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Abstract Recurrent tasks such as pricing, calibration and risk assessment need to
be executed accurately and in real time. We concentrate on parametric option pric-
ing (POP) as a generic instance of parametric conditional expectations and show that
polynomial interpolation in the parameter space promises to considerably reduce run-
times while maintaining accuracy. The attractive properties of Chebyshev interpola-
tion and its tensorized extension enable us to identify broadly applicable criteria for
(sub)exponential convergence and explicit error bounds. The method is most promis-
ing when the computation of the prices is most challenging. We therefore investigate
its combination with Monte Carlo simulation and analyze the effect of (stochastic)
approximations of the interpolation. For a wide and important range of problems, the
Chebyshev method turns out to be more efficient than parametric multilevel Monte
Carlo. We conclude with a numerical efficiency study.
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1 Introduction

The development of fast and accurate computational methods for parametric models
is one of the central issues in computational finance. Financial institutions dedicated
to the trading or assessment of financial derivatives have to cope with the daily tasks
of computing numerous characteristic financial quantities. Examples of interest in-
clude prices, sensitivities and risk measures for products in different models and for
varying parameter constellations. With regard to the ever growing market activities,
more and more of these evaluations need to be delivered in real time. In addition,
we face constantly rising model sophistication since the original work of [1] and
[33]. From the early 1990s onwards, stochastic volatility and Lévy models, as well
as models based on further classes of stochastic processes, have been developed to
reflect the observed market data in a more appropriate way. For asset models, see e.g.
[8, 10, 12, 25], and for the case of fixed income models, see e.g. [13, 15, 26]. More-
over, the aftermath of the 2007–2009 financial crisis has led to a new generation of
more complex models, for instance, by incorporating more risk factors. The useful-
ness of a pricing model critically depends on how well its numerical implementation
captures the relevant aspects of market reality. Exploiting new ways to deal with the
rising computational complexity therefore supports the evolution of pricing models
and touches a core concern of present-day mathematical finance.

A large body of computational tasks in finance needs to be repeatedly performed in
real time for a varying set of parameters. Prominent examples include option pricing
and hedging of different option sensitivities, e.g. delta and vega, that also need to
be calculated in real time. In particular, for optimization routines arising in model
calibration, large parameter sets come into play. Further examples arise in the context
of risk control and assessment, such as for the quantification and monitoring of risk
measures. The following question serves as a starting point for our investigations:
How can we systemically exploit the recurrent nature of parametric computational
problems in finance with the objective of gaining efficiency? Looking for answers
to this question, we focus in the sequel on parametric option pricing (POP) that we
identify as a generic instance.

In the present literature on computational methods in finance, complexity reduc-
tion for parametric problems has largely been addressed by applying Fourier tech-
niques following the seminal works of [6] and [39]; see also the monograph [2]. Re-
search in this area concentrates on adopting fast Fourier transform (FFT) methods and
variants for option pricing. Lee [30] accurately describes pricing European options
with FFT. Further developments are, for instance, provided by [31] for early exercise
options and by [14] and [28] for barrier options. Another path towards efficiently
handling large parameter sets that has been pursued in finance relies on reduced basis
methods. These are techniques for solving parametrized partial differential equations.
The authors of [4, 7, 21, 36, 41] applied this approach to price European and Amer-
ican plain vanilla options and European baskets. On the one hand, FFT methods can
be highly beneficial when the prices are required in a large number of Fourier vari-
ables, e.g. for a large set of strikes of European plain vanillas. A method that tailors
Fourier pricing to the whole parametric family of integrands has recently been de-
veloped in [17]. On the other hand, numerical experiments have shown a promising
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gain in efficiency of reduced basis methods when an accurate PDE solver is readily
available. In essence, all these approaches reveal an immense potential of complexity
reduction by targeting parameter dependence. To do this, they exploit the functional
architecture of the underlying pricing technique for varying parameters.

Financial institutions have to deal simultaneously with a diversity of models, a
multitude of option types, and—as a consequence—a wide variety of underlying
pricing techniques. It is therefore worthwhile to explore the possibility of a generic
complexity reduction method that is independent of the specific pricing technique.
To do so, we focus on the set of option prices and the set of parameters of interest,
deliberately disregard the pricing technology, and view the option price as a function
of the parameters. The core idea is now to introduce interpolation of option prices in
the parameter space as a complexity reduction technique for POP.

The resulting procedure naturally splits into two phases: pre-computation and real-
time evaluation. The first one is also called the offline phase, while the second is also
called the online phase. In the pre-computation phase, the interpolation is made avail-
able. In the case of polynomial interpolation, this steps amounts to the computation of
the coefficients for the basis functions. The actual procedure depends on the choice
of the interpolation method. In all cases, however, the prices have to be computed
for some fixed parameter configurations. Here, any appropriate pricing method—for
instance, based on Fourier, PDE or even Monte Carlo techniques—can be chosen.
The real-time evaluation phase then consists in evaluating the interpolation. Provided
that the evaluation of the interpolation is faster than the benchmark tool, the scheme
permits a gain in efficiency in all cases where accuracy can be maintained. Then we
distinguish several cases:

– In comparison to the benchmark pricing routine, the fast evaluation of the inter-
polation will eventually outweigh the expensive pre-computation phase if pricing
is a task which is repeatedly employed. Optimization procedures are an obvious
instance where this feature becomes advantageous.

– The interpolation can simultaneously deliver a multitude of outputs. For instance,
as we shall see in the sequel, the interpolation can be set up such that it delivers
sensitivities as well.

– Even if the number of price computations is limited, we can still benefit from sepa-
rating the procedure into its two phases. In this way, e.g. idle times in the financial
industry can be put to good use by preparing the interpolation for whenever real-
time pricing is needed during business activities.

The question arising at this stage is: Under what circumstances can we hope to find
an interpolation method that delivers both reliable results and a considerable gain in
efficiency?

One could now be tempted to proceed in a naive manner and first define an equidis-
tant grid and then interpolate piecewise linearly in the parameter space. Numerical
experiments for Black–Scholes call prices as function of the volatility, for instance,
would then provide convincing evidence that the number of nodes needed for a given
accuracy is quite high. Increasing the polynomial degree might lead to better results.
However, convergence might not be guaranteed. Runge [40] showed that polynomial
interpolation on equispaced grids may diverge, even for analytic functions. Second,
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the evaluation of the polynomial interpolants may be numerically problematic, as
it is shown in [40] that “the interpolation problem for polynomial interpolation on
an equidistant grid is exponentially ill-conditioned”, a formulation we borrow from
[45]. For these reasons, we refrain from polynomial interpolation with equidistant
grids. Rather, we take a step back and ask: Which methods of interpolating prices
as functions of model and payoff parameters are numerically promising in terms of
convergence, stability and implementational ease?

Regarding this research question, we need to take into consideration both the set
of interpolation methods and the specific features of the functions we investigate.
It is well known that the efficiency of interpolation methods critically depends on
the degree of regularity of the approximated function. For the core problem of our
study—European (basket) options—we investigate the regularity of the option prices
as functions of the parameters. We find that these functions are indeed analytic for a
large set of option types, models and parameters. Taking the perspective of approxi-
mation theory, this inspires the hope that suitable interpolation methods can be found.
In particular, it is well known that orthogonal polynomial interpolation in this case
yields exponential convergence for univariate and subexponential convergence for
multivariate interpolation. We call this (sub)exponential convergence in the sequel.

In this article, we propose and investigate the interpolation of financial quantities
in the parameter space by Chebyshev polynomials. This has various reasons. We em-
pirically observe that parameters of interest often range within bounded intervals, and
Chebyshev polynomial interpolation is well known for its excellent numerical prop-
erties in approximating analytic functions on bounded intervals. The following key
properties of Chebyshev interpolation are of particular interest for our purposes:

– For univariate functions that are several times differentiable, the method converges
polynomially, and for univariate analytic functions, convergence is exponential—
in stark contrast to polynomial interpolation on equally spaced nodal points. Even
more, Chebyshev polynomials appear as an optimal choice when minimizing the
error in a certain way among the nodal polynomial interpolations; see Appendix A.

– The method can be implemented in a numerically stable way. This is crucial for its
actual performance.

– The interpolation nodes are explicitly available, and thus the coefficients are ex-
plicitly given as a linear transformation of the function values at the nodal points.
On the one hand, this makes the implementation straightforward, a feature that is
valuable both for the application of the method in complex IT infrastructures of
the financial industry and for further developments of the method. On the other
hand, since the interpolation nodes are explicitly given, we can avoid a signifi-
cant approximation step, typically a regression, and therewith a major source of
inaccuracy.

– The derivatives are trivial for the interpolation and known to converge as well with
a rate that is determined by the regularity of the function that is interpolated. Thus
sensitivities are additional outputs of high accuracy.

– Chebyshev interpolation can be easily concatenated yielding Chebyshev-spline ap-
proximation, which is extremely appealing when the function, for instance, exhibits
discontinuities.
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– Chebyshev interpolation can be highly efficiently extended to higher dimensional-
ity, for instance, by low-rank tensor and sparse grid techniques.

