for related work).

In this paper, we address the question of how to incorporate signals, which are
predicting short term price moves, into optimal trading problems. Usually optimal
execution problems focus on the tradeoff between market impact and market risk.
However, in practice many traders and trading algorithms use short term price predic-
tors. Most of such documented predictors relate to order book dynamics (see e.g. [18]
and [16]). They can be divided into two categories: signals which are based on lig-
uidity consuming flows [16], and signals that measure the imbalance of the current
liquidity. In [31], an example of how to use liquidity imbalance signals within a very
short trading tactic was studied. These two types of signals are closely related, since
within short terms, price moves are driven by matching of liquidity supply and de-
mand (i.e., current offers and consuming flows).
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Incorporating signals into optimal trading 277

As mentioned earlier, one of the major influencers on transaction costs is the mar-
ket impact. Empirical studies have shown that the influence of the market impact is
transient, that is, it decays within a short time period after each trade (see [8] and ref-
erences therein). In this paper, we focus on two frameworks which take into account
different types of market impact:

— Gatheral, Schied and Slynko (GSS) framework [24], in which the market impact
is transient and strategies have a fuel constraint, i.e., orders are finished before a
given date T’

— Cartea and Jaimungal (CJ) framework [13], where the market impact is instanta-
neous and the fuel constraint on the strategies is replaced by a smooth terminal
penalisation.

Note that [24] is not the only framework with market impact decay. This kind of
dynamics was originally introduced in [33] and reused in [2] as well as in some other
papers. We decided to focus on these two frameworks since they are extensively used
in the financial literature. The model and analysis which are developed in this paper
could be applied also to other optimal trading frameworks.

The main theoretical result of this work deals with the addition of a Markovian sig-
nal into the optimal trading problem which was studied in [24]. We argue in Sect. 2.1
that this is modelled mathematically by adding a Markovian drift to the martingale
price process. We formulate a cost functional which consists of the trading costs and
the risk of holding inventory at each given time. Then we prove that there exists at
most one optimal strategy that minimises this cost functional. The optimal strategy
is formulated as a solution to an integral equation. We then derive explicitly the opti-
mal strategy for the special case where the signal is an Ornstein—Uhlenbeck process.
From the mathematical point of view, this is the first time that a non-martingale price
process is incorporated into an optimal liquidation problem with a decaying market
impact. Therefore the results of Theorems 2.3 and 2.4 extend [24, Proposition 2.9
and Theorem 2.11], respectively. Later we show that in the asymptotic regime where
the transient market impact becomes instantaneous, the singular optimal strategies
which were derived in the GSS framework become continuous. Moreover, we show
that the asymptotics of the optimal strategy in the GSS framework coincide with the
optimal strategy which is obtained in the CJ framework (see Remark 2.8 and Sect. 3).
This benchmark between different trading frameworks provides researchers and prac-
titioners a wider overview when they are facing realistic trading problems.

The use of predictive signals in optimal trading in the context described above is
relatively new (see [16]). To the best of our knowledge, this is the first time that a
Markovian signal and a transient market impact are confronted. The GSS framework
already includes a transient market impact, without using signals. The CJ framework
includes only a bounded Markovian signal and not a decaying market impact. More-
over, our results on optimal trading in the GSS framework incorporate a risk aversion
term into the cost functional, which was not taken into account in the results of [24].

The main contribution of this work is in providing a new framework for optimal
trading, which is an extension of the classical frameworks of [13] and [24], among
others. The motivation to use this framework arises from market needs as our data
analysis in Sect. 4 suggests. From a theoretical point of view, these models of trading
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278 C.-A. Lehalle, E. Neuman

with signals provide some new mathematical challenges. We describe in short two of
these challenges.

The optimal strategies that we derive in Theorem 2.4 and Corollary 2.7 (i.e., in the
GSS framework) are deterministic, and they use only information on the signal at
time 0. One of the challenging questions which remains open is how to optimise
the trading costs over strategies which are adapted to the signal’s filtration (see Re-
mark 2.9).

An interesting phenomenon which arises from our results is that the optimal strate-
gies may be not monotonic once we take into account trading signals (see Fig. 1). This
implies that price manipulations triggered by trading strategies are possible. Another
challenge is to establish conditions on the market impact kernel function and on the
signal that prevent price manipulations (see Remark 2.10).

Another contribution of this paper is a statistical analysis of the imbalance signal
and its use in actual trading, which we present in Sect. 4. In order to validate our
assumptions and theoretical results, we use nine months of real data from Nordic Eu-
ropean equity markets (the NASDAQ OMX exchange) to demonstrate the existence
of a liquidity-driven signal. We focus the analysis on 13 stocks, accounting for more
than 9 billions of transactions. We also show that practitioners are conditioning, at
least partly, their trading rate on this signal. Up to 2014, this exchange provided with
each transaction the identity of the buyer and the seller. This database was already
used for some academic studies; hence the reader can refer to [38, Sect. 2] for more
details. We added to these labelled trades a database of Capital Fund Management
(CFM) that contains information on the state of the order book just before each trans-
action. Thanks to this hybrid database, we were able to compute the imbalance of the
liquidity just before decisions are taken by participants (i.e., sending market orders
which consume liquidity).

We divide most members of the NASDAQ OMX into four classes: global invest-
ment banks, institutional brokers, high-frequency market makers and high-frequency
proprietary traders (the classification is detailed in the Appendix). Then we compute
the average value of the imbalance just before each type of participant takes a de-
cision (see Fig. 4). The conclusion is that some participants condition their trading
rate on the liquidity imbalance. Moreover, we provide a few graphs that demonstrate
a positive correlation between the state of the imbalance and the future price move.
These graphs also provide evidence for the mean-reverting nature of the imbalance
signal (see Figs. 5-7). In Fig. 9, we present the estimated trading speed of market par-
ticipants as a function of the average value of the imbalance, within a medium time
scale of 10 minutes. The exhibited relation between the trading rate and the signal in
this graph is compatible with our theoretical findings.

This paper is structured as follows. In Sect. 2, we introduce a model with market
impact decay, a Markovian signal and strategies with a fuel constraint (i.e., in the
GSS framework). We provide general existence and uniqueness theorems, and then
give an explicit solution for the case of an Ornstein—Uhlenbeck signal. The addition
of a signal to the market impact decay is the central ingredient of this section. In
Sect. 3, we compare our results from Sect. 2 to the corresponding results in the CJ
framework. We show that the optimal strategy in the GSS framework coincides with
the optimal strategy in the CJ framework in the asymptotic limit where the transient
market impact becomes instantaneous and the signal is an Ornstein—Uhlenbeck pro-

@ Springer
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cess. In Sect. 4, we provide empirical evidence for the predictability of the imbalance
signal and its use by different types of market participants. We also perform a sta-
tistical analysis which supports our focus on an Ornstein—Uhlenbeck signal in the
example which is given in Sect. 2. The last section is dedicated to the proofs of the
main results.

2 Model setup and main results

2.1 Model setup and definition of the cost functional

In this section, we define a model which incorporates a Markovian signal into the GSS
optimal trading framework. Definitions and results from [24] are used throughout this
section.

We consider a probability space (£2,.F, (F;),P) satisfying the usual condi-
tions, where Fy is trivial. Let M = (M;);>0 be a right-continuous martingale and
I = (I;)r>0 a homogeneous cadlag Markov process, independent from M, and satis-

fying
T
[ E/[|I;|1dt < o0 forall:eR, T > 0.
0

Here E, represents the expectation conditional on Iy = ¢. In our model, I represents
a signal that is observed by the trader.

We assume that the asset price process P, which is unaffected by trading transac-
tions, is given by

dPt:Itdt+dM[, tZO,

hence the signal interacts with the price through the drift term. This setting allows us
to consider a large class of signals. The visible asset price, which is described later,
also depends on the market impact that is created by the trader’s transactions.

Let [0, T] be a finite time interval and x > O the initial inventory of the trader.
Let X; be the amount of inventory held by the trader at time . We say that X is an
admissible strategy if it satisfies

(1) t— X, is left-continuous and adapted;
(i1) t — X; has IP-a.s. bounded total variation;
(iii)) Xo=x and X; =0 P-a.s.forallr > T.

