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Abstract Since Hobson’s seminal paper (Hobson in Finance Stoch. 2:329–347,
1998), the connection between model-independent pricing and the Skorokhod em-
bedding problem has been a driving force in robust finance. We establish a general
pricing–hedging duality for financial derivatives which are susceptible to the Sko-
rokhod approach.

Using Vovk’s approach to mathematical finance, we derive a model-independent
superreplication theorem in continuous time, given information on finitely many
marginals. Our result covers a broad range of exotic derivatives, including lookback
options, discretely monitored Asian options, and options on realized variance.
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1 Introduction

Initiated by Hobson [19], the theory of model-independent pricing has received sub-
stantial attention from the mathematical finance community; we refer to the sur-
vey [20]. Starting with [5, 17], the Skorokhod embedding approach has been comple-
mented through optimal transport techniques. In particular, first versions of a robust
superreplication theorem have been established: in discrete time, we mention [1] and
the important contribution of Bouchard and Nutz [6]; for related work in a quasi-
sure framework in continuous time, we refer to the work of Neufeld and Nutz [27]
and Possamaï et al. [30]. Our results are more closely related to the continuous-time
superreplication theorem of Dolinsky and Soner [14], which we recall here: given a
centered probability measure μ on R, they study the primal maximization problem

P := sup{EP[G(S)]},
where S denotes the canonical process on C[0,1], the supremum is taken over all
martingale measures P on C[0,1] with S1(P) = μ, and G denotes a functional on
the path space satisfying appropriate continuity assumptions. The main result of
[14] is a superreplication theorem that applies to this setup: they show that for each
p > P , there exist a hedging strategy H and a “European payoff function” ψ with∫

ψ dμ = 0 such that

p + (H · S)1 + ψ(S1) ≥ G(S).

This is in principle quite satisfying; however, a drawback is that the option G needs
to satisfy rather strong continuity assumptions, which in particular excludes all exotic
option payoffs involving volatility. Given the practical importance of volatility deriva-
tives, it is desirable to give a version of the Dolinsky–Soner theorem that applies also
to this case. More recently, Dolinsky and Soner [15] have extended the original re-
sults of [14] to include càdlàg price processes, multiple maturities and price processes
in higher dimensions; Hou and Obłój [24] have also recently extended these results
to incorporate investor beliefs via a “prediction set” of possible outcomes.

Subsequently, we establish a superreplication theorem that applies to G which is
invariant under time-changes in an appropriate sense. In contrast to the result of [14],
this excludes the case of continuously monitored Asian options, but covers other prac-
tically relevant derivatives such as options on volatility or realized variance, lookback
options and discretely monitored Asian options. Notably, it constitutes a general du-
ality result appealing to the rich literature on the connection of model-independent
finance and Skorokhod embedding. In a series of impressive achievements, Brown,
Cox, Davis, Hobson, Klimmek, Neuberger, Obłój, Pedersen, Raval, Rogers, Wang,
and others [31, 19, 7, 23, 8, 12, 10, 9, 11, 22, 21] were able to determine the val-
ues of related primal and dual problems for a number of exotic derivatives/market
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data, proving that they are equal. Here we establish the duality relation for generic
derivatives, in particular recovering duality for the specific cases mentioned above.

To achieve this, we apply a pathwise approach to model-independent finance
which was introduced by Vovk [35, 36, 37]. In particular, we rely on Vovk’s path-
wise Dambis–Dubins–Schwarz theorem, which we combine with the duality theory
for the Skorokhod embedding problem recently developed in [4].

After the completion of this work, we learned that Guo et al. [18] derived a duality
result similar in spirit to Proposition 4.3 and Theorem 4.6. Their approach relies on
different methods, and includes an interesting application to the optimal Skorokhod
embedding problem.

Organization of the paper In Sect. 1.1, we outline our main results. In Sect. 2,
Vovk’s approach to mathematical finance is introduced and preliminary results are
given. Section 3 is devoted to the statement and proof of our main result in its sim-
plest form—a superreplication theorem for time-invariant payoffs for one period. In
Sect. 4, we present an extension to finitely many marginals with “zero up to full
information”; in particular, we then obtain our most general superreplication result,
Theorem 4.6.

1.1 Formulation of the superreplication theorem

The purpose of this section is to illustrate heuristically the scope of the superrepli-
cation theorem presented below in Sects. 3 and 4.

For n ∈ N, let C[0, n] be the space of continuous functions ω : [0, n] → R with
ω(0) = 0. The aim is to consider financial options G : C[0, n] →R of the form

G(ω) = γ
(
t(ω)|[0,〈ω〉n], 〈ω〉1, . . . , 〈ω〉n

)
, (1.1)

where 〈ω〉· stands for the quadratic variation process of the path ω and t(ω) stands for
a version of the path ω which is rescaled in time so that for each t , its quadratic vari-
ation up to time t equals precisely t . Intuitively, this means that γ sees only the path
ω|[0,n] but not its time-parametrization. Let S be the canonical process on C[0, n].
Under appropriate regularity conditions on γ (cf. Theorems 3.1 and 4.6 below), we
obtain the following robust superhedging result:

Theorem (See Theorems 3.1 and 4.6 for the precise statements) Suppose that n ∈N,
I ⊆ {1, . . . , n}, n ∈ I and that μi is a centered probability measure on R for each
i ∈ I . Setting

Pn := sup

{

EP[G] : P is a martingale measure on C[0, n],
S0 = 0, Si ∼ μi for all i ∈ I

}

and

Dn := inf

{

a : there exist H and (ψj )j∈I such that
∫

ψj dμj = 0,

a +∑
j∈I ψj (Sj ) + (H · S)n ≥ G((St )t≤n)

}

,

one has Pn = Dn. Here (H · S)n denotes the “pathwise stochastic integral” of H

with respect to S.
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Of course, the present statement of our superreplication result is imprecise in that
neither the pathwise stochastic integral appearing in the formulation of Dn, nor the
pathwise quadratic variation in the definition of G, nor the operator t are properly
introduced. We address this in the following sections.

Example 1.1 Many financial derivatives such as options on volatility or realized vari-
ance, lookback options and discretely monitored Asian options are covered by the
above superreplication theorem. Mathematically speaking, examples of derivatives
in the time-invariant form (1.1) include the following:

– G1(ω) := F1(ω(1), . . . ,ω(n), 〈ω〉1, . . . , 〈ω〉n)
– G2(ω) := F2(maxt∈[0,n] ω(t))

– G3(ω) := F3(
∫ n

0 ϕ(ω(s), 〈ω〉s)d〈ω〉s)
– G4(ω) := F4(G1(ω),G2(ω),G3(ω))

for functions Fi : Rmi → R with suitable regularity and growth conditions for some
mi ∈ N for i = 1, . . . ,4.

Examples that are not covered by our results are continuously monitored Asian
options, G5(ω) := F(

∫ n

0 ω(s)ds) for a function F : R → R. However, in the case of
Asian options, we could discretize time and consider the discretely monitored Asian
options G6(ω) := F(

∑n−1
k=0 ω(k)).

Remark 1.2 Guo, Tan and Touzi recently derived a similar result to the above super-
replication theorem; cf. [18, Theorem 3.1]. Both duality results provide comparable
primal and dual problems and cover a similar class of financial derivatives.