In a remarkable monograph [46], Trefethen gives a comprehensive review of Cheby-
shev interpolation. Its appealing theoretical properties are indeed of practical use as
the software tool Chebfun1 demonstrates. In this implementation, Platte and Tre-
fethen [38] aim “to combine the feel of symbolics with the speed of numerics”.
Exploring the potential of interpolation methods for more than one single free pa-
rameter, we choose a tensorized version of Chebyshev interpolation as follows. For
parameters p ∈ [−1,1]D , where D ∈ N denotes the dimensionality of the parame-
ter space, the price Pricep is approximated by tensorized Chebyshev polynomials Tj

with pre-computed coefficients cj , j ∈ J , as

Pricep ≈
∑

j∈J

cjTj (p).

Chebyshev interpolation is a standard numerical method that has proved to be ex-
tremely useful for applications in such diverse fields as physics, engineering, statistics
and economics. Nevertheless, for pricing tasks in mathematical finance, Chebyshev
interpolation still seems to be rarely used and its potential is yet to be unfolded. Pis-
torius and Stolte [37] use Chebyshev interpolation of Black–Scholes prices in the
volatility as an intermediate step to derive a pricing methodology for a time-changed
model. Independently from the present article, Pachon [35] recently proposed Cheby-
shev interpolation as a quadrature rule for the computation of option prices with a
Fourier-type representation, which is comparable to the cosine method.

Our main results are the following:

– Proposition 2.1 refines the known result that analyticity guarantees an asymptotic

error decay of order O
(
�− D√

N
)

in the total number N of interpolation nodes,
where � > 1 is given by the domain of analyticity and D is the number of vary-
ing parameters. In our article, we allow an anisotropic analyticity domain and a
different number of nodal points in each dimension.

– Propositions 2.3 and 2.4 show convergence results for the related sensitivities.

The method promises the highest gain in efficiency for the most challenging and
therefore most computationally extensive problems. In these cases, the computation
of the values at the nodal points cannot be delivered at machine precision, but is
affected by an approximation error. This approximation error in turn affects the ac-
curacy of the interpolation.

– Theorem 2.5 therefore provides an error bound including distortions of the nodal
points. We consider two types of distortions, those bounded by a common deter-
ministic threshold and those that are normally distributed. The first case is tailored
to an underlying pricing method that is accurate up to a pre-specified deterministic
accuracy, the latter to the computation of the values at the nodal points by Monte
Carlo.

1Chebfun is an open-source software system; see http://www.chebfun.org.

http://www.chebfun.org
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Qualitatively, we illustrate the relation to advanced Monte Carlo techniques and com-
pare our approach with the parametric multilevel Monte Carlo approach of [22] and
[24]. We derive a theoretical result of the “offline efficiency”, i.e., the asymptotic rate
of convergence in terms of the offline cost. This is a measure for the accuracy versus
the offline cost:

– In Theorem 2.6, we show that for each β > D/2, there exist constants c̄1, c̄2 > 0
such that the offline cost is bounded by c̄1M and the expected error of the Cheby-
shev method is bounded by c̄2(logM)βM−1/2, where M is the number of nodal
points times the number of Monte Carlo simulations.

In Sect. 3, we introduce the general framework of POP (parametric option pricing).

– Theorem 3.2 provides accessible sufficient conditions on options and models that
guarantee analyticity in the parameters. Moreover, it establishes a method to access
the domain of analyticity. In combination with Proposition 2.1, this allows us to
deduce a (sub)exponential convergence rate, as well as to access the constants in
the exact error bound.

The advantageous convergence properties motivate us to further explore the po-
tential of the Chebyshev method for multivariate options. Here we deliberately go
beyond the scope of our theoretical results and consider additional features like path-
dependence. We present empirical results demonstrating the efficiency of the Cheby-
shev method:

– The explicit gains in efficiency in comparison to standard Monte Carlo methods
are shown in Sect. 4.2, taking multivariate lookback options in the Heston model
as examples.

The remainder of the article is organized as follows. In Sect. 2, we introduce
Chebyshev interpolation in detail and establish the general error estimates and con-
vergence results. Section 3 presents a convergence analysis of Chebyshev interpo-
lation for POP. The numerical experiments in Sect. 4 confirm these findings using
Fourier techniques. The gain in efficiency when pricing basket options is numeri-
cally investigated. Experiments based on Monte Carlo and finite differences more-
over suggest to further explore the potential of the approach beyond the scope of the
theoretical investigations from the previous sections. We conclude the section with
complexity considerations and by discussing the relation to advanced Monte Carlo
techniques. The resulting conclusion and outlook are presented in Sect. 5. Finally,
the appendix provides the proof of the multivariate convergence result.

2 Chebyshev polynomial interpolation

Let us introduce the notation for Chebyshev interpolation along with its tensor-based
extension to the multivariate case; see e.g. [42, Definition 7.1.17]. In order to obtain
convenient notation, consider the interpolation of prices

p �→ Pricep, p ∈ [−1,1]D.
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For a more general hyperrectangular parameter space P = [p
1
,p1]×· · ·×[p

D
,pD],

appropriate linear transformations need to be applied. Let N := (N1, . . . ,ND) with
Ni ∈ N0 for i = 1, . . . ,D. The interpolation, which has

∏D
i=1(Ni + 1) summands, is

given by

IN(Price(·))(p) :=
∑

j∈J

cjTj (p), (2.1)

where the summation index j is a multi-index ranging over

J := {(j1, . . . , jD) ∈N
D
0 : ji ≤ Ni for i = 1, . . . ,D},

the basis functions are

Tj (p1, . . . , pD) =
D∏

i=1

Tji
(pi), Tji

(pi) := cos(ji arccospi),

the coefficients are

cj =
( D∏

i=1

21{0<ji<Ni }

Ni

) N1∑

k1=0

′′ · · ·
ND∑

kD=0

′′
Pricep(k1,...,kD)

D∏

i=1

cos

(
jiπ

ki

Ni

)
, (2.2)

where
∑ ′′

indicates that the first and last summands are halved, and the Chebyshev
nodes pk for the multi-index k = (k1, . . . , kD) ∈ J are given by

pk = (pk1 , . . . , pkD
), pki

= cos

(
π

ki

Ni

)
.

At the Ni + 1 points pki
, the Chebyshev polynomial TNi

(x) reaches its extreme val-
ues. These points are also referred to as Chebyshev–Lobatto points, Chebyshev ex-
treme points, or Chebyshev points of the second kind, and they satisfy a discrete
orthogonality property; see (B.4).2

2.1 Exponential convergence

In the univariate case, it is well known that the error of approximation with Cheby-
shev polynomials decays polynomially for differentiable functions and exponentially
for analytic functions; see, for instance, [46, Theorems 7.2 and 8.2]. We provide a
multivariate version of the latter result. In order to state our result, we need to in-
troduce the appropriate domain of analyticity. A Bernstein ellipse B([−1,1], �) with
parameter � > 1 is defined as the open region in the complex plane bounded by the
ellipse with foci ±1 and semiminor and semimajor axis lengths summing to �. We
define the D-variate and transformed analogue of a Bernstein ellipse around the hy-
perrectangle P with parameter vector � ∈ (1,∞)D as

B(P, �) := B([p
1
,p1], �1) × · · · × B([p

D
,pD], �D)

2According to [46, Chap. 2], these points are more often used as nodal points than the Ni + 1 zeros of
TNi+1(x), which are the Chebyshev points of the first kind.
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with B([p,p], �) := τ[p,p](B([−1,1], �)), where for p ∈ C, we have the transform

τ[p,p](
(p)) := p + p−p

2 (1 −
(p)) and τ[p,p](�(p)) := p−p

2 �(p). We call B(P, �)

a generalized Bernstein ellipse if the sets B([−1,1], �i) are Bernstein ellipses for
i = 1, . . . ,D.

The following proposition is a slight improvement of [42, Lemma 7.3.3]. More
precisely, the error bound is given in terms of the constants �1, . . . , �D rather than by
� := mini=1,...,D �i . For our purpose, it is worth to provide this generalization since
the domain of analyticity is typically anisotropic; see, for instance, Condition 3.1 in
Sect. 3 below. This allows us to derive sharper error bounds and improved assertions
on the convergence rates.

Proposition 2.1 Let P � p �→ Pricep be a real-valued function that has an analytic
extension to some generalized Bernstein ellipse B(P, �) for some parameter vector
� ∈ (1,∞)D , and suppose that supp∈B(P,�) |Pricep| ≤ V . Then

max
p∈P

|Pricep − IN(Price(·))(p)| ≤ 2
D
2 +1V

( D∑

i=1

�
−2Ni

i

D∏

j=1

1

1 − �−2
j

) 1
2

.

The proof of the proposition is provided in Appendix B and is based on the proof
of [42, Lemma 7.3.3]. A further improved error bound for tensorized Chebyshev
interpolation is presented in [20]. Sharper error bounds reduce the computational
cost because they allow us to use fewer nodal points to achieve a given accuracy.

Corollary 2.2 Under the assumptions of Proposition 2.1, there exists a constant
C > 0 such that

max
p∈P

|Pricep − IN(Price(·))(p)| ≤ C�−N, (2.3)

where � = min
1≤i≤D

�i and N = min
1≤i≤D

Ni .