In what follows, we often consider integration, with respect to an admissible strat-
egy X, as an integration with respect to the measure d X; which is supported on [0, T].
As in [24, 20, 19], we assume that the visible price S = (S;);>0 is affected by a
transient market impact and is given by
St=P,~|—/ G(t —s)dXs, t>0, 2.1
[0.1)

where the decay kernel G : (0, 00) — [0, 00) is a measurable function such that

G(0):= liﬁ)l G (1) exists. 2.2)
t
We interpret the integral in (2.1) as a Lebesgue—Stieltjes integral.
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280 C.-A. Lehalle, E. Neuman

Next we derive the transaction costs which are associated with the execution of a
strategy X. Note that if X, is continuous in ¢, then the trading costs that arise by an
infinitesimal order d X; are S; d X;. When X; has a jump of size AX; at ¢, the price
moves from S; to S;+ = S; + G(0)AX,, and the costs associated with the trade A X,
are given by (see [24, Sect. 2])

G(O) (AXt) + S AX;.

It follows that the trading costs which arise from the strategy X are given by

G0 t
f S, dX, + ﬁ > o(Aax)? = f / I,dsdX,
[0,T] [0,7]1J0

+/ / G(t —s)dX,dX,
[0,7] J[0,1)

GO
e[ max+ 2 Y ax
[0,T]
where the summation is performed over all the jumps of X in [0, T]. From
[24, Lemma 2.3], we get a more convenient expression for the expected trading costs,
namely

t
E[f / destH—/ / G(t—s)dX;dX;
[0,71J0 [0,71J10,1)

[ Max+E0 Z(Axt) }
[0.7]

! 1
=E[/ /Isdstt—i-—/ / G(lt—s|)dXSdXti|—Pox.
[0,71Jo 2 Jio11J10.17

We are interested in adding a risk aversion term to our cost functional. A natural
candidate is fOT X t2 dt, which is considered as a measure for the risk associated with
holding a position X; at time ¢; see [4, 22, 37] and the discussion in [35, Sect. 1.2].
Hence our cost functional which is the sum of the expected trading costs and the risk
aversion term has the form, dropping the fixed term — Pz,

t 1 T
E[/ /Isdst,—i——/ / G(|t—s|)dXSdX,+¢/ Xlzdt}, (2.3)
[0,71J0 2 Jio,11 10,771 0

where ¢ > 0 is a constant.

The main goal of this work is to minimise the cost functional (2.3) over the class
of admissible strategies. Before we discuss our main results in this framework, we
introduce the following class of kernels. We say that a continuous and bounded G is
strictly positive definite if for every admissible strategy X, we have

/ / G(t —s)dX;dX, >0  P-as. (2.4)
(0.71J10,71
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We define G to be the class of continuous, bounded and strictly positive definite
functions G : (0, co) — [0, 00).

Remark 2.1 Note that (2.2) is satisfied for every G € G. A characterisation of positive
definite kernels (that is, when the inequality (2.4) is not strict but weak) is given in
[24, Proposition 2.6].

Remark 2.2 An important subclass of G is the class of bounded, nonincreasing con-
vex functions G : (0, o0) — [0, co) (see [3, Proposition 2]).

2.2 Results for a Markovian signal

In this section, we introduce our results on the existence and uniqueness of an optimal
strategy when the signal is a cadlag Markov process. As in [24, Sect. 2], we restrict
our discussion to deterministic strategies. The minimisation of the cost functional
over signal-adaptive random strategies is discussed in Remark 2.9.

We consider the class of strategies

E(x) = {X : deterministic admissible strategy with Xo = x

and support in [0, T']}.

Note that for any X in E(x), the cost functional (2.3) has the form

t 1 T
/ /E[Is]dstt—i——/ / G(It—s|)dXSdXt+¢/ X2dr. (2.5)
[0,71J0 2 Jio,11J10,11 0

In our first main result, we prove that there exists at most one strategy which min-
imises the cost functional (2.5).

Theorem 2.3 Assume that G € G. Then there exists at most one minimiser to the cost
functional (2.5) in the class E(x) of admissible strategies.

In our next result, we give a characterisation for the minimiser of the cost func-
tional (2.5).

Theorem 2.4 X* € E(x) minimises the cost functional (2.5) over E(x) if and only
if there exists a constant A such that X* solves

t t
/ E[Is]ds—f—/ G(|t—s|)dx;*—2¢/ X*ds=1  forall0<t<T. (2.6)
0 [0,7] 0

A few remarks are in order.
Remark 2.5 In the special case where the agent does not rely on a signal (i.e., I =0)

and there is zero risk aversion (¢ = 0), Theorems 2.3 and 2.4 coincide with [24,
Proposition 2.9 and Theorem 2.11].
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282 C.-A. Lehalle, E. Neuman

Remark 2.6 Dang [20] studied the case where the risk aversion term in (2.3) is
nonzero, but again I = 0. In [20, Sect. 4.2], a necessary condition for the existence of
an optimal strategy is given when the admissible strategies are deterministic and ab-
solutely continuous. Our condition in (2.6) coincides with Dang’s result in that case.
Note, however, that the question whether the condition in [20] is also sufficient and
the uniqueness of the optimal strategy remained open even in the special case I = 0.

2.3 Result for an Ornstein—Uhlenbeck signal

As mentioned in the introduction, special attention is given to the case where the
signal I is an Ornstein—Uhlenbeck process,

d[t:_ylldt+UdWl, tZO,
2.7
Iy=¢,

where W is a standard Brownian motion and y > 0, o > 0 are constants. In the
following corollary, we derive an explicit formula for the optimal strategy in the case
of zero risk aversion and when G has an exponential decay. This generalises the result
of Obizhaeva and Wang [33] who solved this control problem when there is no signal.

Corollary 2.7 Let I be defined as in (2.7). Assume that ¢ =0 and G(t) = kpe *?,

where k > 0, p > 0 are constants. Then there exists a unique minimiser X* € E(x)
to the cost functional (2.5), which is given by

XF=(1-bo(t))x+

pz _ 7/2
5 ( bl(f)—(P+V)b2(f)_(,0+)/)b3(f))7 (2.8)
2kp”y 4

where

L0y + Ligs1) + pt
24 pT

bi(t)=1—e " —by(t)(1 —e 7T,
by(t) = L=y + pt — bo(t)(1 + pT),
b3(1) = (bo(r) — ]1{1>T})67VT-

bo(r) =

3

Note that 1 — bo(T+) =0 and b;(T+) =0 for i = 1, 2, 3; moreover, the optimal
strategy is linear in both x and ¢.

In Fig. 1, we present some examples of the optimal strategy with the parameters
y =09,k =0.1, T =10, x = 10. These particular values are compatible with the
empirical parameters which are estimated at the end of Sect. 4.2. Arbitrary initial
values (—0.5, 0 and +0.5) are taken for the signal ¢. The special case where ¢t =0
gives results similar to Obizhaeva and Wang [33]. The parameter p, which controls
the market impact decay, cannot be estimated from the data that we have; hence we
take two arbitrary but realistic values (1.0 and 2.5). We observe that for large values
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Fig.1 Optimal trading strategies according to (2.8) for y = 0.9,k = 0.1, T = 10 and x = 10. We demon-
strate different scenarios for selling 10 shares: without a signal, with a positive signal, and with a neg-
ative signal. We distinguish between a slow decay of the market impact (solid lines) and a fast decay
(dashed lines). In the top graph, we show the remaining inventory; in the bottom graph, the trading speed
(for 0 <t < 10) is presented

of p, the initial jump in the optimal trading strategy is larger than the corresponding
jump in the small p strategies, but the trading speed tends to have less variation.
We particularly notice that when the initial signal is in the opposite direction to the
trading (¢ > O for a sell order), the trading starts with purchases as expected, and
afterwards the trading speed eventually becomes negative. On the other hand, when
the initial signal is in the same direction as the trading, it is optimal to start selling
immediately, and most of the inventory is sold before 7 /2.
In the following remarks, we discuss the result of Corollary 2.7.

Remark 2.8 Note that in the limit where p — oo, the market impact term in (2.5),
%f[O,T] f[O,T] G(|t — s|)d X dX;, formally corresponds to the costs arising from an
instantaneous market impact, that is, G(dt) = kSo(dt), where & is Dirac’s delta mea-
sure. We briefly discuss the asymptotics of the optimal strategy X* = X*(p) in (2.8)
when p — oo. It is easy to verify that in the limit, the jumps of X* vanish (see A
and D in (5.11) for the explicit expression of the jumps), and the limiting optimal
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284 C.-A. Lehalle, E. Neuman

strategy X*(00) is a smooth function which is given by

X*(oo) =X + ——(1—e 7y — 4.