However, the main difference is that our dual problem Dn is formulated in terms
of pathwise superhedging (i.e., the superhedge has to hold for every path), while the
superhedging in the dual problem of [18] is “only” required to hold quasi-surely un-
der all martingale measures. One advantage of the stronger requirement of pathwise
superhedging is that it allows us to formulate the dual problem independently of the
measures considered in the primal problem. On the other hand, the stochastic inte-
grals that can be constructed using the additional martingale measure structure allow
Guo, Tan and Touzi to consider superhedging along a fixed (non-simple) strategy,
while here we have to consider sequences of simple strategies; see the precise formu-
lation in Theorem 3.1 or Theorem 4.6 below.

2 Superhedging and outer measure

In recent years, Vovk [35, 36, 37], see also [33], developed a new model-free ap-
proach to mathematical finance based on hedging. Without presuming any proba-
bilistic structure, Vovk considers the space of real-valued continuous functions as
possible price paths and introduces an outer measure on this space, which is based on
a minimal superhedging price.

Vovk defines his outer measure on all continuous paths, and then shows that “typ-
ical price paths” admit a quadratic variation. To simplify many of the statements and
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proofs below, we restrict ourselves from the beginning to paths admitting quadratic
variation. We discuss in Remark 2.8 below why this is no problem.

To be precise, define for a continuous path ω : R+ → R and n ∈ N the stopping
times

σn
0 := 0 and σn

k := inf{t ≥ σn
k−1 : ω(t) ∈ 2−n

Z and ω(t) 
= ω(σn
k−1)}

for k ∈N. For n ∈ N, the discrete quadratic variation of ω is given by

V n
t (ω) :=

∞∑

k=0

(
ω(σn

k+1 ∧ t) − ω(σn
k ∧ t)

)2
, t ∈R+.

We write Ωqv for the space of continuous functions ω : R+ → R with ω(0) = 0 such
that

• V n(ω) converges locally uniformly in time to a continuous limit 〈ω〉 which has the
same intervals of constancy as ω, and

• either limt→∞ ω(t) exists or 〈ω〉 is unbounded on R+.

The coordinate process on Ωqv is denoted by Bt(ω) := ω(t), and we introduce the
natural filtration (Fqv

t )t≥0 := (σ (Bs : s ≤ t))t≥0 and set Fqv := ∨
t≥0 F

qv
t . Stopping

times τ and the associated σ -algebras Fqv
τ are defined as usual. Occasionally, we also

write 〈B〉(ω) = 〈ω〉.
A process H : Ωqv ×R+ →R is called a simple strategy if it is of the form

Ht(ω) =
∞∑

n=0

Fn(ω)1(τn(ω),τn+1(ω)](t), (ω, t) ∈ Ωqv ×R+,

where 0 = τ0(ω) < τ1(ω) < · · · are stopping times such that for every ω ∈ Ωqv, one
has limn→∞ τn(ω) = ∞, and Fn : Ωqv → R are Fqv

τn -measurable bounded functions
for n ∈ N. For such a simple strategy H , the corresponding capital process

(H · B)t (ω) =
∞∑

n=0

Fn(ω)
(
Bτn+1(ω)∧t (ω) − Bτn(ω)∧t (ω)

)

is well defined for every ω ∈ Ωqv and every t ∈ R+. A simple strategy H is called
λ-admissible for λ > 0 if (H · B)t (ω) ≥ −λ for all t ∈R+ and all ω ∈ Ωqv. We write
Hλ for the set of λ-admissible simple strategies.

To recall Vovk’s outer measure as introduced in [36], let us define the set of pro-
cesses

Vλ :=
{

h := (Hk)k∈N : Hk ∈Hλk
, λk > 0,

∞∑

k=0

λk = λ

}

for an initial capital λ ∈ (0,∞). Note that for every h = (Hk)k∈N ∈ Vλ, all ω ∈ Ωqv

and all t ∈R+, the corresponding capital process

(h · B)t (ω) :=
∞∑

k=0

(Hk · B)t (ω) =
∞∑

k=0

(
λk + (Hk · B)t (ω)

)− λ
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is well defined and takes values in [−λ,∞]. Then Vovk’s outer measure on Ωqv is
given by

Q[A] := inf
{
λ > 0 : ∃h ∈ Vλ with λ + lim inf

t→∞ (h · B)t (ω) ≥ 1A(ω),∀ω ∈ Ωqv
}

for A ⊆ Ωqv.
A slight modification of the outer measure Q was introduced in [29, 28], which

seems more in the spirit of the classical definition of superhedging prices in semi-
martingale models. In this context, one works with general admissible strategies and
the Itô integral of a general strategy is given as limit of integrals of simple strategies.
In that sense, the next definition seems more analogous to the classical one.

Definition 2.1 The outer measure P of A ⊆ Ωqv is defined as the minimal super-
hedging price of 1A, that is,

P [A] := inf

{

λ > 0 : ∃ (Hn) ⊆ Hλ such that ∀ω ∈ Ωqv,

lim inft→∞ lim infn→∞(λ + (Hn · B)t (ω)) ≥ 1A(ω)

}

.

A set A ⊆ Ωqv is said to be a nullset if it has P -outer measure zero. A property (A)

holds for typical price paths if the set A where (A) is violated is a nullset.

Of course, for both definitions of outer measures, it would be convenient to just
minimize over simple strategies rather than over the limit (inferior) along sequences
of simple strategies. However, this would destroy the very much appreciated count-
able subadditivity of both outer measures.

Remark 2.2 It is conjectured that the outer measure P coincides with Q. However,
up to now it is only known that P [A] ≤ Q[A] for a general set A ⊆ Ωqv (see [29,
Sect. 2.4]) and that they coincide for time-superinvariant sets; see Definition 2.5 and
Theorem 2.6 below. Therefore, the outer measures P and Q are basically the same in
the present paper since we focus on time-invariant financial derivatives.

Perhaps the most interesting feature of P is that it comes with the following arbi-
trage interpretation for nullsets.

Lemma 2.3 ([29, Lemma 2.4]) A set A ⊆ Ωqv is a nullset if and only if there exists
a sequence of 1-admissible simple strategies (Hn)n∈N ⊆ H1 such that

1 + lim inf
t→∞ lim inf

n→∞ (Hn · B)t (ω) ≥ ∞ · 1A(ω),

where we use the convention ∞ · 0 := 0 and ∞ · 1 := ∞.

A nullset is essentially a model-free arbitrage opportunity of the first kind. Recall
that B satisfies (NA1) (no arbitrage opportunities of the first kind) under a probability
measure P on (Ωqv,Fqv) if the set W∞

1 := {1+∫∞
0 Hs dBs : H ∈H1} is bounded in

probability, that is, if limn→∞ supX∈W∞
1
P[X ≥ n] = 0. The notion (NA1) has gained
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a lot of interest in recent years since it is the minimal condition which has to be
satisfied by any reasonable asset price model; see for example [3, 26, 32, 25].

The next proposition collects further properties of P .

Proposition 2.4 ([28, Proposition 3.3])

1. P is an outer measure with P [Ωqv] = 1, i.e., P is nondecreasing, countably sub-
additive, and P [∅] = 0.

2. Let P be a probability measure on (Ωqv,Fqv) such that the coordinate process B

is a P-local martingale, and let A ∈Fqv. Then P[A] ≤ P [A].
3. Let A ∈ Fqv be a nullset, and let P be a probability measure on (Ωqv,Fqv) such

that the coordinate process B satisfies (NA1) under P. Then P[A] = 0.