In particular, under the assumptions of Proposition 2.1, if N =∏D
i=1(Ni + 1)

denotes the total number of nodes, Corollary 2.2 shows that the error decay has

(sub)exponential order O(�− D√
N) for some � > 1.

2.2 Convergence of the sensitivities

The sensitivities play a crucial role in financial applications. We therefore state con-
vergence results for the partial derivatives as well. The one-dimensional result is
shown in [44] and a multivariate result is derived in [5] for functions in Sobolev
spaces. These results allow us to obtain the Chebyshev approximation of derivatives
at no additional cost. To state the corresponding convergence results, we follow the
approach of [5] and introduce the weighted Sobolev spaces for σ ∈ N as

W
σ,ω
2 (P) = {φ ∈ L2(P) : ‖φ‖W

σ,ω
2 (P) < ∞},
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with norm

‖φ‖2
W

σ,ω
2 (P)

=
∑

|α|≤σ

∫

P
|∂αφ(p)|2ω(p)dp,

where α = (α1, . . . , αD) ∈ N
D
0 is a multi-index, ∂α = ∂α1 · · · ∂αD , and the weight

function ω on P is given by

ω(x) :=
D∏

j=1

ω
(
τ−1
[p

j
,pj ](xj )

)
, ω

(
τ−1
[p

j
,pj ](xj )

)
:=
(

1 − τ−1
[p

j
,pj ](xj )

2
)− 1

2
,

with τ[p
j
,pj ](p) = pj + p

j
−pj

2 (1 − p). We are now in a position to present the fol-

lowing result.

Proposition 2.3 Let P � p �→ Pricep ∈ W
σ,ω
2 (P) and set Ni = N, i = 1, . . . ,D, i.e.,

we take the same number of nodal points in each dimension. Then for any D
2 < σ ∈N

and any σ ≥ μ ∈N0, there exists a constant C > 0 such that

‖Price(·) − IN(Price(·))(·)‖W
μ,ω
2 (P) ≤ CN2μ−σ ‖Price(·)‖W

σ,ω
2 (P).

The proof of the proposition is provided in Appendix C and applies [5, Theo-
rem 3.1] together with the transformation τ .

The result in Proposition 2.3 is given in terms of weighted Sobolev norms. In the
following proposition, we relate the approximation error in the weighted Sobolev
norm to the C�(P)-norm, where C�(P) is the Banach space of all functions u in P
such that u and ∂αu with |α| ≤ � are uniformly continuous on P and the norm

‖u‖C�(P) = max|α|≤�
max
p∈P

|∂αu(p)|

is finite.

Proposition 2.4 Let P � p �→ Pricep ∈ W
σ,ω
2 (P) and set Ni = N, i = 1, . . . ,D, i.e.,

we take the same number of nodal points in each dimension. Then for any D
2 < σ ∈N

and any σ ≥ μ ∈ N0 and � ∈ N0 with μ − � > D
2 , there exists a constant C̄(σ ) > 0

depending on σ such that

‖Price(·) − IN(Price(·))(·)‖C�(P) ≤ C̄(σ )N2μ−σ max|α|≤σ
sup
p∈P

|∂αPricep|.

The proof of the proposition is elementary and combines [5, Theorem 3.1] and
[47, Corollary 6.2].

2.3 Interaction of approximation errors at nodal points and interpolation
errors

The Chebyshev method is most promising for cases where computationally intensive
pricing methods are required. In such cases, the issue of distorted prices and their
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consequences arises naturally when computing the prices at the Chebyshev nodes.
The observed noisy prices at the Chebyshev nodes are

Pricep(k1,...,kD)

ε = Pricep(k1,...,kD) + εp(k1,...,kD)

,

where εp(k1,...,kD)
is the approximation error introduced by the underlying numeri-

cal technique at the Chebyshev nodes. By linearity, the resulting interpolation has
the form

IN(Price(·)
ε )(p) = IN(Price(·))(p) + IN(ε(·))(·)

with error function

ε(p) =
ND∑

jD=0

· · ·
N1∑

j1=0

cε
j1,...,jD

Tj1,...,jD
(p),

where the coefficients cε
j for j = (j1, . . . , jD) ∈ J are given by

cε
j =

( D∏

i=1

21{0<ji<Ni }

Ni

) N1∑

k1=0

′′ · · ·
ND∑

kD=0

′′
εp(k1,...,kD)

D∏

i=1

cos

(
jiπ

ki

Ni

)
.

In the sequel, we are interested in two types of distortions εpj
for the multi-indices

j = (k1, . . . , kD) ∈ J . First, analyzing the case that all distortions are bounded by
a fixed constant ε will give a stability result. Second, when computing the values
at the nodal points independently with a crude Monte Carlo method, the distor-

tions will be i.i.d. and asymptotically normally distributed, εpj approx∼ N (0, σM) with
σM = σ/

√
M . Third, in practice, it often turns out to be considerably more efficient

to compute the values at the nodal points in the offline phase in a stochastically de-
pendent way. For instance, it is often advantageous to sample the driving stochastic
process once and re-use it for the whole set of parameters pj .

Formally, we distinguish the following cases:

(i) |εpj | ≤ ε for all j ∈ J .
(ii) εpj

is normally distributed with distribution N (0, σj,M) for all multi-indices
j ∈ J (not necessarily independent).

In order to express the error bounds for these different cases, let

ε∗(N1, . . . ,ND) :=
{

ε in case (i),√
2 log(2

∏D
i=1(Ni + 1))maxj∈J σj,M in case (ii).

Theorem 2.5 Let P � p �→ Pricep be given as in Proposition 2.1 and assume one
of the conditions (i) or (ii) for the distortions εpj

, j ∈ J . Then the interpolation
IN(Price(·)

ε ) including the distortions satisfies
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E
[

max
p∈P

|Pricep − IN(Price(·)
ε )(p)|

]
≤ 2

D
2 +1V

( D∑

i=1

�
−2Ni

i

D∏

j=1

1

1 − �−2
j

) 1
2

+ 
Nε∗(N1, . . . ,ND), (2.4)

where the Lebesgue constant 
N is bounded by 
N ≤∏D
i=1(

2
π

log(Ni + 1) + 1).

Proof In order to derive a significant estimate, we rewrite the interpolation in La-
grangian form, i.e.,

IN(f )(p) =
N1∑

k1=0

· · ·
ND∑

kD=0

f (p(k1,...,kD))λ(k1,...,kD)(p)

with λ(k1,...,kD)(p) =∏D
i=1 �ki

(τ−1
[p

i
,pi ](pi)), where �ki

(x) =∏j∈{1,...,D}\{i}
x−xki

xkj
−xki

.

From Proposition 2.1, we deduce

E
[

max
p∈P

|Pricep − IN(Price(·)
ε )(p)|

]

≤ c(N) + E

[
max
p∈P

N1∑

k1=0

· · ·
ND∑

kD=0

|εp(k1,...,kD) ||λ(k1,...,kD)(p)|
]

with c(N) defined as the term on the first line of the right-hand side of the inequality
(2.4). Next, we estimate the Lebesgue constant


N := max
p∈P

N1∑

k1=0

· · ·
ND∑

kD=0

|λ(k1,...,kD)(p)|

= max
p∈P

N1∑

k1=0

· · ·
ND∑

kD=0

D∏

i=1

|�ki
(pi)|

=
D∏

i=1

max
pi∈[p

i
,pi ]

Ni∑

ki=0

∣∣�ki

(
τ−1
[p

i
,pi ](pi)

)∣∣.

Since maxp∈[p,p]
∑N

k=0 |�k(τ
−1
[p,p](p))| = maxp∈[−1,1]

∑N
k=0 |�k(p)| = 
N , which is

the Lebesgue constant of the univariate Chebyshev interpolation, invoking its well-
known estimate 
N ≤ 2

π
log(N +1)+1 (see, for instance, [46, Theorem 15.2]) yields

the result for case (i).
Under (ii), for arbitrary t > 0, we use Jensen’s inequality and the symmetry of the

centered normal distribution to estimate
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etE[maxj∈J |εpj |] ≤ E[et maxj∈J |εpj |] = E
[

max
j∈J

et |εpj | ]

≤
∑

j∈J

E[et |εpj |] ≤ 2
∑

j∈J

E[etεpj ].