! 2Ky? 2Ky
Motivated by these asymptotic results, we further explore in the next section abso-
lutely continuous strategies which minimise the trading costs/risk aversion functional.
We assume there that the market impact is instantaneous, that is, G (dt) = ko (dt),
and drop the fuel constraint (X; = 0 for ¢ > T') from the admissible strategies. Then
explicit formulas for the optimal strategy are derived when the risk aversion term is
nonzero.

Remark 2.9 (An adaptive version of (2.8)) Equation (2.8) gives an optimal strategy
for a trader with inventory Xo = x at t = 0, who is observing the initial value of the
signal ¢ = Iy and wishes to minimise (2.5) for an exponentially decaying kernel and
¢ = 0. The cost functional is therefore given by

U0, T)) :=/ /E[15|f(¥V]dstr
[0,7]J0

1 )
—}——/ / kpe PTSlax dX,,
2 Jio,11J10,17

where (]:;W)zzo is the natural filtration of W in (2.7). In this setting, once the trading
has started, it is no longer possible to update the strategy by taking into account
new information, i.e., new values of the signal. This can be compared to simpler
frameworks like the one of Sect. 3, in which the optimal strategy is updated for any
0 <t < T. We therefore add a short discussion on an adaptive framework for (2.8).

A natural way to update the optimal strategy at any time ¢ is to define the process
(f(s) 1<s<7 as the optimal strategy of the cost functional

U(t, T :=/ /E[IS|]-',W]dst,
[¢t,T]Jt

1
—i——/ / kpe PP Slax dXx,.
2 i

Note, however, that

uo,Th=0(0,1]) + AU, T) + AU, T),

where
‘ w 1 —plt—s]|
MUG@,T) = E[I;|Fy ldsdX. + = kpe P dX,dX,
«,71J0 2 Ju.r1J10.0
and

1
AU, T)=—/ / kpe PPl dx dX,.
2 Jio,r1J .1
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This implies that if X is used in place of X* for some t € (¢t,T), the trader will
have an (F;)-adapted control, but it will not necessarily be consistent with X* which
minimises U ([0, T]). Therefore, in practice, one can choose between the following
options:

— the optimal strategy X*, limited to the information on the signal at t = 0;

— an approximate strategy X updated at each time ¢ € (0, T'), which takes into ac-
count the whole trajectory of (1;);

— the optimal strategy which corresponds to a market impact without a decay (as
shown in Sect. 3).

The question which of these strategies gives the best results remains open.

Note that in the cost functional U, the time-inconsistency is a result of the transient
market impact term. In [36], time-inconsistent optimal liquidation problems were
also studied. However, the inconsistency of the problems in [36] arises from the risk
aversion term.

Remark 2.10 (Price manipulation) Market impact models admit transaction-trigger-
ed price manipulations if the expected costs of a sell (buy) strategy can be reduced
by intermediate buy (sell) trades (see [3, Definition 1]). Theorem 2.20 in [24] implies
that transaction-triggered price manipulations are impossible for the cost functional
in (2.6), over the class of admissible strategies, in the case where I =0 and ¢ = 0.
However, Fig. 1 shows that adding signals to the same market impact model can cre-
ate optimal strategies which are not monotonically decreasing, and therefore implies
a possible price manipulation. It would be very interesting to investigate the condi-
tions on the market impact kernel and the trading signals which ensure that there are
no price manipulations. A study of the possible implications of these price manipu-
lations for other market participants is also of major importance.

3 Optimal strategy for temporary market impact

In this section, we study an optimal trading problem that has some common features
with the problem introduced in Sect. 2.1. We consider again a price process which
incorporates a Markovian signal. The main change in this section is that the market
impact in (2.1) is temporary, i.e., the kernel is given by G(dt) = k8o(dt), where ¢
is Dirac’s delta measure and « > 0 is a constant. Note that this type of kernel is not
included in the class G of kernels introduced in (2.1). The main goal of this section
is to show how to incorporate trading signals in the CJ framework [13]. The results
we obtain could be compared to the results of Sect. 2 (see Remark 2.8). Recall that
we heuristically obtained the optimal strategy when the kernel G = G, ‘converges’
to Dirac’s delta measure as p — 00.

We continue to assume that / is a cadlag Markov process as in the beginning of
Sect. 2, but we add the assumption that

ENLI<C(T)(1+]]) forallieR,0<t<T, 3.1)
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for some constant C(7T) > 0. For the sake of simplicity, we assume that M = oW
so that

dPt:Itdt+UPdW[,

where (W;);>0 is a Brownian motion and oP > 0is a constant.

In the following example, the fuel constraint on the admissible strategies is re-
placed with a terminal penalty function. This allows us to consider absolutely contin-
uous strategies as in the framework of Cartea and Jaimungal (see e.g. [14, 15, 16]).
We introduce some additional definitions and notations which are relevant to this
setting.

Let V denote the class of progressively measurable control processes r = (r;);>0
for which fOT |r;|dt < oo P-a.s. For any x > 0, we define

t
X =x —f ryds. (3.2)
0

Here X| is the amount of inventory held by the trader at time . We often suppress
the dependence of X on r to ease the notation. The price process, which is affected
by the linear instantaneous market impact, is given by

St =P —kry, t>0,

where « > 0. Note that S; here corresponds to (2.1) when G(dt) = «8p(dt). The
investor’s cash C; satisfies

dC[ = S[rtdtz(P[ _Krt)rtdt’

with Cp =c.

For the sake of consistency with earlier work of Cartea and Jaimungal in
[14, 15, 16], we define the liquidation problem as a maximisation of the difference
between the cash and the risk aversion. As mentioned earlier, the fuel constraint
on the admissible strategies is replaced by a penalty function, which is given by
X1 (Pr —o0XTt), where o > 0 is a constant. The cost functional is given by

T
Vr(t5tac’x7p)=El,L,C,X,p[CT_¢/ ngs—i_XT(PT_QXT)}’ (3'3)
t

where ¢ > 0 is a constant and E;, . x,, represents the expectation conditioned on
I, =1,C;, =c, X; = x, P, = p. The value function is

V(t,t,c,x,p)=supV'(t,t,c,x,p).
reVy

Note that this control problem could be easily transformed to a minimisation of the
trading costs and risk aversion as in Sect. 2.
Let £ be the generator of the process 1. Then the corresponding HIB equation is

1
0=23V 413,V + E(al")2a§v+£’v — ¢x?

~+ sup (r(p —kr)d.V —raxV), (3.4)
r

@ Springer



Incorporating signals into optimal trading 287

with the terminal condition
V(T,t,c,x,p)=c+x(p—ox).

Let E;, represent the expectation conditional on I; = ¢. In the following result, we
derive a solution to (3.4). The proof of Proposition 3.1 follows the same lines as the
proof of [16, Proposition 1].

Proposition 3.1 Assume that o0 # «/k¢. Then there exists a solution to (3.4), which
is given by

V(t,t,c,x, p)=c—xp—+vo(t, 1) +xvi(t, ) + x2va(1), (3.5)
where
14 ¢e?PT=D
va() = vmm’

T
1 rs
wm0=/‘ﬂﬂwmwﬁﬂhw&
t

1 T
1ww=@fEmﬂmmw
t

and the constants ¢ and B are given by
LAY/ S \/@
0~ k¢’ K

In the following result, we prove that the solution to (3.4) is indeed an optimal
control to (3.3).

Proposition 3.2 Assume that o0 # «/x¢. Then:
(a) (3.5) maximises the cost functional in (3.3). The optimal trading speed r* is
given by

1 Ty
rt*=—2—(2vz(t)X,+/ e%frW(")""E[ls|1t]ds), 0<r<T.
K t

(b) Assume further that I follows an Ornstein—Uhlenbeck process as in (2.7). Then
the optimal trading speed r* is given by

1 r
rf= P <2v2(t)x, + 1,/ ¢V =D+ [ v du ds>, 0<r<T.

t

The proofs of Propositions 3.1 and 3.2 are given in Sect. 5.2.
In the following remarks, we compare the results of Sects. 2 and 3.

@ Springer



288 C.-A. Lehalle, E. Neuman

Remark 3.3 If we set the risk aversion and penalty coefficients ¢, ¢ in (3.3) to 0, then
from the proof of Proposition 3.1, it follows that v, = 0. Under the same assumptions
on the signal as in Proposition 3.2 (b), the optimal strategy is given by

I
= (1=, 0<t<T, (3.6)
2y

which is consistent with X/ (co) from Remark 2.8.