Especially, the last statement is of interest in robust mathematical finance because
it says that every property which is satisfied by typical price paths holds quasi-surely
for all probability measures fulfilling (NA1).

An essential ingredient to obtain our superreplication theorem for time-invariant
derivatives is a very remarkable pathwise Dambis–Dubins–Schwarz theorem as pre-
sented in [36]. In order to give its precise statement here, we recall the definition of
time-superinvariant sets; cf. [36, Sect. 3].

Definition 2.5 A continuous nondecreasing function f : R+ → R+ with f (0) = 0 is
said to be a time-change. The set of all time-changes is denoted by G0, and the group
of all time-changes that are strictly increasing and unbounded by G. Given f ∈ G0,
we define Tf (ω) := ω ◦ f . A subset A ⊆ Ωqv is called time-superinvariant if for all
f ∈ G0, it holds that

T −1
f (A) ⊆ A. (2.1)

A subset A ⊆ Ωqv is called time-invariant if (2.1) holds true for all f ∈ G.

For an intuitive explanation of time-superinvariance, we refer to [36, Remark 3.3].
We write W for the Wiener measure on (Ωqv,Fqv) and recall Vovk’s pathwise
Dambis–Dubins–Schwarz theorem.

Theorem 2.6 ([36, Theorem 3.1]) Each time-superinvariant set A ⊆ Ωqv satisfies
P [A] = Q[A] = W[A].

Proof For A ⊆ Ωqv, Proposition 2.4 and Remark 2.2 imply W[A] ≤ P [A] ≤ Q[A].
If A is additionally time-superinvariant, [36, Theorem 3.1] says Q[A] = W[A],
which immediately gives the desired result. �

Let us now introduce the normalizing time transformation operator t in the sense
of [36]. We follow [36] in defining the sequence of stopping times

τt (ω) := inf {s ≥ 0 : 〈ω〉s > t} (2.2)
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for t ∈ R+ and τ∞ := supn τn. The normalizing time transformation t : Ωqv → Ωqv

is given by

t(ω)t := ω(τt ), t ∈R+,

where we set ω(∞) := limt→∞ ω(t) for all ω ∈ Ωqv with supt≥0〈ω〉t < ∞. Note that
t(ω)· stays constant from time 〈ω〉∞ on (which is, of course, only relevant if that time
is finite). Below we also use t : Cqv[0, n] → Ωqv which is defined analogously and
where Cqv[0, n] denotes the space of paths that are obtained by restricting functions
in Ωqv to [0, n]. On the product space Ωqv ×R+, we further introduce

t̄(ω, t) := (
t(ω), 〈ω〉t

)
.

We are now ready to state the main result of [36].

Theorem 2.7 ([36, Theorem 6.4]) For any nonnegative Borel-measurable function
F : Ωqv → R, one has

E[(F ◦ t)1{〈B〉∞=∞}] =
∫

Ωqv

F dW,

where E denotes the obvious extension of P from sets to nonnegative functions and
〈B〉∞ := supt≥0〈B〉t .

Remark 2.8 It might seem like a strong restriction that we only deal with paths in
Ωqv rather than considering all continuous functions. However, Vovk’s result holds
on all of C(R+), the continuous paths on R+ started in 0, and is only slightly more
complicated to state in that case. In particular, Vovk shows that C(R+) \Ωqv is atyp-
ical in the sense that for every ε > 0, there exists a sequence of ε-admissible simple
strategies (Hn) on C(R+) (which are defined in the same way as above, replacing
every occurrence of Ωqv by C(R+)) such that for every ω ∈ C(R+) \ Ωqv, we have
lim inft→∞ lim infn→∞(Hn · B)t (ω) = ∞. In particular, all our results continue to
hold on C(R+) because on the set C(R+) \ Ωqv, we can superhedge any functional
starting from an arbitrarily small ε > 0. To simplify the presentation, we restricted
our attention to Ωqv from the beginning.

Remark 2.9 Vovk defines the normalizing time transformation slightly differently, re-
placing τt (ω) by inf{s ≥ 0 : 〈ω〉s ≥ t}, so considering the hitting time of [t,∞) rather
than (t,∞). This corresponds to taking the càglàd version (τt−)t≥0 of the càdlàg
process (τt )t≥0. But since on Ωqv, the paths ω and 〈ω〉 have the same intervals of
constancy, we get ω(τt−) = ω(τt ) for all ω ∈ Ωqv, and by Remark 2.8 more gener-
ally for all typical price paths in C(R+).

3 Duality for one period

Here we are interested in a one-period duality result for derivatives G on Cqv[0,1] of
the form ω �→ G(ω, 〈ω〉1) which are invariant under suitable time-changes of ω. Typ-
ical examples for such derivatives are the running maximum up to time 1 or functions
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of the quadratic variation. Formally, this amounts to

G = G̃ ◦ t̄(·,1)

for some optional process (G̃t )t≥0 on (Ωqv, (Fqv
t )t≥0), and more specifically we fo-

cus on processes G̃ which are of the form G̃t (ω) = γ (ω|[0,t], t), where ω|[0,t] denotes
the restriction of ω to the interval [0, t] and γ : Υ → R is an upper semi-continuous
functional which is bounded from above. Here we wrote Υ for the space of stopped
paths

Υ := {(f, s) : f ∈ C[0, s], s ∈R+},
equipped with the distance dΥ (sometimes called the Dupire distance in the context
of functional Itô calculus) which is defined for s ≤ t by

dΥ

(
(f, s), (g, t)

) := max

(

|t − s|, sup
0≤u≤s

|f (u)−g(u)|, sup
s≤u≤t

|g(u)−f (s)|
)

, (3.1)

and which turns Υ into a Polish space. The space Υ is a convenient way to express
optionality of a process on C(R+). Indeed, put

r : C(R+) ×R+ → Υ, (ω, t) �→ (ω|[0,t], t).

By [13, Theorem IV. 97], a process Y is predictable if and only if there is a function
H : Υ → R such that Y = H ◦ r . Moreover, since Ωqv is a subset of the set of con-
tinuous paths, the optional and predictable processes coincide. Hence, Y is optional
if and only if such a function H exists. We can say that an optional process Y is
Υ -(upper/lower semi-)continuous if and only if the corresponding function H on Υ

is (upper/lower semi-)continuous.
Given a centered probability measure μ on R with finite first moment, we want to

solve the primal maximization problem

P := sup{EP[G] : P is a martingale measure on Cqv[0,1] with S1(P) = μ}, (3.2)

where S denotes the canonical process on Cqv[0,1].
Since μ satisfies

∫ |x|dμ(x) < ∞, there is a smooth convex function ϕ : R →R+
with ϕ(0) = 0, limx→±∞ ϕ(x)/|x| = ∞, and such that

∫
ϕ(x)dμ(x) < ∞ (apply for

example the de la Vallée-Poussin theorem). From now on, we fix such a function ϕ

and define

ζt (ω) := 1

2

∫ t

0
ϕ′′(Ss(ω)

)
d〈S〉s(ω), (ω, t) ∈ Cqv[0,1] × [0,1],

where we write 〈S〉(ω) := 〈ω〉 for ω ∈ Ωqv. We then consider for α, c > 0 the set of
(generalized admissible) simple strategies

Qα,c :=
{

H : H is a simple strategy and
(H · S)t (ω) ≥ −c − αζt (ω),∀(ω, t) ∈ Cqv[0,1] × [0,1]

}

.
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We also define the set of “European options available at price 0” as

E0 :=
{

ψ ∈ C(R) : |ψ |
1 + ϕ

is bounded,

∫
ψ(x)dμ(x) = 0

}

.