Inserting the normal moment-generating function and setting n :=∏D
i=1(Ni + 1) and

σ := maxj∈J σj,M , we obtain E[maxj∈J |pj |] ≤ log(2n)/t + σ 2t/2. Finally, mini-
mizing over t > 0 yields

E
[

max
j∈J

|pj |
]

<
√

2 log(2n)σ . �

2.4 Relation to parametric multilevel Monte Carlo

There is an interesting relation between our proposed Chebyshev interpolation ap-
proach and the parametric multilevel Monte Carlo method suggested by Heinrich in
[22] and [24]. To be more precise, as concisely explained in [23, Sect. 2.1], the start-
ing point of [22] is the interpolation of the function p1 �→ E[f p1

(X)] and the com-
putation of E[f pk (X)] at the nodes pk with Monte Carlo. Note that in this setting,
the random variable X is not parametric. Next, the multilevel Monte Carlo method is
introduced. This is a hierarchical procedure based on nested grids. In each step, the
estimator of the coarser grid serves as a control variate. The grids then are chosen
optimally to balance cost and accuracy. Heinrich and Sindambiwe [24] show that the
resulting algorithm is optimal for a certain class of problems. This class of problems
is characterized by the regularity of the function

(p1, x) �→ f p1
(x),

namely that it belongs to a Sobolev space of a certain order r . The order r for which
partial derivatives in (p1, x) are assumed is the determining factor for the efficiency.
In particular, the weak partial derivatives in both the parameters p1 ∈ R

D and in
x ∈ R

d need to exist in order to apply the approach of [24].
In contrast, our error analysis is based on the regularity of the mapping

(p1,p2) �→ E[f p1
(Xp2

)].
Under appropriate integrability assumptions, the resulting problem class is signifi-
cantly larger than the setting of [22] and [24]. This is essential for applications in
finance, as the examples of a European call and digital option illustrate. The payoff
function of a European call has a kink. According to the ansatz of [22], this yields
a very poor convergence rate. The call option prices as a function of the parame-
ters, however, are in many cases even analytic, as we prove in the following Sect. 3.
The situation is even more severe for digital options, whose payoffs are not even
weakly differentiable. Here, the approach of [22] does not even yield convergence.
The Chebyshev method as proposed in this article, however, can be shown to con-
verge with an exponential rate for a wide range of applications. We again refer to
Sect. 3.
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We relate the error analysis presented in Sect. 2.3 with the results of [24] where a
bound of the expected error in the L2-norm is presented as a function of the cost to
obtain an asymptotic analysis of the efficiency. In [23], it is shown that there exist con-
stants c1 and c2 such that for each integer M , the cost of the parametric Monte Carlo
method is bounded by c1M and the error is bounded by c2M

−α , where α ∈ (0, 1
2 ) de-

pends on the dimension of the parameter space and the Sobolev order of the function
space to which f belongs.

To present an error analysis in the same spirit, we observe that the cost for es-
timating Price(p) for a fixed p is bounded by c̄1M for M Monte Carlo simulations
with a constant c̄1 > 0. It follows directly that the cost of deriving the interpolation
IN(Price(·)

ε ) is bounded by c̄1M : = c̄1
∏D

i=1(Ni + 1)M , where Ni is the number of
nodal points in dimension i and M is the number of sample paths at each nodal point.
In this setting, according to the central limit theorem, the errors εpj

are asymptoti-
cally normally distributed with variance σj,M = σj/

√
M . This motivates the choice

of σj,M in the following theorem.
Departing from the framework of [23], we estimate the expectation of the

L∞-norm of the error instead of the weaker L2-norm. The maximum norm is more
suitable for quantifying mispricing, and it is available without additional cost, since
the Chebyshev interpolation is tailored to minimize the maximum error.

Theorem 2.6 Let the assumptions of Theorem 2.5 with condition (ii) on the distor-
tions hold, and suppose σj,M = σj/

√
M . For each β > D/2, there exist constants

c̄1, c̄2 > 0 such that for each integer M > 1, there is a choice of M,N such that the
offline cost of the Chebyshev method is bounded by c̄1M and

E
[

max
p∈P

|Pricep − IN(Price(·)
ε )(p)|

]
≤ c̄2(logM)βM−1/2.

Proof Combining (2.4) and Corollary 2.3 results in

E
[

max
p∈P

|Pricep − IN(Price(·)
ε )(p)|

]
≤ C1�

−N + 
Nε∗(N1, . . . ,ND),

where � = min
1≤i≤D

�i and N = min
1≤i≤D

Ni . Setting Ni(M) = N(M) = α logM for some

α > 1/(2 log�) and M = cN(M)DM to determine M , the result follows from ele-
mentary estimations. �

Remark 2.7 In Theorem 2.6, the error of the resulting Chebyshev interpolation is put
in relation to the cost of the offline phase. This is in the spirit of [23]. The following
two observations show that our approach is in this regard competitive:

(i) In contrast to [23, Theorem 1], the payoff function (p1, x) �→ f p1
(x) is not

required to be weakly differentiable to a specific order. Moreover, Theorem 2.6 allows
a parametrized random variable Xp2

.
(ii) The error of the multilevel Monte Carlo estimate of [23, Theorem 1] decays

with
√
M if the function f is of high regularity. This is the only case in which the

asymptotic order of convergence in [23, Theorem 1] is slightly better than the rate of
Theorem 2.6, where an additional logarithmic term appears. Note, however, that the
error in Theorem 2.6 is measured in the stronger L∞-norm.
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We emphasize that the analysis according to [23] considers efficiency in terms of
accuracy versus the cost of the offline phase and ignores the online phase. From an
application point of view, however, the cost of the online phase is crucial. This is
especially the case where real-time evaluation is required. In some applications, it is
even rather the offline cost that can be disregarded. This is for instance the case if the
offline phase can be executed in idle times.

To make the implications clear, let us consider a concrete example. Following
the reasoning of efficiency as accuracy versus “offline cost”, the number of nodal
points of the interpolation is of minor importance. So is the choice of the interpo-
lation method. This is in line with [24] choosing piecewise linear interpolation to
illustrate the multilevel Monte Carlo method that they originally described for an ar-
bitrary nodal interpolation. Whereas this choice of interpolation can be appropriate
for a one-dimensional parameter space, a simple calculation makes clear how crucial
it becomes for multivariate parameter spaces to require as few nodal points as pos-
sible to achieve a pre-specified accuracy. For instance, when interpolating piecewise
linearly on an equidistant grid in the multilevel Monte Carlo method of [23] with L

levels, 2L nodal points in each direction are applied. For a D-dimensional parameter
space, this results in 2LD nodal points, which for L = 10 and D = 2 means more than
1 million nodal points. In this case, the “online cost” is in the range of the cost of a
Monte Carlo simulation, which makes the interpolation redundant. Applying Cheby-
shev polynomial interpolation, a small number of nodal points such as 7, as shown
in Sect. 4.2 below, suffices for the Chebyshev interpolation method to obtain an ap-
propriate accuracy. In this case, the total number of nodes is 49 for the tensorized
Chebyshev interpolation in two dimensions. Thus the online cost outperforms Monte
Carlo significantly. This highlights the fact that the choice of the interpolation method
is crucial.

Remark 2.8 The online cost is proportional to the number of nodal points. If the
highest priority is given to the efficiency of the online phase, one can proceed as
follows to achieve a pre-specified accuracy ε. First, choose the number of nodal points
such that the first summand of the error bound in (2.4) is smaller than ε/2. Then
choose the number of samples M of the selected Monte Carlo technique such that
also the second summand of the error bound in (2.4) is smaller than ε/2.

3 Exponential convergence of Chebyshev interpolation for POP

In this section, we embed the multivariate Chebyshev interpolation into the option
pricing framework. We provide sufficient conditions under which option prices de-
pend analytically on their parameters. We keep the option pricing framework suffi-
ciently abstract so that it also comprises various different applications such as the
computation of risk quantities on the basis of parametric random variables.

Let us first observe that an analysis along the lines of [22] and [24] would start
from the regularity of the function p1 �→ f p1

(X). But basic functions such as the
payoff of a plain vanilla option or a digital option which also underlies the computa-
tion of the quantile function and thus, for instance, the VaR are not differentiable and
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not even continuous. We therefore conclude that the approach of [22] and [24] is too
restrictive for financial applications.

Invoking the fact that although the payoff of a plain vanilla option has a kink, its
price function is smooth in virtually all models, we exploit the smoothing property of
the distribution in order to derive analyticity of the price as function of its parameters.
For linear problems, this can conveniently be studied in terms of Fourier transforms.
First, Fourier representations of option prices are explicitly available for a large class
of option types and asset models. Second, Fourier transformation unveils the analytic
properties of both the payoff structure and the distribution of the underlying stochastic
quantity in a beautiful way. The Fourier transform of the damped call or digital payoff
function, for instance, is evidently analytic in the strike.

To introduce a general option pricing framework, we consider option prices of the
form

Pricep=(p1,p2) = E[f p1
(Xp2

)], (3.1)

where f p1 : Rd → R+ is a parametrized family of measurable payoff functions with
payoff parameters p1 ∈ P1 and Xp2

is a family of Rd -valued random variables with
model parameters p2 ∈P2. The parameter set

p = (p1,p2) ∈P = P1 ×P2 ⊆ R
D (3.2)

is again of hyperrectangular structure, i.e.,

P1 = [p
1
,p1] × · · · × [p

m
,pm] and P2 = [p

m+1
,pm+1] × · · · × [p

D
,pD]

for some 1 ≤ m ≤ D and real p
i
≤ pi for i = 1, . . . ,D.