Remark 3.4 One can heuristically impose a ‘fuel constraint’ on the optimal strategy

in Proposition 3.2 (b) by using the asymptotics of r; when ¢ — oco. In this case,

¢ — 1 and the limiting optimal speed which we denote by rtf is

. 1 T 5
vl = —§<21_)2(I)X, +1,/ ¢V GmDFE [} D20 du ds), 0<t<T,

t

_ 1+ 2T
20 = VRO T SpT

Remark 3.5 It is important to notice that (2.8) gives the optimal strategy on the time
horizon [0, T'] in the GSS framework by using only information on the OU signal
at t = 0. On the other hand, (3.6), which is the optimal trading speed r; in the CJ
framework, is using the information on the signal at time ¢. A crucial point here
is that if one tries to solve repeatedly the control problem in the GSS framework
on time intervals [z, T] for any ¢ > 0, by using /; and S; as an input, the optimal
strategy will not necessarily minimise the cost functional (2.3) on [0, T]. The reason
is that the control problem in (2.3) may be inconsistent. The market impact (and
therefore the transaction costs) created on [0, ¢] affects the cost functional on [z, T']
(see Remark 2.9 for more details). Note that this phenomenon does not occur in the
instantaneous market impact case (i.e., in the CJ framework).

In Fig. 2, we simulate the optimal inventory X* which corresponds to the opti-
mal trading speed r* from Proposition 3.2 (b). In the black solid line, we present
the optimal inventory in the case where there is no signal. In this case, the optimal
strategy is deterministic. The red region in Fig. 2 is a ‘heat map’ of 1000 realisa-
tions of the optimal inventory X*. The parameters of the signal (2.7) are y = 0.1,
o0 =0.1and Ip =0. We also set T =10, x = 0.5, ¢ = 0.1, Xp =10 and o = 10 in
the cost functional (3.3). We observe that the random strategies are a perturbation
of the classical deterministic optimal strategy. In Fig. 3, we present the value func-
tion (3.5) at + = 0 under the same assumptions as in Fig. 2, that is, assuming that
I is an OU process and that the model parameters are similar. More precisely, we
plot V(0,t, c, x, p) — (c — xp); hence we omit constants which do not contribute to
the behaviour of the model. We observe that the revenue which corresponds to the
optimal sell strategy r* is affected by the direction and value ¢ of the signal. The rev-
enue of a sell strategy when the signal is positive, which indicates a potential price
increase, is higher than with negative signal scenarios.
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Fig. 2 Simulation of the Optimal Strategy
optimal inventory X* which " " " T T T
corresponds to the trading speed
r* from Proposition 3.2 (b). In
the black curve, we present the
optimal inventory in the absence
of a signal. The red region is a s
plot of 1000 trajectories of the
optimal inventory X*. The
parameters of the model are
y=0.1,0 =0.1,Ip =0,
T=10,k=0.5,¢=0.1,
Xp=10and o =10 2r )

X- iventory

2 n s s s s s s L "
a 100 200 300 400 500 600 700 800 900 1000

t-time

Fig. 3 Plot of the value Value function
function

V(0,t,c,x, p)— (c —xp) from
(3.5) when the signal is an OU
process. The parameters of the
model are y =0.1,0 =0.1,
T=10,k=0.5,¢=0.1,
Xpo=10and o =10

¢~ signal 10 x- inventory

4 Evidence for the use of signals in trading

In this section, we analyse financial data which is related to the limit order book
imbalance. The data analysis in this section is directed to support the models which
were introduced in Sects. 2 and 3. In Sect. 4.1, we describe our data base and provide
empirical evidence for the use of the imbalance signal, which is a liquidity-driven
signal. In Sect. 4.2, we study the statistical properties of the signal and motivate our
model from Sect. 2.3 of an Ornstein—Uhlenbeck signal. Finally, in Sect. 4.3, we study
the use of this signal during liquidation by different market participants. Note that in
Sects. 2 and 3, we also discussed more general signals which are not necessarily
liquidity-driven.

Before we start with the detailed analysis of the limit order book imbalance sig-
nal, we survey some related work on other processes which are known to affect asset
prices and have mean-reverting properties. Each of these processes may serve as a
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signal in the optimal trading framework of Sect. 2.3. We mention these specific ex-
amples as they demonstrate predictive signals which are affective at different time
scales.

The order flow imbalance has been extensively studied in the literature (see
e.g. [18] and references therein). The correlation between the current order flow and
the future price move in 10 seconds intervals was studied by Cont et al. in [18]. The
mean-reverting properties of the order flow were studied by Bechler and Ludkovski
in [9] (see also [10]).

Pairs-trading refers to the case where two assets Q and P are in the same indus-
try or have similar characteristics. In this case, one expects the returns of these two
assets to track each other (see e.g. [7, Sect. 1]). Let S¢ and S be the price pro-
cesses of the assets. Then the difference between the weighted returns of P and Q,
dJ; = dS,P/S,P - ﬂdS,Q/SQ, for a certain constant 8 > 0, can be approximated in
many cases by a stationary mean-reverting process. Hence a trader who wants to lig-
uidate a large amount of asset P, for example, may consider J; as a trading signal.
The typical mean-reversion time of such signals may vary between half a day to a
month (see [7, Fig. 8]). More examples of trading signals which are used in opti-
mal execution can be found in a presentation by Robert Almgren [5]. In Sect. 4.3,
we show that the LOB imbalance signal affects the trading speed of high-frequency
proprietary traders in the following 10 minutes time interval.

4.1 The database: NASDAQ OMX trades

The database which is used in this section is made of transactions on the NASDAQ
OMX exchange. This exchange used to publish the identity of the buyer and seller of
each transaction until 2014. To obtain order book data, we use recordings made by
Capital Fund Management (CFM) on the same exchange, which were matched with
NASDAQ OMX trades thanks to the timestamp, quantity and price of each trade. On
a typical month, the accuracy of such matchings is more than 97% (see Table 2).

The NASDAQ OMX trades were already used for academic studies (see [38] and
[31] for details). We study 13 stocks traded on NASDAQ OMX Stockholm from
January 2013 to September 2013. The purpose of this section is not to conduct an
extensive econometric study on this database; such work deserves a paper of its own.
Our goal here is to show qualitative evidence for the existence of the order book
imbalance signal and to study how market participants’ decisions depend on its value.
The 13 stocks which are used in this section have been selected for this research since
high-frequency proprietary traders took part in at least 100’000 trades on each of
them during the studied period. More details on the classification of the traders into
different classes are given later in this section.

Table 1 shows descriptive statistics on the considered stocks in the database.
Stocks are ranked by the average daily traded value (in units of 10° of the local
currency, the Swedish krona), which can be considered as an indicator of liquidity.
We also included in Table 1 the average price during the study period, since Euro-
pean exchanges apply dynamic tick size schedules: the lower the average stock price,
the lower is the tick size (see [30, Chap. 1, Sect. 3]). The minimum tick size is the
smallest tick size which was applied to the stock price during our study period. If the
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Table 1 Statistics of the 13 studied stocks. Values and prices are in Swedish krona. The Garman and Klass
(GK) volatility is estimated yearly. The table is sorted by the average daily traded value over 180 trading
days

Company name (code) Daily traded  Average  Average Volatility ~ Minimum
value (106) price bid—ask spread (GK) tick
Volvo AB (voLvb.sT) 431.20 94.87 0.057 15.08% 0.05
Nordea Bank AB (npa.sT) 384.48 76.09 0.053 15.02% 0.05
Telefonaktiebolaget LM
Ericsson (grico.st) 373.20 78.41 0.054 15.20% 0.05
Hennes & Mauritz AB (umvst)  361.66 232.89 0.112 11.37% 0.10
Atlas Copco AB (arcoast) 329.94 175.19 0.110 16.13% 0.10
Swedbank AB (swEpast) 313.18 151.97 0.108 15.29% 0.10
Sandvik AB (sanp.sT) 296.09 90.88 0.067 17.01% 0.05
SKF AB (skrv.sT) 255.99 161.11 0.112 16.47% 0.10
Skandinaviska Enskilda
Banken AB (seBast) 221.23 66.85 0.053 15.56% 0.05
Nokia OYJ (nokist) 209.77 28.84 0.019 36.89% 0.01
Telia Co AB (TLsN.sT) 207.09 45.14 0.014 10.13% 0.01
ABB Ltd (aBB.sT) 179.51 144.35 0.108 11.89% 0.10
AstraZeneca PLC (azn.st) 168.06 318.57 0.127 12.09% 0.10

price changes are large enough, different tick sizes could have been applied during
the study period; therefore we also added the yearly estimated Garman and Klass
(GK) volatility to the table (see [23]). Last but not least, the average bid—ask spread
has to be compared with the tick size: for all these stocks, the bid—ask spread lies
between one and two ticks. All these stocks are therefore liquid and large-tick stocks.

