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Abstract We pursue a robust approach to pricing and hedging in mathematical fi-
nance. We consider a continuous-time setting in which some underlying assets and
options, with continuous price paths, are available for dynamic trading and a further
set of European options, possibly with varying maturities, is available for static trad-
ing. Motivated by the notion of prediction set in Mykland (Ann. Stat. 31:1413–1438,
2003), we include in our setup modelling beliefs by allowing to specify a set of paths
to be considered, e.g. superreplication of a contingent claim is required only for paths
falling in the given set. Our framework thus interpolates between model-independent
and model-specific settings and allows us to quantify the impact of making assump-
tions or gaining information. We obtain a general pricing–hedging duality result: the
infimum over superhedging prices of an exotic option with payoff G is equal to the
supremum of expectations of G under calibrated martingale measures. Our results
include in particular the martingale optimal transport duality of Dolinsky and Soner
(Probab. Theory Relat. Fields 160:391–427, 2014) and extend it to multiple dimen-
sions, multiple maturities and beliefs which are invariant under time-changes. In a
general setting with arbitrary beliefs and for a uniformly continuous G, the asserted
duality holds between limiting values of perturbed problems.
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1 Introduction

Two approaches to pricing and hedging The question of pricing and hedging of a
contingent claim lies at the heart of mathematical finance. Following Merton’s semi-
nal contribution [38], we may distinguish two ways of approaching it. First, one may
want to make statements “based on assumptions sufficiently weak to gain universal
support”,1 e.g. market efficiency combined with some broad mathematical ideali-
sation of the market setting. We refer to this perspective as the model-independent
approach. While very appealing at first, it has been traditionally criticised for pro-
ducing outputs which are too imprecise to be of practical relevance. This is con-
trasted with the second, model-specific approach which focuses on obtaining explicit
statements leading to unique prices and hedging strategies. “To do so, more struc-
ture must be added to the problem through additional assumptions at the expense of
losing some agreement.”1 Typically this is done by fixing a filtered probability space
(Ω,F , (Ft )t≥0,P) with risky assets represented by some adapted process (St ).

The model-specific approach, originating from the seminal works of Samuel-
son [47] and Black and Scholes [8], has revolutionised the financial industry and be-
come the dominating paradigm for researchers in quantitative finance. Accordingly,
we refer to it also as the classical approach. The original model of Black and Scholes
has been extended and generalised, e.g. adding stochastic volatility and/or stochas-
tic interest rates, trying to account for market complexity observed in practice. Such
generalisations often lead to market incompleteness and a lack of unique rational war-
rant prices. Nevertheless, no-arbitrage pricing and hedging was fully characterised in
a body of works on the fundamental theorem of asset pricing (FTAP) culminating in
Schachermayer [20, 21]. The feasible prices for a contingent claim correspond to ex-
pectations of the (discounted) payoff under equivalent martingale measures (EMM)
and form an interval. The bounds of the interval are also given by the super- and
sub-hedging prices. Put differently, the supremum of expectations of the payoff un-
der EMMs is equal to the infimum of prices of superhedging strategies. We refer to
this fundamental result as the pricing–hedging duality.

Short literature review The ability to obtain unique prices and hedging strate-
gies, which is the strength of the model-specific approach, relies on its primary
weakness—the necessity to postulate a fixed probability measure P giving a full prob-
abilistic description of future market dynamics. Put differently, this approach captures
risks within a given model, but fails to tell us anything about the model uncertainty,
also called Knightian uncertainty; see Knight [36, Chap. 2]. Accordingly, researchers
have extended the classical setup to one where many measures {Pα : α ∈ Λ} are si-
multaneously deemed feasible. This can be seen as weakening assumptions and going
back from model-specific towards model-independent. The pioneering works consid-
ered uncertain volatility; see Lyons [37] and Avellaneda et al. [2]. More recently,
a systematic approach based on quasi-sure analysis was developed, with stochastic
integration based on capacity theory in Denis and Martini [23] and on the aggrega-
tion method in Soner et al. [48]; see also Neufeld and Nutz [41]. In discrete time,

1Merton [38].
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a corresponding generalisation of the FTAP and the pricing–hedging duality was ob-
tained by Bouchard and Nutz [10] and in continuous time by Biagini et al. [6]; see
also references therein. We also mention that setups with frictions, e.g. trading con-
straints, were considered; see Bayraktar and Zhou [3].

In parallel, the model-independent approach has also seen a revived interest. This
was mainly driven by the observation that with the increasingly rich market reality,
this “universally acceptable” setting may actually provide outputs precise enough to
be practically relevant. Indeed, in contrast to when Merton [38] was examining this
approach, at present typically not only the underlying is liquidly traded, but so are
many European options written on it. Accordingly, these should be treated as inputs
and hedging instruments, thus reducing the possible universe of no-arbitrage scenar-
ios. Breeden and Litzenberger [11] were the first to observe that if many (all) Euro-
pean options for a given maturity trade, then this is equivalent to fixing the marginal
distribution of the stock under any EMM in the classical setting. Hobson [33] in his
pioneering work then showed how this can be used to compute model-independent
prices and hedges of lookback options. Other exotic options were analysed in sub-
sequent works; see Brown et al. [12], Cox and Wang [18], Cox and Obłój [17]. The
resulting no-arbitrage price bounds could still be too wide even for market making,
but the associated hedging strategies were shown to perform remarkably well when
compared to traditional delta–vega hedging; see Obłój and Ulmer [43]. Note that
the superhedging property here is understood in a pathwise sense, and typically the
strategies involve buy-and-hold positions in options and simple dynamic trading in
the underlying. The universality of the setting and relative insensitivity of the outputs
to the (few) assumptions earned this setup the name of robust approach.

In the wake of the financial crisis, significant research focus shifted back to the
model-independent approach, and many natural questions, such as establishing the
pricing–hedging duality and a (robust) version of the FTAP, were pursued. In a one-
period setting, the pricing–hedging duality was linked to the Karlin–Isii duality in
linear programming by Davis et al. [19]; see also Riedel [45]. Beiglböck et al. [5] re-
interpreted the problem as a martingale optimal transport problem and established a
general discrete-time pricing–hedging duality as an analogue of the Kantorovich du-
ality in optimal transport. Here the primal elements are martingale measures, starting
in a given point and having fixed marginal distribution(s) via the Breeden and Litzen-
berger [11] formula. The dual elements are sub- or superhedging strategies, and the
payoff of the contingent claim is the “cost functional”. An analogous result in con-
tinuous time, under suitable continuity assumptions, was obtained by Dolinsky and
Soner [25], who also more recently considered the discontinuous setting [26]. These
topics remain an active field of research. Acciaio et al. [1] considered the pricing–
hedging duality and the FTAP with an arbitrary market input in discrete time and
under significant technical assumptions. These were relaxed, offering great insights,
in a recent work of Burzoni et al. [14]. Galichon et al. [30] applied the methods
of stochastic control to deduce the model-independent prices and hedges; see also
Henry-Labordère et al. [32]. Several authors considered setups with frictions, e.g.
transactions costs in Dolinsky and Soner [24] or trading constraints in Cox et al. [16]
and Fahim and Huang [28].
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Main contribution The present work contributes to the literature on robust pric-
ing and hedging of contingent claims in two ways. First, inspired by Dolinsky and
Soner [25], we study the pricing–hedging duality in continuous time and extend their
results to multiple dimensions, different market setups and options with uniformly
continuous payoffs. Our results are general and obtained in a comprehensive set-
ting. We explicitly specify several important special cases, including the setting when
finitely many options are traded, some dynamically and some statically, and the set-
ting when all European call options for n maturities are traded. The latter gives the
martingale optimal transport (MOT) duality with n marginal constraints which was
also recently studied in a discontinuous setup by Dolinsky and Soner [26] and, in
parallel to our work, by Guo et al. [31].

Our second main contribution is to propose a robust approach, which subsumes
the model-independent setting, but allows us to include assumptions and move grad-
ually towards the model-specific setting. In this sense, we strive to provide a setup
which connects and interpolates between the two ends of the spectrum considered by
Merton [38]. In contrast, all the above works on the model-independent approach stay
within Merton [38]’s “universally accepted” setting and analyse the implications of
incorporating the ability to trade some options at given market prices for the outputs,
namely prices and hedging strategies of other contingent claims. We amend this setup
and allow expressing modelling beliefs. These are articulated in a pathwise manner.
More precisely, we allow the modeller to deem certain paths impossible and exclude
them from the analysis; the superhedging property is only required to hold on the
remaining set of paths P. This is reflected in the form of the pricing–hedging duality
we obtain.

Our framework was inspired by Mykland’s [39] idea of incorporating a prediction
set of paths into the pricing and hedging problem. On a philosophical level, we start
with the “universally acceptable” setting and proceed by ruling out more and more
scenarios as impossible; see also Cassese [15]. We may proceed in this way until we
end up with paths supporting a unique martingale measure, e.g. a geometric Brownian
motion, giving us essentially a model-specific setting. The hedging arguments are
required to work for all the paths which remain under consideration, and a (strong)
arbitrage would be given by a strategy which makes positive profit for all these paths.
In discrete time, these ideas were recently explored by Burzoni et al. [13]. This should
be contrasted with another way of interpolating between the model-independent and
the model-specific, namely one which starts from a given model P and proceeds
by adding more and more possible scenarios {Pα : α ∈ Λ}. This naturally leads to
probabilistic (quasi-sure) hedging and different notions of no-arbitrage; see Bouchard
and Nutz [10].

Our approach to establishing the pricing–hedging duality involves both discretisa-
tion, as in Dolinsky and Soner [25], as well as a variational approach as in Galichon
et al. [30]. We first prove an “unconstrained” duality result: (3.4) states that for any
derivative with bounded and uniformly continuous payoff function G, the minimal
initial cost of setting up a portfolio consisting of cash and dynamic trading in the
risky assets (some of which could be options themselves) which superhedges the
payoff G for every nonnegative continuous path is equal to the supremum of the ex-
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pected value of G over all nonnegative continuous martingale measures.2 This result
is shown through an elaborate discretisation procedure building on ideas in [25, 26].
Subsequently, we develop a variational formulation which allows us to add statically
traded options, or the specification of a prediction set P, via Lagrange multipliers. In
some cases, this leads to “constrained” duality results, similar to the ones obtained
in the works cited above, with superhedging portfolios allowed to trade statically
in market options and the martingale measures required to reprice these options. In
particular, Theorems 3.6 and 3.12 extend the duality obtained in [19] and in [25],
respectively. However, in general, we obtain an asymptotic duality result with the
dual and primal problems defined through a limiting procedure. The primal value is
the limit of superhedging prices on an ε-neighbourhood of P, and the dual value is
the limit of suprema of expectations of the payoff over ε-(mis)calibrated models; see
Definitions 2.1 and 3.11.

The paper is organised as follows. Section 2 introduces our robust framework for
pricing and hedging and defines the primal (pricing) and dual (hedging) problems.
Section 3 contains all the main results. First, in Sect. 3.1, we outline the unconstrained
pricing–hedging duality, displayed in (3.4), and state the constrained (asymptotic)
duality results under suitable compactness assumptions. This allows us in particular
to treat the case of finitely many traded options. Then, in Sect. 3.2, we apply the
previous results to the martingale optimal transport case. All the result except the
main unconstrained duality in (3.4) are proved in Sect. 4. The former is stated in
Theorem 5.1 and shown in Sect. 5. The proof proceeds via discretisation, of the primal
problem in Sect. 5.1 and of the dual problem in Sect. 5.3, with Sect. 5.2 connecting
the two via classical duality results. The proofs of two auxiliary results are relegated
to the Appendix.

2 Robust modelling framework

2.1 Traded assets

We consider a financial market with d+1 primary assets: a numeraire (e.g. the money
market account) and d underlying assets which may be traded at any time t ≤ T . All
prices are denominated in the units of the numeraire. In particular, the numeraire’s
price is thus normalised and equal to one. The underlying assets’ price path is de-
noted S = ((S

(1)
t , . . . , S

(d)
t ) : t ∈ [0, T ]), starts in S0 = (1, . . . ,1) and is assumed to

be nonnegative and continuous in time. It is thus an element of the canonical space
C([0, T ],Rd+) of all Rd+-valued continuous functions on [0, T ], which we endow with
the supremum norm ‖ · ‖. Throughout, trading is frictionless.

We pursue a robust approach and do not postulate any probability measure which
would specify the dynamics for S. Instead, we incorporate as inputs prices of traded
derivative instruments. We assume that there is a set X of market-traded options with
prices P(X), X ∈ X , known at time zero. These options can be traded frictionlessly

2Note that here and throughout, we assume that all assets are discounted or, more generally, are expressed
in terms of some numeraire.
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at time zero, but are not assumed to be available for trading at future times. In partic-
ular, only buy-and-hold trading in these options is allowed (static trading). An option
X ∈ X is just a mapping X : C([0, T ],Rd+) → R, measurable with respect to the
σ -field generated by the coordinate process. In the sequel, we only consider continu-
ous payoffs X and often specialise further to European options, i.e., X(S)= f (STi

)

for some f and 0 < Ti ≤ T .
Further, in addition to the above, we allow dynamically traded derivative assets.

We consider K continuously traded European options and assume their prices evolve
continuously and are strictly positive. The j th option has initial price P(X

(c)
j ) and

terminal payoff X
(c)
j (S

(1)
T , . . . , S

(d)
T ) at time T . Since trading is frictionless, we can

and do consider traded options with renormalised payoffs X
(c)
j /P(X

(c)
j ) and initial

prices equal to 1. When we need to consider perturbations to options’ prices, this then
corresponds to a multiplicative perturbation of their payoffs; see e.g. Assumption 3.1
below. We thus have d +K dynamically traded assets whose price paths belong to

Ω = {S ∈ C([0, T ],Rd+K+ ) : S0 = (1, . . . ,1)}.

Their price process is given by the canonical process S = (St )0≤t≤T on Ω , i.e.,
S = (S(1), . . . ,S(d+K)) : [0, T ] → R

d+K+ . We let F = (Ft )0≤t≤T be its natural raw
filtration.3 The subset of paths which respect to the market information about the
future payoff constraints is given by

I := {S ∈Ω : S(d+i)
T =X

(c)
i (S

(1)
T , . . . , S

(d)
T )/P(X

(c)
i ), i = 1, . . . ,K}.

We sometimes refer to I as the information space. For a random variable G on Ω ,
we clearly have G = G ◦ S, and we exploit this to write G(S) instead of simply G

when we want to stress that G is seen as a function of the assets’ path. It is also
convenient to think of X ∈ X as functions on Ω with X(S) = X(S1, . . . , Sd). We
only consider continuous X, i.e., X ⊆ C(Ω,R) with ‖X‖∞ := sup{|X(S)| : S ∈Ω}.
We write X = ∅ to indicate the situation with no statically traded options, and K = 0
to indicate when there are no dynamically traded options.

2.2 Beliefs

As argued in the introduction, we allow our agents to express modelling beliefs. These
are encoded as restrictions of the path space and may come from time series analysis
of past data, or idiosyncratic views about the market in the future. Put differently, we
are allowed to rule out paths which we deem impossible. The paths which remain
are referred to as prediction set or beliefs. Note that such beliefs may also encode
one agent’s superior information about the market. As the agent rejects more and
more paths, the framework’s outputs—the robust price bounds—should get tighter
and tighter. This can be seen as a way to quantify the impact of making assumptions
or acquiring additional insights or information.

3All of our results remain valid if one takes the right-continuous version of the filtration instead.
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The choice of paths is expressed by the prediction set P⊆ I . Our arguments are
required to work pathwise on P, while paths in the complement of P are ignored in
our considerations. This binary way of specifying beliefs is motivated by the fact that
in the end, we only see one path and hence are interested in arguments which work
pathwise. Nevertheless, the approach is very comprehensive, and as P changes from
all paths in I to the support of a given model, we essentially interpolate between
model-independent and model-specific setups. It also allows incorporating the infor-
mation from time series of data coherently into the option pricing setup, as no prob-
ability measure is fixed and hence no distinction between real-world and risk-neutral
measures is made. The idea of such a prediction set first appeared in Mykland [39];
see also Nadtochiy and Obłój [40] and Cox et al. [16] for an extended discussion.

2.3 Trading strategies and superreplication

We consider two types of trading: buy-and-hold strategies in options in X and dy-
namic trading in assets S(i), i ≤ d + K . The gains from the latter take the integral
form

∫
γu(S)dSu, and to define this integral pathwise, we need to impose suitable

restrictions on γ . We may, following Dolinsky and Soner [25], take γ = (γt )0≤t≤T to
be an F-progressively measurable process of finite variation and use the integration
by parts formula to define

∫ t

0
γu(S)dSu := γt · St − γ0 · S0 −

∫ t

0
Su dγu, S ∈Ω,

where we write a · b to denote the usual scalar product for any a, b ∈ R
d+K and

the last term on the right-hand side is a Stieltjes integral. However, for our duality,
it is sufficient to consider a smaller class of processes. Namely, we say that γ is
admissible if it is F-adapted, γ (S) is a simple, i.e., right-continuous and piecewise
constant, function for all S ∈Ω , and

∫ t

0
γu(S)dSu ≥−M, ∀S ∈ I, t ∈ [0, T ], for some M > 0. (2.1)

We denote by A the set of such integrands γ . To define static trading, we consider

LinN(X )=
{

a0 +
m∑

i=1

aiXi :m ∈N, Xi ∈X , ai ∈R,

m∑

i=0

|ai | ≤N

}

, (2.2)

Lin(X )=
⋃

N≥1

LinN(X ).

An admissible (semi-static) trading strategy is a pair (X,γ ) with X ∈ Lin(X ) and
γ ∈A. We denote the class of such trading strategies by AX . The cost of following
(X,γ ) ∈AX is equal to the cost of setting up its static part, i.e., of buying the options
at time zero, and is given by

P(X) := a0 +
m∑

i=1

aiP(Xi), for X = a0 +
m∑

i=1

aiXi. (2.3)
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Throughout, we assume that the above defines P uniquely as a linear opera-
tor on Lin(X ). This is in particular true if the elements in X are linearly indepen-
dent. Further, to eliminate obvious arbitrages, we assume that for X ∈ X , we have
P(X) ≤ ‖X‖∞, which by (2.3) then holds for all X ∈ Lin(X ). It follows that P is
bounded linear, and hence continuous, on (Lin(X ),‖ · ‖∞). Note that with our def-
initions, Lin(∅)= R and P(a)= a for a ∈ R. We also note that dynamically traded
assets can be traded statically; so our previous notation P(X

(c)
j ) is consistent.