Typically, we are given a parametrized R
d -valued driving stochastic process Hp′

,
where the vector of asset price processes Sp′

is modeled as an exponential of Hp′
,

i.e.,

S
p′,i
t = S

p′,i
0 exp(H

p′,i
t ), 0 ≤ t ≤ T ,1 ≤ i ≤ d,

and Xp2
is an FT -measurable Rd -valued random variable, possibly depending on the

history of the d driving processes, i.e., p2 = (T ,p′) and

Xp2 := �(H
p′
t , 0 ≤ t ≤ T ),

where � is an R
d -valued measurable functional.

We now focus on the case where the price (3.1) is given in terms of Fourier trans-
forms. This enables us to provide sufficient conditions under which the parametrized
prices have an analytic extension to an appropriate generalized Bernstein ellipse. For
most relevant options, the payoff profile f p1

is not integrable and its Fourier trans-
form over the real axis is not well defined. Instead, there exists an exponential damp-
ing factor η ∈ R

d such that e〈η,·〉f p1 ∈ L1(Rd). We therefore introduce exponential
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weights in our set of conditions and denote the Fourier transform of g ∈ L1(Rd) by

ĝ(z) :=
∫

Rd

ei〈z,x〉g(x)dx

and the Fourier transform of e〈η,·〉f ∈ L1(Rd) by f̂ (· − iη). The exponential weight
of the payoff will be compensated by exponentially weighting the distribution of Xp2

,
and that weight reappears in the argument of ϕp2

, the characteristic function of Xp2
.

Condition 3.1 Let P = P1 × P2 ⊆ R
D be a parameter set with hyperrect-

angular structure as in (3.2). Let � ∈ (1,∞)D , denote �1 := (�1, . . . , �m) and
�2 := (�m+1, . . . , �D) and consider a weight η ∈R

d .

(A1) For every p1 ∈P1, the mapping x �→ e〈η,x〉f p1
(x) is in L1(Rd).

(A2) For every z ∈R
d , the mapping p1 �→ f̂ p1

(z− iη) is analytic in the generalized
Bernstein ellipse B(P1, �1), and moreover, there exist constants c1, c2 > 0 such

that supp1∈B(P1,�1) |f̂ p1
(−z − iη)| ≤ c1e

c2|z| for all z ∈ R
d .

(A3) For every p2 ∈ P2, the exponential moment condition E[e−〈η,Xp2 〉] < ∞ holds.
(A4) For every z ∈ R

d , the mapping p2 �→ ϕp2
(z + iη) is analytic in the generalized

Bernstein ellipse B(P2, �2), and there are constants α ∈ (1,2] and c1, c2 > 0
such that supp2∈B(P2,�2) |ϕp2

(z + iη)| ≤ c1 e−c2|z|α for all z ∈R
d .

Conditions (A1)–(A4) are satisfied for a large class of payoff functions and asset
models; see [16].

Theorem 3.2 Let � ∈ (1,∞)D and consider a weight η ∈ R
d . Under conditions

(A1)–(A4), P � p �→ Pricep has an analytic extension to the generalized Bernstein
ellipse B(P, �) and supp∈B(P,�) |Pricep| ≤ V , and therefore,

max
p∈P

|Pricep − IN(Price(·))(p)| ≤ 2
D
2 +1V

( D∑

i=1

�
−2Ni

i

D∏

j=1

1

1 − �−2
j

) 1
2

.

Proof Thanks to (A2) and (A4), the mapping z �→ f̂ p1
(−z − iη)ϕp2

(z + iη) belongs
to L1(Rd) for every p = (p1,p2) ∈P . Together with (A1) and (A3), we can therefore
apply [11, Theorem 3.2]. This gives for the option prices the Fourier representation

Pricep = 1

(2π)d

∫

Rd+iη

f̂ p1
(−z)ϕp2

(z)dz.

By (A2) and (A4), the mapping p = (p1,p2) �→ f̂ p1
(−z)ϕp2

(z) has an analytic ex-
tension to B(P, �).

Let γ be the contour of a compact triangle in the interior of B([p
i
,pi], �i) for

arbitrary i = 1, . . . ,D. Then by (A2) and (A4), we may apply Fubini’s theorem to
obtain
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∫

γ

Price(p1,...,pD)(z)dpi = 1

(2π)d

∫

γ

∫

Rd+iη

f̂ p1
(−z)ϕp2

(z)dzdpi

= 1

(2π)d

∫

Rd+iη

∫

γ

f̂ p1
(−z)ϕp2

(z)dpi dz = 0.

Moreover, thanks to (A2) and (A4), dominated convergence shows continuity of
p �→ Pricep in B(P, �), which yields the analyticity of p �→ Pricep in B(P, �) thanks
to a version of Morera’s theorem provided in [43, Theorem 5.1]. �

Similarly to Proposition 2.3, if Condition 3.1 is satisfied, the Chebyshev interpo-
lation also allows the corresponding derivatives to be well approximated. One very
interesting application of this result in finance is the computation of sensitivities like
delta or vega of an option price for risk assessment purposes. Theorem 3.2 together
with Proposition 2.3 yields the following corollary.

Corollary 3.3 Set Ni = N, i = 1, . . . ,D, i.e., we take the same number of nodal
points in each dimension. Under Condition 3.1, P � p �→ Pricep ∈ W

σ,ω
2 (P) for all

σ ∈ N, and therefore for all � ∈ N, μ and σ with σ > D
2 , 0 ≤ μ ≤ σ and μ − � > D

2 ,
there exists a constant C such that

‖Pricep − IN(Price(·))(p)‖C�(P) ≤ CN2μ−σ ‖Pricep‖Wσ
2 (P).

4 Numerical experiments

In this section, we use the Chebyshev method to price basket and path-dependent
options. First, we apply the method to interpolate Monte Carlo estimates of prices of
financial products and check the resulting accuracy. To this end, we choose example
basket, barrier and lookback options in 5-dimensional Black–Scholes, Heston and
Merton models. Second, we combine the Chebyshev method with a Crank–Nicolson
finite difference solver using the Brennan–Schwartz approximation, see [3], in order
to price a univariate American put option in the Black–Scholes model.

In our Monte Carlo simulation, we use 106 sample paths, antithetic variates as a
variance reduction technique, and 400 time steps per year. The error of the Monte
Carlo method cannot be computed directly. We thus turn to statistical error analy-
sis and use the width of the 95% confidence intervals to determine the accuracy.
We refer to this width as confidence bounds. These bounds are derived from the as-
sumption of a normally distributed Monte Carlo estimator with mean equal to the
estimator’s value and variance equal to the empirical variance of the payoff on the
Monte Carlo samples. The confidence bounds then yield a range around the mean
that includes the true price with approximately 95% probability. We pick two free
parameters pi1, pi2 out of (3.2), 1 ≤ i1 < i2 ≤ D, in each model setup and fix all
other parameters at reasonable constant values. In this section, we define the discrete
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Table 1 Parametrization of models, basket and path-dependent options. The model parameters are given
for j = 1, . . . , d = 5 to reflect the multivariate setting with free parameters given by the strike K and the
maturity T

Model fixed parameters free parameters

BS S
j
0 = 100,

r = 0.005
σj = 0.2 K ∈ [83.33,125] T ∈ [0.5,2]

Heston S
j
0 = 100,

r = 0.005
κj = 2,

θj = 0.22,
σj = 0.3,
ρj = −0.5,

vj,0 = 0.22

K ∈ [83.33,125] T ∈ [0.5,2]

Merton S
j
0 = 100,

r = 0.005
σj = 0.2,
αj = −0.1,
βj = 0.45,
λj = 0.1

K ∈ [83.33,125] T ∈ [0.5,2]

parameter grid P ⊆ [p
i1
,pi1

] × [p
i2
,pi2

] by

P =
{(

p
ki1
i1

,p
ki2
i2

)
, ki1, ki2 ∈ {0, . . . ,40}

}
,

p
kij

ij
= p

ij
+ kij

40
(pij

− p
ij
), kij ∈ {0, . . . ,40}, j ∈ {1,2},

(4.1)

and call P the test grid. On this test grid, the largest confidence bound is 0.025, and is
less than 0.013 on average. For the finite difference method, we find that the absolute
error between the numerical approximation and the option price is below 0.005 on
all computed parameter tuples in P . This error bound was computed by comparing
each approximation to the limit of the sequence of finite difference approximations
as the grid size is increased. In our calculations, we work with a grid size in time as
well as in space (log-moneyness) of 50 max{1, T }, and we compare the result to the
prices obtained using grid sizes of 1000 max{1, T }. This grid size was determined
to be sufficient for approximating the limit, since it was observed that a grid size of
500 max{1, T } produces nearly identical prices.

Here, our main concern is the accuracy of the Chebyshev interpolation as we vary
the strike and maturity parameters of each option analogously to the previous section.
For N ∈ {5,10,30}, we precompute the Chebyshev coefficients defined in (2.2) with
D = 2 while always keeping N1 = N2 = N . An overview of the fixed and free param-
eters in our model selection is given in Table 1. Since in our implementation neither
the correlations nor the marginal distributions affect the computational complexity,
we assume that the underlyings are i.i.d. for ease of implementation.