The NASDAQ OMX database contains the identity of the buyer and the seller from
the viewpoint of the exchange, that is, the members of the exchange who made the
transactions. Asset managers, for example, are not direct members of the exchange.
On the other hand, brokers, banks and some other specific market participants are
members. We classify the market members into four types (for more details, see Ap-
pendix A.1, Tables 5-7):

— global investment banks (GIB);
institutional brokers (IB);

— high-frequency market makers (HFMM);
high-frequency proprietary traders (HFPT).

Table 2 gives some plain statistics about the number of trades on each stock of our
database involving these types of participants. Keep in mind that the database covers
180 trading days. It can be read in the last line that on average, global investment
banks are involved in 58% of the trades while high-frequency traders are involved
in 32% of them; the remaining 10% involve institutional brokers. The percentage
of identified participants is on average 78%, that is, 22% of the trades took place
between two participants which we could not associate with any of our four classes
(GIB, 1B, HEFMM, HFPT). Moreover, we had to filter around 2% of the trades (see

@ Springer



292 C.-A. Lehalle, E. Neuman

Table 2 Statistics on labelled trades involving each kind of market participant. Trades count is the sum of
trades involving at least one labelled participant. Pct. ident. represents the percentage of trades involving
at least one participant out of the four types that we focus on. Pct. LOB matched is the percentage of trades
for which we found a matching quote in our LOB database. The averages in the bottom line are calculated
over all identified trades

Code Global HFMM Instit. HFPT Trades Pct. pct. LOB
banks brokers count ident. matched
VOLVbL.ST 56.9% 17.1% 10.6% 15.3% 927,467 76.7% 97.4%
NDA.ST 60.7% 10.6% 9.9% 18.7% 694,509 76.8% 97.4%
ERICb.ST 57.8% 17.6% 7.7% 16.9% 811,931 81.0% 97.2%
HMD.ST 58.5% 16.0% 8.9% 16.6% 716,644 76.8% 97.8%
ATCOa.ST 58.2% 13.7% 10.5% 17.6% 677,981 79.1% 98.0%
SWEDa.ST 61.2% 12.2% 9.5% 17.2% 600,655 74.6% 97.7%
SAND.ST 61.0% 15.2% 10.4% 13.4% 701,961 77.4% 96.9%
SKFb.ST 60.9% 13.8% 10.4% 14.9% 587,088 77.1% 97.0%
SEBa.ST 61.5% 12.1% 8.8% 17.7% 515,743 75.8% 97.8%
NOKI.ST 54.5% 8.1% 8.9% 28.5% 710,173 79.6% 99.2%
TLSN.ST 61.2% 10.0% 10.6% 18.2% 548,602 68.9% 97.8%
ABB.ST 50.1% 15.6% 5.2% 29.2% 359,067 86.2% 98.1%
AZN.ST 51.4% 12.8% 9.0% 26.8% 411,118 89.6% 98.8%
Average 58.3% 13.6% 9.4% 18.7% - 77.7% -

last column) because in some cases we could not match limit order book records with
the observed transactions.

We expect institutional brokers to execute orders for clients without taking addi-
tional risks (i.e., act as ‘pure agency brokers’). Such brokers often have medium-size
clients and local asset managers. They do not spend a lot of resources such as tech-
nology or quantitative analysts to study the microstructure, and they do not react fast
to microscopic events.

Global investment banks can take risks at least on a fraction of their order flow.
Most of them already had proprietary trading desks and high-frequency trading ac-
tivities in 2013 (i.e., during the recording of the data). They usually have large inter-
national clients and have the capability to react to changes in the state of the order
book.

High-frequency market makers are providing liquidity on both sides of the order
book. They have a very good knowledge on market microstructure. As market mak-
ers, we expect them to focus on adverse selection and not to keep large inventories.
On the other hand, high-frequency proprietary traders take their own risks in order to
earn money, while taking profit of their knowledge of the order book dynamics.

The data in Table 3 is compatible with our prior knowledge on the different classes
of traders:

— HFMM trade far more with limit orders (73%), than with market orders;
— IB use more market orders than limit orders;
— on average, HFPT and GIB have balanced order flows.
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Table 3 Descriptive statistics

of market participants on an Participant class Trade Avgre]lge Averl';lge Pct.
‘average stock’. All the trades type tmbatance fumber
are normalised as if all orders
were buy orders. The imbalance Global banks limit —0.41 103,418 48.2%
is positive when its sign is in the market 0.56 111,082 51.8%
direction of the trade
HFMM limit —-0.31 30,747 73.0%
market 0.62 11,818 27.0%
HFPT limit —0.37 28,763 47.2%
market 0.63 31,858 52.8%
Instit. brokers limit —0.56 9,984 33.6%
market 0.33 19,505 66.4%
Avg. Imbalance Limit (left) and Market (right) Orders Pct. of Limit Orders Sent
B SEBa.ST
N AZNST
. mm NOKLST
Instit. Brokers = N SWEDaST []
—_ = N NDAST
 SKFb.ST
m ABB.ST
BN TLSN.ST
W SANDST
- s ERICb.ST
HF Prop. ; ﬁ N ATCOaST H
— — . HMb.ST
. VOLVDL.ST
— —
—0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8 0 20 40 60 80 100

Fig. 4 Use of limit and market orders vs. the state of the imbalance before a trade, for each type of market
participant. (Left panel) Average imbalance just before a limit order (left part, negative), and average
imbalance just before a market order (right part, positive). The dark line with the large dots represents the
average over all trades for all stocks. (Right panel) Percentage of trades with limit orders out of all orders.
The dark line is the average over all stocks

Moreover, high-frequency participants (HFMM and HFPT) both use market orders
to consume liquidity on the weak side of the book (i.e., buying when the imbalance
is on average 0.60 and selling when it is on average —0.60), and provide liquid-
ity when the imbalance is less intense than —0.5. The later observation is com-
patible with HF participants who contribute to stabilise the price with their limit
orders.

These numbers are only averages; in Fig. 4, we give their dispersion across our 13
stocks. It can be seen in Fig. 4 that the asymmetry between HFPT and IB is observed
for all stocks (see left panel). Moreover, the left panel suggests that high-frequency
participants use market orders and limit orders when the imbalance is in their favour.
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4.2 The imbalance signal

The order book imbalance has been identified as one of the main drivers of liquidity
dynamics. It plays an important role in order book models, and more specifically it
drives the rate of insertions and cancellations of limit orders near the mid price (see
[1, Chap. 10] and [28]). As an illustration of the theoretical results of this paper, we
document here the imbalance signal and its use by different types of participants.
This signal is computed by using the quantity Q p of the best bid and Q 4 of the best
ask of the order book,

0p(1) — Qa(7)

Qp(1)+ Qa(r)’

just before the occurrence of a transaction at time 4. Note that our 13 stocks are
considered as “large-tick stocks”—except for Sandvik AB (SAND.ST) and Telia Co

AB (TLSN.ST)—for which the average bid—ask spread is greater than 1.4 times
the tick size. This means that the liquidity at the best bid and ask gives a substan-

Imb(7) =

Fig. 5 Predictive power of the 10

; .
. . SEBa.ST SKFb.ST ERICb.ST
imbalance: the average price AZN.ST ABBST ATCOWST
move for the next 10 trades NOKLST TLSNST HAMBST

. . SWEDa.ST SAND.ST VOLVb.ST
(y-axis) as a function of the NDAST

current imbalance (x-axis)

-1.0 —(i.S 0.0 0.5 1.
Imbalance

Fig. 6 Predictive power of the 8
imbalance for the AstraZeneca
stock: the average price move
for the next 10 trades (y-axis) as 4
a function of the current
imbalance (x-axis), with
confidence levels of upper and
lower 5%