Our prime interest is in understanding robust pricing and hedging of a non-liquidly
traded derivative with payoff G :Ω → R. Our main results consider bounded pay-
offs G, and since the setup is frictionless and there are no trading restrictions, without
any loss of generality, we may consider only the superhedging price. The subhedging
follows by considering −G.

Definition 2.1 Consider G :Ω →R. A portfolio (X,γ ) ∈AX is said to superrepli-
cate G on P if

X(S)+
∫ T

0
γu(S)dSu ≥G(S), ∀S ∈P.

The (minimal) superreplication cost or superhedging price of G on P is defined as

VX ,P,P(G) := inf{P(X) : ∃(X,γ ) ∈AX which superreplicates G on P}.

The approximate superreplication cost of G on P is defined as

ṼX ,P,P(G) := inf{P(X) : ∃(X,γ ) ∈AX which

superreplicates G on P
ε for some ε > 0},

where Pε = {ω ∈ I : infυ∈P ‖ω− υ‖ ≤ ε}.

As we shall see below, the approximate superreplicating cost appears naturally as
the correct object to obtain a duality with general P and X . We note, however, that
ex post, it is also a natural object from the financial point of view: It requires the
superreplication to be robust with respect to an arbitrarily small perturbation of the
beliefs.

Note that by definition, Iε = I and consequently VX ,P,I(G) = ṼX ,P,I(G). Fi-
nally, we denote by VI(G)= V∅,P,I(G) the superreplication cost of G in the absence
of constraints.

2.4 Market models

Our aim is to relate the robust superhedging price as introduced above to the classical
pricing-by-expectation arguments. To this end, we look at all classical models which
reprice market-traded options.
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Definition 2.2 We denote by M the set of probability measures P on (Ω,FT )

such that S is an (F,P)-martingale and let MI be the set of probability mea-
sures P ∈ M such that P[I] = 1. A probability measure P ∈ MI is called an
(X ,P,P)-market model or simply a calibrated model if P[P] = 1 and
EP[X] = P(X) for all X ∈ X . The set of such measures is denoted by MX ,P,P.
More generally, a probability measure P ∈ MI is called an η-(X ,P,P)-market
model if P[Pη] > 1 − η and |EP[X] − P(X)| < η for all X ∈ X . The set of such
measures is denoted by Mη

X ,P,P
.

Any P ∈MX ,P,P provides us with a feasible no-arbitrage price EP[G] for a
derivative with payoff G. The robust price for G is given as

PX ,P,P(G) := sup
P∈MX ,P,P

EP[G], (2.4)

where throughout, the expectation is defined with the convention that∞−∞=−∞.
In the cases of particular interest, (X ,P) uniquely determines the marginal distribu-
tions of S at given maturities, and PX ,P,P(G) is then the value of the corresponding
martingale optimal transport problem. We often use this terminology, even in the
case of an arbitrary X . Finally, in the special case where there are no constraints,
i.e., X = ∅ and P = I , we write PI(G) to represent the corresponding maximal
modelling value, i.e.,

PI(G)= P∅,P,I(G)= sup
P∈MI

EP[G(S)].

We shall see below that with a general X and P, we do not obtain a duality using
PX ,P,P(G) in (2.4), but rather have to consider its approximate value given as

P̃X ,P,P(G) := lim
η↘0

sup
P∈Mη

X ,P,P

EP[G(S)].

Ex post, and similarly to the approximate superhedging above, this may be seen as a
natural robust object to consider: instead of requiring a perfect calibration, the con-
cept of η-market model allows a controlled degree of mis-calibration. This seems
practically relevant since the market prices P are an idealised concept obtained e.g.
via averaging of bid–ask spreads.

3 Main results

Our prime interest, as discussed in the introduction, is in establishing a general ro-
bust pricing–hedging duality. Given a non-traded derivative with payoff G, we have
two candidate robust prices for it. The first one, VX ,P,P(G), is obtained through
pricing-by-hedging arguments. The second one, PX ,P,P(G), is obtained by pricing-
via-expectation arguments. In a classical setting, by fundamental results, see e.g. Del-
baen and Schachermayer [20, Theorem 5.7], the analogous two prices are equal.
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Within the present pathwise robust approach, the pricing–hedging duality was ob-
tained for specific payoffs G in the literature linking the robust approach with the
Skorokhod embedding problem; see Hobson [33] or Obłój [42] for a discussion. Sub-
sequently, an abstract result was established in Dolinsky and Soner [25]. For d = 1,
K = 0, P= I =Ω and X the set of all call (or put) options with a common maturity
T and with P(X)= ∫∞0 X(x)μ(dx), ∀X ∈ X , where μ is a probability measure on
R+ with mean equal to 1, they showed that

VX ,P,I(G)= PX ,P,I(G) for a “strongly continuous” class of bounded G.

The result was extended to unbounded claims by broadening the class of admissi-
ble strategies and imposing a technical assumption on μ. We extend this duality to
a much more general setting of abstract X , possibly involving options with multiple
maturities, a multidimensional setting, and with an arbitrary prediction set P. How-
ever, in this generality, the duality may only hold between approximate values. We
first give the statements, illustrated with examples, and all the proofs are postponed
to Sect. 4.

Note that, for any Borel G :Ω →R, the inequality

VX ,P,P(G)≥ PX ,P,P(G) (3.1)

is true as long as there is at least one P ∈MX ,P,P and at least one (X,γ ) ∈ AX
which superreplicates G on P. Indeed, since γ is progressively measurable,
the integral

∫ ·
0 γu(S)dSu, defined pathwise via integration by parts, agrees a.s.

with the stochastic integral under P. Then by (2.1), the stochastic integral is
a P-supermartingale and hence EP[

∫ T

0 γu(S)dSu] ≤ 0. This in turn implies that
EP [G]≤ P(X). The result follows since (X,γ ) and P were arbitrary. The converse
inequality, however, is very involved. The fundamental difficulty lies in the fact that
even in the martingale optimal transport setting of [25], the set MX ,P,I is not com-
pact. This is in contrast to the discrete-time case; see [5]. In our general setting, the
converse inequality to (3.1) may fail, see Example 3.7 below, making it necessary to
look at the duality between the approximate values.

3.1 General duality

We start with a general duality between the approximate values Ṽ , P̃ . But first, we
give our standing assumption which states that the prices of dynamically traded op-
tions are not “on the boundary of the no-arbitrage region”, i.e., calibrated martingale
measures exist under arbitrarily small perturbation of the initial prices.

Assumption 3.1 Either K = 0 or X
(c)
1 , . . . ,X

(c)
K are bounded and uniformly contin-

uous with market prices P(X
(c)
1 ), . . . ,P(X

(c)
K ) satisfying that there exists an ε > 0

such that for any (pi)1≤i≤K with |P(X
(c)
i ) − pi | ≤ ε for all i ≤ K , we have

MĨ �= ∅, where

Ĩ := {S ∈Ω : S(d+i)
T =X

(c)
i (S

(1)
T , . . . , S

(d)
T )/pi for all 1≤ i ≤K}.



Robust pricing–hedging dualities in continuous time 521

Theorem 3.2 Assume that P is a measurable subset of I , Assumption 3.1 holds,
all X ∈ X are uniformly continuous and bounded, and Mη

X ,P,P
�= ∅ for any η > 0.

Then for any uniformly continuous and bounded G :Ω →R, we have

ṼX ,P,P(G)≥ P̃X ,P,P(G), (3.2)

and if Lin1(X ) defined in (2.2) is a compact subset of (C(Ω,R),‖·‖∞), then equality
holds, i.e.,

ṼX ,P,P(G)= P̃X ,P,P(G). (3.3)

Remark 3.3 The above remains true if instead of martingale measures in M, we
restrict to Brownian martingales; see Sect. 4.1.

Example 3.4 Finite X Consider X = {X1, . . . ,Xm}, where the Xi are bounded and
uniformly continuous. In this case, Lin1(X ) is a convex and compact subset of
C(Ω,R). Therefore, if Mη

X ,P,P
�= ∅ for any η > 0, we can apply Theorem 3.2 to

conclude that ṼX ,P,P(G)= P̃X ,P,P(G).

Let us outline the proof of Theorem 3.2. The first inequality in (3.2) is relatively
easy to obtain, and the main effort is in establishing the converse inequality which
yields (3.3). This is done in two steps. First, we consider the case without con-
straints, i.e., X = ∅ and P= I . The approximate values Ṽ , P̃ then reduce to V and
P respectively; so we need to show that for any bounded and uniformly continuous
G :Ω →R, we have

VI(G)= PI(G). (3.4)

This result is a special case of Theorem 5.1, which is shown in Sects. 5.1 and 5.3. Our
proof proceeds through discretisation of both the primal and the dual problem and
is inspired by the methods in [25, 26] but involves significant technical differences
which are necessary to obtain our more general results. The first key difference, when
comparing with [25], is that the discretisation therein entangles discretisation of the
dynamic hedging part and static hedging part, while we develop a “clean” decoupled
discretisation of the dynamic hedging part only. Second, we have to improve the
discretisation to deal with payoff functions which are uniformly continuous. This is
crucial for the subsequent use of a variational approach to generalise the pricing–
hedging duality results to include static hedging in options with different maturities.
The time-continuity assumptions on the payoff made in [25] are much stronger, and
their results could not be applied directly in our framework.

We note also that in a quasi-sure setting, an analogue of (3.4) was obtained in
Possamaï et al. [44] and earlier papers, as discussed therein. However, while similar
in spirit, there is no immediate link between our results or proofs and those in [44].
Here, we consider a comparatively smaller set of admissible trading strategies and
require a pathwise superhedging property. Consequently, we also need to impose
stronger regularity constraints on G.

In the second step of the proof, we use a variational approach combined with a
minimax argument to obtain duality under all the constraints. Specifically, in analogy
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to e.g. Proposition 5.2 in Henry-Labordère et al. [32], for any uniformly continuous
and bounded G :Ω →R, we can write

ṼX ,P,P(G)= inf
X∈LinN (X ),N≥0

(
VI(G−X−NλP)+P(X)

)

= inf
X∈LinN (X ),N≥0

(
PI(G−X−NλP)+P(X)

)
, (3.5)

where λP(ω) := infυ∈P ‖ω − υ‖ ∧ 1. An application of the minimax theorem then
yields

ṼX ,P,P(G)= lim
N→∞ sup

P∈MI

inf
X∈LinN (X )

(
EP[G−X−NλP] +P(X)

)
.

The final, and somewhat technical, argument is to show that the above is dominated
by P̃X ,P,P(G).

We end this section with a study of the relation between V,P and their approx-
imate values Ṽ , P̃ . As already noted, by definition, ṼX ,P,P(G) ≥ VX ,P,P(G) and
P̃X ,P,P(G)≥ PX ,P,P(G). Therefore, when ṼX ,P,P(G)= P̃X ,P,P(G), the duality
VX ,P,P(G)= PX ,P,P(G) follows if we can show that PX ,P,P(G)= P̃X ,P,P(G).
We establish this equality for an important family of market setups, but also provide
examples when it fails.

Consider first the case with no specific beliefs, P = I , and finitely many traded
put options with maturities 0 < T1 < · · ·< Tn = T , i.e.,

X = {(K(i)
k,j − S

(i)
Tj

)+ : 1≤ i ≤ d,1≤ j ≤ n,1≤ k ≤m(i, j)
}
, (3.6)

where 0 < K
(i)
k,j < K

(i)

k′,j for any k < k′ and m(i, j) ∈N. To simplify the notation, we
write

P
(
(K

(i)
k,j − S

(i)
Tj

)+
)= pk,i,j , ∀i, j, k.

In analogy to Assumption 3.1, we need to impose that the put prices are in the interior
of the no-arbitrage region.

Assumption 3.5 Market put prices are such that there exists an ε > 0 such that for
any (p̃k,i,j )i,j,k with |p̃k,i,j − pk,i,j | ≤ ε for all i, j, k, there exists a P̃ ∈MI with

p̃k,i,j = E
P̃
[(K(i)

k,j − S
(i)
Tj

)+], ∀i, j, k.

Theorem 3.6 Let X be given by (3.6) and assume that the market prices satisfy As-
sumptions 3.1 and 3.5. Then for any uniformly continuous and bounded G :Ω →R,
we have

VX ,P,I(G)= PX ,P,I(G).

The above result establishes a general robust pricing–hedging duality when finitely
many put options are traded. It extends in many ways the duality obtained in Davis
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et al. [19] for d = n= 1 and K = 0. Note that in general, ṼX ,P,I(G)= VX ,P,I(G);
so it follows from Example 3.4 that we also have P̃X ,P,I(G)= PX ,P,I(G) in The-
orem 3.6. These equalities may still hold, but may also fail, when nontrivial beliefs
are specified. We present now three examples to highlight various possible scenar-
ios. In the first two examples, for different reasons, the pricing–hedging duality fails,
i.e., VP > PP, while the approximate duality (3.3) holds. In the last example, all
quantities are equal.

Example 3.7 Consider the case when there are no traded options, X = ∅, K = 0 and
d = 1, and let

P= {S ∈Ω : ST ≤ 2}.
Define G : Ω → R by G(S) = (max0≤t≤T St − 4)+ ∧ 1. Theorem 3.2 implies that
ṼX ,P,P(G) = P̃X ,P,P(G). On the other hand, it is straightforward to see that
PP(G) = 0. By letting Mloc

P
be the set of P such that S is a P-local martingale

and P[P] = 1, we further have

VP(G)≥ sup
P∈Mloc

P

EP[G(S)]> 0= PP(G).

Example 3.8 In this example, we consider P corresponding to the Black–Scholes
model. For simplicity, consider the case without any traded options, i.e., K = 0,
X = ∅, d = 1, and let4

P= {S ∈Ω : S admits a quadratic variation and d〈S〉t = σ 2S2
t dt,0≤ t ≤ T }.

Then MP = {Pσ }, where S is a geometric Brownian motion with constant volatil-
ity σ under Pσ . The duality in Theorem 3.2 then gives that for any bounded and
uniformly continuous G,

ṼP(G)= inf{x : ∃γ ∈A which superreplicates G− x on P
ε for some ε > 0}

= lim
η↘0

sup
P∈Mη

P

EP[G].

However, in this case, Pσ has full support on Ω so that Pε =Ω and Mε
P
=M for

any ε > 0. The above then boils down to the case with no beliefs, and we have

VI(G)= ṼP(G)= P̃P(G)= sup
P∈M

EP[G] ≥ EPσ
[G] = PP(G),

where for most G the inequality is strict.

Example 3.9 Consider again the case with no traded options, K = 0 and X = ∅, and
let

P= {S ∈Ω : ‖S‖ ≤ b} for some b ≥ 1.

4A rigorous pathwise definition of such P is possible; see Step 4 in the proof of Theorem 3.16 in Sect. 4.
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Given a bounded and uniformly continuous payoff function G, consider the duality
in Theorem 3.2. For each N ∈N, we pick P

(N) ∈M1/N

P
such that

E
P(N) [G] ≥ sup

P∈M1/N

P

EP[G] − 1/N.

Let τ be the first hitting time of b+ 1/N by S and define S̃
(N) by

S̃
(N)
t = S0 + b

b+ 1/N
(St∧τ − S0).

By definition, P(N) ◦ (S̃(N))−1 ∈MP. Also note that P(N)[τ < T ] ≤ 1/N . Hence by
uniform continuity of G, it is straightforward to see that

∣
∣E

P(N) [G(S̃(N))] −E
P(N) [G(S)]∣∣−→ 0 as N →∞,

which leads to P̃P(G)= PP(G). As VP(G)≤ ṼP(G)= P̃P(G), we then conclude
that

ṼP(G)= P̃P(G)= PP(G)= VP(G).

3.2 Martingale optimal transport duality

We focus now on the case when (X ,P) determines the marginal distributions of
S

(i)
Tj

for i ≤ d and given maturities 0 < T1 < · · · < Tn = T . For concreteness, let us
consider the case when put options are traded, i.e.,

X = {(κ − S
(i)
Tj

)+ : i = 1, . . . , d, j = 1, . . . , n, κ ∈R+
}
. (3.7)

Arbitrage considerations, see e.g. Cox and Obłój [17] and Cox et al. [16], show that
absence of (a weak type of) arbitrage is equivalent to MX ,P,I �= ∅. Note that the
latter is equivalent to market prices P being encoded by a vector μμμ of probability
measures (μ

(i)
j ) with

pi,j (κ)=P
(
(κ − S

(i)
Tj

)+
)=

∫
(κ − s)+μ

(i)
j (ds), (3.8)

where for each i = 1, . . . , d , μ
(i)
1 , . . . ,μ

(i)
n have finite first moments, mean 1

and increase in convex order (written as μ
(i)
1 � μ

(i)
2 � · · · � μ

(i)
n ), i.e., we have

∫
φ(x)μ

(i)
1 (dx)≤ · · · ≤ ∫ φ(x)μ

(i)
n (dx) for any convex function φ :R+ →R. In fact,

as noted already by Breeden and Litzenberger [11], the μ
(i)
j are defined by

μ
(i)
j ([0, κ])= p′i,j (κ+) for κ ∈R+.

We may think of (μ
(i)
j ) and P as the modelling inputs. The set of calibrated

market models MX ,P,P is simply the set of probability measures P ∈ M such
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that S
(i)
Tj

is distributed according to μ
(i)
j and P[P] = 1. Accordingly, we write

Mμμμ,P =MX ,P,P and Pμμμ,P(G)= PX ,P,P(G).

Remark 3.10 It follows, see Strassen [49], that Mμμμ,I is nonempty if and only if

μ
(i)
1 , . . . ,μ

(i)
n have finite first moments, mean 1 and increase in convex order, for

any i = 1, . . . , d . However, in general, the additional constraints associated with a
nontrivial P� I are much harder to understand.

In this context, we can improve Theorem 3.2 and narrow down the class of approx-
imate market models by requiring that they match exactly the marginal distributions
at the last maturity.

Definition 3.11 Let Mη

μμμ,P
be the set of all measures P ∈M such that LP(S

(i)
Tj

), the

law of S(i)
Tj

under P, satisfies

LP(S
(i)
Tn

)= μ(i)
n and dp

(
LP(S

(i)
Tj

),μ
(i)
j

)≤ η, for j = 1, . . . , n− 1, i = 1, . . . , d,

and furthermore P[Pη] ≥ 1− η, where dp is the Lévy–Prokhorov metric on proba-
bility measures. Finally, let

P̃μμμ,P(G) := lim
η↘0

sup
P∈Mη

μμμ,P

EP[G(S)].