Let us briefly define the payoffs of the multivariate basket and path-dependent
options. The payoff profile of a basket option for d underlyings is given as

f K(S1
T , . . . , Sd

T ) =
(

1

d

d∑

j=1

S
j
T − K

)+
.
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Table 2 Interpolation of exotic options with Chebyshev interpolation. N = 5 and d = 5 in all cases. In
addition to the L∞-errors, the table displays the Monte Carlo (MC) prices, the Monte Carlo confidence
bounds, and the Chebyshev interpolation (CI) prices for the parameters at which the L∞-error is realized

Model Option εL∞ MC price MC conf. bound CI price

BS Basket 1.338 × 10−1 8.6073 1.171 × 10−2 8.4735

Heston Basket 9.238 × 10−2 0.0009 1.036 × 10−4 0.0933

Merton Basket 9.815 × 10−2 8.8491 1.552 × 10−2 8.7510

BS Lookback 2.409 × 10−1 9.4623 9.861 × 10−3 9.2213

Heston Lookback 5.134 × 10−1 0.0314 6.472 × 10−4 −0.4820

Merton Lookback 2.074 × 10−1 1.0919 9.568 × 10−3 0.8844

BS Barrier 1.299 × 10−1 1.0587 5.092 × 10−3 1.1887

Heston Barrier 1.073 × 10−1 2.7670 9.137 × 10−3 2.6597

Merton Barrier 9.916 × 10−2 1.3810 1.102 × 10−2 1.4802

We write St = (S1
t , . . . , Sd

t ), S
j
T := min0≤t≤T S

j
t and S

j

T := max0≤t≤T S
j
t . A look-

back option for d underlyings is defined as

f K(S
1
T , . . . , S

d

T ) =
(

1

d

d∑

j=1

S
j

T − K

)+
.

As an example of a multivariate barrier option on d underlyings, we define the payoff

f K
({S(t)}0≤t≤T

)=
(

1

d

d∑

j=1

S
j
T − K

)+
1{Sj

T ≥80, j=1,...,d}.

4.1 Accuracy study

We now turn to the results of our numerical experiments. In order to evaluate the
accuracy of the Chebyshev interpolation, we investigate the worst-case error εL∞ .
The absolute error of the Chebyshev interpolation method can be directly computed
by comparing the interpolated option prices with those obtained by the reference nu-
merical algorithm, i.e., either the Monte Carlo or the finite difference method. Since
the Chebyshev interpolation matches the reference method on the Chebyshev nodes,
we use the out-of-sample test grid as in (4.1). Table 2 shows the numerical results
for the basket and path-dependent options for N = 5, Table 3 shows N = 10, and Ta-
ble 4 shows N = 30. In addition to the L∞-errors, the tables display the Monte Carlo
(MC) prices, the Monte Carlo confidence bounds, and the Chebyshev interpolation
(CI) prices for the parameters at which the L∞-error is realized.

The results show that for N = 30, the accuracy of all option prices is 10−3. We see
that the Chebyshev interpolation error is dominated by the Monte Carlo confidence
bounds to the extent that the interpolation error becomes negligible when comparing
the two. For basket and barrier options, the L∞-error already reaches satisfactory
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Table 3 Interpolation of exotic options with Chebyshev interpolation. N = 10 and d = 5 in all cases. In
addition to the L∞-errors, the table displays the Monte Carlo (MC) prices, the Monte Carlo confidence
bounds, and the Chebyshev interpolation (CI) prices for the parameters at which the L∞-error is realized

Model Option εL∞ MC price MC conf. bound CI price

BS Basket 2.368 × 10−3 2.4543 7.493 × 10−3 2.4566

Heston Basket 2.134 × 10−3 3.1946 1.073 × 10−2 3.1925

Merton Basket 3.521 × 10−3 6.1929 2.231 × 10−2 6.1894

BS Lookback 2.861 × 10−2 0.9827 4.197 × 10−3 0.9541

Heston Lookback 1.098 × 10−1 2.0559 4.826 × 10−3 2.1656

Merton Lookback 3.221 × 10−2 4.7072 1.264 × 10−2 4.7394

BS Barrier 4.414 × 10−3 5.3173 1.725 × 10−2 5.3129

Heston Barrier 5.393 × 10−3 0.7158 5.879 × 10−3 0.7212

Merton Barrier 3.376 × 10−3 9.2688 2.302 × 10−2 9.2722

Table 4 Interpolation of exotic options with Chebyshev interpolation. N = 30 and d = 5 in all cases. In
addition to the L∞-errors, the table displays the Monte Carlo (MC) prices, the Monte Carlo confidence
bounds, and the Chebyshev interpolation (CI) prices for the parameters at which the L∞-error is realized

Model Option εL∞ MC price MC conf. bound CI price

BS Basket 1.452 × 10−3 5.1149 1.200 × 10−2 5.1163

Heston Basket 1.047 × 10−3 7.6555 1.371 × 10−2 7.6545

Merton Basket 3.765 × 10−3 7.2449 2.359 × 10−2 7.2412

BS Lookback 3.766 × 10−3 25.9007 1.032 × 10−2 25.9045

Heston Lookback 1.914 × 10−3 16.4972 9.754 × 10−3 16.4991

Merton Lookback 3.646 × 10−3 27.1018 1.623 × 10−2 27.1054

BS Barrier 5.331 × 10−3 5.6029 1.730 × 10−2 5.6082

Heston Barrier 2.486 × 10−3 3.6997 1.353 × 10−2 3.6972

Merton Barrier 4.298 × 10−3 6.6358 2.309 × 10−2 6.6315

levels of order 10−3 at N = 10. Again, the Chebyshev approximation falls within the
confidence bounds of the Monte Carlo approximation. Thus, Chebyshev interpolation
with only 121 = (10 + 1)2 nodes suffices to mimic the Monte Carlo pricing results.
This statement does not hold for lookback options, where the L∞-error still differs
noticeably when comparing N = 10 to N = 30. As can be seen from Table 2, Cheby-
shev interpolation with N = 5 may yield unreliable pricing results. For lookback
options in the Heston model, we even observe negative prices in individual cases.

We conclude that the Chebyshev interpolation is highly promising for the valua-
tion of multivariate basket and path-dependent options. However, the accuracy of the
interpolation critically depends on the accuracy of the reference method at the nodal
points, which motivates further analysis that we perform in the next subsection.
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Table 5 Interpolation of multivariate lookback options in the Heston model with Chebyshev interpolation
for N = 6 based on an enriched Monte Carlo setting with 5 × 106 sample paths, antithetic variates, and
400 time steps per year. In addition to the L∞-error on the test grid, we also report the Monte Carlo (MC)
price, the Monte Carlo confidence bound, and the Chebyshev interpolation (CI) price for the parameters
at which the L∞-error is realized. We observe that the accuracy of the Chebyshev interpolation N = 6 is
roughly in the same range as the accuracy of the benchmark Monte Carlo setting (worst-case confidence
bound of 6.783 × 10−2 and worst-case error of 2.791 × 10−2)

Varying εL∞ MC price MC conf. bound CI price

σ , ρ 5.260 × 10−2 5.239 1.428 × 10−2 5.292

4.2 Study of the gain in efficiency

We compute the results on a standard PC with an Intel i5 CPU, 2.50 GHz with cache
size of 3 MB. In Sect. 4.2, we used a PC with Intel Xeon CPU with 3.10 GHz with
20 MB SmartCache. All codes are written in Matlab R2014a. In this section, we
choose a multivariate lookback option in the Heston model, based on d = 5 under-
lyings, as an example. For the efficiency study, we first vary one parameter, then we
vary two.

Variation of two model parameters
We choose ρj = ρ, j = 1, . . . ,5, and vary

ρ ∈ [ρmin, ρmax], ρmin = −1, ρmax = 1,

σ ∈ [σmin, σmax], σmin = 0.1, σmax = 0.5,

fixing all other parameters to the values of Table 1. In order to guarantee a roughly
comparable accuracy between the Chebyshev interpolation method and the bench-
mark Monte Carlo pricing, we use the test grid P ⊆ [σmin, σmax]× [ρmin, ρmax] given
by

P = {(σ k1 , ρk2), k1, k2 ∈ {0, . . . ,20}},

σ k1 = σmin + k1

20
(σmax − σmin) , k1 ∈ {0, . . . ,20},

ρk2 = ρmin + k2

20
(ρmax − ρmin) , k2 ∈ {0, . . . ,20}.

In Table 5, we present the accuracy for the Chebyshev interpolation with N = 6 based
on the enriched Monte Carlo setting. Comparing the benchmark Monte Carlo setting
and the enriched Monte Carlo setting on this test grid, we observe that the maximal
absolute error is 2.791 × 10−2 and the confidence bounds of the benchmark Monte
Carlo setting do not exceed 6.783 × 10−2.