Average price move

=

—6 /

—0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8
Imbalance
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Table4 Results of linear regressions involving the imbalance. The first column is the result of a regression
of the price move after 10 trades given the imbalance immediately before the first of these trades. This can
also be shown in the slope of Fig. 5. The p-value is very close to zero for all stocks, meaning they are
highly significant. The R? varies between 1% (Nokia) to 16% (Volvo AB and Nordea Bank AB). Other
columns are the results of the regression of future imbalance (respectively after 3, 5, 7, 10 and 100 trades)
with respect to the imbalance immediately before the first of these trades, given that the imbalance is
between —0.5 and 0.5. This regression corresponds to the slopes at the center of Fig. 7. All p-values are
significant at more than 99.99%

d price R? Imb. 3t Imb. 5t Imb. 7t Imb. 10t Imb. 100 t
VOLVbL.ST 0.58 0.16 0.91 0.72 0.49 0.26 0.03
NDA.ST 0.58 0.16 0.90 0.71 0.51 0.30 0.04
ERICb.ST 0.62 0.15 0.93 0.74 0.53 0.30 0.03
HMb.ST 0.59 0.08 0.84 0.62 0.41 0.21 0.02
ATCOa.ST 0.60 0.13 0.85 0.58 0.34 0.13 0.02
SWEDa.ST 0.62 0.14 0.87 0.67 0.45 0.23 0.02
SAND.ST 0.56 0.15 0.81 0.57 0.37 0.20 0.03
SKFb.ST 0.59 0.13 0.76 0.49 0.28 0.13 0.01
SEBa.ST 0.61 0.15 0.91 0.73 0.51 0.28 0.03
NOKIST 0.41 0.01 0.18 0.08 0.05 0.03 0.00
TLSN.ST 0.54 0.04 0.43 0.22 0.13 0.08 0.02
ABB.ST 0.59 0.11 0.86 0.61 0.33 0.11 0.03
AZN.ST 0.64 0.04 0.47 0.20 0.09 0.05 0.02

tial information on the price pressure (see [27] for details about the role of the
tick size in liquidity formation). For smaller-tick stocks, several price levels need
to be aggregated in order to obtain the same level of prediction for future price
moves.

In order to demonstrate the predictive power of the imbalance, we consider the
average mid-price move after 10 trades as a function of the current imbalance (see
Figs. 5 and 6). Table 4 gives data which is associated to these curves. The column
‘d price’ shows the price change renormalised by the average bid—ask spread on each
stock after 10 trades. This price move is on average close to 0.6 times the imbalance
just before the first of these trades.

Mean-reversion of the imbalance Figure 7 shows the average value of the im-
balance after AT = 3,5 and 7 trades as a function of its current value. The colours
of the curves represent the same stocks as in Fig. 5. The decreasing slopes around
Imb(¢) = 0 are underlined by the columns 4-7 of Table 4. This demonstrates the
mean-reverting property of the imbalance. We do not comment too much on the de-
creasing slopes for large imbalance values. We just mention that a strong imbalance
may imply a future price change, which in turn can create a depletion of the ‘weak
side of the order book’ (in the sense of [21]). This phenomenon may cause an in-
version of the imbalance, since the queue in the second-best price level of the order
book, which is now ‘promoted’ to be the first level, could be large. See [28] for details
about queues dynamics in order books.

@ Springer



296 C.-A. Lehalle, E. Neuman

Fig.7 Mean-reversion of the — e
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To approximately fit Ornstein—Uhlenbeck (OU) dynamics to the imbalance data,
we use ‘trade time’ instead of ‘calendar time’ (i.e., seconds) in order to compensate on
different frequencies of trading for each of our 13 stocks (see columns d¢ in Table 9
in the Appendix). This yields a discrete version of an OU process,

Inyan — L ==y L, An+ 0~ An A,

where An is the number of future trades, y the mean-reversion parameter and o the
standard deviation of the innovation &,y o, . The linear regressions on the last columns
of Table 4 are following the model

Inian =apndy +Gan€nyan.
This leads to the estimators of y and o as

A 1 —aan &~ OAn
Y7 Tan T JAn
Figure 8 shows the frequencies of values of p for the 13 stocks over the scales

An =3,5,7,100. Table 8 gives the associated values of these p. In Table 9, different
estimates of ¢ are given.

Some numerical values of the model parameters At a time scale of 35 seconds
or 7 trades, y should be taken close to 0.92 and o close to 0.22. We also provide an
estimator for the instantaneous market impact x using the empirical average of the
mid-price move' after a trade times the sign of the trade. Table 9 in the Appendix
shows that the average value of x divided by the average bid-ask spread is close
to 0.1.

IThe mid price is the middle of the best bid and best ask prices.
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Fig. 8 Histogram for the estimators of y

We summarise the main findings of this section:

(i) the imbalance can be considered as a liquidity-driven short-term signal;

(i1) this signal has mean-reverting properties;

(i) market participants, especially high-frequency traders, take the imbalance into
account while trading (see Table 3 and Fig. 4).

4.3 Use of signals by market participants

As previously mentioned, we expect HF proprietary traders, HF market makers and
global investment banks to pay more attention to order book dynamics than institu-
tional brokers. However, as market makers, HFMM are expected to earn money by
buying and selling when the mid price does not change much (relying on the bid—ask
bounce). On the other hand, HFPT are typically alternating between intensive buy
and sell phases which are based on price moves.

Our expectations are met in Table 3, where the average imbalance just before a
trade is shown for each type of market participant. All the trades in this table are
normalised as if all orders were buy orders. The imbalance is positive when its sign
is in the direction of the trade, and negative if it is in an opposite direction.

We notice the following behaviour:

— When the transaction is obtained via a market order, the market participant had the
opportunity to observe the imbalance before consuming liquidity.

— When the transaction is obtained via a limit order, fast participants have the oppor-
tunity to cancel their orders to prevent an execution and potential adverse selection.

Table 3 underlines that HF participants and GIB make ‘better choices’ on trading
according to the market imbalance. Institutional brokers seems to be the less ‘imbal-
ance aware’ when they decide to trade. This could be explained either by the fact
that they invest less in microstructure research, quantitative modelling and automated
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trading, or because they have less freedom to be opportunistic. Since they act as pure
agency brokers, they do not have the choice to retain clients’ orders, and this could
prevent them from waiting for the best imbalance to trade.

Strategic behaviour Once we suspect that some participants take into account the
imbalance in their trading decisions, we can look for a relation between the trading
rate and the corresponding imbalance for each type of participant. This is motivated
by the optimal trading frameworks of the previous sections, where we used the trading
rate as a control.

In order to learn more about the relation between the imbalance signal and the
trading speed, we compute the imbalance-conditioned trading rates R4 and R_ for
each type of market participant, during all consecutive intervals of 10 minutes from
January 2013 to September 2013 (within the trading hours, i.e., from 9:00 to 17:30).
Note that in the following analysis, the signal, time and trading quantities are discrete.

Definition 4.1 The imbalance-conditioned trading rates of market participants of
type P during the time interval 7 are given by

1 _ _ _
RL(T,P|u)= NTPD ;rsm)signamb@»(ia)Atap (1)8j1mb(n)) (1)

where

— ¢&(¢) is the sign of the trade at time ¢;

- 58(,)sign(lmb(,))(:|:1) is 1 if at time ¢ the imbalance sign times the sign of the trade
is equal to =1, and O otherwise;

— A; is the traded amount of the trade at time ¢;

— 8p (1) is 1 if the trade at time ¢ involved a participant of type P, and 0 otherwise;

- (§|Imb(t)|(L) is 1 if the absolute value of the imbalance at time 7 equals ¢, and O
otherwise;

— N(T,P,) is the number of trades involving participant P in 7 when the imbal-
ance equals ¢.

Qualitatively, R+ have the following interpretation:

— R4+ (T,P | is an estimate of the amount traded in the direction of the imbalance
when the absolute value of the imbalance is ¢, by participants of type P during the
time interval 7

— R_(T,P|¢) is an estimate of the amount traded in the opposite direction of the
imbalance when the absolute value of the imbalance is ¢, by participants of type P
during the time interval 7.

In order to get the imbalance-conditioned trading rates, we renormalise R1 by

AT =Y (R(T. Pl +R(T.P|0).
P
Note that A(T | ¢) is the traded amount during the interval 7 given that the imbalance
is . Then R4 (T, P |¢) divided by A(T |¢) is an estimate of the probability that a
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Fig. 9 Renormalised average trading rate in the direction of the imbalance 74 (solid line) and in the
opposite direction 7— (dotted line), during 10 consecutive minutes, for each type of participant

stock is traded by a participant of type P during interval T in the direction of the

imbalance, given that the imbalance is . Then R_(T,P | ¢) divided by A(T | o) is

an estimate of the probability that a stock is traded by a participant of type P during

interval 7 in the opposite direction of the imbalance, given that the imbalance is ¢.
Let N7 be the number of ten minutes intervals in our data base. We define

1 ZR+(T,P|L) 1 ZR_(T,Pm

nPI= 2 Ty TP E Nl Ay

T T

which are unbiased estimators for the probability that a participant of type P trades
in the direction (respectively, opposite direction) of the imbalance, given that the
absolute value of the imbalance is ¢. To be able to put all the stocks on the same
graph, we draw

P Io=rk® |0/ (P|0)

in Fig. 9. Here r+ (P | 0) is the average of r:kt (P 1 0) over all stocks k. Figure 9 shows
the variations of 7 (the relative speed of trading in the direction of the imbalance, in
solid lines) and 7_ (the relative speed of trading in the opposite direction to the imbal-
ance, in dashed lines) with respect to the imbalance ¢ before the trade, for each type
of market participant and for each stock. From this graph, we observe the following:
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— For high-frequency market makers, the higher the imbalance in the order book,
the less they trade. This effect does not seem to be related to the direction of their
trades. It corresponds to an expected behaviour from market makers.