Note that Mμμμ,P =M0
μμμ,P

⊆Mη

μμμ,P
⊆Mε(η)

X ,P,P
for a suitable choice5 of ε(η)

converging to zero as η → 0. It follows that Pμμμ,P(G)≤ P̃μμμ,P(G)≤ P̃X ,P,P(G).
The following result extends and sharpens the duality obtained in Theorem 3.2 to the
current setting.

Theorem 3.12 Under Assumption 3.1, let P be a measurable subset of I , X given by
(3.7) and P such that for any η > 0, Mη

μμμ,P
�= ∅, where μμμ is defined via (3.8). Then

for any uniformly continuous and bounded G, the robust pricing–hedging duality
holds between the approximate values, i.e.,

ṼX ,P,P(G)= P̃X ,P,P(G)= P̃μμμ,P(G).

Remark 3.13 Theorem 3.12 readily extends to unbounded exotic options, e.g. look-
back options, following the approach of Dolinsky and Soner [25]. Fix p > 1 and relax
the admissibility in (2.1) to

∫ t

0
γu(S)dSu ≥−M

(
1+ sup

0≤s≤t

|Ss |p
)
, ∀S ∈ I, t ∈ [0, T ], for some M > 0.

5One can take ε(η)=√η+ 2f (1/
√

η) with f (x)=max1≤i≤d (pi,n(x)− x + 1).
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Likewise, assume that all μ
(i)
j admit a finite pth moment and allow static trading in

European options with payoffs which grow at most as |x|p . Then the duality in Theo-
rem 3.12 extends to uniformly continuous G with |G(S)|≤const(1+ sup0≤t≤T |St |p).

In the case of one maturity, n = 1, we have P̃μμμ,I(G) = Pμμμ,I(G). In particular,
Theorem 3.12 extends the duality of Dolinsky and Soner [25] by allowing arbitrary
dimension d . It is also possible to consider a multidimensional extension where the
whole marginal distribution LP(ST ) is fixed, or equivalently X is large enough, e.g.
dense in the Lipschitz-continuous functions on R

d . For n= 1 and P= I , such an ex-
tension follows via Theorem 3.2 and Lemma 4.3; see Hou [34, Sect. 3.2 of Chap. 5].

Assumption 3.14 G is bounded and uniformly continuous, and such that there exists
a constant L > 0 such that for all Rd+K+ -valued functions υ, υ̂ of the form

υt =
n∑

i=1

mi−1∑

j=0

υi,j1[ti,j ,ti,j+1)(t)+ vn,mn−11Tn(t),

υ̂t =
n∑

i=1

mi−1∑

j=0

υi,j1[t̂i,j ,t̂i,j+1)
(t)+ vn,mn−11Tn(t),

where t1,0 = t̂1,0 = 0, ti,0 = t̂i,0 = Ti−1, 2 ≤ i ≤ n, ti,mi
= t̂i,mi

= Ti , 1 ≤ i ≤ n, we
have

|G(υ)−G(υ̂)| ≤ L‖υ‖
n∑

i=1

mi∑

j=1

|�ti,j −�t̂i,j |, (3.9)

where �ti,j := ti,j − ti,j−1 and �t̂i,j := t̂i,j − t̂i,j−1.

Note that Assumption 3.14 is close in spirit to Assumption 2.1 in [25], but is
weaker and, unlike the latter, is satisfied by European options with intermediate ma-
turities T1, . . . , Tn−1. Next we introduce a particular class of prediction sets. Our
definition is closely related to time-invariant sets in Vovk [51], also recently used in
Beiglböck et al. [4], but slightly different as we work with all continuous functions
and also require that maturities Ti are preserved.

Definition 3.15 We say P is time-invariant if (St )t∈[0,T ] ∈P implies that we have
(Sf (t))t∈[0,T ] ∈P for any nondecreasing and continuous function f : [0, T ]→ [0, T ]
with f (0)= 0 and f (Ti)= Ti for i = 1, . . . , n.

We note that many natural path restrictions are time-invariant. Particular examples
include {S ∈ I : ‖S‖ ≤ b} for a given bound b, or the set of paths which satisfy a
drawdown constraint for a selection of assets J ⊆ {1, . . . , d +K}, i.e.,

{
S ∈ I : S(i)

t ≥ αi sup
u≤t

S(i)
u , t ∈ [0, T ], i ∈ J

}
, for some fixed αi ∈ [0,1].
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Theorem 3.16 Under Assumption 3.1, let P be a closed and time-invariant subset
of I , X given by (3.7) and P such that Mμμμ,P �= ∅, where μμμ is defined via (3.8).

Assume there exists p > 1 for which
∫ |x|pμ

(i)
n (dx) <∞ for i = 1, . . . , d . Then for

any G which satisfies Assumption 3.14, we have

ṼX ,P,P(G)= VX ,P,P(G)= Pμμμ,P(G)= P̃μμμ,P(G).

4 Auxiliary results and proofs

We present now the proofs of all the results in Sect. 3. As noted before, we use the
unconstrained duality (3.4) which follows from Theorem 5.1 stated and proved in
Sect. 5 below. We start by describing a discretisation of a continuous path, often
referred to as the “Lebesgue discretisation”, a term we also use. The discretisation is
a crucial tool in Sect. 5.1, but is also employed in the proofs of Lemmas 4.4, 4.3, 4.5
and Theorem 3.16 below.

Definition 4.1 For a positive integer N and any S ∈ Ω , we set τ
(N)
0 (S) = 0, then

define

τ
(N)
k (S) := inf

{

t ≥ τ
(N)
k−1(S) : |St − S

τ
(N)
k−1(S)

| = 1

2N

}

∧ T

and let m(N)(S) := min{k ∈ N : τ (N)
k (S) = T }. We write m(N) for the measurable

map Ω � S �→m(N)(S) and note that by definition, m(N) =m(N)(S).

Following the observation that m(N)(S) <∞ for all S ∈ Ω , we say that the se-
quence of stopping times 0= τ

(N)
0 < τ

(N)
1 < · · ·< τ

(N)

m(N) = T forms a Lebesgue par-
tition of [0, T ] on Ω . Similar partitions were studied previously; see e.g. Bichteler [7]
and Vovk [51]. Their main appearances have been as tools to build a pathwise ver-
sion of the Itô integral. They can also be interpreted, from a financial point of view,
as candidate times for rebalancing portfolio holdings; see Whalley and Wilmott [52].

Remark 4.2 Consider N ≥ 3 and two paths S, S̃ ∈ Ω such that ‖S − S̃‖ < 2−N .
Then for each i < m(N−2)(S), {|St | : t ∈ (τ

(N−2)
i−1 (S), τ

(N−2)
i (S)]} ∩ {k/2N : k ∈ N+}

has at least four elements, which implies that there exists at least one j < m(N)(S̃)

such that τ
(N)
j (S̃) ∈ (τ

(N−2)
i−1 (S), τ

(N−2)
i (S)]. Consequently, m(N−2)(S) ≤ m(N)(S̃)

and hence for any weakly converging sequence of probability measures P
(k) → P

and any bounded nonincreasing function φ :N→R,

EP

[
φ
(
m(N)(S)

)]≤ lim inf
k→∞ E

P(k)

[
φ
(
m(N−2)(S)

)]
. (4.1)

4.1 Proof of Theorem 3.2 and Remark 3.3

To establish (3.2), we consider an (X,γ ) ∈ AX that superreplicates G on Pε for
some ε > 0. Since X is bounded and γ is admissible, we can find suitable M > 0
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such that

X(S)+
∫ T

0
γu dSu ≥G(S)−MλP(S), (4.2)

where we recall that λP(ω) = infυ∈P ‖ω − υ‖ ∧ 1. Next, for each N ≥ 1, we pick

P
(N) ∈M1/N

X ,P,P
such that

E
P(N) [G(S)] ≥ sup

P∈M1/N

X ,P,P

EP[G(S)] − 1

N
.

Since γ is progressively measurable, the integral
∫ ·

0 γu(S)dSu, defined path-
wise via integration by parts, agrees a.s. with the stochastic integral under any
P

(N). Then by (2.1), the stochastic integral is a P
(N)-supermartingale and hence

E
P(N)[∫ T

0 γu(S)dSu] ≤ 0. Therefore, from (4.2),

E
P(N)[X(S)] ≥ E

P(N) [G(S)−MλP(S)] ≥ sup
P∈M1/N

X ,P,P

EP[G(S)] − 1

N
− 2M

N
. (4.3)

Also note that X takes the form a0+∑m
i=1 aiXi , Xi ∈X , and hence by the definition

of M1/N

X ,P,P
,

|P(X)−E
P(N)[X(S)]| −→ 0 as N →∞.

Together with (4.3), this yields P(X) ≥ P̃X ,P,P(G) and (3.2) follows because
(X,γ ) ∈AX was arbitrary.

To establish (3.3), we show the converse inequality in three steps.
Step 1: Duality without constraints. This is the crucial and also the most technical

part of the proof which we defer to Sect. 5. The duality in (3.4) follows as a special
case of Theorem 5.1, which is stated and proved in Sect. 5.

Step 2: Calculus of variation approach. Fix G. Note that any (X,γ ) that super-

replicates G−NλP on I also superreplicates G−N/M on P
1
M . It follows that for

any fixed M,N ≥ 1,

ṼX ,P,P(G)= inf{P(X) : ∃(X,γ ) ∈AX , ε > 0 such that

(X,γ ) superreplicates G on P
ε}

≤ N

M
+ inf{P(X) : ∃(X,γ ) ∈AX which

superreplicates G−NλP on I}.
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Taking the infimum over M and then over N , we obtain

ṼX ,P,P(G)≤ inf
N≥0

inf{P(X) : ∃(X,γ ) ∈AX which

superreplicates G−NλP on I}

= inf
N≥0

VX ,P,I(G−NλP)= inf
N≥0

ṼX ,P,I(G−NλP). (4.4)

On the other hand, given any (X,γ ) ∈AX and ε > 0 such that (X,γ ) superreplicates
G on Pε , by the admissibility of (X,γ ) and boundedness of X and G, if N > 0 is
sufficiently large, then

X(S)+
∫ T

0
γu(S)dSu ≥G(S)−NλP, S ∈ I,

that is, (X,γ ) superreplicates G − NλP on I . It follows that we have equality in
(4.4). We also have

ṼX ,P,I(G−NλP)= inf
X∈Lin(X )

(
P(X)+ inf{x ∈R : ∃γ ∈A such that

(x, γ ) superreplicates

G−NλP −X on I})

= inf
X∈Lin(X )

(
P(X)+VI(G−NλP −X)

)

= inf
X∈Lin(X )

(
P(X)+ PI(G−NλP −X)

)
,

where the last equality is justified by Theorem 5.1 as λP and X are bounded and
uniformly continuous. Combining the above with (4.4), we conclude that (3.5) holds.

Step 3: Application of the minimax theorem. We rewrite (3.5) and apply a minimax
argument to get

ṼX ,P,P(G)= inf
X∈Lin(X ),N≥0

(
PI(G−X−NλP)+P(X)

)

= lim
N→∞ inf

X∈LinN(X )

(

sup
P∈MI

EP[G−X−NλP] +P(X)

)

= lim
N→∞ sup

P∈MI

inf
X∈LinN (X )

(
EP[G−X−NλP] +P(X)

)
(4.5)

≤ lim
N→∞ sup

P∈MηN
X ,P,P

EP[G] = P̃X ,P,P(G), (4.6)

for ηN = 2κ/
√

N with κ = 1+ ‖G‖∞, where ‖G‖∞ = supS∈Ω |G(S)|. The crucial
third equality follows by a minimax theorem (see e.g. Terkelsen [50, Corollary 2]) by
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observing that the mapping

LinN(X )×MI � (X,P) �→ EP[G(S)−X(S)−NλP(S)] +P(X) ∈R

is bilinear and LinN(X ) is convex and compact. To justify the inequality between
(4.5) and (4.6), consider P ∈MI \MηN

X ,P,P
. Then in particular, either there exists

X∗ ∈ X such that |EP[X∗] − P(X∗)| > ηN
1√
N

or P[S /∈PηN ] ≥ ηN . In the former

case, since ±NX∗ ∈ LinN(X ), we obtain

EP[G−NX∗ −NλP] +P(NX∗)≤ EP[G] −N
(
EP[X∗] −P(X∗)

)

< κ − 2κ
√

N ≤−κ,

where, without loss of generality, we assume EP[X∗] < P(X∗). In the latter case,
we have EP[NλP] ≥N 2κ√

N

2κ√
N
= 4κ2 ≥ 4κ , while |EP[X] −P(X)| ≤N 2κ

N
= 2κ for

any X ∈ LinN(X ). It follows that

EP[G−X−NλP] +P(X)≤ κ − 4κ + 2κ =−κ.

On the other hand, since (3.2) implies ṼX ,P,P(0)= 0, we have

ṼX ,P,P(G)= ṼX ,P,P(G+ ‖G‖∞)− ‖G‖∞ ≥ ṼX ,P,P(0)− ‖G‖∞ =−κ + 1,

and hence we may restrict to measures in MηN

X ,P,P
in (4.5). Dropping nonpositive

terms, we obtain (4.6) which completes the proof of Theorem 3.2. �

For Remark 3.3, it remains to argue that Theorem 3.2 remains true when we
restrict to Brownian martingales. Specifically, given T and a probability space
(ΩW ,FW,P W) with a d̃-dimensional Brownian motion W on [0, T ], where
F

W = (FW
t )0≤t≤T is the P W -completion of the natural filtration of W , consider

P := P W ◦ (Zα)−1, where Zα :=
∫ ·

0
αu dWu (4.7)

for some F
W -progressively measurable process α with values in the (d + K) × d̃

matrices such that the above vector integral is well defined. Let MI be the family
of all P ∈MI which admit such a representation. From (3.5), as argued above, and
Remark 5.2 below, we have

ṼX ,P,P(G)= inf
X∈Lin(X ),N≥0,

(

sup
P∈MI

EP[G−X−NλP] +P(X)

)

.

Then by following the same argument as in Step 3 above, we can show that we have
MηN

X ,P,P
∩MI �= ∅ when N is sufficiently large and

ṼX ,P,P(G)= lim
N→∞ sup

P∈MηN
X ,P,P

∩MI

EP[G].
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4.2 Proof of Theorem 3.6

The set X is finite and as discussed in Example 3.4, we can apply Theorem 3.2.
Together with VX ,P,I = ṼX ,P,I , this yields

VX ,P,I(G)= P̃X ,P,I(G)= lim
N→∞ sup

P∈M1/N

X ,P,I

EP[G]. (4.8)

Now for every positive integer N , we pick P
(N) ∈M1/N

X ,P,I such that

E
P(N) [G] + 1/N ≥ sup

P∈M1/N

X ,P,I

EP[G].

We let

p
(N)
k,i,j := E

P(N) [(K(i)
k,j − S

(i)
k,j )

+], p̃
(N)
k,i,j :=

√
N
(
pk,i,j − (1− 1/

√
N)p

(N)
k,i,j

)
,

for any i = 1, . . . , d , j = 1, . . . , n, k = 1, . . . ,m(i, j). Note that

|p̃(N)
k,i,j − pk,i,j | = (

√
N − 1)|pk,i,j − p

(N)
k,i,j | ≤

√
N

N
= 1√

N
, ∀i, j, k.

Then it follows from Assumption 3.5 that when N is large, there exists a P̃
(N) ∈MI

such that

p̃
(N)
k,i,j = E

P̃(N)[(K(i)
k,j − S

(i)
k,j )

+], ∀i, j, k.

Now we consider Q := (1− 1/
√

N)P(N) + P̃
(N)/

√
N . It follows that

EQ[(K(i)
k,j − S

(i)
k,j )

+] = (1− 1/
√

N)E
P(N) [(K(i)

k,j − S
(i)
k,j )

+]

+ 1√
N
E
P̃(N)[(K(i)

k,j − S
(i)
k,j )

+]

= (1− 1/
√

N)p
(N)
k,i,j + p̃

(N)
k,i,j /

√
N = pk,i,j

and hence Q ∈MX ,P,I . In addition,

∣
∣EQ[G] −E

P(N) [G]∣∣≤ 1√
N

(E
P(N) [|G|] +E

P̃(N) [|G|])≤ 2‖G‖∞√
N

.

Therefore, we have

sup
P∈M1/N

X ,P,I

EP[G] ≤ sup
P∈MX ,P,I

EP[G] + 2‖G‖∞√
N

+ 1

N

= PX ,P,I(G)+ 2‖G‖∞√
N

+ 1

N
,

and taking limits as N →∞ yields P̃X ,P,I(G) ≤ PX ,P,I(G). Together with (4.8)
and (3.1), this completes the proof. �
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4.3 Proof of Theorem 3.12

From Theorem 3.2, we know that ṼX ,P,P(G) ≥ P̃X ,P,P(G) and by definition,
P̃X ,P,P(G)≥ P̃μμμ,P(G). Hence, to establish Theorem 3.12, it suffices to show that

ṼX ,P,P(G)≤ P̃μμμ,P(G).

This is a special case (α = β = 0) of Proposition 4.5 below, which is a crucial tech-
nical result also used to prove Theorem 3.16 below. We recall that MI =MI ∩M,
where M := {P ∈ M : P satisfies (4.7)}. We also require additional notation for
sets of martingale measures with a constraint on the final marginal only. For a
probability measure π on R

d , we let Mπ,I := {P ∈ MI : LP(STn) = π} and

likewise, for a d-tuple μn = (μ
(1)
n , . . . ,μ

(d)
n ) of probability measures on R, we

let Mμn,I := {P ∈MI : LP(S
(i)
Tn

)= μ
(i)
n , i = 1, . . . , d}. These notations are used in

statements and proofs below, and it will be clear from the context if we work with the
former or the latter object. Finally, we allow a perturbation by defining

Mμn,I,η := {P ∈MI : dP(LP(S
(i)
Tn

,μ(i)
n )≤ η, i = 1, . . . , d}.

We note that these sets are different from the main objects introduced in Defini-
tion 3.11 and are only needed for some technical arguments below.

We start with two lemmas leading to Proposition 4.5.

Lemma 4.3 Consider probability measures π(N),π on R
d+ with mean vectors 111 and

(π(N)) converging weakly to π . Then, for any α,β ≥ 0, D ∈ N and a bounded uni-
formly continuous G,

lim sup
N→∞

sup
P∈M∩M

π(N),I

EP[G− β
√

m(D) ∧ α] ≤ sup
P∈M∩Mπ,I

EP[G− β
√

m(D−2) ∧ α],

where m(D) is given in Definition 4.1.