To compare the run-times, we show the run-times necessary to compute the prices
for M2 parameter tuples for different values of M . For the Monte Carlo estimates,
the results for M = 1 were empirically measured; all others were extrapolated from
that since the same amount of computation time would have had to be invested for
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Table 6 Efficiency study for a multivariate lookback option in the Heston model based on d = 5 under-
lyings. Here, we vary two model parameters and compare the Chebyshev results to Monte Carlo. Both
methods have been set up to deliver comparable accuracies. As the number of computed prices increases,
the Chebyshev algorithm increasingly profits from the initial investment of the offline phase

Heston

M 1 10 50 100

T
Cheby
online (s) 7.1 × 10−4 7.1 × 10−2 1.8 7.1

T
Cheby
offline+online (s) 8.2 × 104 8.2 × 104 8.2 × 104 8.2 × 104

T Monte Carlo (s) 3.4 × 102 3.4 × 104 8.4 × 105 3.4 × 106

T
Cheby
offline+online

T Monte Carlo
24313.9% 243.1% 9.7% 2.4%

Fig. 1 Efficiency study for a multivariate lookback option in the Heston model based on d = 5 under-
lyings, varying the two model parameters σ and ρ. Comparison of run-times for Monte Carlo pricing
and Chebyshev pricing including the offline phase. Both methods have been set up to deliver comparable
accuracies. We observe that the Monte Carlo and the Chebyshev curves intersect at roughly M = 15

each parameter set. Table 6 presents the results. In Fig. 1, for each M = 1, . . . ,100,
the run-times of the Chebyshev interpolation method, including the offline phase, are
presented and compared to the Monte Carlo method. We observe that for M = 15,
both lines intersect and for M > 15, the Chebyshev method outperforms its bench-
mark.

Additionally, Table 6 highlights that in the case of a total number of 502 param-
eter tuples, the Chebyshev method exhibits a significant decrease in (total) pricing
run-times. For the maximal number of 1002 parameter tuples that we investigated,
pricing resulted in more than 97% of run-time savings in our implementation. While
computing 1002 Heston prices using the Monte Carlo method requires up to 39 days,
the Chebyshev method computes the very same prices in 23 hours only. Note that
only 7 seconds of this time span are consumed by actual pricing during the online
phase.
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5 Conclusion and outlook

This article introduces the famous Chebyshev interpolation method to the problem
of parametric option pricing and more generally of parametric conditional expecta-
tions. The introduction explains the advantage of tackling the complexity by Cheby-
shev interpolation in this context. We analysed the resulting online–offline numerical
scheme. The main convergence results are established in Sect. 2, and special care is
taken of the error resulting from deriving the prices at the nodal point by Monte Carlo
simulation. A comparison of the efficiency in terms of accuracy versus offline costs
shows significant improvement over the existing approaches in the literature. We em-
phasize again that this type of efficiency needs to be accomplished by efficiency as
online cost versus accuracy. The “online efficiency” is more significant than the “of-
fline scheme” in many situations, although typically the “offline efficiency” still mat-
ters on a lower scale. In a numerical case study, we investigated the gain in “online
efficiency”. The results reveal that the method has a high potential for a variety of
applications and further developments.

The most urgent and challenging problems in finance are of high dimensional-
ity. For multivariate polynomial interpolation, the introduction of sparsity techniques
promises higher efficiency, for instance, by using compression techniques for tensors
as reviewed by [27]. The high potential of low-rank tensor methods is illustrated in
an online available numerical example for evaluating spread options in the bivariate
Black–Scholes model; see [19]. These types of techniques have to beat the curse of
dimensionality for both the online as well as the offline complexity.

Addressing further the offline complexity, we note that up to this point, we have
compared the Chebyshev interpolation method with a standard Monte Carlo tech-
nique. Since the invention of Monte Carlo methods in the 1940s, see [34], Monte
Carlo techniques have been further developed. In particular, quasi Monte Carlo and
multilevel Monte Carlo methods have proved to be significantly more efficient in a
variety of examples in mathematical finance; see [18, 29]. Thus by employing these
techniques in the offline phase, the Chebyshev interpolation method can be enhanced.
In terms of efficiency, we expect Fig. 1 to change only by rescaling the time axis,
meaning that the run-time for the computation of the Monte Carlo prices on the test
grid is reduced proportionally. Obviously, the offline phase of the Chebyshev inter-
polation scales in the same way. As a first improvement of our implementation of the
offline phase, in which we produce a new independent set of samples for each nodal
point, one can re-use a once drawn sample set to compute the prices at all nodal
points. Furthermore, the run-time of the offline phase can be reduced significantly by
parallelization and computations with the help of technical devices such as graphics
processing units.
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Appendix A: Remark on Chebyshev polynomials

Following [9, Chap. 3.3], Chebyshev interpolation appears as a natural choice among
the nodal polynomial interpolations. Namely, let f be a function that is n times con-
tinuously differentiable on [−1,1] and for which f (n+1) exists and is bounded on
(−1,1). Let pn be a polynomial that coincides with f at the nodal points x0, . . . , xn.
Then there exists ζ ∈ (−1,1) such that

|f (x) − pn(x)| =
∣∣∣∣

∏n
i=0(x − xi)

(n + 1)! f (n+1)(ζ )

∣∣∣∣≤
∏n

i=0 |x − xi |
(n + 1)! sup

z∈(−1,1)

|f (n+1)(z)|.

The nodal points x0, . . . , xN that minimize the maximum over x of the right-hand
side above turn out to be the Chebyshev points of the first kind, and the corresponding
Chebyshev polynomial interpolation is the resulting minimizing polynomial pn. We
point out that we decide to implement the Chebyshev points of the second kind, which
are the extrema of the Chebyshev polynomials. The advantage of this choice becomes
clear when generalizing the method presented in this article to the case of piecewise
polynomial interpolation: The Chebyshev points of the second kind contain the two
end points of the interval, and thus it is straightforward to concatenate interpolations
on adjacent intervals.

Appendix B: Proof of Proposition 2.1

The basic structure of the proof is the same as in [42, Proof of Lemma 7.3.3]. To
provide a complete, understandable proof, we first show the same steps as in [42,
Proof of Lemma 7.3.3] and state explicitly at which point the proof changes.

Proof In [42, Proof of Lemma 7.3.3], the proof is given for the error bound

max
p∈P

∣∣f (p) − IN

(
f (·))(p)

∣∣≤ √
D2

D
2 +1V �−N

min (1 − �−2
min)

− D
2 ,

where N is the number of interpolation points in each of the D dimensions, we set
�min := mini=1,...,D �i , and V is the bound of f on B(P, �) with P = [−1,1]D .
We now extend [42, Proof of Lemma 7.3.3] by incorporating the different values
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of Ni , i = 1, . . . ,D, as well as expressing the error bound with the different �i ,
i = 1, . . . ,D.

In general, we work with parameter spaces P = [p
1
,p1]× · · ·× [p

D
,pD] that are

of hyperrectangular structure. The linear transformation introduced in Sect. 2 gives a
transformation τP : [−1,1]D → P defined by

τP (p) =
(

pi + p
i
− pi

2
(1 − p)

)

i=1,...,D

.

Let p �→ Pricep be a function on P . We set P̂rice
p = (Price ◦ τP )(p). Furthermore,

let ÎN (P̂rice
(·)

)(p) be the Chebyshev interpolation of P̂rice
p

on [−1,1]D . Then it
holds that

IN(Price(·))(p) = (ÎN (P̂rice
(·)

)(·) ◦ τ−1
P
)
(p).

From this, it directly follows that

Pricep − IN(Price(·))(p) =
((

P̂rice
(·) − ÎN (P̂rice

(·)
)(·)) ◦ τ−1

P

)
(p).

Applying the error estimate from [42, Lemma 7.3.3] results in

|Price − IN(Price(·))(·)|C0(P) = ∣∣(P̂rice
(·) − ÎN (P̂rice

(·)
)(·)) ◦ τ−1

P (p)
∣∣
C0([−1,1]D)

≤ √
D2

D
2 +1V̂ �−N

min (1 − �−2
min)

− D
2 ,

where V̂ := supp∈B([−1,1]D,�) P̂rice
p

. Inserting that V̂ = V := supp∈B(P,�) Pricep

shows that we obtain the same error bound as for the original domain [−1,1]D .
Therefore, in the following, it suffices to show the proof for P = [−1,1]D . Note
that the rest of our proof differs from [43, Proof of Lemma 7.3.3] in that we allow
an anisotropic analyticity domain and different numbers of Chebyshev nodes in each
direction.

As in [42, Proof of Lemma 7.3.3], we introduce the scalar product

〈f,g〉� :=
∫

B(P,�)

f (z)g(z)

∏D
i=1

√
|1 − z2

i |
dz

and the Hilbert space

L2(B(P, �)
) := {f : f is analytic in B(P, �) and ‖f ‖2

� := 〈f,f 〉� < ∞}.
Following the approach in [42, Proof of Lemma 7.3.3], we define a complete or-
thonormal system for the space L2(B(P, �)) with respect to the scalar product 〈·, ·〉�
by the scaled Chebyshev polynomials

T̃μ(z) := cμTμ(z) with cμ :=
(

2

π

)D
2

D∏

i=1

(�
2μi

i + �
−2μi

i )−
1
2 for all μ ∈N

D
0 .
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Then for any bounded linear functional H on L2(B(P, �)), we have

|H(f )| ≤ ‖H‖�‖f ‖�, (B.1)

where ‖H‖� denotes the operator norm. By the orthonormality of (T̃μ)μ∈ND
0

, it fol-
lows that

‖H‖� = sup
f ∈L2(B(P,�))\{0}

|H(f )|
‖f ‖�

=
√√√√
∑

μ∈ND
0

|H(T̃μ)|2.