In this setting, we deduce the following duality result for one period.

Theorem 3.1 Let γ : Υ → R be upper semi-continuous and bounded from above
and let

G : Cqv[0,1] → R, G(ω) := γ
(
t(ω)|[0,〈ω〉1], 〈ω〉1

)
.

Setting

D := inf

{

p : ∃c,α > 0, (Hn) ⊆ Qα,c,ψ ∈ E0 such that ∀ω ∈ Cqv[0,1],
p + lim infn→∞(Hn · S)1(ω) + ψ(S1(ω)) ≥ G(ω)

}

,

we have the duality relation

P = D.

Note that P does not depend on ϕ and therefore also the value of D does not depend
on it; the function ϕ is just needed to provide some compactness.

The inequality P ≤ D is fairly easy: If p > D, then there exist a sequence
(Hn) ⊆ Qα,c and a ψ ∈ C(R) with

∫
ψ(x)dμ(x) = 0 such that

p + lim inf
n→∞ (Hn · S)1(ω) + ψ

(
S1(ω)

)≥ G(ω).

In particular, for all martingale measures P on Cqv[0,1] with S1(P) = μ, we have

EP[G] ≤ EP

[
p + lim inf

n→∞ (Hn · S)1 + ψ(S1)
]

≤ p + lim inf
n→∞ EP[(Hn · S)1] +EP[ψ(S1)] ≤ p,

where in the second step we used Fatou’s lemma, which is justified because (Hn ·S)1

is uniformly bounded from below by −c − αζ1 and Itô’s formula gives P-almost
surely

ϕ(St ) =
∫ t

0
ϕ′(Ss)dSs + ζt ,

which shows that ζ is the compensator of the P-submartingale ϕ(S) and therefore
EP[ζ1] < ∞.

In the following, we concentrate on the inequality P ≥ D and proceed in three
steps:

1. Reduction of primal problem P to optimal Skorokhod embedding P ∗: P = P ∗.
2. Duality of optimal Skorokhod embedding P ∗ and a dual problem D∗: P ∗ = D∗.
3. The new dual problem D∗ dominates the dual problem D: D ≤ D∗.
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Step 1: The idea, going back to Hobson [19], is to translate the primal problem
into an optimal Skorokhod embedding problem. Let us start by observing that if P is a
martingale measure for S, then by the Dambis–Dubins–Schwarz theorem, the process
(t(S)t∧〈S〉1)t≥0 is a stopped Brownian motion under P in the filtration (FS

τt
)t≥0, where

(FS
t )t∈[0,1] is the usual augmentation of the filtration generated by S and (τt )t≥0 are

the stopping times defined in (2.2). It is also straightforward to verify that 〈S〉1 is a
stopping time with respect to (FS

τt
). Since moreover t(S)〈S〉1 = S1 ∼ μ, we deduce

that there exists a new filtered probability space (Ω̃, (Gt )t≥0,Q) with a Brownian
motion W and a stopping time τ such that Wτ ∼ μ, the process W·∧τ is a uniformly
integrable martingale, and

EP[G] = EQ

[
γ
(
(Ws)s≤τ , τ

)]
.

Conversely, let (Ω̃, (Gt )t≥0,Q) be a filtered probability space with a Brownian
motion W and a finite stopping time τ such that Wτ ∼ μ and W·∧τ is a uniformly
integrable martingale, and define St := W(t/(1−t))∧τ for t ∈ [0,1]. Then S is a mar-
tingale on [0,1] with 〈S〉1 = τ , and writing P for the law of S, we get

EQ

[
γ
(
(Ws)s≤τ , τ

)]= EP[G̃ ◦ t̄(S,1)] = EP[G].
To conclude, we arrive at the following observation.

Lemma 3.2 The value P defined in (3.2) is given by

P = P ∗

:= sup

{

EQ[γ ((Ws)s≤τ , τ )] : (Ω̃, (Gt )t≥0,Q) ∈ F, τ ∈ T((Gt )t≥0),

Wτ ∼ μ,W·∧τ is a u.i. martingale

}

, (3.3)

where F denotes all filtered probability spaces supporting a Brownian motion W and
T((Gt )t≥0) is the set of (Gt )t≥0-stopping times.

By [4, Lemma 3.11], the value P ∗ is independent of the particular probability
space as long as it supports a Brownian motion and a G0-measurable uniformly
distributed random variable. Therefore, it is sufficient to consider the probabil-
ity space (Ω̄, F̄ , (F̄t )t≥0,W̄), where we take Ω̄ := C(R+) × [0,1], F = (Ft )t≥0
to be the natural filtration on C(R+), F̄ to be the completion of F ⊗ B([0,1]),
W̄[A1 ×A2] := W[A1]λ(A2), and F̄t the usual augmentation of Ft ⊗σ([0,1]). Here,
λ denotes the Lebesgue measure and W the Wiener measure. We write B̄ = (B̄t )t≥0
for the canonical process on Ω̄ , that is, B̄t (ω,u) := ω(t).

For two given random times τ and τ ′ on Ω̄ and a bounded continuous function
f : C(R+) ×R+ →R, we define

df (τ, τ ′) := |E
W̄

[f (τ) − f (τ ′)]|

=
∣
∣
∣
∣

∫ (
f
(
ω,τ(ω,x)

)− f
(
ω,τ ′(ω, x)

))
W̄(dω,dx)

∣
∣
∣
∣.
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We then identify τ and τ ′ if df (τ, τ ′) = 0 for all continuous and bounded f . On
the resulting space of equivalence classes denoted by RT, the family of semi-norms
(df )f gives rise to a Polish topology. An equivalent interpretation of this space is to
consider the measures on C(R+) ×R+ induced by

ντ (A × B) =
∫

1{ω∈A,τ(ω,x)∈B} W̄(dω,dx). (3.4)

The topology above corresponds to the topology of weak convergence of the cor-
responding measures. A random time τ is an F̄ -stopping time if and only if for any
f ∈ C(R+) supported on [0, t], the random variable f (τ) is F̄t -measurable, which in
turn holds if and only if for all g ∈ Cb(C(R+)), we have (see also [4, Theorem 3.8])

E
W̄

[
f (τ)(g −EW[g|Ft ])

]=
∫

f (s)(g −EW[g|Ft ])(ω) ντ (dω,ds) = 0, (3.5)

where on the left-hand side, we interpret g − EW[g|Ft ] as a random variable on the
extension Ω̄ via (g −EW[g|Ft ])(ω, x) = (g −EW[g|Ft ])(ω). As a consequence, for
a stopping time τ on Ω̄ , all elements of the respective equivalence class are stopping
times. We call this equivalence class, as well as (by abuse of notation) its representa-
tives, randomized stopping times (in short, RST).