Proof See Sect. A.1 in the Appendix. �

Lemma 4.4 Under Assumption 3.1, let P be a measurable subset of I , Lin1(X ) a
compact subset of (C(Ω,R),‖ · ‖∞) and Ms a nonempty convex subset of MI such
that Mη

X ,P,P
∩Ms �= ∅ for all η > 0. Then for any α,β ≥ 0, D ∈N and a bounded

uniformly continuous G,

inf
X∈Lin(X ),N≥0

(

sup
P∈Ms

EP[G− β
√

m(D) ∧ α −X−NλP] +P(X)

)

≤ lim
N→∞ sup

P∈M1/N

X ,P,P
∩Ms

EP[G− β
√

m(D−2) ∧ α], (4.9)

with equality when α = β = 0, where m(D) is defined in Definition 4.1.

Proof See Sect. A.2 in the Appendix. �
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Proposition 4.5 Under Assumption 3.1, let P be a measurable subset of I , X given
by (3.7) and P such that for any η > 0, Mη

μμμ,P
�= ∅, where μμμ is defined via (3.8).

Then for any uniformly continuous and bounded G and α,β ≥ 0, D ∈N,

ṼX ,P,P(G− β
√

m(D) ∧ α)≤ P̃μμμ,P(G− β
√

m(D−8) ∧ α),

where m(D) is defined in Definition 4.1.

Proof Define

GM(Rd+) :=
{

f ∈ C(Rd+,R) : sup
xxx �=yyy

|f (xxx)− f (yyy)|
|xxx − yyy| ≤M,‖f ‖∞ ≤M and

f (x1, . . . , xd)= f (x1 ∧M2, . . . , xd ∧M2)

for all (x1, . . . , xd) ∈R
d+
}

and G(Rd+) =⋃M>0 GM(Rd+). Let ZM = {f (S
(i)
Tn

) : f ∈ GM(R+), i = 1, . . . , d},
YM = {f (S

(i)
Tj

) : f ∈GM(R+), i = 1, . . . , d, j = 1, . . . , n− 1} and write

Z =
⋃

M≥0

ZM, Y =
⋃

M≥0

YM.

Note that given any f ∈ Cb(R+,R), ε > 0 and a measure μ on R+ with a finite first
moment, there is some u : R+ → R of the form u(s)= a0 +∑n

i=1 ai(κi − s)+ such
that u≥ f and

∫
(u− f )dμ < ε. This gives the first inequality in the following:

ṼX ,P,P(G− β
√

m(D) ∧ α)

≤ ṼZ∪Y,P,P(G− β
√

m(D) ∧ α)

= inf
X∈Lin(Z∪Y),N≥0

(
VI(G−X− β

√
m(D) ∧ α −NλP)+P(X)

)

≤ inf
X∈Lin(Z∪Y),N≥0

(

sup
P∈MI

EP[G−X− β
√

m(D−2) ∧ α −NλP] +P(X)

)

= inf
Y∈Lin(Y),N≥0,M≥0

inf
Z∈Lin(ZM)

(

sup
P∈MI

EP[G− Y −Z− β
√

m(D−2) ∧ α −NλP]

+P(Y +Z)

)

≤ inf
Y∈Lin(Y),M≥0,N≥0

lim
L→∞ sup

P∈MI∩M1/L

ZM,P,I

EP[G− β
√

m(D−4) ∧ α − Y

−NλP +P(Y )]
≤ inf

Y∈Lin(Y),M≥0,N≥0
sup

P∈MI∩M1/M

ZM,P,I

EP[G− β
√

m(D−4) ∧ α− Y

−NλP +P(Y )]. (4.10)
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Above, the first equality follows from the previously argued equality in (4.4). The
second inequality is justified by Theorem 5.1 and Remark 5.2 below. Both the en-
suing equality and the last inequality are clear. It remains to observe that the third
inequality follows from Lemma 4.4. To justify this, note that GM(R+) is a convex
and compact subset of C(R+,R), and it follows that Lin1(ZM) = ZM is a convex
compact subset of (C(Ω,R),‖ · ‖∞). In addition, Mη

μμμ,P
�= ∅ for all η > 0 implies

that M1/M

ZM,P,I �= ∅ for all M , and clearly we can obtain such measures on a Wiener

space so that M1/M

ZM,P,I ∩MI �= ∅ for all M , as required.

For any P ∈M1/M

ZM,P,I , let εP =max{dp(μ
(i)
n ,LP(S

(i)
Tn

)) : i = 1, . . . , d}, where the

Lévy–Prokhorov metric dp on probability measures on R
d+ is given by

dp(μ, ν) := sup
f∈Gb

1(Rd+)

∣
∣
∣
∣

∫
f dν −

∫
f dμ

∣
∣
∣
∣,

where

G
b
1(R

d+) := {f ∈ C(Rd+,R) : ‖f ‖ ≤ 1 and |f (xxx)− f (yyy)| ≤ |xxx − yyy|,∀xxx �= yyy}

(see e.g. Bogachev [9, Theorem 8.3.2]). Pick g ∈Gb
1(R+) such that

∣
∣
∣
∣

∫

R+
g(x)μ(i)

n (dx)−EP[g(S
(i)
Tn

)]
∣
∣
∣
∣> εP/2 for some i = 1, . . . , d,

and define ĝ ∈ GM(R+) via ĝ(x) = Mg(x ∧ M2). Then by the definition of
M1/M

ZM,P,I and ĝ,

1

M
≥
∣
∣
∣
∣

∫

R+
ĝ(x)μ(i)

n (dx)−EP[ĝ(S
(i)
Tn

)]
∣
∣
∣
∣

≥M

∣
∣
∣
∣

∫
g dμ(i)

n −EP[g(S
(i)
Tn

)]
∣
∣
∣
∣−Mμ(i)

n ({|x| ≥M2})−MP[|S(i)
Tn
| ≥M2]

≥M
εP

2
− 2

M
.

It follows that εP ≤ 3/M2 and hence M1/M

ZM,P,I ⊆ Mμn,I,1/M for M ≥ 3. Fix

Y ∈ Lin(Y) and for each M ≥ 3, take P
(M) ∈M∩Mμn,I,1/M such that

E
P(M)[G− β

√
m(D−4) ∧ α − Y −NλP +P(Y )]

≥ sup
P∈M∩Mμn,I,1/M

EP[G− β
√

m(D−4) ∧ α − Y −NλP +P(Y )] − 1

M
.

Let π
(M)
n be the law of (S

(1)
Tn

, . . . ,S
(d)
Tn

) under P(M) and note that its marginals have

mean 1. The family (π
(M)
n )M≥3 is tight and by Prokhorov’s theorem, there exists a
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subsequence (π
(Mk)
n )k∈N converging to some πn. Note that the marginal distributions

of πn are μ
(i)
n , i = 1, . . . , d . By the choice of P(M) and Lemma 4.3, it follows that

lim
M→∞ sup

P∈M∩Mμn,I,1/M

EP[G− β
√

m(D−4) ∧ α − Y −NλP +P(Y )]

≤ sup
P∈M∩Mμn,I

EP[G− β
√

m(D−6) ∧ α − Y −NλP +P(Y )].

With this and using M1/M

ZM,P,I ⊆Mμn,I,1/M , we may continue (4.10) by writing

ṼX ,P,P(G)

≤ inf
Y∈Lin(Y)

inf
M≥0,N≥0

sup
P∈M∩M1/M

ZM,P,I

EP[G− β
√

m(D−4) ∧ α− Y

−NλP +P(Y )]

≤ inf
Y∈Lin(Y),N≥0

sup
P∈Mμn,I

EP[G− β
√

m(D−6) ∧ α − Y −NλP +P(Y )]

≤ inf
M≥0

inf
Y∈Lin(YM),N≥0

sup
P∈Mμn,I

EP[G− β
√

m(D−6) ∧ α − Y −NλP +P(Y )]

≤ inf
M≥0

lim
N→∞ sup

P∈Mμn,I∩M1/N

YM,P,P

EP[G− β
√

m(D−8) ∧ α],

where the last inequality follows from Lemma 4.4 since by analogous arguments to

the ones above, we may argue that M1/M2

μμμ,P
⊆M1/M

YM,P,P
∩Mμn,I ⊆M1/M

μμμ,P
when M

is large enough. The first inclusion implies that M1/M

YM,P,P
∩Mμn,I �= ∅, justifying

the application of Lemma 4.4. The second inclusion allows us to continue the above
chain of inequalities to conclude the proof via

ṼX ,P,P(G)≤ lim
M→∞ sup

P∈M1/M

μμμ,P

EP[G− β
√

m(D−8) ∧ α]

= P̃μμμ,P(G− β
√

m(D−8) ∧ α). �

4.4 Proof of Theorem 3.16

We first make two simple observations.

Remark 4.6 If P is a nonempty closed (with respect to the sup-norm) subset of Ω ,
then

P=
⋂

ε>0

P
ε =

⋂

ε>0

Pε,

where Pε is the closure of Pε .
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Lemma 4.7 If P is time-invariant, then for every ε > 0, Pε is also time-invariant.

Proof This follows easily by observing that for two paths S, S̃ ∈Ω and any nonde-
creasing continuous function f : [0, Tn]→ [0, Tn] with f (0)= 0 and f (Ti)= Ti for
any i = 1, . . . , n, we have ‖S̃· − S·‖ = ‖S̃f (·) − Sf (·)‖. �

We now proceed with the proof of Theorem 3.16. Recall that the inequali-
ties ṼX ,P,P(G) ≥ VX ,P,P(G) ≥ Pμμμ,P(G) hold in general. In addition, according
to Theorem 3.12, ṼX ,P,P(G) = P̃μμμ,P(G). Therefore, we only need to show that
P̃μμμ,P(G)= Pμμμ,P(G). Our proof of this equality is divided into six steps. First, using
Proposition 4.5, we argue that it suffices to consider measures with “good control” on
the expectation of m(D)(S). Next, we perform three time changes within each trading
period [Ti, Ti+1]. The resulting time change of S, denoted by S̈, allows a “good con-
trol” over its quadratic variation process. At the same time, we keep G(S) and G(S̈)

“close”, and given a measure P ∈Mη

μμμ,P
with “good control” on EP[m(D)(S)], since

Pη is time-invariant, the law of the time-changed price process S̈ remains an element
of Mη

μμμ,P
. Then in Step 5, given a sequence of models with improved calibration

precisions, we show tightness of the quadratic variation process of the time-changed
price process S̈ under these measures. This then leads to tightness of the image mea-
sures via S̈. In Step 6, we deduce the duality P̃μμμ,P(G) = Pμμμ,P(G) from tightness
and conclude.

Recall that X is given by (3.7). Let

Xn = {(κ − S
(i)
Tn

)+ : i = 1, . . . , d, κ ∈R+}
and write Pμn,P := PXn,P,P for the associated primal problem, where the martingale

measures have fixed marginals μ
(i)
n , given by (3.8), of the distribution of STn . Note

that by definition, Pμn,I = P̃μn,I and that since the μ
(i)
n have finite pth moment, we

have Pμn,I (‖S‖) <∞.

Step 1: Reducing to measures P with good control on EP[
√

m(D)(S)]. Let G satisfy
Assumption 3.14. Choose κ ≥ 1 such that ‖G‖ ≤ κ and let fe :Rd+K+ →R+ be a
modulus of continuity of G, i.e.,

|G(ω)−G(υ)| ≤ fe(|ω− υ|) for any ω,υ ∈Ω

with limx→0 fe(x)= 0. Fix D ∈N. Consider XD :Ω →R given by

XD(S)=

√√
√
√
√

m(D)(S)∧26Dκ2
∑

j=1

d+K∑

i=1

∣
∣S(i)

τ
(D)
j (S)

− S
(i)

τ
(D)
j−1(S)

∣
∣2

≥ 2−D
√

m(D)(S)∧ (26Dκ2)− 1

≥
(

2−D
(√

m(D)(S)∧ 26Dκ2 − 1
))= κ22D ∧

√
m(D)(S)

2D
− 2−D,



Robust pricing–hedging dualities in continuous time 537

where the τ
(D)
i and m(D) are defined in Definition 4.1. It follows from the proof of

Lemma 5.4 in Dolinsky and Soner [26] that there exists a γ ∈A such that

∫ τ
m(D)(S)∧26Dκ2

0
γu dSu + 3(d +K) max

0≤j≤(m(D)(S)∧26Dκ2)
|S

τ
(D)
j

| ≥XD(S), S ∈ I.

Hence ṼX ,P,P(XD)≤ 3(d+K)ṼX ,P,P(‖S‖∧(κ225D+1)). Reducing X to options
with maturity Tn and considering I instead of P only increases the superhedging
price, and therefore

0≤ ṼX ,P,P(XD)≤ 3(d+K)VXn,P,I
(‖S‖∧ (κ225D+1)

)≤ 3(d+K)Pμn,I (‖S‖) ,

which is finite, and where the last inequality follows from Theorem 3.12 applied to
the case of a single maturity. It now follows from sublinearity of Ṽ that

ṼX ,P,P(G)≤ ṼX ,P,P

(

G− κ2D ∧ XD

2D

)

+ ṼX ,P,P(XD/2D)

≤ ṼX ,P,P

(

G− κ2D ∧
√

m(D)

22D

)

+ c2/2D

≤ P̃μμμ,P

(

G− κ2D ∧
√

m(D−8)

22D

)

+ c2/2D

= lim
N→∞ sup

P∈M1/N

μμμ,P

EP

[

G(S)− κ2D ∧
√

m(D−8)(S)

22D

]

+ c2/2D, (4.11)

where c2 is a constant independent of D and the last inequality follows from Propo-
sition 4.5.

Next we denote by M̂κ
I the set of P ∈MI such that

EP

[

κ2D ∧
√

m(D−8)(S)

22D

]

≤ 2κ + 2. (4.12)

We notice that if P /∈ M̂κ
I , then

EP

[

G(S)− κ2D ∧
√

m(D−8)(S)

22D

]

< κ − 2κ − 2=−κ − 2,

while by the inequalities in (4.11) above, for D sufficiently large,

sup
P∈M1/N

μμμ,P

EP

[

G(S)− κ2D ∧
√

m(D−8)(S)

22D

]

≥ ṼX ,P,P(G)− c2

2D
≥−κ − 1.

It follows that in (4.11), it suffices to consider P ∈ M̂κ
I ∩M1/N

μμμ,P
, which in particular

is nonempty.
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Step 2: First time change: “squeezing paths and adding constant paths”. The first
time change squeezes the evolution on [Ti−1, Ti] to [Ti−1, Ti − 1/D] and adds a
constant piece to the path on [Ti − 1/D,Ti]. To achieve this, define an increasing
function f : [0, Tn]→ [0, Tn] by

f (t)=
n∑

i=1

(

Ti ∧
(
Ti−1 + (Ti − Ti−1)(t − Ti−1)

Ti − Ti−1 − 1/D

))

1{Ti−1<t≤Ti }

and then a process (S̃t )t∈[0,Tn] by a time change of S via f , i.e., S̃t = Sf (t). Note
that f (Ti − 1/D)= Ti , as required. We argue below that (3.9) implies that we have
|G(S)−G(S̃)| → 0 as D→∞.

Now for every N ∈N, take P
(N) ∈ M̂κ

I ∩M1/N

μμμ,P
such that

E
P(N) [G(S)] ≥ sup

P∈M̃I∩M1/N

μμμ,P

EP[G(S)] − 1/N.

Since STi
= S̃Ti

, we have in particular L
P(N) (STi

) = L
P(N) (S̃Ti

) for all i ≤ n. Also,
being a time change of S, the process (S̃t )t∈[0,Tn] is a martingale (in the time-changed

filtration). It follows that its distribution P
(N) ◦ (S̃t )

−1 is an element of M1/N

μμμ,P
as

P1/N is time-invariant, by Lemma 4.7.

Step 3: Second time change: introducing a lower bound on the time step. The
second time change ensures that we can bound from below the difference between
any two consecutive stopping times in the Lebesgue discretisation in Definition 4.1.
We want to do this by adding a constancy interval of length δ to each step of the
discretisation. As we have squeezed the paths above, we have length 1/D to use up
while still keeping the time changes to within the intervals [Ti−1, Ti]. Taking suitably
small δ, this allows us, with high probability, to alter all the steps in the Lebesgue
discretisation.

For ease of notation, it is helpful to rename the elements of the set

{τ (D)
j : j ≤m(D)} ∪ {Ti : i = 1, . . . , n}

as follows. We define a sequence of stopping times τ
(D)
i,j : Ω → [Ti−1, Ti] and

m
(D)
i : Ω → N+ in a recursive manner. Set T0 = m

(D)
0 (S) = τ

(D)
0,−1 = 0 and for

i = 1, . . . , n, set τ
(D)
i,0 (S)= Ti−1 and let

τ
(D)
i,1 (S)= inf

{

t ≥ Ti−1 :
∣
∣St − S

τ
(D)

i−1,m
(D)
i−1(S)−1

(S)

∣
∣= 1

2D

}

∧ Ti,

τ
(D)
i,k (S)= inf

{

t ≥ τi,k−1(S) : ∣∣St − S
τ

(D)
i,k−1(S)

∣
∣= 1

2D

}

∧ Ti,

m
(D)
i (S)=m

(D)
i−1(S)+min{k ∈N : τ (D)

i,k (S)= Ti}.
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It follows that for any S ∈ I ,

m(D)(S)≤m(D)
n (S)≤m(D)(S)+ n− 1. (4.13)

Set Θ = 2�κ226D� + n and δ = 1/(4DΘ2). We now define a sequence of stopping
times σi,j :Ω →[0, Tn] by σi,0(S) := Ti−1, σi,Θ+1(S) := Ti , and for j ≤Θ , we put

σi,j (S) := (τ (D−8)
i,j (S)+ δj

)∧ (Ti − 1/(2D)
)

if j < m
(D−8)
i (S),

while σi,j (S) := Ti − 1/(2D) otherwise, where i = 1, . . . , n. Then it follows from
the definition that

Ti−1 = σi,0(S)≤ σi,1(S)≤ · · · ≤ σi,Θ(S) < σi,Θ+1(S)= Ti

for all S ∈Ω . Further, since the process S̃ is always constant on [Ti − 1/D,Ti], we
have τ

(D−8)
i,j (S̃)≤ Ti − 1/D and hence for j ≤Θ ∧ (m

(D−8)
i (S̃)− 1) that

σi,j (S̃)≤ τ
(D−8)

i,m
(D−8)
i −1

(S̃)+ δΘ ≤ Ti − 1

D
+ 1

4DΘ
< Ti − 1

2D
.