In the following, let H be the error of the Chebyshev polynomial interpolation at a
fixed p ∈P ,

H(f ) := f (p) − IN

(
f (·))(p).

We recall at this point the notation N := (N1, . . . ,ND) with possibly different values
for Nj for j = 1, . . . ,D. Starting with (B.1), we first focus on ‖H‖� and compute

‖H‖2
� =

∑

μ∈ND
0

|H(T̃μ)|2 =
∑

μ∈ND
0

c2
μ|H(Tμ)|2.

From now on, the proof differs from [42, Proof of Lemma 7.3.3] since we use the
values of Ni , i = 1, . . . ,D, and �i , i = 1, . . . ,D. Since we chose Chebyshev points
of the second instead of the first kind in the Chebyshev interpolation, we cannot apply
[42, Corollary 7.3.1], but adjust this in Lemma B.1 below to the Chebyshev points of
the second kind. We now apply Lemma B.1 to obtain

∑

μ∈ND
0

c2
μ|H(Tμ)|2 =

∑

μ∈ND
0 ,∃i:μi>Ni

c2
μ|H(Tμ)|2 ≤

∑

μ∈ND
0 ,∃i:μi>Ni

4c2
μ.

Overall, using (
∏D

j=1 �
2μj

j + x)−1 ≤ (
∏D

j=1 �
2μj

j )−1 = ∏D
j=1 �

−2μj

j for x > 0,
μj ∈ N0 and j = 1, . . . ,D, this leads to

‖H‖2
� ≤ 4

∑

μ∈ND
0 ,∃i:μi>Ni

c2
μ

≤ 4

(
2

π

)D D∑

i=1

( ∑

μ∈ND
0 ,μi>Ni

D∏

j=1

�
−2μj

j

)

≤ 4

(
2

π

)D D∑

i=1

�
−2Ni

i

( ∑

μ∈ND
0 ,μi>Ni

�
−2(μi−Ni)
i

D∏

j=1,j �=i

�
−2μj

j

)

≤ 4

(
2

π

)D D∑

i=1

�
−2Ni

i

( ∑

μ∈ND
0

D∏

j=1

�
−2μj

j

)
.
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From this point on, since |�−2
j | < 1 for j = 1, . . . ,D, we use the convergence of the

geometric series to obtain

‖H‖2
� ≤ 4

(
2

π

)D D∑

i=1

�
−2Ni

i

⎛

⎝
∞∑

μ1=0

· · ·
∞∑

μD=0

D∏

j=1

�
−2μj

j

⎞

⎠

= 4

(
2

π

)D D∑

i=1

�
−2Ni

i

D∏

j=1

1

1 − �−2
j

.

Recalling (B.1), we have to estimate ‖f ‖� , for which we get

‖f ‖2
� =

∫

B(P,�)

f (z)f (z)

∏D
i=1

√
|1 − z2

i |
dz ≤

(
sup

z∈B(P,�)

|f (z)|
)2

‖1‖2
�.

From π
D
2 T̃0 = 1, it directly follows that ‖1‖2

� = (π
D
2 )2‖T̃0‖2

� = πD and hence

‖f ‖2
� ≤ πDV 2.

Combining the results leads to

|H(f )| = ∣∣f (p) − IN

(
f (·))(p)

∣∣≤
(

πDV 24
( 2

π

)D
D∑

i=1

�
−2Ni

i

D∏

j=1

1

1 − �−2
j

) 1
2

= 2
D
2 +1V

( D∑

i=1

�
−2Ni

i

D∏

j=1

1

1 − �−2
j

) 1
2

. �

The following lemma shows that the Chebyshev interpolation of a polynomial
with a degree at most as high as the degree of the interpolating Chebyshev polyno-
mial is exact and furthermore determines an upper bound for interpolating Chebyshev
polynomials with higher degrees.

Lemma B.1 For x ∈ [−1,1]D , it holds that
∣∣Tμ(x) − IN

(
Tμ(·))(x)

∣∣= 0, ∀μ ∈N
D
0 : μi ≤ Ni, i = 1, . . . ,D, (B.2)

∣∣Tμ(x) − IN

(
Tμ(·))(x)

∣∣≤ 2, ∀μ ∈N
D
0 : ∃i ∈ {1, . . . ,D} : μi > Ni. (B.3)

Proof The uniqueness properties of the Chebyshev interpolation directly imply (B.2).
The proof of (B.3) is similar to [42, Proof of Corollary 7.3.1], where the zeros of the
Chebyshev polynomial are used as nodal points. Since we use the extreme points
of the Chebyshev polynomials instead, we need to adapt the proof by applying the
appropriate orthogonality property. We first focus on the one-dimensional case. Re-
calling (2.1), the Chebyshev interpolation of Tμ, μ > N , is given as

IN(Tμ)(x) =
N∑

j=0

cjTj (x) with cj = 21{0<j<N}

N

N∑

k=0

′′
Tμ(xk)Tj (xk), j ≤ N,
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where xk denotes the kth extremum of TN . The following orthogonality relation
holds:

N∑

k=0

′′
Tμ(xk)Tj (xk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, (μ + j) mod 2N �= 0 and |μ − j | mod 2N �= 0,

N, (μ + j) mod 2N = 0 and |μ − j | mod 2N = 0,
N
2 , (μ + j) mod 2N = 0 and |μ − j | mod 2N �= 0,
N
2 , (μ + j) mod 2N �= 0 and |μ − j | mod 2N = 0.

(B.4)

For μ,j ≤ N, the identity is shown in [32, (4.46)], and for μ > N , it follows along
the same lines. Then (B.4) yields for μ > N the existence of γ ≤ N such that

IN(Tμ) = Tγ ,

from which we deduce |IN(Tμ)| = 1 and hence

|Tμ − IN(Tμ)| ≤ |Tμ| + |IN(Tμ)| ≤ 2.

Thus (B.3) holds in the one-dimensional case. Finally, considering the D-dimensional
case, we observe that it is elementary to verify

IN(Tμ) =
D∏

i=1

INi
(Tμi

).

Thus we have

∣∣∣∣
D∏

i=1

Tμi
−

D∏

i=1

INi
(Tμi

)

∣∣∣∣≤
∣∣∣∣

D∏

i=1

Tμi

∣∣∣∣+
∣∣∣∣

D∏

i=1

INi
(Tμi

)

∣∣∣∣=
D∏

i=1

|Tμi
| +

D∏

i=1

|INi
(Tμi

)|,

by the triangle inequality. Inserting |Tμi
| = 1 and |INi

(Ti,μi
)| = 1 shows (B.3). �

Appendix C: Proof of Proposition 2.3

Proof Before we apply [5, Theorem 3.1], which assumes P = [−1,1]D , we investi-
gate how the linear transformation τP from the proof of Proposition 2.1 influences
the derivatives. Let p �→ Pricep be a function on P . We set ĥ(p) = (Price ◦ τP )(p).
Furthermore, let ÎN (̂h)(p) be the Chebyshev interpolation of ĥ(p) on [−1,1]D . Then
it directly follows that

Pricep − IN(Price(·))(p) =
((̂

h(·) − ÎN (̂h)(·)) ◦ τ−1
P

)
(p).

First, let us assume D = 1, i.e., P = [p,p], and let α ∈N0. For the partial derivatives,
it holds that

∂αPricep − ∂αIN(Price(·))(p) = ∂α
(
Pricep − IN(Price(·))(p)

)

= ∂α

(((̂
h(·) − ÎN (̂h)(·)) ◦ τ−1

P

)
(p)

)
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= ∂α−1 2

p − p

(
(∂1ĥ)

(
τ−1
P (p)

)

− (∂1ÎN (̂h(·))
)(

τ−1
P (p)

))
.

Repeating this step iteratively yields

∂αPricep − ∂αIN(Price(·))(p) = 2α

(p − p)α

(
(∂αĥ)

(
τ−1
P (p)

)

− (∂αÎN (̂h(·))
)(

τ−1
P (p)

))
.

This scales the error in [−1,1] by a factor 2α

(p−p)α
.

Extending this to the D-variate case where α = (α1, . . . , αD) ∈ N
D
0 is a multi-

index and ∂α = ∂α1 · · · ∂αD results in

∂αPricep − ∂αIN(Price(·))(p) =
D∏

i=1

2αi

(pi − p
i
)αi

(
(∂αĥ)

(
τ−1
P (p)

)

− (∂αÎN (̂h(·))
)(

τ−1
P (p)

))
.

From Theorem 3.1 in [5], the assertion follows directly for ĥ(·) on P = [−1,1]D ,
i.e., for any D

2 < σ ∈N and any σ ≥ μ ∈N0, there exists a constant C̃ > 0 such that

‖ĥ(·) − ÎN (̂h)(·)‖W
μ,ω
2 (P) ≤ C̃N2μ−σ ‖ĥ(·)‖W

σ,ω
2 (P). (C.1)

For arbitrary P , the constant from (C.1) has to be multiplied with the corresponding
factor resulting from the linear transformation τP . �
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