By the same argument as above, there is a continuous compensating process
ζ 1 : Υ → R such that (ϕ(Bt )−ζt ) is a martingale under W. We write RST(μ) for the
set of randomized stopping times which embed a given measure μ (that is, B̄τ ∼ μ

and B·∧τ is a uniformly integrable martingale) and such that E
W̄

[ζ 1
τ ] < ∞, this last

condition also being equivalent to E
W̄

[ζ 1
τ ] = V for V = ∫

ϕ(x)μ(dx). It is then not
hard to show that RST(μ) is compact; see [4, Theorem 3.14 and Sect. 7.2.1]. Thereby,
we have turned the optimization problem (3.2) into the primal problem of the optimal
Skorokhod embedding problem

P ∗ = sup
τ∈RST(μ)

E
W̄

[
γ
(
(B̄s)s≤τ , τ

)]
. (3.6)

Step 2: In [4], a duality result for (3.6) is shown. To state it (and in what follows),
it is convenient to fix a particularly nice version of the conditional expectation on the
Wiener space (C(R+),F ,W).

Definition 3.3 Let X : C(R+) → R be a measurable function which is bounded or
positive. Then we define EW[X|Ft ] to be the unique Ft -measurable function satisfy-
ing

EW[X|Ft ](ω) :=
∫

X
(
(ω|[0,t]) ⊕ ω̃

)
W(dω̃),

where (ω|[0,t]) ⊕ ω̃ is the concatenation of ω|[0,t] and ω̃, that is,

(ω|[0,t]) ⊕ ω̃(r) := 1{r≤t}ω(r) + 1{r>t}
(
ω(t) + ω̃(r − t)

)
.
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Similarly, for bounded or positive X : Ωqv → R, we define EW[X|Fqv
t ] to be the

unique Fqv
t -measurable function satisfying

EW[X|Fqv
t ](ω) =

∫
X
(
(ω|[0,t]) ⊕ ω̃

)
W(dω̃).

Then EW[X|Ft ](ω) as well as EW[X|Fqv
t ](ω) depend only on ω|[0,t], and in par-

ticular, we can (and do) interpret the conditional expectation also as a function on
Cqv[0, t] := {ω|[0,t] : ω ∈ Ωqv}.

We equip Ωqv with the topology of uniform convergence on compacts. Note that
then Ωqv is a metric space, but it is not complete due to the fact that it is possible to
approximate paths without quadratic variation uniformly by typical Brownian sample
paths.

Proposition 3.4 ([4, Proposition 3.5]) If X ∈ Cb(C(R+)), then the process given by
Xt(ω) := EW[X|Ft ](ω) defines a Υ -continuous martingale on (C(R+), (Ft ),W).
By restriction, it is also a Υ -continuous martingale on (Ωqv, (Fqv

t ),W).

Then the duality for the optimal Skorokhod embedding reads as follows:

Proposition 3.5 Let γ : Υ → R be upper semi-continuous and bounded from above.
We put

D∗ := inf

⎧
⎨

⎩
p :

∃α ≥ 0,ψ ∈ E0,m ∈ Cb(C(R+)) such that EW[m] = 0 and
p +EW[m|Ft ](ω) + αQ(ω, t) + ψ(Bt (ω)) ≥ γ (ω, t),

∀(ω, t) ∈ C(R+) ×R+

⎫
⎬

⎭
,

where we write Q(ω, t) := ϕ(Bt (ω)) − 1/2
∫ t

0 ϕ′′(Bs(ω))ds. Let P ∗ be defined as
in (3.3). Then one has

P ∗ = D∗.

Proof This is essentially a restatement of [4, Theorem 4.2 and Proposition 4.3 (cf.
the proof of Theorem 4.2)], combined with the discussion before [4, Theorem 7.3],
which enables us to modify the statement to include the term αQ(ω, t) instead of
α(ω(t)2 − t/2). �

By Proposition 3.4 and the fact that Ωqv is dense in C(R+), we see that the
value D∗ equals

D∗,qv := inf

⎧
⎨

⎩
p :

∃α ≥ 0,ψ ∈ E0,m ∈ Cb(Ω
qv) such that EW[m] = 0 and

p +EW[m|Fqv
t ](ω) + αQ(ω, t) + ψ(Bt (ω)) ≥ γ (ω, t),

∀(ω, t) ∈ Ωqv ×R+

⎫
⎬

⎭
.

Step 3: Let now p > D∗ = P ∗ = P . Then Proposition 3.5 gives us a function
ψ ∈ E0, a constant α ≥ 0 and a continuous bounded function m : Ωqv → R with
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EW[m] = 0 such that for all (ω, t) ∈ Ωqv ×R+,

Mt(ω) := EW[m|Fqv
t ](ω) ≥ −p − ψ

(
Bt(ω)

)− αQ(ω, t) + γ (ω, t). (3.7)

Consider the functional m̃ : Ωqv → R given by

m̃ := m ◦ t
which is G-invariant, that is, invariant under all strictly increasing unbounded time-
changes, and satisfies EW[m̃] = EW[m] = 0. Denote by m0 the supremum of |m(ω)|
over all ω ∈ Ωqv. Then m0 + m ≥ 0, and if we fix ε > 0 and apply Theorem 2.7 in
conjunction with Remark 2.2, we get a sequence of simple strategies (H̃ n) ⊆ Hm0+ε

such that

lim inf
t→∞ lim inf

n→∞
(
ε + (H̃ n · B)t (ω)

)≥ m̃(ω)1{〈B〉∞=∞}(ω), ω ∈ Ωqv.

By stopping, we may suppose that (H̃ n · B)t (ω) ≤ m0 for all (ω, t) ∈ Ωqv ×R+. Set

M̃t (ω) := (M ◦ t̄)(ω, t), (ω, t) ∈ Ωqv ×R+.

Lemma 3.6 For all (ω, t) ∈ Ωqv ×R+, we have

ε + lim inf
n→∞ (H̃ n · B)t (ω) ≥ M̃t (ω).

Proof We claim that M̃t = EW[1{〈B〉∞=∞}m̃|Fqv
t ]. Indeed, we have

M̃t (ω|[0,t] ⊕ ω̃, t) = (M ◦ t̄)(ω|[0,t] ⊕ ω̃, t) = M〈B〉t
(
t(ω|[0,t] ⊕ ω̃)

)
,

where the latter quantity actually does not depend on ω̃, i.e., with a slight abuse of
notation we may write it as M〈B〉t (t(ω|[0,t])). Also, we have

EW[1{〈B〉∞=∞}m̃|Fqv
t ](ω|[0,t])

= EW[1{〈B〉∞=∞}m ◦ t |Fqv
t ](ω|[0,t])

=
∫

1{〈B〉∞=∞}(ω|[0,t] ⊕ ω̃)(m ◦ t)(ω|[0,t] ⊕ ω̃)W(dω̃)

=
∫

1{〈B〉∞=∞}(ω̃)m
(
t(ω|[0,t]) ⊕ t(ω̃)

)
W(dω̃)

=
∫

m
(
t(ω|[0,t]) ⊕ ω̃

)
W(dω̃)

= M〈B〉t
(
t(ω|[0,t])

)
,

where we used that W-almost surely, ω̃ = t(ω̃) and 〈B〉∞ = ∞. Writing

(H̃ n · B)st := (H̃ n · B)s − (H̃ n · B)t ,
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we thus find

M̃t = EW[1{〈B〉∞=∞}m̃|Fqv
t ]

≤ ε +EW

[
lim inf
s→∞ lim inf

n→∞ (H̃ n · B)s
∣
∣Fqv

t

]

= ε +EW

[
lim inf
s→∞ lim inf

n→∞
(
(H̃ n · B)t + (H̃ n · B)st

)∣∣Fqv
t

]

= ε + lim inf
n→∞ (H̃ n · B)t +EW

[
lim inf
s→∞ lim inf

n→∞ (H̃ n · B)st

∣
∣Fqv

t

]
.