Also, for all j = 1, . . . , (Θ ∧ (m
(D−8)
i (S̃)− 1)),

σi,j (S̃)− σi,j−1(S̃)= δ+ (τ (D−8)
i,j (S̃)− τ

(D−8)
i,j−1 (S̃)

)≥ δ.

We are now ready to define the time-changed process Š by

Št =
n∑

i=1

(Θ−1∑

j=0

S̃
τ

(D−8)
i,j (S̃)+(t−σi,j (S̃)−δ)+1[σi,j (S̃),σi,j+1(S̃))

(t)

+ S̃
(τ

(D−8)
i,Θ (S̃)+ 1

Ti−t
− 1

Ti−σi,Θ (S̃)
)∧Ti

1[σi,Θ (S̃),Ti ](t)
)

.

Observe that Š is a (continuous) time change of S̃ and S̃Ti
= ŠTi

= STi
for i ≤ n. As

before, this implies that Š remains a martingale and P
(N) ◦ (Št )

−1 ∈M1/N

μμμ,P
.

We argue now that |G(S)−G(Š)| is small for large D. To this end, we approximate
a path S with a piecewise constant function F̃ (D)(S) which jump at the times τ

(D)
i,j .

A similar discretisation is used later in Sect. 5; see (5.2). For S ∈Ω , consider

F̃
(D)
t (S)=

n∑

i=1

m
(D)
i −1∑

j=0

S
τ

(D)
i,j

1[τ (D)
i,j ,τ

(D)
i,j+1)

(t)+ STn1{Tn}(t), t ∈ [0, T ].

Then the time-continuity property of G in (3.9) ensures that

|G(S)−G(S̃)| ≤ ∣∣G(S)−G
(
F̃ (D)(S)

)∣
∣+ ∣∣G(S̃)−G

(
F̃ (D)(S̃)

)∣
∣

+ ∣∣G(F̃ (D)(S)
)−G

(
F̃ (D)(S̃)

)∣
∣

≤ 2fe(2
−D+9)+ 2nL‖S‖

D
. (4.14)
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Similarly, for any S ∈Ω with m
(D−8)
n (S̃(S)) = m

(D−8)
n (S) ≤ Θ , again by (3.9), we

have
∣
∣G
(
S̃(S)

)−G
(
Š(S)

)∣
∣≤
∣
∣
∣G
(
S̃(S)

)−G
(
F̃ (D−8)

(
S̃(S)

))∣∣
∣

+
∣
∣
∣G
(
Š(S)

)−G
(
F̃ (D−8)

(
Š(S)

))∣∣
∣

+
∣
∣
∣G
(
F̃ (D−8)(S̃)(S)

)−G
(
F̃ (D−8)

(
Š(S)

))∣∣
∣

≤ 2fe(2
−D+9)+ nL‖S̃(S)‖Θδ

≤ 2fe(2
−D+9)+ nL‖S(S)‖/D, (4.15)

when D is sufficiently large. From (4.12), the Markov inequality gives

P
(N)[{S ∈ I : m(D−8)(S)≥Θ − n+ 2}] ≤ 2κ + 2

κ2D
,

and hence by (4.13),

P
(N)[{S ∈ I : m(D−8)

n (S)≥Θ + 1}] ≤ 2κ + 2

κ2D
. (4.16)

Furthermore, by (4.15) and (4.16),

|E
P(N) [G(S̃)] −E

P(N) [G(Š)]| ≤ 2κP(N)[m(D−8)
n (S̃) > Θ] + 2fe(2

−D+9)

+ nLE
P(N)[‖S‖]/D

≤ 4κ + 4

2D
+ 2fe(2

−D+9)

+ nLVXn,P,I(‖S‖)/D. (4.17)

Step 4: Third time change: controlling the increments of the quadratic variation.
We say that ω ∈ C([0, T ],R) admits a quadratic variation if

lim
N→∞

m(N)(ω)−1∑

k=0

(
ω

τ
(N)
k (ω)∧t

−ω
τ

(N)
k+1(ω)∧t

)2

exists and is a continuous function for t ∈ [0, T ]. In this case, we denote this limit
with 〈ω〉 and otherwise we let 〈ω〉 be zero. In addition, for S ∈Ω , we say S admits a
quadratic variation if S(i) admits a quadratic variation for any i ≤ d +K .

It follows from Theorem 4.30.1 in Rogers and Williams [46] and its proof that for
any P ∈M, 〈S〉 := (〈S(1)〉, . . . , 〈S(d+K)〉) agrees P-a.s. with the classical definition of
the quadratic variation of S under P, i.e., S2 − 〈S〉 is a P-martingale. Further, Doob’s
inequality gives for all i ≤ d that

E
P(N) [‖Š(i)‖p] ≤

(
p

p− 1

)p ∫

[0,∞)

xpμ(i)
n (dx),
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and by the BDG inequalities, there exist constants cp,Cp ∈ (0,∞) such that

cpEP(N)

[〈Š(i)〉p/2
Tn

]≤ E
P(N) [‖Š(i)‖p] ≤ CpEP(N)

[〈Š(i)〉p/2
Tn

]
.

It follows that

E
P(N)

[ d+K∑

i=1

〈Š(i)〉p/2
Tn

]

≤K1,

where K1 := 1
cp

((
p

p−1 )p
∑d

i=1

∫
[0,∞)

xpμ
(i)
n (dx)+Kκp).

In the following, we want to modify Š on

Ĩ := {S ∈ I : Š(S) admits a quadratic variation}
= {S ∈ I : S admits a quadratic variation}

to obtain another process S̈ with a better control of the quadratic variation, while its
law remains in M1/N

μμμ,P
. In fact, S̈ will be obtained as a time change of Š on each

interval [σi,j (S̃), σi,j+1(S̃)). Then by the continuity of G, it follows that
∣
∣G
(
Š(S)

)−G
(
S̈(S)

)∣
∣≤ fe(2

−D+9), ∀S ∈ Ĩ ∩ {h ∈ I :m(D−8)
n

(
S̃(h)

)≤Θ
}
.

This together with (4.16) and the fact that P[Ĩ] = 1 for any P ∈MI yields

|E
P(N) [G(Š)−G(S̈)]| ≤ fe(2

−D+9)+ 2κP(N)
[{

S ∈ I : m(D−8)
n

(
S̃(S)

)≥Θ + 1
}]

≤ fe(2
−D+9)+ 4κ + 4

2D
.

Hence, by (4.14) and (4.17),

|E
P(N) [G(S)−G(S̈)]| ≤ 5fe(2

−D+9)+ 2nL‖S‖
D

+ 8κ + 8

2D

+ 2nLVXn,P,I(‖S‖)
D

. (4.18)

First, for every i, j, k, define ρ(i,j,k) :Ω →[Ti−1, Ti] by

ρ(i,j,k)(S)= σi,j

(
Š(S)

)+ δ(1− 2−k+1).

Then for i = 1, . . . , n, j = 0,1, . . ., let θ
(i,j,0)
t = σi,j and define recursively for

k = 1,2, . . . a change of time θ(i,j,k) : I × [ρi,j,k, ρi,j,k+1]→ [Ti−1, Ti] by

θ
(i,j,k)
t (S)= inf

{

u≥ θ
(i,j,k−1)

ρi,j,k (S) :
d+K∑

�=1

(〈Š(�)(S)〉u − 〈Š(�)(S)〉
θ

(i,j,k−1)

ρi,j,k

)

> 2k(t − ρ(i,j,k))/δ

}

∧ σi,j+1
(
Š(S)

)

for t ∈ [ρi,j,k, ρi,j,k+1], S ∈ Ĩ.

For S ∈Ω \ Ĩ , set θ
(i,j,k)
t (S)= t , 0≤ t ≤ Tn.
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We consider a time change of Š via the θ(i,j,k), defined by S̈t := Š
θ

(i,j,k)
t (S)

for

t ∈ [ρ(i,j,k)(S), ρ(i,j,k+1)(S)) for all i, j, k as above. Note that θ
(i,j,k−1)

ρi,j,k = θ
(i,j,k)

ρi,j,k so

that the resulting process is continuous. Consider S ∈ Ĩ and i, j such that we have
σi,j+1(S̃(S))− σi,j (S̃(S)) > 0, as otherwise everything collapses to one point. Then
the quadratic variation of S̈(S) grows on [ρ(i,j,k)(S), ρ(i,j,k+1)(S)) linearly at the rate
2k/δ, and ρ(i,j,k+1)(S)− ρ(i,j,k)(S)= 2−kδ. In particular, S̈ accumulates one unit of
quadratic variation over each interval [ρ(i,j,k)(S), ρ(i,j,k+1)(S)) for k increasing until
the total quadratic variation of Š on [σi,j+1(S̃(S))−σi,j (S̃(S))] is exhausted. Trivially
bounding the quadratic variation of Š over a small interval by its quadratic variation
over [0, Tn], we see that

d+K∑

�=1

(〈S̈(�)(S)〉t −〈S̈(�)(S)〉s
)≤ 2k0 |t− s|/δ for σi,j

(
S̃(S)

)≤ s ≤ t ≤ σi,j+1
(
S̃(S)

)
,

whenever S ∈ Ĩ is such that
∑d+K

i=1 〈Š(i)(S)〉Tn ≤ k0. Therefore, for such S, we have

d+K∑

�=1

(〈S̈(�)〉t − 〈S̈(�)〉s
)≤ 2k0+1|t − s|/δ, ∀s, t ∈ [0, Tn] with |t − s| ≤ δ. (4.19)

We can ensure this happens with large probability since by Markov’s inequality,

P
(N)

[ d+K∑

i=1

〈S̈(i)〉Tn > k0

]

= P
(N)

[ d+K∑

i=1

〈Š(i)〉Tn > k0

]

≤ E
P(N)[∑d+K

i=1 〈Š(i)〉p/2
Tn
]

k
p/2
0

≤K1k
−p/2
0 .

Finally, we observe that each θ
(i,j,k)
t (S) is a stopping time relative to the natural

filtration of Š, and hence S̈ is a continuous P(N)-martingale.

Step 5: Tightness of the measures through tightness of the quadratic varia-
tion processes. Together with (4.19), by the Arzelà–Ascoli theorem, the above im-
plies that the family {P(N) ◦ (〈S̈〉)−1 : N ∈ N} is tight in C([0, Tn],Rd+K). Then
by Theorem VI.4.13 in Jacod and Shiryaev [35], {P(N) ◦ S̈

−1}N∈N is tight in
D([0, Tn],Rd+K), the space of right-continuous functions with left limits. By Theo-
rem VI.3.21 in Jacod and Shiryaev [35], this implies that for all ε > 0, η > 0, there
are N0 ∈N and θ > 0 with

N ≥N0 =⇒ P
(N)[w′

Tn
(S̈, θ)≥ η] ≤ ε,

where w′
Tn

is defined by

w′
Tn

(S, θ)= inf
{

max
i≤r

sup
ti−1≤s≤t<ti

|St − Ss | : r ∈N,0= t0 < · · ·< tr = Tn,

inf
i<r

(ti − ti−1)≥ θ
}
.
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Clearly, for S ∈Ω , continuity of S implies that

wTn(S, θ) := sup{|St − Ss | : 0≤ s < t ≤ Tn, t − s ≤ θ} ≤ 2w′
Tn

(S, θ).

Then we have

N ≥N0 =⇒ P
(N)[wTn(S̈, θ)≥ 2η] ≤ ε,

which then by Theorem VI.1.5 in Jacod and Shiryaev [35] implies that the family
{P(N) ◦ S̈−1 :N ∈N} is tight, now in C([0, Tn],Rd+K).

Step 6: Tightness gives exact duality. By tightness, there exists a converging subse-
quence {P(Nk) ◦ S̈−1} such that P(Nk) ◦ S̈−1 → P weakly for some probability measure
P on Ω . Consequently,

lim
k→∞E

P
(Nk)[G(S̈)] = EP[G(S)].

In addition, if P is an element of Mμμμ,P, then

VX ,P,P(G)≤ ṼX ,P,P(G)

≤ lim
N→∞ sup

P∈M1/N

μμμ,P

EP

[

G(S)− κ2D ∧
√

m(D−8)(S)

22D

]

+ c2

2D

≤ lim inf
N→∞ E

P(N) [G(S)] + c2/2D ≤ lim inf
N→∞ E

P(N) [G(S̈)] + e(D)

≤ lim
k→∞E

P
(Nk)[G(S̈)] + e(D)≤ EP[G(S)] + e(D)

≤ Pμμμ,P(G)+ e(D),

where e(x) := 5fe(2−x+9) + 2nL‖S‖
x

+ c2+8κ+8
2x + 2nLVXn,P,I (‖S‖)

x
and the third in-

equality follows from (4.18). Recalling that ṼX ,P,P = P̃μμμ,P and letting D →∞,
we obtain the desired equality P̃μμμ,P = Pμμμ,P and conclude that

ṼX ,P,P(G)= VX ,P,P(G)= Pμμμ,P(G)= P̃μμμ,P(G).

It remains to argue that P is an element of Mμμμ,P. First, it is straightforward to see
that S is a P-martingale and LP(STi

)= μi for any i ≤ n. To show that P[S ∈P] = 1,
notice that by the Portemanteau theorem, for every ε > 0,

P[S ∈Pε] ≥ lim sup
k→∞

P
(Nk)[S ∈Pε] ≥ lim sup

k→∞
P

(Nk)[S ∈P
1/Nk ] = 1.

Therefore, it follows from Remark 4.6 and monotone convergence that

P[S ∈P] = lim
ε↘0

P[S ∈Pε] = 1,

and hence P ∈Mμμμ,P. �
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5 Pricing–hedging duality without constraints

This and the subsequent section are devoted to establishing the crucial pricing–
hedging duality result in the absence of constraints, which was exploited in all the
proofs above.

Theorem 5.1 Under Assumption 3.1, for any α,β ≥ 0 and D ∈N,

VI(G− β
√

m(D) ∧ α)≤ PI(G− β
√

m(D−2) ∧ α), (5.1)

where m(D) is defined in Definition 4.1.

Remark 5.2 As a by-product of the proof of Theorem 5.1, (5.1) still holds true when
the probabilistic models P are restricted to those which arise within a Brownian setup,
i.e., P satisfies (4.7).

The strategy of the proof is inspired by Dolinsky and Soner [25] and proceeds via
discretisation, of the dual side in Sect. 5.1 and of the primal side in Sect. 5.3. The
duality between the discrete counterparts is obtained by using classical probabilistic
results of Föllmer and Kramkov [29].

5.1 Discretisation of the dual

5.1.1 A discrete-time approximation through simple strategies

The proof of Theorem 5.1 is based on a discretisation method involving a discretisa-
tion of the path space into a countable set of piecewise constant functions. These are
obtained as a “shift” of the “Lebesgue discretisation” of a path. Recall from Defini-
tion 4.1 that for a positive integer N and any S ∈Ω , τ

(N)
0 (S)= 0, m

(N)
0 (S)= 0,

τ
(N)
k (S)= inf

{

t ≥ τ
(N)
k−1(S) : |St − S

τ
(N)
k−1(S)

| = 1

2N

}

∧ T

and m(N)(S)=min{k ∈N : τ (N)
k (S)= T }. Now denote by AN the set of γ ∈A with

|γ | ≤ N and for which trading in the risky assets only takes place at the moments
0= τ

(N)
0 (S) < τ

(N)
1 (S) < · · ·< τ

(N)

m(N)(S)
(S)= T . Set

V(N)

I (G) := inf{x : ∃γ ∈AN which superreplicates G− x}.

Then it is obvious from the definition of V(N)

I that V(N1)

I (G) ≥ V(N2)

I (G) ≥ VI(G)

for any N2 ≥ N1, and in fact, the following result states that V(N)

I (G) converges to
VI(G) asymptotically.

Corollary 5.3 Under the assumptions of Theorem 5.1,

lim
N→∞V(N)

I (G)=VI(G).
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5.1.2 A countable class of piecewise constant functions

In this section, we construct a countable set of piecewise constant functions which
can approximate any continuous function S to a certain degree. It is achieved in three
steps. The first step is to use the Lebesgue partition defined in the last section to
discretise a continuous function into a piecewise constant function whose jump times
are the stopping times. Due to the arbitrary nature of jump times and jump sizes, the
set of piecewise constant functions F (N)(S), generated through this procedure over
all S, is uncountable. To overcome this, in the subsequent two steps, we restrict the
jump times and sizes to a countable set and hence define a class of approximating
schemes. As explained in Sect. 3.1, our methods are closely inspired by [25], but
in order to deal with payoff functions which are uniformly continuous, so that in
applications we can include static hedging in options with different maturities, we
had to devise an improved discretisation scheme.

We denote by D([0, T ],Rd+K) the set of all Rd+K -valued measurable functions
on [0, T ] and by D([0, T ],Rd+K) the subset of all right-continuous functions with
left limits.

Step 1. Let τ
(N)
k (S) and m(N)(S) be defined as in Sect. 5.1.1. To simplify the

notation, in this section, we often suppress their dependences on S and N and simply
write

m=m(N)(S), τk = τ
(N)
k (S).

Our first “naive” approximation F (N) :Ω →D([0, T ],Rd+K) is defined as

F
(N)
t (S)=

m−1∑

k=0

Sτk
1[τk,τk+1)(t)+ ST 1{T }(t) for t ∈ [0, T ], S ∈Ω . (5.2)

Note that F (N)(S) is piecewise constant and ‖F (N)(S)− S‖ ≤ 1/2N .

Step 2. Define a map

ζ (N) :Rd+ →A(N) := {2−Nk : k = (k1, . . . , kd+K) ∈N
d+K},

ζ (N)(x)i := 2−N�2Nxi�, i = 1, . . . , d +K.

We then define our second approximation F̌ (N) :Ω →D([0, T ],Rd+K) by

F̌
(N)
t (S)= (S0 − ζ (N+1)(Sτ1)

)+
m−2∑

k=0

ζ (N+k+1)(Sτk+1)1[τk,τk+1)(t)

+ ζ (N+m)(Sτm)1[τm−1,T ](t), t ∈ [0, T ].