— For high-frequency proprietary traders, the higher the imbalance, the more they
trade in a similar direction, and the less they trade in the opposite direction.

— Institutional brokers do not seem to be influenced by the imbalance. Additional
data analysis shows that they trade more with limit orders when the imbalance is
intense; this may drive the price to move in the opposite direction.

— The behaviour of global banks seems to be influenced by the imbalance for part of
the stocks in our sample.

Towards a theory of strategic use of signals The analysis in this section suggests
that some market participants are using liquidity-driven signals in their trading strate-
gies. The liquidity imbalance, computed from the best bid and ask prices of the order
book for medium- and large-tick stocks, appears to be a good candidate. Moreover,
its dynamics exhibit mean-reverting properties.

The theory developed in Sects. 2 and 3 can be regarded as a tentative framework
to model the behaviour of the following participants. Global investment banks who
execute large orders seem to be a typical example for participants who adopt the type
of strategies that we model. High-frequency proprietary traders who are combining
slow signals (which may be considered as execution of large orders) along with fast
signals could also use our framework. We could moreover hope that thanks to the
availability of such frameworks, institutional brokers could optimise their trading and
increase the profits for more final investors.

5 Proofs
5.1 Proofs of Theorems 2.3, 2.4 and Corollary 2.7

The proofs of Theorems 2.3 and 2.4 use ideas from the proofs of [24, Proposition 2.9
and Theorem 2.11].

Proof of Theorem 2.3 Let x > 0. For any X € E(x), define
C(X) :=Ci1(X) + C2(X) + K(X), (5.1

where

1
cl<X)=—/ f G|t — sy dX, dX,,
2 Jio.r1J10.11
T
C2(X)=¢/ X2ds,
0

t
K(X):/ /El[ls]dst,.
[0,71/0

Note that C(X) is the cost functional in (2.5).
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Since G is strictly positive definite, we have for any X € E(x) that
Ci(X) > 0. (5.2)
Also C>(+) is quadratic in X, and therefore we have
C2(X) > 0. (5.3)

Let X,Y € E(x). We define the cross-functionals

1
Ci(X,Y)= —/ / G(|t —s|)dXsdY;,
2 Jio,71 10,771

T
Cr(X,Y) = ¢/ X Yo ds.
0
Note that
C;(X,Y)=C;(Y,X) fori=1,2

and
CX-Y)=Ci(X)+C;(Y)—-2Ci;(X,Y) fori=1,2. 5.4
From (5.2), it follows that C1(X — Y) > 0, and together with (5.4), we get

1 1 1 1 1 1 1
“X+-Y)=-CiX)+-Ci(¥)+C1(X,Y) < =C1(X) + = C1 (V).
C1<2 +2> 71X+ 200 + 5CXY) < SC1HX) + 5CiY)

Repeating the same steps, using (5.3) instead of (5.2), we get

1 1 1 1
Gl =X+=-Y)<-Cr(X —Ch(Y).
2(2 +2)_22( )+2 2(Y)

Since K (X) is linear in X, we have

K<1X 11/)—11(()() 1K(Y)
PRI R A R R

From (5.1), it follows that

1 1 1 1
X+ -Y)<=CX)+=C(Y).
c<2 +3 ><2C( )+ 5C)
Let a € (0, 1). The claim that

ClaX+ (1 —a)Y)<aCX)+ (1 —a)C(Y)

follows from the continuity of C (¢ X) in « by a standard extension argument. As C(-)
is strictly convex, we get that there exists at most one minimiser to C(X) in E(x). U
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Proof of Theorem 2.4 First we prove that the condition (2.6) is necessary for opti-
mality. Let 0 <t < 7o < T and consider the round trip

dYs = 64,(ds) — 8:(ds).
For all « € R, we have
Ci(X* +aY) = Ci(X*) +a>Ci(Y) +2aC; (X*,Y), i=1,2, (5.5)
and
KX*+aY)=KX*) +aK (). (5.6)

Let Z := X* 4+ aY, and recall that C(Z) = C1(Z) 4+ C2(Z) + K(Z). Using (5.5)
and (5.6), we can differentiate C(Z) with respect to o and get
0C(2)
o

=K()+ Z (2aC; (Y) +2Ci (X", 7).
i=1,2

From optimality, we have C(X*) < C(Z), and therefore we expect that

0C(2)
o

=K(Y)+2 Z Ci(X*,Y)=0. (5.7)
a=0 i=1,2

Note that

1
Cl(X*,Y) = = G(r — s dX*dY,
N
2 Jio,11 10,77

1 .1 i}
=3 Glto — s dX} — > G(t — s))dX*,
[0,T] [0,T]

T ]
C2(X*,Y)=¢f X;‘sts=—¢/ X*ds,
0 t

r fo
KY) = / / E/\Is]dsdY, :/ E/[I]ds.
[0.71J0 '

We get that (5.7) is equivalent to

i) t
/ G(lto — s dXF — 2¢[ X*ds +f E,[I,1ds
[0,T] 0 0

t t
:/ G(|t—s|)dX;"—2¢/ X;‘ds+/ E[I]ds.
[0,T] 0 0

Since ¢ and #y were chosen arbitrarily, this implies (2.6).
Assume now that there exists X* € E(x) satisfying (2.6). We show that X*
minimises C(-). Let X be any other strategy in E(x). Define Z = X — X*. Then
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from (2.6), we have

1
CI(X*,Z)=—/ / G(lt —s))dX*dZ,
2 Jio,71 10,77

1 t t
:—/ <A+2¢/ X:‘ds—/ EL[IS]ds) dZ,
2 Jio,11 0 0

)\‘ t
= —<X([O, 00)) — X*([0, oo))) + ¢/ / Xidsdz,
2 [0,71J0

1 t
——/ / E |[LldsdZ;
2 Jio.mJo

t
1
=¢/ /X;‘dst,——K(Z), (5.8)
[0,71Jo 2

where we have used the fact that X ([0, 00)) = X*([0, 00)) = x in the last equality.
From (5.5) and (5.8), we have

Ci(X)=Ci(Z+ X"
=C1(2)+C1 (X" +2C1(X*, 2)

t
:Cl(Z)+C1(X*)—K(Z)+2¢f / X*dsdZ,,
[0,7]J0

Co(X) = Co(Z + X7)
= C2(2) + C2(X*) +2C2(X*, Z)

T
=c2(2)+c2(x*)+2¢/ X*Z,ds.
0

From the linearity of K (-), we get
K(X)=K(Z)+ K(X™").
It follows that

CX)= )Y Ci(X)+K(X)
i=1,2

= C1(X") + Co(X™) + K(X™) + C1(2) + C2(2)

t T
+2¢/ / X;‘dst,+2¢/ XiZsds
[0,71J0 0
=C(X"+C1(2)+ Ca(2)

1 T
+2¢/ / XidsdZz, +2¢/ X;Zgds.
[0,T]170 0
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Recall that Zp =0 and Z; = 0 for every ¢ > T'; hence integration by parts gives

t T
0:/ / X;*dstt+/ X¥Z, dt,
[0,71J0 0

and since C;(Z) >0 fori =1, 2, we get

C(X)>C(X™). g

Proof of Corollary 2.7 From (2.7), it follows that E,[I,] = te™"". Since ¢ = 0, (2.6)
reduces to

i(l —e " +kp /[0 . e PIslaxs = . (5.9)