Now it is easily verified that (lim infn(H̃ n · B)st )s≥t is a bounded W-supermartingale
started in 0 (recall that −m0 − ε ≤ (H̃ n · B)s(ω) ≤ m0 for all (ω, s) ∈ Ωqv × R+,
which yields |(H̃ n · B)st (ω)| ≤ 2m0 + ε for all (ω, s) ∈ Ωqv ×R+), and therefore the
conditional expectation on the right-hand side is nonpositive, which concludes the
proof. �

We are now ready to show that D ≤ D∗ and thus to prove the main result (Theo-
rem 3.1) of this section.

Proof of Theorem 3.1 Lemma 3.6 and (3.7) show that

ε + lim inf
n→∞ (H̃ n · B)t (ω) ≥ −p − ψ

(
(B ◦ t̄)(ω, t)

)− α(Q ◦ t̄)(ω, t) + γ ◦ t̄(ω, t)

for all (ω, t) ∈ Ωqv ×R+. Observing that

ψ
(
(B ◦ t̄)(ω, t)

)= ψ
(
Bt(ω)

)
and Q ◦ t̄(ω, t) = ϕ

(
Bt(ω)

)− ζt (ω),

we get

p + ε + lim inf
n→∞ (H̃ n · B)t (ω) + ψ

(
Bt(ω)

)+ α
(
ϕ
(
Bt(ω)

)− ζt (ω)
)

≥ γ ◦ t̄(ω, t)

for all (ω, t) ∈ Ωqv ×R+. It now suffices to apply Föllmer’s pathwise Itô formula [16]
along the dyadic Lebesgue partition defined in Sect. 2 to obtain a sequence of simple
strategies (Gn) ⊆ Q1,α such that limn→∞(Gn ·B)t (ω) = α(ϕ(Bt (ω))− ζt (ω)) for all
(ω, t) ∈ Ωqv × R+; to make the strategies (Gn) admissible, it suffices to stop once
the wealth at time t drops below −1−αζt (ω) < α(ϕ(Bt (ω))− ζt (ω)). Hence, setting
Hn := H̃ n +Gn, we have established that there exist (Hn) ⊆ Qm0+ε+1,α and ψ ∈ E0

such that

p + ε + lim inf
n→∞ (Hn · B)t (ω) + ψ

(
Bt(ω)

)≥ γ ◦ t̄(ω, t)

for all (ω, t) ∈ Ωqv × R+. Now for fixed t ∈ R+ the functionals on both sides only
depend on ω|[0,t], so we can consider them as functionals on Cqv[0, t], and thus the
inequality holds in particular for all (ω, t) ∈ Cqv[0,1]×[0,1]. Since p > P and ε > 0
are arbitrarily small, we deduce that D ≤ P and thus that D = P . �
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4 Duality in the multi-marginal case

In this section, we show a general duality result for the multi-marginal Skorokhod
embedding problem and, moreover, for a slightly more general problem. Our main
result then follows by exactly the same steps and arguments as for the one-marginal
duality, that is, reduction of the primal problem to optimal multi-marginal Skorokhod
embedding (Step 1 in the last section) and domination of the dual problem via the
dual in the optimal multi-marginal Skorokhod embedding (Step 3 in the last section).

To this end, we introduce the set of all randomized multi-stopping times or
n-tuples of randomized stopping times. As before, we consider the space (Ω̄, F̄ ,W̄)

and denote its elements by (ω, x). We consider all n-tuples τ = (τ1, . . . , τn) with
τ1 ≤ · · · ≤ τn and τi ∈ RT for all i. We identify two such tuples if

df (τ, τ ′) := |E
W̄

[f (τ1, . . . , τn) − f (τ ′
1, . . . , τ

′
n)]|

=
∣
∣
∣
∣

∫ (
f
(
ω,τ1(ω, x), . . . , τn(ω, x)

)

− f
(
ω,τ ′

1(ω, x), . . . , τ ′
n(ω,x)

))
W̄(dω,dx)

∣
∣
∣
∣ (4.1)

vanishes for all continuous, bounded f : C(R+) ×R
n+ →R and denote the resulting

space by RTn. Moreover, we consider RTn as a topological space by testing against
all continuous bounded functions as in (4.1). As for the one-marginal case, for an
ordered tuple τ1 ≤ · · · ≤ τn of stopping times, it follows from (3.5) that all elements
of the respective equivalence class are ordered tuples of stopping times as well. We
denote this class by RSTn.

Fix I ⊆ {1, . . . , n} with n ∈ I and |I | ≤ n measures (μi)i∈I = μ in convex or-
der with finite first moments. If i ∈ {1, . . . , n} \ I , write i+ for the smallest ele-
ment of {j ∈ I : j ≥ i}. For i ∈ I , we set i+ := i. By an iterative application of
the de la Vallée-Poussin theorem, there is an increasing family of smooth, nonneg-
ative, strictly convex functions (ϕi)i=1,...,n (increasing in the sense that ϕi ≤ ϕj for
i ≤ j ) such that ϕi(0) = 0 and ϕi+1/ϕi → ∞ as x → ±∞, and

∫
ϕi dμi+ < ∞ for

all i = 1, . . . , n. Denote the corresponding compensating processes by ζ i such that
Qi := ϕi(B) − ζ i is a martingale, and write Ei := {ψ ∈ C(R) : |ψ |

1+ϕi
is bounded}.

Then we define RSTn(μ) to be the subset of RSTn consisting of all tuples
τ1 ≤ · · · ≤ τn such that B̄τi

∼ μi for all i ∈ I and E
W̄

[ζ n
τn

] < ∞.
Similarly to the one-marginal case, we get

Lemma 4.1 For any set I ⊆ {1, . . . , n} with n ∈ I and for any family of measures
(μi)i∈I = μ in convex order, the set RSTn(μ) is compact.

We introduce the space of paths where we have stopped n times as

Υn := {(f, s1, . . . , sn) : (f, sn) ∈ Υ,0 ≤ s1 ≤ · · · ≤ sn},
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equipped with the topology generated by the obvious analogue of (3.1), namely

dΥn

(
(f, s1, . . . , sn), (g, t1, . . . , tn)

)

:= max
(
|s1 − t1|, . . . , |sn − tn|, sup

u≥0
|f (u ∧ sn) − g(u ∧ tn)|

)
.

We put �n := {(s1, . . . , sn) ∈ R
n+ : s1 ≤ · · · ≤ sn}. As a natural extension of an op-

tional process, we say that a process Y : C(R+) × �n is optional if for any family of
stopping times τ1 ≤ · · · ≤ τn, the map Y(B̄, τ1, . . . , τn) is F̄τn -measurable. Put

rn : C(R+) × �n → Υn, (ω, s1, . . . , sn) �→ (ω|[0,sn], s1, . . . , sn).

Just as in the one-marginal case, a function Y : C(R+) × �n → R is optional if and
only if there exists a Borel function H : Υn → R such that Y = H ◦ rn.