Step 3. We now construct the shifted jump times τ̂
(N)
k :Ω →Q+∪{T }. Firstly, set

τ̂
(N)
0 = 0. Then for any S ∈Ω and k = 1, . . . ,m(N)(S), define �τ

(N)
k := τ

(N)
k − τ

(N)
k−1
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and let �τ̂
(N)
k = pk/qk with

(pk, qk)= argmin

{

p+ q : (p, q) ∈N
2,

τ
(N)
k−1 − τ̂

(N)
k−1 <

p

q
≤�τ

(N)
k + τ

(N)
k−1 − τ̂

(N)
k−1

}

if k < m(N)(S) and �τ̂
(N)
k = T − τ̂

(N)

m(N)−1
otherwise. Finally, set τ̂ (N)

k :=∑k
i=1 �τ̂

(N)
i .

Here we also suppress the dependences of these shifted jump times on S and N and
write τ̂k = τ̂

(N)
k (S). Clearly 0= τ̂0 < τ̂1 < τ̂2 < · · ·< τ̂m = T , τk−1 < τ̂k ≤ τk for all

k < m and τ̂m = τm = T . These τ̂ are the shifted versions of the τ and are uniquely
defined for any S. We are going to use the τ̂ to define a class of approximating
schemes.

We can define an approximation F̂ (N) :Ω →D([0, T ],Rd+K) by

F̂
(N)
t (S)= (S0 − ζ (N+1)(Sτ1)

)+
m−2∑

k=0

ζ (N+k+1)(Sτk+1)1[τ̂k ,τ̂k+1)(t)

+ ζ (N+m)(Sτm)1[τ̂m−1,T ](t), t ∈ [0, T ]. (5.3)

Notice that F̂ (N)(S) is piecewise constant and

‖F̂ (N)(S)− S‖ ≤ ‖F̂ (N)(S)− F̌ (N)(S)‖ + ‖F̌ (N)(S)− F (N)(S)‖ + ‖F (N)(S)− S‖

≤ 2

2N−1
+ 2

2N
+ 1

2N
<

1

2N−3
. (5.4)

Definition 5.4 Let D̂(N) ⊆ D([0, T ],Rd+K) be the set of functions f = (f (i))d+K
i=1

which satisfy the following:

1. For any i = 1, . . . , d +K , f (i)(0)= 1;
2. f is piecewise constant with jumps at times t1, . . . , t�−1 ∈ Q+ for some � <∞,

where t0 = t�0 = 0 < t1 < t2 < · · ·< t�−1 < T ;
3. For any k = 1, . . . , �− 1 and i = 1, . . . , d +K , f (i)(tk)− f (i)(tk−1) = j/2N+k

for j ∈ Z with |j | ≤ 2k ;
4. inft∈[0,T ],1≤i≤d+K f (i)(t)≥−2−N+3;

5. ‖f (i)‖ ≤ κ + 1 for i = d + 1, . . . , d +K , where κ =max1≤j≤K

‖X(c)
j ‖∞

P(X
(c)
j )

;

6. If f (i)(tk)=−2−N+3 for some i ≤ d +K and k ≤ �− 1, then f (tj )= f (tk) for
all k < j < �;

7. If f (i)(tk) = κ + 1 for some i > d and k ≤ � − 1, then f (tj ) = f (tk) for all
k < j < �.

It is clear that D̂(N) is countable.
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5.1.3 A countable probabilistic structure

Let Ω̂ := D([0, T ],Rd+K) and denote by Ŝ = (Ŝt )0≤t≤T the canonical process on
the space Ω̂ .

The set D̂(N) is a countable subset of Ω̂ . There exists a local martingale measure
P̂

(N) on Ω̂ which satisfies P̂
(N)[D̂(N)] = 1 and P̂

(N)[{f }] > 0 for all f ∈ D̂
(N). In

fact, such a local martingale measure P̂
(N) on D̂

(N) can be constructed “by hand” as
a continuous-time Markov chain with jump times decided independently of the jump
positions. Let F̂(N) := (F̂ (N)

t )0≤t≤T be the filtration generated by the process Ŝ and
satisfying the usual assumptions (right-continuous and P̂

(N)-complete).
In the last section, we saw definitions of τ̂

(N)
k on Ω . Here we extend their defini-

tions to
⋃

N∈N D̂
(N). Define the jump times by setting τ̂0(Ŝ)= 0 and for k > 0,

τ̂k(Ŝ)= inf{t > τ̂k−1(Ŝ) : Ŝt �= Ŝt−} ∧ T . (5.5)

Next we introduce the random time before T ,

m(Ŝ) :=min{k : τ̂k(Ŝ)= T }.

Observe that for S ∈Ω , we have F̂ (N)(S) ∈ D̂
(N), τ̂k(F̂

(N)(S))= τ̂k(S) for all k and
m(F̂ (N)(S))=m(N)(S). It follows that the definitions are consistent. In this context,
a trading strategy (γ̂t )

T
t=0 on the filtered probability space (Ω̂, F̂(N), P̂(N)) is a pre-

dictable stochastic process. So γ̂ is a map from D([0, T ],Rd+K) to D([0, T ],Rd+K).
Now choose a ∈D([0, T ],Rd+K) such that a /∈ γ̂ (D̂(N)) and then define a mapping
φ :D([0, T ],Rd+K)→D([0, T ],Rd+K) by φ(Ŝ)= γ̂ (Ŝ) if Ŝ ∈ D̂

(N), and equal to a

otherwise. Since P̂(N) has full support on D̂
(N), we get γ̂ = φ(Ŝ) P̂(N)-a.s. In particu-

lar, for any A that is a Borel-measurable subset of Rd+K , the symmetric difference of
{γ̂t ∈A} and {φ(Ŝ)t ∈A} is a nullset for P̂(N). Thus φ is a predictable map. Further-
more, since P̂

(N) charges all elements in D̂
(N), for any υ, υ̃ ∈ D̂

(N) and t ∈ [0, T ],
υu = υ̃u,∀u ∈ [0, t) =⇒ φ(υ)t = φ(υ̃)t . (5.6)

In the sequel, we always consider the above version φ(Ŝ) of a predictable process γ̂ .
We now formally define the probabilistic superreplication problem and later build

a connection between the probabilistic superreplication problem on the discretised
space and the pathwise discretised robust hedging problem. For the rest of the section,
we write

∫ t2
t1

to mean
∫
(t1,t2].

As G is defined only on Ω , to consider paths in Ω̂ , we need to extend the domain
of G to Ω̂ . For most financial contracts, the extension is natural. However, we pursue
a general approach here. We first define a projection � : Ω̂ → C([0, T ],Rd+K) by

�(Ŝ)=

⎧
⎪⎪⎨

⎪⎪⎩

Ŝ, if Ŝ is continuous,
∑m(Ŝ)−1

k=0 (
Ŝτ̂k+1

−Ŝτ̂k

τ̂k+1−τ̂k
(t − τ̂k)+ Ŝτ̂k

)1[τ̂k ,τ̂k+1)(t), if Ŝ ∈⋃N∈N D̂
(N),

ω1, otherwise,
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where ω1 is the constant path equal to 1. Put differently, when Ŝ ∈⋃N∈N D̂
(N), �(Ŝ)

is the linear interpolation of the points
((

τ̂0(Ŝ), Ŝ
τ̂0(Ŝ)

)
, . . . ,

(
τ̂
m(Ŝ)

(Ŝ), Ŝ
τ̂
m(Ŝ)

(Ŝ)

))
.

We then can define Ĝ : Ω̂ →Ω using the projection � by Ĝ(Ŝ)=G(�(Ŝ)∨0), where
Ŝ ∨ 0 := ((Ŝ

(1)
t ∨ 0, . . . , Ŝ

(d+K)
t ∨ 0))0≤t≤T for any S ∈ Ω̂ . Note that G and Ĝ are

equal on Ω . In addition, for every N ∈N and Ŝ ∈ D̂
(N), we have

‖�(Ŝ)− Ŝ‖ ≤ 2−N+1. (5.7)

Therefore, we can deduce that
∥
∥�
(
F̂ (S)

)∨ 0− S
∥
∥≤ ∥∥�(F̂ (S)

)∨ 0− F̂ (S)∨ 0
∥
∥+ ‖F̂ (S)∨ 0− S‖

≤ 2−N+1 + 2−N+3, ∀S ∈Ω, (5.8)

where the last inequality follows from (5.4) and (5.7). Similarly, for each D ∈N, we
define m̂(D) : Ω̂ →N by m̂(D)(Ŝ)=m(D)(�(Ŝ)∨ 0). Then by Remark 4.2 and (5.8),
when N is sufficiently large,

m̂(D−2)
(
F̂ (N)(S)

)≤m(D)(S), ∀S ∈Ω. (5.9)

Definition 5.5 γ̂ : Ω̂ →D([0, T ],Rd+K) is P̂(N)-admissible if γ̂ is predictable and
bounded by N , and the stochastic integral (

∫ t

0 γ̂u(Ŝ)dŜu)0≤t≤T , which is well defined

under P̂(N), satisfies that there is some M > 0 such that
∫ t

0
γ̂u(Ŝ)dŜu ≥−M P̂

(N)-a.s., t ∈ [0, T ).

An admissible strategy γ̂ is said to P̂
(N)-superreplicate Ĝ if

∫ T

0
γ̂u(Ŝ)dŜu ≥ Ĝ(Ŝ) P̂

(N)-a.s.

The superreplication cost of Ĝ is defined as

V̂
(N) := inf{x : ∃γ̂ which is P̂(N)-admissible and P̂

(N)-superreplicates Ĝ− x}.
Similarly to [25], we can now connect the probabilistic superhedging problem and

the discretised robust hedging problem.

Definition 5.6 Given a predictable stochastic process (γ̂t )0≤t≤T on (Ω̂, F̂(N), P̂(N)),
we define γ (N) :Ω →D([0, T ],Rd+K) by

γ
(N)
t (S) :=

m−1∑

k=0

γ̂τ̂k

(
F̂ (N)(S)

)
1(τk,τk+1](t), (5.10)

where τk = τ
(N)
k (S), m = m(N)(S) are given in Definition 4.1, F̂ (N) in (5.3),

τ̂k = τ̂k(F̂
(N)(S)) in (5.5), and we recall that m(N)(S)=m(F̂ (N)(S)).
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Lemma 5.7 For any admissible strategy γ̂ in the sense of Definition 5.5, γ (N) defined
in (5.10) is F-predictable.

Proof We first show that if we equip Ω and D([0, T ],Rd+K) with the respective
σ -algebras FT and F̂ (N)

T , the function F̂ (N) :Ω → D([0, T ],Rd+K) is measurable.

Since P̂
(N) has full support on D̂

(N), for any A ∈ F̂ (N)
T ,

{F̂ (N) ∈A} =
⋃

Ŝ∈D̂(N)∩A

{S ∈Ω : F̂ (N)(S)= Ŝ}.

It is clear from the construction that τ̂
(N)
k , m(N) and ζ (N+k) are all FT -measurable,

and we note that for any Ŝ ∈ D̂
(N),

{S ∈Ω : F̂ (N)(S)= Ŝ} = {S ∈Ω :m(N) =m, τ̂
(N)
k = tk, ζ

(N+i) = sk,∀k < m}
for some m, tk, sk . Therefore, we can conclude that F̂ (N) has the desired measurabil-
ity.

To prove that γ (N) is F-predictable, we need to show that γ̂τ̂k
◦ F̂ (N) is Fτk

-mea-
surable. Galmarino’s test, see Dellacherie and Meyer [22, Theorem IV.100], states
that given any FT -measurable random variable φ :Ω → R

d+K and any F-stopping
time τ , φ is Fτ -measurable if and only if

∀υ,ω ∈Ω : υu = ωu,∀u ∈ [0, τ (υ)] =⇒ φ(υ)= φ(ω).

It follows from the definition of F̂ (N) that for such υ,ω and τ = τk , we have
F̂

(N)
u (ω)= F̂

(N)
u (υ),∀u ∈ [0, τ̂k). Hence by (5.6), γ̂τ̂k

(F̂ (N)(ω)) = γ̂τ̂k
(F̂ (N)(υ)).

Therefore Galmarino’s test implies that γ (N) defined in (5.10) is F-predictable. �

The following result is crucial. It states that the probabilistic superreplication value
is asymptotically larger than the value of the discretised robust hedging problem.
Recall that λI(ω) := infυ∈I ‖ω− υ‖ ∧ 1.

Proposition 5.8 For uniformly continuous and bounded G, α,β ≥ 0 and D ∈N, we
have

lim inf
N→∞ V(N)

I
(
G(S)− β

√
m(D)(S)∧ α

)

≤ lim inf
N→∞ V̂

(N)
(
Ĝ(Ŝ)− β

√
m̂(D−2)(Ŝ)∧ α −NλI(Ŝ)

)
. (5.11)

Proof Fix N ≥ 6. Let fe : R+ → R+ be a modulus of continuity for G so that
limx→0 fe(x)= 0. Define G(N) :Ω →R as

G(N)(S) := Ĝ(S)− fe(2
−N+4)− 14(d +K)N

2N
.

Note that

V(N)

I (G− β
√

m(D) ∧ α) = V(N)

I (G(N) − β
√

m(D) ∧ α)

+ fe(2
−N+4)+ 14(d +K)N

2N
.
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Hence, to show (5.11), it suffices to show that

V(N)

I (G(N) − β
√

m(D) ∧ α)≤ V̂
(N)(Ĝ− β

√
m̂(D−2) ∧ α −NλI). (5.12)

The rest of the proof is structured to establish (5.12). Given a probabilistic semi-
static portfolio γ̂ which superreplicates Ĝ− β

√
m̂(D−2) ∧ α −NλI − x, we argue

that the lifted trading strategy γ (N) superreplicates G(N) − β
√

m(D) ∧ α − x on I .
To simplify notations, throughout the rest of the proof, we fix S ∈ I and write
F̂ := F̂ (N)(S).

Superreplication. We first notice that for any j < m− 1,

|(Sτj+1 − Sτj
)− (F̂τ̂j

− F̂τ̂j−1)| ≤ |Sτj+1 − F̂τ̂j
| + |Sτj

− F̂τ̂j−1 |

≤ 1

2N+j+1
+ 1

2N+j
= 3

2N+j+1
.

It follows that for any k < m,
∣
∣
∣
∣

∫ τk

0
γ (N)
u (S)dSu −

∫ τ̂k

0
γ̂u(F̂ )dF̂u

∣
∣
∣
∣

≤
∣
∣
∣
∣

k−1∑

j=0

γ̂τ̂j
(F̂ )(Sτj+1 − Sτj

)−
k−1∑

j=0

γ̂τ̂j+1(F̂ )(F̂τ̂j+1 − F̂τ̂j
)

∣
∣
∣
∣

≤
k−2∑

j=0

∣
∣γ̂τ̂j+1(F̂ )

(
(Sτj+2 − Sτj+1)− (F̂τ̂j+1 − F̂τ̂j

)
)∣
∣+ 2(d +K)N

2N−1

≤
∞∑

j=0

N(d +K)

2N+j+2
+ 2(d +K)N

2N−1
≤ 5(d +K)N

2N
. (5.13)

In addition,
∣
∣
∣
∣

∫ T

τm−1

γ (N)
u (S)dSu −

∫ T

τ̂m−1

γ̂u(F̂ )dF̂u

∣
∣
∣
∣

= |γ̂τ̂m−1(F̂ )(ST − Sτm−1)− γ̂τ̂m
(F̂ )(F̂τ̂m

− F̂τ̂m−1)| ≤
N(d +K)

2N
. (5.14)

Hence,

x +
∫ T

0
γ (N)
u (S)dSu ≥ x +

∫ T

0
γ̂u(F̂ )dF̂u − 5(d +K)N

2N
− (d +K)N

2N

≥ Ĝ(F̂ )− β

√
m̂(D−2)(F̂ )∧ α −NλI(F̂ )− 6(d +K)N

2N

≥ Ĝ(F̂ )− β

√
m̂(D−2)(F̂ )∧ α −N/2N−3 − 6(d +K)N

2N

≥G(S)− β
√

m(D)(S)∧ α − fe(2
−N+4)− 14(d +K)N

2N

=G(N)(S),
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where the second inequality follows from the superreplicating property of γ̂ and the
fact that P̂(N)[{f }]> 0, ∀f ∈ D̂

(N), the third inequality is justified by (5.4), and the
last inequality is due to (5.8) and (5.9).

Admissibility. Now, for a given t < T , let k < m be the largest integer so that
τk(S)≤ t . It follows from (5.13) and (5.14) that
∫ t

0
γ (N)
u (S)dSu =

∫ τk

0
γ (N)
u (S)dSu +

∫ t

τk

γ (N)
u (S)dSu

≥
∫ τ̂k

0
γ̂u(F̂ )dF̂u − 5(d +K)N

2N
−N(d +K)max

i
|S(i)

t − S(i)
τk
|

≥ −M − 6(d +K)N

2N
,

where the last inequality follows from the admissibility of γ̂ and again the fact that
P̂

(N)[{f }]> 0,∀f ∈ D̂
(N). Hence γ (N) is admissible. �

5.2 Duality for the discretised problems

Definition 5.9 Let �̂(N) be the set of all probability measures Q̂ which are equiva-
lent to P̂

(N). For any κ ≥ 0, denote by M̂
(N)

I (κ) the set of all probability measures

Q̂ ∈ �̂(N) such that

Q̂

[{
ω ∈ Ω̂ : inf

υ∈I
‖Ŝ(ω)− υ‖ ≥ 1/N

}]
≤ κ

N

and

E
Q̂

[m(Ŝ)∑

k=1

d+K∑

i=1

∣
∣E

Q̂
[Ŝ(i)

τ̂k
|F̂ (N)

τ̂k−] − Ŝ
(i)

τ̂k−1

∣
∣
]

≤ κ

N
,

where τ̂k = τ̂k(Ŝ) and m=m(Ŝ) are defined in (5.5).

Lemma 5.10 Let κ > 1 and suppose Ĝ is bounded by κ − 1 and MI �= ∅. Then
there are at most finitely many N ∈N such that M̂(N)

I (2κ)= ∅, and we have

lim inf
N→∞ V̂

(N)
(
Ĝ(Ŝ)−NλI(Ŝ)

)≤ lim inf
N→∞ sup

Q̂∈M̂(N)
I (2κ)

E
Q̂
[Ĝ(Ŝ)].