Moreover, we have the fuel constraint

/ dXF=—x. (5.10)
0,71

Motivated by the example in Obizhaeva and Wang [33], we guess a solution of the
form

dX = ASy(dt) + (Be™ V" + C)dt + Dér(dt),

where §, is Dirac’s delta measure at x and A, B, C, D are some constants.
Note that

t
IC,Of e Ve PUTS) gg = L (77 — e P,
0 pP—=Y

T
KP/ e Ve PG gg = P (e7V — e vT—PT=0)y,
t Pty

and therefore
K
K,O/ e PIt=sl dX¥=rKpe "'A+ B—'O(ef”t —e P
[0,T1] P—Y

+B kp (e — e*VT*/)(T*f))
p+y

+Crk(1—e Py +Cx(1 — e PT D)4 DrpePT—D,
From (5.9), it follows that

)»=2KC+L,
Y

and together with (5.10), we get the linear system
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’
__e—yt + Bie_yt + Bie_yt = 0,
y p=Y pty
K
Akpe — B—L_ =P _ et =,
p—y
B Ly T=p =) _ =P T=0) 4 pyepe=pT—D — g,
p+y

B —yT
A+—(1—-eV'")+CT + D= —x.
Y

From the first equation, we get

/02—)/2
= s
2kp?y
and then
1
A:
24+Tp
0 _ _
( (0 +Tp = F =) = (o= e VT)—x),
Kp?y Y
C= pA—Lp+y,
2kpy
L _
5 —((o+y)—(o—p)e77T). (5.11)
Kp2y

The optimal strategy is therefore
* B —yt
X; =x+]l{;>0}A+Ct+;(1—e ) +1y-1yD,
which is equivalent to (2.8). O

5.2 Proofs of Propositions 3.1 and 3.2

Proof of Proposition 3.1 The proof follows the same lines as the proof of [16, Propo-
sition 1]. Plugging in the ansatz V (¢,t, ¢, x, p) :==c+xp + v(t, x, 1), we get

0=0v+Lv+ux— ¢x2 + sup(—r2/< — 1oy V).
r

Optimising over r, it follows that

oo bt
2K
and we get the PDE
1
av+ﬁ%+14mm2+m—¢ﬁ=o, (5.12)
K
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where v(T, x,1) = —sz. Asin[16, Eq. (A.2)], we have linear and quadratic x-terms
in (5.12) along with a quadratic terminal condition. Hence we make for the solution
the ansatz

v(t, x,t) =vo(t, 1) +xvi(t,0) +x2v2(t, L).

By comparing terms with similar powers of x, we get the system of PDEs

1
dvo + L'vo + —vi =0, (5.13)
4k
1
vy + Llvg + —vpvy +1 =0, (5.14)
K
L 1 2
vy + L+ —vy —¢ =0, (5.15)
K

with the terminal conditions
vo(T,1) =0, vi(T,1) =0, (T, 1) =—o.

We first find a solution to (5.15). Note that since the terminal condition is independent
of ¢, we might be able to find a (-independent solution, that is, v2(¢) := v2 (%, t), which
satisfies

1,
vy + —vy — 9 =0.
K
This is a Riccati equation which has the solution (see the proof of [16, Proposition 1])

1 4 ¢e2PT=D
v(t) = \/chm,

where
(= ot VP ﬁzﬁ
0— k¢’ K

Let E;, represent the expectation conditional on I; = . Using vy, we can find a
Feynman—Kac representation for the solution of (5.14) as

T T T
vi(t, 1) = Et,z|:/ ex i dup g =/ e i mWdug, 11945,
t t

Again by the Feynman—Kac formula, we derive a solution to (5.13) as

1 T T 1 T
vo(t, 1) = E; | — / vis, Iy ds | = — / E; [vi(s, I))]ds. O
4k J; ] 4k J,

Proof of Proposition 3.2 (a) Note that V is a classical solution to (3.4). By standard
arguments (see e.g. [34, Theorem 3.5.2]), in order to prove that V in (3.5) is the value
function of (3.3), it is enough to show that r* is admissible and that

IV, t,e,x,p)| <CA+2+c?+x>+p*  forallt>0,,¢,x, peR. (5.16)
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Clearly, sup, (g 7} |v2(#)| < 00. From our conditions on I, we have
ElNLITI<CA+ ) forallte R,0<¢t<T,
and therefore

xvi(f, )] <Clx|(1+ ) <CA+>+x>)  forallt>0,0,x eR,
luo(r, )] < C(1 + %) forallt >0,:eR.

This implies (5.16). To prove that r* is admissible, it is enough to show that we have
fOT |r*|dt < oco. Since v, is bounded, we notice that

1 T |
Irfl < Z<2|vz<r>||xt| +/ e lr '“2<">'d“Ef,L[|IS|]ds>
t
< C11X;|+ CoT (1 + 1))

t
< (€O (x + T+ 1)) + CI/ Irs] ds,
0

where we used (3.2) in the last inequality. From the Gronwall inequality, we have
Irf1 < (C2+ Cl)(x +TA+ |t|))eC'T;

hence r* is admissible.
(b) Note that an Ornstein—Uhlenbeck process satisfies (3.1). Hence the proof fol-
lows immediately from (a). Il
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Appendix: Tables and complementary statistics

A.1 Composition of market participants groups

Table 5 Composition of the
group of HFT and the
classification of ‘high-frequency
market makers’ and
‘high-frequency proprietary
traders’

Table 6 Composition of the
group of global investment
banks

Table 7 Composition of the
group of institutional brokers

@ Springer

High-frequency traders

Name NASDAQ-OMX
member code(s)

Market Prop.
maker trader

All Options International B.V. AOI

Hardcastle Trading AG HCT

IMC Trading B.V IMC, IMA Yes

KCG Europe Limited KEM, GEL Yes

MMX Trading B.V MMX

Nyenburgh Holding B.V. NYE

Optiver VOF OPV Yes
Spire Europe Limited SRE, SREA, SREB Yes
SSW-Trading GmbH IAT

WEBB Traders B.V WEB

Wolverine Trading UK Ltd WLV

Global investment banks

Name NASDAQ-OMX

member code(s)

Barclays Capital Securities Limited Plc BRC

Citigroup Global Markets Limited SAB

Commerzbank AG CBK

Deutsche Bank AG DBL

HSBC Bank Plc HBC

Merrill Lynch International MLI

Nomura International Plc NIP

Institutional brokers

Name NASDAQ-OMX
member code(s)

ABG Sundal Collier ASA ABC

Citadel Securities (Europe) Limited CDG

Erik Penser Bankaktiebolag EPB

Jefferies International Limited JEF

Neonet Securities AB NEO

Remium Nordic AB REM

Timber Hill Europe AG TMB
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A.2 Complementary statistics

Table 8 Estimates of the speed of mean-reversion y, using different time scales

y estimates 3 trades 5 trades 7 trades 10 trades 100 trades
VOLVb 0.97 0.94 0.93 0.93 0.99
NDA 0.97 0.94 0.93 0.93 0.99
ERICb 0.98 0.95 0.93 0.93 0.99
HMb 0.95 0.92 0.92 0.92 0.99
ATCOa 0.95 0.92 091 091 0.99
SWEDa 0.96 0.93 0.92 0.92 0.99
SAND 0.94 0.91 0.91 0.92 0.99
SKFb 0.92 0.90 0.90 0.91 0.99
SEBa 0.97 0.95 0.93 0.93 0.99
NOKI 0.73 0.82 0.86 0.90 0.99
TLSN 0.81 0.84 0.88 0.91 0.99
ABB 0.95 0.92 0.90 091 0.99
AZN 0.82 0.84 0.87 0.90 0.99

Table 9 Estimate of « divided by the average bid-ask spread, average time between two trades, and level
of noise in the estimated dynamics of the imbalance signal. Each column of & is estimated for a different
time scale (i.e., number of trades). The decay in the estimates of o shows that innovations of the imbalance
are sub-diffusive

dt (s)

K over g o o Iog o

spread 3 trades 5 trades 7 trades 10 trades 100 trades
VOLVb 0.088 5.30 0.25 0.23 0.22 0.19 0.06
NDA 0.098 7.20 0.26 0.24 0.22 0.20 0.07
ERICb 0.092 6.60 0.25 0.23 0.22 0.19 0.06
HMb 0.095 6.68 0.27 0.25 0.22 0.19 0.06
ATCOa 0.109 7.77 0.27 0.25 0.23 0.20 0.06
SWEDa 0.105 7.73 0.27 0.25 0.23 0.20 0.06
SAND 0.101 7.24 0.28 0.25 0.22 0.19 0.06
SKFb 0.108 8.53 0.28 0.25 0.23 0.20 0.06
SEBa 0.099 9.13 0.26 0.24 0.22 0.19 0.06
NOKI 0.172 10.24 0.33 0.26 0.22 0.19 0.06
TLSN 0.134 7.74 0.31 0.26 0.22 0.19 0.06
ABB 0.113 15.13 0.28 0.26 0.24 0.20 0.07
AZN 0.163 15.51 0.32 0.26 0.23 0.19 0.06
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