Given γ : Υn →R, we are interested in the n-step primal problem

P ∗
n := sup

{
E
W̄

[γ ◦ rn(ω, τ1, . . . , τn)] : (τi)
n
i=1 ∈ RSTn(μ)

}

and its relation to the dual problem

D∗
n := inf

⎧
⎪⎪⎨

⎪⎪⎩
a :

∃(ψj )j∈I , martingales (Mi)ni=1 with EW[Mi∞] = 0,∫
ψj dμj = 0 and

a +∑
j∈I ψj (Btj (ω)) +∑n

i=1 Mi
ti
(ω) ≥ γ (ω, t1, . . . , tn),

∀ω ∈ C(R+), (t1, . . . , tn) ∈ �n

⎫
⎪⎪⎬

⎪⎪⎭
. (4.2)

Remark 4.2 Note that in the primal as well as in the dual problem, only the stopping
times truly live on Ω̄ . The martingales Mi as well as the compensators ζ i live on
C(R+) ×R+ in that they satisfy e.g. Mi

t (ω, x) = Mi
t (ω). We stress this by suppress-

ing the x variable and writing e.g. EW[Mi∞] = 0 rather than E
W̄

[Mi∞] = 0.

Convention In the formulation of D∗
n in (4.2) and in the rest of the present section,

M1, . . . ,Mn range over Υ -continuous martingales such that

Mi
t (ω) = E

W̄
[mi |F0

t ](ω) + Qt(ω)

for some mi ∈ Cb(Ω) and Qt(ω) = f (Bt (ω))−ζ
f
t (ω), where f is a smooth function

such that |f |/(1+ϕi) is bounded, and ζ f is the corresponding compensating process
ζ f = 1

2

∫ ·
0 f ′′(Bs)ds. In addition, we assume that ψi ∈ Ei for all i ≤ n.

Proposition 4.3 Let γ : Υn → R be upper semi-continuous and bounded from above.
Under the above assumptions, we have P ∗

n = D∗
n .

As usual, the inequality P ∗
n ≤ D∗

n is not hard to see. The proof of the opposite
inequality is based on the following minimax theorem.
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Theorem 4.4 ([2, Theorem 2.4.1]) Let K , L be convex subsets of vector spaces H1

and H2, respectively, where H1 is locally convex, and let F : K × L → R be given.
If

1. K is compact,
2. F(·, y) is continuous and convex on K for every y ∈ L,
3. F(x, ·) is concave on L for every x ∈ K ,

then

sup
y∈L

inf
x∈K

F(x, y) = inf
x∈K

sup
y∈L

F(x, y).

The inequality P ∗
n ≥ D∗

n will be proved inductively on n. To this end, we need the
following preliminary result.

Proposition 4.5 Let c : C(R+) × �2 → R be upper semi-continuous and bounded
from above and Vi := ∫

ϕi dμi < ∞ for i = 1,2. Put

P V2 := sup
{
E
W̄

[c(ω, τ1, τ2)] : τ1 ∈ RST1(μ1),EW̄
[ζ 2

τ2
] ≤ V2, (τ1, τ2) ∈ RT2

}

and

DV2 := inf

⎧
⎪⎪⎨

⎪⎪⎩

∫
ψ1 dμ1 :

m ∈ Cb(C(R+)),ψ1 ∈ Cb(R+),EW[m] = 0,

∃α1, α2 ≥ 0 with
m(ω) + ψ1(ω(t1)) −∑2

i=1 αi(Vi − ζ i
ti
(ω))

≥ c(ω, t1, t2)

⎫
⎪⎪⎬

⎪⎪⎭
.

Then we have

P V2 = DV2 .

Proof The inequality P V2 ≤ DV2 follows easily. We are left to show the other in-
equality. The idea of the proof is to use a variational approach together with Theo-
rem 4.4 to reduce the claim to the classical duality result in optimal transport.

Using standard approximation procedures (see [34, Proof of Theorem 5.10 (i),
Step 5]), we can assume that c is continuous and bounded, bounded from above by 0
and satisfies for some L

supp c ⊆ C(R+) × [0,L]2.

In the following, we want to apply Theorem 4.4 where we take for K certain sub-
sets of RT2. The convexity of these subsets is easily seen by interpreting elements
of these sets as measures via the obvious extension of (3.4). Compactness follows
by Prokhorov’s theorem; this is shown by a trivial modification of the argument in
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[4, Theorem 3.14]. Hence, it follows by using Theorem 4.4 that

sup
τ1∈RST1(μ1)

E
W̄

[ζ 2
τ2

]≤V2

(τ1,τ2)∈RT2

E
W̄

[c(ω, τ1, τ2)]

= sup
τ1∈RST1(μ1)
τ2≤max{L,τ1}
(τ1,τ2)∈RT2

inf
α≥0

E
W̄

[
c(ω, τ1, τ2) + α

(
V2 − ζ 2

τ2
(ω)

)]

= inf
α≥0

sup
τ1∈RST1(μ1)
τ2≤max{L,τ1}
(τ1,τ2)∈RT2

E
W̄

[
c(ω, τ1, τ2) + α

(
V2 − ζ 2

τ2
(ω)

)]

= inf
α≥0

sup
τ1∈RST1(μ1)

E
W̄

[cα(ω, τ1)],

where

cα(ω, t1) := sup
t1≤t2≤max{L,t1}

(
c(ω, t1, t2) + α

(
V2 − ζ 2

t2
(ω)

))
.

Hence, cα is a continuous and bounded function on C(R+)×R+ since c is bounded,
ζ 2 is continuous and increasing, and {t2 : t1 ≤ t2 ≤ max{L, t1}} is closed. To move
closer to a classical transport setup, we define F : C(R+) ×R+ ×R → [−∞,0] by

F(ω, t, y) :=
{

cα(ω, t) if ω(t) = y,

−∞ else,

which is an upper semi-continuous bounded function supported on

C(R+) × [0,L] ×R.

Moreover, we define JOIN(μ1) to consist of all pairs of random variables (τ, Y ) on
(Ω̄,W̄) such that Y ∼ μ1 and τ ∈ RST satisfies E

W̄
[ζ 1

τ ] < ∞. If τ1 ∈ RST(μ1), then
(τ1, B̄τ1) ∈ JOIN(μ1) and

E
W̄

[cα(ω, τ1)] = E
W̄

[F(ω, τ1, B̄τ1)] > −∞.