Proof For any Q̂ ∈ �̂(N), the support of Q̂ is D̂
(N) whose elements are piecewise

constant. Therefore, the canonical process Ŝ is a semimartingale under Q̂. Moreover,

it has the decomposition Ŝ= M̂Q̂ + ÂQ̂, where

Â
Q̂

t =
m(Ŝ)∑

k=1

(
E
Q̂
[Ŝτ̂k

|F̂ (N)

τ̂k−] − Ŝτ̂k−1

)
1[τ̂k ,τ̂k+1)(t), t < T ,

Â
Q̂

T := lim
t↑T

Â
Q̂

t ,
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is a predictable process of bounded variation and M̂Q̂ is a martingale under Q̂. Then
similarly to Dolinsky and Soner [26], it follows from Example 2.3 and Proposition 4.1
in Föllmer and Kramkov [29] that

V̂
(N)
(
Ĝ(Ŝ)−NλI(Ŝ)

)

= sup
Q̂∈�̂(N)

E
Q̂

[

Ĝ(Ŝ)−NλI(Ŝ)−N

m(Ŝ)∑

k=1

d+K∑

i=1

∣
∣E

Q̂
[Ŝ(i)

τ̂k
|F̂ (N)

τ̂k−] − Ŝ
(i)

τ̂k−1

∣
∣
]

. (5.15)

By Proposition 5.8,

lim inf
N→∞ V̂

(N)
(
Ĝ(Ŝ)−NλI(Ŝ)

)≥ lim inf
N→∞ V(N)

I (G)≥ PI(G) >−κ.

Then, in (5.15), it suffices to consider the supremum over M̂(N)

I (2κ). In particular,

M̂
(N)

I (2κ) �= ∅ for N large enough. �

5.3 Discretisation of the primal

Next, we show that we can lift any measure in M̂
(N)

I (c) to a continuous martingale
measure in MI such that the difference of the expected value of G under this con-
tinuous martingale measure and the expected value of Ĝ under the original measure
is within a bounded error, which goes to zero as N →∞. Through this, we asymp-
totically connect the primal problems on the discretised space to the approximation
of the primal problems on the space of continuous functions.

Proposition 5.11 Under the assumptions of Theorem 5.1, if G and all X
(c)
i /P(X

(c)
i )

are bounded by κ − 1 for some κ ≥ 1, then for any α,β ≥ 0, D ∈N,

lim sup
N→∞

sup
Q̂∈M̂(N)

I (2κ+2α)

E
Q̂
[Ĝ(Ŝ)− β

√
m̂(D)(Ŝ)∧ α]

≤ sup
P∈MI

EP[G(S)− β

√
m̂(D−2)(Ŝ)∧ α]. (5.16)

Proof Let fe :Rd+K+ →R+ be a modulus of continuity of G, i.e.,

|G(ω)−G(υ)| ≤ fe(|ω− υ|) for any ω,υ ∈Ω

and limx↘0 fe(x)= 0. Recall from Lemma 5.10 that M̂(N)

I (2κ+ 2α) �= ∅ for N large

enough. Hence to show (5.16), it suffices to prove that for any Q̂ ∈ M̂
(N)

I (2κ + 2α),

E
Q̂
[Ĝ(Ŝ)− β

√
m̂(D)(Ŝ)∧ α] ≤ sup

P∈MI

EP[G(S)− β
√

m(D−2)(S)∧ α] + g(1/N),

for some g :R+→R+ such that limx↘0 g(x)= 0. We fix N and Q̂ ∈ M̂
(N)

I (2κ + 2α)

and prove the above inequality in four steps.
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Step 1. We first construct a semimartingale Ẑ = M̂ + Â on a Wiener space
(ΩW ,FW,P W) such that

|E
Q̂
[Ĝ(Ŝ)] −EW [Ĝ(Ẑ)]| ≤ κ2−N+1 (5.17)

and

P W
[{

ω ∈ΩW : inf
υ∈I

‖M̂(ω)+ Â(ω)− υ‖ ≥ 1/N
}]
≤ 2κ + 2α

N
+ 2−N, (5.18)

where M̂ is constructed from a martingale and both have piecewise constant paths.
Since the measure Q̂ is supported on D̂

(N), the canonical process Ŝ is a pure jump
process under Q̂, with a finite number of jumps Q̂-a.s. Consequently, there exists a
deterministic positive integer m0 (depending on N ) such that

Q̂[m(Ŝ) > m0]< 2−N. (5.19)

It follows that

|E
Q̂
[Ĝ(Ŝ)] −E

Q̂
[Ĝ(Ŝτ̂m0 )]| ≤ κ2−N+1. (5.20)

Notice that by the definition of D̂
(N), the law of Ŝ

τ̂m0 under Q̂ is also supported
on D̂

(N).
Let (ΩW ,FW,P W) be a complete probability space together with a standard

(m0 + 2)-dimensional Brownian motion {Wt = (W
(1)
t , . . . ,W

(m0+2)
t )}t≥0 and let

(FW
t )t≥0 be the P W -completion of the natural filtration of W . With a small mod-

ification of Lemma 5.1 in Dolinsky and Soner [25], we can construct a sequence of
stopping times (with respect to the Brownian filtration) σ1 < σ2 < · · ·< σm0 together
with FW

σi
-measurable random variables Yi , i = 1, . . . ,m0 such that

LPW

(
(σ1, . . . , σm0, Y1, . . . , Ym0)

)

= L
Q̂

(
(τ̂1, . . . , τ̂m0, Ŝτ̂1 − Ŝτ̂0 , . . . , Ŝτ̂m0

− Ŝτ̂m0−1)
);

see Sect. A.3 for details. Define Xi as

Xi =EW [Yi |FW
σi−1

∨ σ(σi)], i = 1, . . . ,m0.

Note that by the definition of D̂(N), we have |Yi | ≤ 2−N and hence also |Xi | ≤ 2−N .
Also by the construction of the σi and Yi , we have

EW [Yi |FW
σi−1

∨ σ(σi)] =EW [Yi |σσσ i, YYY i−1],

where σσσ i := (σ1, . . . , σi), YYY i := (Y1, . . . , Yi) and EW is the expectation with respect
to P W . From these, we can construct a jump process (Ât )0≤t≤T by

Ât =
m0∑

j=1

Xj1[σj ,T ](t).



554 Z. Hou, J. Obłój

In particular, for k ≤m0, Âσk
=∑k

j=1 Xj . Define a martingale (Mt)0≤t≤T via

Mt = 1+EW

[ m0∑

j=1

(Yj −Xj)

∣
∣
∣
∣F

W
t

]

, t ∈ [0, T ].

Since all Brownian martingales are continuous, so is M . Moreover, Brownian motion
increments are independent and therefore

Mσk
= 1+

k∑

j=1

(Yj −Xj) P W -a.s., k ≤m.

We now introduce a stochastic process (M̂t )0≤t≤T on the Brownian probability space
by setting M̂t =Mσk

for t ∈ [σk, σk+1), k < m0, and M̂t = M̂σm0
for t ∈ [σm0, T ].

Note that as |Yi −Xi | ≤ 2−N+1, for any k ≤m0 and t ≤ T , we have

|M̂t∧σk+1∨σk
−Mt∧σk+1∨σk

| =
∣
∣
∣
∣

m0∑

j=k+1

EW [(Yj −Xj)|FW
t∧σk+1∨σk

]
∣
∣
∣
∣

=
∣
∣
∣
∣

m0∑

j=k+2

EW
[
EW [(Yj −Xj)|FW

σj−1
∨σ(σj )]

∣
∣FW

t∧σk+1∨σk

]

+EW [Yk+1 −Xk+1|FW
t∧σk+1∨σk

]
∣
∣
∣
∣

= |EW [Yk+1 −Xk+1|FW
t∧σk+1∨σk

]|
≤EW

[|Yk+1 −Xk+1|
∣
∣FW

t∧σk+1∨σk

]≤ 2−N+1

and hence

‖M̂ −M‖< 2−N+2. (5.21)

We also notice that Ẑ = M̂ + Â satisfies Ẑ0 = Ŝ0 and

LPW

(
(σ1, . . . , σm0,Zσ1 −Z0, . . . ,Zσm0

−Zσm0−1)
)

= L
Q̂

(
(τ̂1, . . . , τ̂m0, Ŝτ̂1 − Ŝτ̂0 , . . . , Ŝτ̂m0

− Ŝτ̂m0−1)
)
.

It follows that

EW [Ĝ(Ẑ)] = E
Q̂
[Ĝ(Ŝτm0 )].

In particular, by (5.20), we see that (5.17) holds, and also by (5.19) and the definition
of M̂ and Â, (5.18) holds.
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Step 2. We shall shortly construct a continuous martingale Mθ0 from M such that

Mθ0 is bounded below by −2−N+2 −N− 1
2 and

|EW [Ĝ(Mθ0)] −E
Q̂
[Ĝ(Ŝ)]| ≤ c2N− 1

2 + 2fe(N
− 1

2 + 2−N+2)+ 2−N.

As the law of Ẑ under P W is the same as that of Ŝm0 under Q̂, it follows from the
fact that Q̂ is supported on D̂

(N) and any f ∈ D̂
(N) is above −2−N+3 that

Ẑ ≥−2−N+3 P W -a.s. (5.22)

By combining this with (5.7) and (5.21), we can deduce that

‖�(Ẑ)−M‖ ≤ ‖�(Ẑ)− Ẑ ∨ 0‖ + ‖Ẑ ∨ 0− Ẑ‖ + ‖Ẑ −M‖
≤ 2−N+1 + 2N+3 + ‖M̂ −M‖ + ‖Â‖

≤ 2−N+4 +N− 1
2 , whenever max

1≤i≤d+K

m0∑

k=1

|X(i)
k | ≤N− 1

2 .

It follows that

|Ĝ(M)− Ĝ(Ẑ)| = ∣∣G(M ∨ 0)−G
(
�(Ẑ)∨ 0

)∣
∣

≤ fe(2
−N+4 +N− 1

2 ), whenever max
1≤i≤d+K

m0∑

k=1

|X(i)
k | ≤N− 1

2 ,

where we use the fact that ‖�(Ẑ) ∨ 0−M ∨ 0‖ ≤ ‖�(Ẑ)−M‖. Hence, since Ĝ is
bounded by κ ,

|EW [Ĝ(M)] −EW [Ĝ(Ẑ)]| ≤ fe(2
−N+4 +N− 1

2 )

+ 2κP W

[

max
1≤i≤d+K

m0∑

k=1

|X(i)
k |> N− 1

2

]

.

Note that with the notation of the proof in Sect. A.3 in the Appendix,

Xk =EW [Yk

∣
∣σσσk, YYY k−1] (d)= E

Q̂

[
Ŝτ̂k

− Ŝτ̂k−1

∣
∣τ̂̂τ̂τ k, �Ŝ�Ŝ�Ŝτ̂k−1

]

=E
Q̂

[
Ŝτ̂k

− Ŝτ̂k−1

∣
∣F̂ (N)

τ̂k−
]
,

where �Ŝk = Ŝτ̃k
− Ŝτ̃k− = Ŝτ̃k

− Ŝτ̃k−1 for k ≤m0 and hence

EW

[ d+K∑

i=1

m0∑

k=1

∣
∣X(i)

k

∣
∣
]

= E
Q̂

[ m0∑

k=1

d+K∑

i=1

∣
∣E

Q̂

[
Ŝ

(i)

τ̂k

∣
∣F̂ (N)

τ̂k−
]− Ŝ

(i)

τ̂k−1

∣
∣
]

.
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By Markov’s inequality and the definition of M̂(N)

I (2κ + 2α), we have

P W

[ d+K∑

i=1

m0∑

k=1

|X(i)
k |> N− 1

2

]

≤√NEW

[ d+K∑

i=1

m0∑

k=1

|X(i)
k |
]

≤√NE
Q̂

[m(Ŝ)∑

k=1

d+K∑

i=1

∣
∣E

Q̂

[
Ŝ

(i)

τ̂k

∣
∣F̂ (N)

τ̂k−
]− Ŝ

(i)

τ̂k−1

∣
∣
]

≤ 2(κ + α)N− 1
2 . (5.23)

Therefore, we have

|EW [Ĝ(M)] −EW [Ĝ(Ẑ)]| ≤ fe(2
−N+4 +N− 1

2 )+ 4(κ + α)2N− 1
2 . (5.24)

By (5.21)–(5.23),

P W

[

inf
0≤t≤T

min
1≤i≤d+K

M
(i)
t >−2−N+4 −N− 1

2 and

max
d≤i≤d+K

‖M(i)‖< κ + 1+ 2−N+2 +N− 1
2

]

≥ 1− 2κN− 1
2 .

Hence the stopped process Mθ0 , with

θ0 := inf
{
t ≥ 0 : min

1≤i≤d+K
M

(i)
t ≤−2−N+4 −N− 1

2 or

max
d≤i≤d+K

‖M(i)‖ ≥ κ + 1+ 2−N+2 +N− 1
2

}
,

satisfies

|EW [Ĝ(M)] −EW [Ĝ(Mθ0)]| ≤ 4(κ + α)2N− 1
2 . (5.25)

By (5.20), (5.24) and (5.25), it follows that

|EW [Ĝ(Mθ0)] −E
Q̂
[Ĝ(Ŝ)]|

≤ |EW [Ĝ(Mθ0)] −EW [Ĝ(M)]|
+ |EW [Ĝ(M)] −EW [Ĝ(Ẑ)]| + |E

Q̂
[Ĝ(Ŝτ̂m0 )] −E

Q̂
[Ĝ(Ŝ)]|

≤ 4(κ + α)2N− 1
2 + 4(κ + α)2N− 1

2 + fe(2
−N+4 +N− 1

2 )+ κ2−N+1. (5.26)

In addition, by (5.21) and (5.23), we can deduce from (5.18) that

P W
[{

ω ∈ΩW : inf
υ∈I

‖Mθ0(ω)− υ‖ ≥ 1/N +N− 1
2 + 2−N+2

}]

≤ 2κ + 2α

N
+ 2−N + 2(κ + α)N− 1

2 ,
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which for N large enough easily implies that

P W
[{

ω ∈ΩW : inf
υ∈I

‖Mθ0(ω)− υ‖ ≥ 4(κ + α)N− 1
2

}]
≤ 4(κ + α)N− 1

2 . (5.27)

Similarly, by (5.21) and (5.23), we have

P W [‖Ẑ −Mθ‖ ≥ 2−N+2 +N− 1
2 ] ≤ 2(κ + α)N− 1

2 . (5.28)

Step 3. The next step is to modify the martingale Mθ0 in such way that Γ , the

new continuous martingale, is nonnegative. Write εN = 2−N+4+N− 1
2 and define an

FW
T -measurable random variable Λ≥ 0 by Λ= (MT∧θ0 + εN)/(1+ εN). Then

|Λ−MTn∧θ0 | =
∣
∣
∣
∣εN

1−MT∧θ0

1+ εN

∣
∣
∣
∣≤ εN(1+ |MT∧θ0 |).

Note that for any i > d , we have ‖Λ(i)‖ ≤ κ + 1+ 2−N+2 +N− 1
2 + εN ≤ κ + 2 for

N large enough. We now construct a continuous martingale from Λ by setting

Γt =EW [Λ|FW
t ], t ∈ [0, T ],

and Λ ≥ 0 implies that Γ is nonnegative, and Γ
(i)

0 = 1 for i ≤ d + K . Hence
P

(N) := P W ◦ (Γt )
−1 ∈M.

We first note that for all i = 1, . . . , d +K ,

EW [|M(i)
T∧θ0

|] = E
W [M(i)

T∧θ0
+ 2(M

(i)
T∧θ0

)−] ≤ E
W [M(i)

T∧θ0
+ 2] = 3.

Then by Doob’s martingale inequality,

P W [‖Γ −Mθ0‖ ≥ ε
1/2
N ] ≤ ε

−1/2
N

d+K∑

i=1

EW [|Λ(i) −M
(i)
T∧θ0

|]

≤ ε
−1/2
N 4(d +K)εN = 4(d +K)ε

1/2
N . (5.29)

This together with (5.26), writing κ1 = κ + α, yields

|EW [G(Γ )] −E
Q̂
[G(Ŝ)]|

≤EW [|G(Γ )− Ĝ(Mθ0)|] + |EW [Ĝ(Mθ0)] −E
Q̂
[Ĝ(Ŝ)]|

≤EW
[
|G(Γ )−G(Mθ0 ∨ 0)|1{‖Γ−Mθ0‖<ε

1/2
N }
]

+ 8κ1(d +K)ε
1/2
N + 8κ2

1 N− 1
2 + fe(2

−N+4 +N− 1
2 )+ κ12−N+1

≤ fe(ε
1/2
N )+ 8κ1(d +K)ε

1/2
N + 9κ2

1ε
1/2
N + fe(ε

1/2
N )

≤ 2fe(ε
1/2
N )+ 17κ2

1 (d +K)ε
1/2
N .
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Finally, we can deduce from (5.27) and (5.29) that

P W
[{

ω ∈ΩW : inf
υ∈I

‖Γ (ω)− υ‖ ≥ 4κ1N
− 1

2 + ε
1/2
N

}]

≤ 4κ1N
− 1

2 + 4(d +K)ε
1/2
N , (5.30)

and from (5.28) and (5.29) that

P W [‖Ẑ − Γ ‖ ≥ εN + ε
1/2
N ] ≤ 2κ1N

− 1
2 + 4(d +K)ε

1/2
N . (5.31)

Step 4. The last step is to construct a new process Γ̃ from Γ such that the law of

Γ̃ under P W is an element of MI . We write ηN = 4κ1N
− 1

2 + 4(d +K)ε
1/2
N and

p
(N)
i := E

P(N) [X(c)
i (S

(1)
T , . . . ,S

(d)
T )]

for any i = 1, . . .K , and define p̃
(N)
i by

p̃
(N)
i := P(X

(c)
i )− (1−√ηN)p

(N)
i√

ηN

.

We can deduce from (5.30) and (5.31) that

|P(X
(c)
i )− p

(N)
i | ≤EW [|X(c)

i (Γ
(1)
T , . . . ,Γ

(d)
T )−P(X

(c)
i )Γ

(d+i)
T |]

≤ P(X
(c)
i )ηN +EW

[
|X(c)

i (Γ
(1)
T , . . . ,Γ

(d)
T )−P(X

(c)
i )Γ

(d+i)
T |

× 1{|X(c)
i (Γ

(1)
T ,...,Γ

(d)
T )/P(X

(c)
i )−Γ

(d+i)
T |>ηN }

]

≤ P(X
(c)
i )ηN + 2(κ + 2)P(X

(c)
i )ηN , ∀i = 1, . . . ,K.

It follows immediately that

|p̃(N)
i −P(X

(c)
i )| =

(
1√
ηN

− 1

)

|P(X
(c)
i )− p

(N)
i |

≤ 2(κ + 2)P(X
(c)
i )ηN√

ηN

= 2(κ + 2)P(X
(c)
i )
√

ηN, ∀i ≤K.

Then it follows from Assumption 3.1 that when N is large enough, there exists a
P̃

(N) ∈MĨ such that

p̃
(N)
i = E

P̃(N) [X(c)
i (S

(1)
T , . . . ,S

(d)
T )], ∀i ≤K.

On the Wiener space (ΩW ,FW,P W), or a suitable enlargement if necessary, there
are continuous martingales Γ and M̃ which have laws equal to P

(N) and P̃
(N) respec-

tively, and an FW
T -measurable random variable ξ ∈ {0,1} that is independent of Γ

and M̃ with

P W [ξ = 1] = 1−√ηN, P W [ξ = 0] =√ηN .
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Define FW
T -measurable random variables Λ̃(i) by

Λ̃(i) = Γ
(i)
T 1{ξ=1} + M̃

(i)
T 1{ξ=0}, i = 1, . . . , d,

Λ̃(i) =X
(c)
i−d(Λ̃(1), . . . , Λ̃(d))/P(X

(c)
i−d), d +K > i > d.

We now construct a continuous martingale from Λ̃ by setting

Γ̃t =EW [Λ̃|FW
t ], t ∈ [0, T ].

It follows from the fact that ξ is independent of Γ and M̃ that

Γ̃
(i+d)

0 =EW [Γ̃ (i+d)
T |FW

0 ]
= (1−√ηN)EW [X(c)

i (Γ
(1)
T , . . . ,Γ

(d)
T )/P(X

(c)
i )]

+√ηNEW [X(c)
i (M̃

(1)
T , . . . , M̃

(d)
T )/P(X

(c)
i )]

= (1−√ηN)p
(N)
i +√ηNp̃

(N)
i

P(X
(c)
i )

= 1, 1≤ i ≤K,

and

Γ̃
(i)

0 =EW [Γ̃ (i)
T |FW

0 ] =EW [Λ̃(i)
T |FW

0 ]
= (1−√ηN)EW [Γ (i)

T ] +√ηNEW [M̃(i)
T ] = 1, i ≤ d.

Hence P̃ := P W ◦ (Γ̃t )
−1 ∈MI . Also by the independence between ξ and (Γ, M̃),

we have

EW [|Λ̃(i) − Γ
(i)
T |] =√ηNEW [|M̃(i)

T − Γ
(i)
T |] ≤ 2

√
ηN, i ≤ d,

and by (5.30),

P W [|Γ (i)
T − Λ̃(i)|> ηN ] ≤ ηN +√ηN ≤ 2

√
ηN, i > d,

which implies that

EW [|Λ̃(i) − Γ
(i)
T |] = 2EW [(Λ̃(i) − Γ

(i)
T )+] −EW [Λ̃(i) − Γ

(i)
T ]

= 2EW [(Λ̃(i) − Γ
(i)
T )+]

≤ 2ηN + 2EW
[
Λ̃(i)1{|Λ̃(i)−Γ

(i)
T |>ηN }

]

≤ 2ηN + 4(κ + 2)
√

ηN ≤ 14κ
√

ηN, i = d + 1, . . . ,K.

Then by Doob’s martingale inequality,

P W [‖Γ̃ − Γ ‖ ≥ κη
1/4
N ] ≤ 1

κη
1/4
N

d+K∑

i=1

EW [|Λ̃(i) − Γ
(i)
T |] ≤ 14(d +K)η

1/4
N
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and hence

|E
P̃
[G(S)] −E

P(N) [G(S)]| = |EW [G(Γ̃ )−G(Γ )]|
≤ fe(κη

1/4
N )+EW

[
|G(Γ )−G(Γ )|1{‖Γ̃−Γ ‖≥κη

1/4
N }
]

≤ fe(κη
1/4
N )+ 28κ(d +K)η

1/4
N .

In addition, we can deduce from (5.31) that

P W [‖Ẑ− Γ̃ ‖ ≥ κη
1/4
N + εN + ε

1/2
N ] ≤ 2κ1N

− 1
2 + 4(d +K)ε

1/2
N + 14(d +K)κη

1/4
N .

Notice that when N is sufficiently large such that κη
1/4
N + εN + ε

1/2
N < 2−D−1, we

can deduce from (5.7) and (5.22) that on the event

{ω ∈ΩW : ‖Ẑ(ω)− Γ̃ (ω)‖< κη
1/4
N + εN + ε

1/2
N and Ẑ(ω) ∈ D̂

(N)},

we have

|�(Ẑ)∨ 0− Γ̃ | ≤ |�(Ẑ)∨ 0− �(Ẑ)| + |�(Ẑ)− Ẑ| + |Ẑ − Γ̃ |
< 2−N+3 + 2−N+1 + 2−D−1 ≤ 2−D,

and hence by Remark 4.2, the inequality m̂(D)(Ẑ)≥m(D−2)(Γ̃ ) holds on

{ω ∈ΩW : ‖Ẑ(ω)− Γ̃ (ω)‖< κη
1/4
N + εN + ε

1/2
N and Ẑ(ω) ∈ D̂

(N)}.

It follows that

E
Q̂
[β
√

m̂(D)(Ŝ)∧ α] ≥ E
Q̂
[β
√

m̂(D)(Ŝm0)∧ α] =EW [β
√

m̂(D)(Ẑ)∧ α]

≥EW [β
√

m(D−2)(Γ̃ )∧ α] − α
(
2κ1N

− 1
2 + 4(d +K)ε

1/2
N + 14(d +K)κη

1/4
N

)
.

�
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Appendix

A.1 Proof of Lemma 4.3

Let fe : R+ → R+ be a modulus of continuity for G and X
(c)
1 , . . . ,X

(c)
K so that

limx↘0 fe(x) = 0. Now fix N and P
(N) ∈Mπ(N),I ∩M. By the definition of M,

there exist a complete probability space (ΩW ,FW,P W), where F
W = (FW

t )0≤t≤T

is the P W -completion of the natural filtration of a d̃-dimensional Brownian motion
W on [0, T ], and a continuous martingale M defined on (ΩW ,FW

T ,FW,P W) such
that P(N) = P W ◦M−1.

Write εN := dp(π(N),π). Saying that (π(N)) converges to π weakly is equivalent
to saying that εN → 0 as N →∞. Fix N . If εN = 0, it is trivially true that

sup
P∈M∩M

π(N),I

EP[G(S)−β
√

m(D)(S)∧α] = sup
P∈M∩Mπ,I

EP[G(S)−β
√

m(D)(S)∧α].

Therefore we only consider the case that εN > 0. It follows from Strassen [49, Corol-
lary of Theorem 11] that, possibly increasing d , we can find an FW

T -measurable ran-

dom variable Λ such that Λ(d+i) =X
(c)
i (Λ(1), . . . ,Λ(d)) for every i ≤K ,

LPW (Λ(1), . . . ,Λ(d))= π and P W [|Λ(i) −M
(i)
T |> 2εN ]< 2εN , ∀i ≤ d.

(A.1)
We now construct a continuous martingale from Λ by setting

Γt =EW [Λ|FW
t ], t ∈ [0, T ],

where EW is the expectation with respect to P W . Note that by the uniform continuity
of X

(c)
i , we have

|Λ(d+i) −M
(d+i)
T | ≤ fe(2εN),∀i ≤K, when |Λ(j) −M

(j)
T | ≤ 2εN ,∀j ≤ d.

Hence, for every i ≤K ,

P W [|Λ(i+d) −M
(i+d)
T |> fe(2εN)] ≤ 2dεN .

Observe that EW [Λ(i)] = EW [M(i)
T ] = 1 and Λ(i) ≥ 0 P W -a.s. for i ≤ d +K . Then

using (A.1), we get for i = 1, . . . , d that

EW [|Λ(i) −M
(i)
T |] = 2EW [(Λ(i) −M

(i)
T )+] −EW [Λ(i) −M

(i)
T ]

= 2EW [(Λ(i) −M
(i)
T )+]

≤ 4εN + 2EW
[
Λ(i)1{|Λ(i)−M

(i)
T |>2εN }

]

≤ 4εN + 2EW
[
Λ(i)1{|Λ(i)−M

(i)
T |>2εN }1{Λi)>1/

√
εN }
]
+ 4

√
εN

≤ 4εN + 2
∫

{xi≥ 1√
εN
}∩Rd+

xiπ(dx1, . . . ,dxd)+ 4
√

εN .
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Similarly, for every i ≤K ,

EW [|Λ(d+i) −M
(d+i)
T |] = 2EW [(Λ(d+i) −M

(d+i)
T )+]

≤ 2fe(2εN)+ 2EW
[
Λ(i)1{|Λ(d+i)−M

(d+i)
T |>fe(2εN )}

]

≤ 2fe(2εN)+ 4d
‖X(c)

i ‖∞
P(X

(c)
i )

εN .

We now define ηN by

ηN := 2fe(2εN)+ 4εN + 4d

K∑

i=1

‖X(c)
i ‖∞

P(X
(c)
i )

εN

+ 2
d∑

i=1

∫

{xi≥ 1√
εN
}∩Rd+

xiπ(dx1, . . . ,dxd)+ 4
√

εN .

Note that ηN → 0 as N →∞. Then by Doob’s martingale inequality,

P W [‖Γ −M‖ ≥ η
1/2
N ] ≤ η

−1/2
N

d+K∑

i=1

EW [|Λ(i) −M
(i)
T |] ≤ (d +K)η

1/2
N .

It follows that

|EW [G(Γ )−G(M)]| ≤ 2(d +K)‖G‖∞η
1/2
N

+EW
[
|G(Γ )−G(M)|1{‖Γ−M‖<η

1/2
N }
]

≤ 2(d +K)‖G‖∞η
1/2
N + fe(η

1/2
N ).

Note that by (4.1) in Remark 4.2, for N sufficiently large,

EW [β
√

m(D)(M)∧ α] ≥EW [β
√

m(D−2)(Γ )∧ α] − αη
1/2
N .

As P(N) ∈Mπ(N),I ∩M is arbitrary,

sup
P∈M∩M

π(N),I

EP[G(S)− β
√

m(D)(S)∧ α]

≤ cN sup
P∈M∩Mπ,I

EP[G(S)− β
√

m(D−2)(S)∧ α],

where cN := 2(2(d +K)‖G‖∞η
1/2
N + fe(η

1/2
N )+ αη

1/2
N ). The inequality asserted in

Lemma 4.3 now follows. �
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A.2 Proof of Lemma 4.4

Choose κ > 2∨ (‖G‖∞ + α). We first observe that

inf
X∈Lin(X ),N≥0

(

sup
P∈Ms

EP[G− β
√

m(D) ∧ α −X−NλP] +P(X)

)

= lim
N→∞ inf

X∈LinN (X )

(

sup
P∈Ms

EP[G− β
√

m(D) ∧ α −X−NλP] +P(X)

)

.

Define the function G : LinN(X )×Ms →R by

G(X,P) := lim
ε↘0

inf
P̃∈Ms , dp(P̃,P)<ε

E
P̃
[G− β

√
m(D−2) ∧ α −X−NλP] +P(X)

= lim
ε↘0

inf
P̃∈Ms , dp(P̃,P)<ε

E
P̃
[−β

√
m(D−2) ∧ α]

+EP[G−NλP −X] +P(X).

Then by (4.1) in Remark 4.2, for any sequence (P(k))k≥1 converging to P weakly,

EP[−β
√

m(D)(S)∧ α] ≤ lim inf
k→∞ E

P(k)[−β
√

m(D−2)(S)∧ α]

and hence

lim
N→∞ inf

X∈LinN(X )

(

sup
P∈Ms

EP[G− β
√

m(D) ∧ α −X−NλP] +P(X)

)

≤ lim
N→∞ inf

X∈LinN(X )
sup

P∈Ms

G(X,P). (A.2)

The next step is to interchange the order of the infimum and supremum. Notice that
when we fix P, G is affine in the first variable and continuous due to the dominated
convergence theorem. In addition, by definition, G is lower semi-continuous in the
second variable. Furthermore, G is convex in the second variable. To justify this, we
notice that P �→ EP[−β

√
m(D−2)(S) ∧ α] is a linear functional, and it follows that

for each ε > 0 and λ ∈ [0,1],
inf

P̃∈Ms , dp(P̃,λP(1)+(1−λ)P(2))<ε

E
P̃
[−β

√
m(D−2)(S)∧ α]

≤ λ inf
P̃∈Ms , dp(P̃,P(1))<ε

E
P̃
[−β

√
m(D−2)(S)∧ α]

+ (1− λ) inf
P̃∈Ms , dp(P̃,P(2))<ε

E
P̃
[−β

√
m(D−2)(S)∧ α].

Since LinN(X ) is convex and compact, it follows that we can now apply a minimax
theorem (see Terkelsen [50, Corollary 2]) to G and derive

lim
N→∞ inf

X∈LinN(X )
sup

P∈Ms

G(X,P)= lim
N→∞ sup

P∈Ms

inf
X∈LinN(X )

G(X,P).
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Combining this with (A.2) yields

lim
N→∞ inf

X∈LinN(X )

(

sup
P∈Ms

EP[G− β
√

m(D) ∧ α−X−NλP] +P(X)

)

≤ lim
N→∞ sup

P∈Ms

inf
X∈LinN(X )

(
EP[G− β

√
m(D−2) ∧ α−X−NλP] +P(X)

)
. (A.3)

We begin to verify (4.9). Since Mη

X ,P,P
∩Ms �= ∅ for all η > 0,

sup
P∈Ms

EP[−X−NλP] +P(X)≥ 0, ∀X ∈X ,N ∈R+.

Hence for every N and X ∈ LinN(X),

sup
P∈Ms

EP[G− β
√

m(D) ∧ α −X−NλP] +P(X)

≥−‖G‖∞ − α + sup
P∈Ms

EP[−X−NλP] +P(X)≥−κ,

and therefore

lim
N→∞ inf

X∈LinN(X )

(

sup
P∈Ms

EP[G− β
√

m(D) ∧ α−X−NλP] +P(X)

)

≥−κ.

By the arguments used to justify the inequality between (4.5) and (4.6) in Sect. 4.1, in
the sup term of (A.3), it suffices to consider probability measures in MηN

X ,P,P
∩Ms ,

where ηN = 2κ/
√

N . Hence we have

lim
N→∞ inf

X∈LinN(X )

(

sup
P∈Ms

EP[G− β
√

m(D) ∧ α −X−NλP] +P(X)

)

≤ lim
N→∞ sup

P∈MηN
X ,P,P

∩Ms

inf
X∈LinN(X )

(
EP[G− β

√
m(D−2) ∧ α −X] +P(X)

)

≤ lim
N→∞ sup

P∈MηN
X ,P,P

∩Ms

EP[G− β
√

m(D−2) ∧ α],

where the second inequality follows from the fact that −X ∈ LinN(X ) for every
X ∈ LinN(X ). This completes the verification of (4.9). �

A.3 Construction of σ and Y in Proposition 5.11

Given a sequence a1, a2, . . ., we denote by aaam := (a1, . . . , am) the vector of its first
m elements. We denote by Π(E) the set of probability measures on E. In addition,
set

T :=Q+ ∪ {T − b : b ∈Q+ ∩ [0, T ]},

Sk :=
{

1

2N+k
(a1, . . . , ad+K) : aj ∈ Z, |aj | ≤ 2k, j = 1, . . . , d +K

}

.
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For k = 1, . . . ,m0, define the function Ψk : Tk × S1 × · · · × Sk →Π(R) by

Ψk(αααk;βββk) := L
Q̂
(τ̂k+1 − τ̂k|τ̂i − τ̂i−1 = αi, Ŝτ̂i

− Ŝτ̂i−1 = βi, i ≤ k) (A.4)

and Φk : Tk × S1 × · · · × Sk−1 →Π(Rd+K) by

Φk(αααk;βββk−1) := L
Q̂
(Ŝτ̂k

− Ŝτ̂k−1 |τ̂j − τ̂j−1 = αj , Ŝτ̂i
− Ŝτ̂i−1 = βi, j ≤ k, i ≤ k− 1),

(A.5)
where we set L

Q̂
(·|∅)≡ δ000, the Dirac measure on the zero vector. Next, let B be the

set of barriers; see [27, Def. 2.1]. Then by Theorem 2.3 in [27], for any k ≤m0, we
can find Υk : Tk ×S1×· · ·×Sk →[−∞,∞] and Bk : Tk ×S1×· · ·×Sk → B such
that

LPW

( ∞∑

�=0

sk,�+11{Υk(αααk;βββk−1,sk,�)≤W
(1)
αk

<Υk(αααk;βββk−1,sk,�+1)}

)

=Φk(αααk;βββk), (A.6)

where {sk,1, sk,2, . . . , sk,�, . . .} is an enumeration of Sk and

LPW

(
τBk(αααk;βββk)(W

(1))
)= Ψk(αααk;βββk), (A.7)

where τBk(αααk;βββk)(W
(1)) is the first hitting time of Bk(αααk;βββk) by W(1).

Now we set σ0 ≡ 0 and define the random variables σ1, . . . , σm0, Y1, . . . , Ym0 re-
cursively by

�i = τBi−1(�i−1;Yi−1)({W(1)
t+σi−1

−W(1)
σi−1

}t≥0),

σi = σi−1 +�i,

Yi = 1{σi<T }
∞∑

j=1

si,j1{Υi(���i ;YYY i−1;si,j−1)≤W
(i+1)
σi

−W
(i+1)
σi−1 <Υi(���i ;YYY i−1;si,j )}.

Note that the σi are stopping times with respect to the Brownian filtration. Fix k ≤m0

and (αααk;βββk−1) ∈ T
k × S1 × · · · × Sk−1. By the strong Markov property and the

independence of the Brownian motion increments, it follows from (A.7) that

LPW

(
�k

∣
∣(���k−1,YYY k−1)= (αααk−1,βββk−1)

)= Ψk−1(αααk−1;βββk−1). (A.8)

Similarly, from (A.6) and (A.8), we have

LPW (Yk|���k = σσσk,YYY k−1 =βββk−1)=Φ(αααk;βββk−1). (A.9)

Therefore, using (A.4), (A.5), (A.8) and (A.9), we conclude that

LPW

(
(σσσm0;YYYm0)

)= L
Q̂

(
(τ̂̂τ̂τm0;�Ŝ�Ŝ�Ŝm0)

)
,

where �Ŝk = Ŝτ̂k
− Ŝτ̂k−1 , k ≤m0.
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