Conversely, if (τ, Y ) ∈ JOIN(μ1) with E
W̄

[F(ω, τ,Y )] > −∞, then one has almost
surely Y = Bτ ∼ μ1 so that τ ∈ RST(μ1). Therefore, by the same argument as above,

sup
τ1∈RST(μ1)

E
W̄

[cα(ω, τ1)] = sup
(τ,Y )∈JOIN(μ1)

E
W̄

[F(ω, τ,Y )]

= inf
β≥0

sup
Y∼μ1

E
W̄

[Fβ(ω,Y )],

where

Fβ(ω,y) := sup
0≤t≤L

F(ω, t, y) + β(V1 − ζ 1
t1
)
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is upper semi-continuous and bounded from above. The last supremum is the primal
problem of a classical optimal transport problem written in a probabilistic fashion.
Hence, employing the classical duality result (e.g. [34, Sect. 5]), we obtain

sup
τ1∈RST(μ1)

E
W̄

[cα(ω, τ1)]

= inf
β≥0

inf

{
∫
mdW+∫

ψ dμ1 : m ∈ Cb(R+),ψ ∈ Cb(R),

m(ω) + ψ(y) ≥ Fβ(ω,y)

}

≥ inf

{
∫
mdW+∫

ψ dμ1 : ∃β ≥ 0,m ∈ Cb(C(R+)),ψ ∈ Cb(R) with
m(ω) + ψ(y) − β(V1 − ζ 1

t (ω)) ≥ F(ω, t, y)

}

= inf

{
∫
mdW+∫

ψ dμ1 : ∃β ≥ 0,m ∈ Cb(C(R+)),ψ ∈ Cb(R) with
m(ω) + ψ(ω(t)) − β(V1 − ζ 1

t (ω)) ≥ cα(ω, t)

}

.

Putting everything together yields the result. �

Proof of Proposition 4.3 By [34, Proof of Theorem 5.10 (i), Step 5], we can as-
sume that γ is continuous and bounded. We show the result inductively by including
more and more constraints (respectively, Lagrange multipliers) in the duality result
in Proposition 3.5. In fact, we only show the result for the two cases n = 2, I = {2}
and n = |I | = 2. The general claim follows then by an iterative application of the
arguments that lead to Proposition 4.5 and the arguments below.

We first consider the case n = |I | = 2. Recall from (3.5) that a random time τ is a
stopping time if and only if E

W̄
[f (τ)(g−EW[g|Ft ])] = 0 for all g ∈ Cb(C(R+)) and

f ∈ C(R+) supported on [0, t]. Let H be the set of all functions h : C(R+)×R+→R

such that h(ω, s) = ∑n
i=1 fi(s)(gi − EW[gi |Fui

])(ω) for n ∈ N, gi ∈ Cb(C(R+)),
and fi ∈ Cb(R+) supported on [0, ui]. Then applying Theorem 4.4 again, we have

sup
(τ1,τ2)∈RST2(μ1,μ2)

E
W̄

[γ ◦ r2(ω, τ1, τ2)]

= sup
τ1∈RST(μ1)
(τ1,τ2)∈RT2
E
W̄

[ζ 2
τ2

]≤V2

inf
ψ2∈Cb(R)

h∈H

E
W̄

[

γ ◦ r2(ω, τ1, τ2)+ h(ω, τ2)−ψ2
(
ω(τ2)

)+
∫

ψ2 dμ2

]

= inf
ψ2∈Cb(R)

h∈H

sup
τ1∈RST(μ1)
(τ1,τ2)∈RT2
E
W̄

[ζ 2
τ2

]≤V2

E
W̄

[γψ2,h(ω, τ1, τ2)],

where we set

γψ2,h(ω, t1, t2) := γ ◦ r2(ω, t1, t2) + h(ω, t2) − ψ2
(
ω(t2)

)+
∫

ψ2 dμ2
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which is in Cb(C(R+) × �2). Applying Proposition 4.5, we get

sup
(τ1,τ2)∈RST2(μ1,μ2)

E
W̄

[γ ◦ r2(ω, τ1, τ2)]

= inf
ψ2∈Cb(R)

h∈H

inf

⎧
⎪⎪⎨

⎪⎪⎩

∫
ψ1 dμ1 :

ψ1 ∈ Cb(R) such that ∃m ∈ Cb(C(R+)) with
EW[m] = 0,∃α1, α2 ≥ 0 with
m(ω) + ψ1(ω(t1)) −∑2

i=1 αi(Vi − ζ i
ti
(ω))

≥ γψ2,h(ω, t1, t2)

⎫
⎪⎪⎬

⎪⎪⎭
.

Take m, ψ1, α1, α2 satisfying

m(ω) + ψ1
(
ω(t1)

)−
2∑

i=1

αi

(
Vi − ζ i

ti
(ω)

)≥ γψ2,h(ω, t1, t2). (4.3)

Observe that EW[f (t)(g − EW[g|Fu])|Ft ] = 0 whenever suppf ⊆ [0, u]. Fixing t1
and t2, inequality (4.3) can be seen as an inequality between functions of ω. Hence,
taking conditional expectations with respect to Ft2 in the sense of Definition 3.3 and
using the optionality of γ yields

EW[m|Ft2 ](ω)+
2∑

i=1

ψi

(
ω(ti)

)−
∫

ψ2 dμ2 −
2∑

i=1

αi

(
Vi − ζ i

ti
(ω)

)≥ γ ◦ r2(ω, t1, t2).

Hence,

sup
(τ1,τ2)∈RST2(μ1,μ2)

E
W̄

[γ ◦ r2(ω, τ1, τ2)]

≥ inf
ψ2∈Cb(R)

inf

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫
ψ1 dμ1 + ∫

ψ2 dμ2 :

∃Υ -continuous martingale M , M0 = 0,

∃ψ1 ∈ Cb(R+),∃α1, α2 ≥ 0 with
∑2

i=1(ψi(ω(ti)) + Mt2(ω))

−∑2
i=1 αi(Vi − ϕi(ω(ti))

+ ϕi(ω(ti)) − ζ i
ti
(ω))

≥ γ ◦ r2(ω, t1, t2)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= inf
ψ1,ψ2∈E1×E2

⎧
⎪⎪⎨

⎪⎪⎩

∫
ψ1 dμ1 + ∫

ψ2 dμ2 :
∃Υ -continuous martingales Mi

with Mi
0 = 0 such that

∑2
i=1(ψi(ω(ti)) + Mi

ti
(ω))

≥ γ ◦ r2(ω, t1, t2)

⎫
⎪⎪⎬

⎪⎪⎭

= D∗
2 ,

where in the final step, we used the fact that E
W̄

[ϕi(Bτi
)] = E

W̄
[ζ i

τi
], ∫ ϕi dμi = Vi ,

ϕi(B0) = 0, and that ϕi(B) − ζ i is a martingale.
For later use, we write

D(γ ) :=
⎧
⎨

⎩
(ψ1,ψ2) ∈ E1 × E2 :

∃Υ -continuous martingales Mi

with Mi
0 = 0 such that

∑2
i=1(ψi(ω(ti)) + Mi

ti
(ω)) ≥ γ ◦ r2(ω, t1, t2)

⎫
⎬

⎭
.



1162 M. Beiglböck et al.

We now consider the case where n = 2, |I | = 1 and I = {2}; so we are prescrib-
ing μ2 but not μ1. Writing ρ � ν to denote that ρ precedes ν in convex order, we use
the result of the case where |I | = 2 to see that

P ∗
2 = sup

(τ1,τ2)∈RST2(μ2)

E
W̄

[γ ◦ r2(ω, τ1, τ2)]

= sup
μ1�μ2

sup
(τ1,τ2)∈RST2(μ1,μ2)

E
W̄

[γ ◦ r2(ω, τ1, τ2)]

= sup
μ1�μ2

inf
(ψ1,ψ2)∈D(γ )

{∫
ψ1 dμ1 +

∫
ψ2 dμ2

}

.

We now need to introduce some additional compactness. Recall from the definitions
of ϕi that ϕ2/ϕ1 → ∞ as x → ±∞. Now let ε > 0 and write

Dε(γ ε) :=

⎧
⎪⎪⎨

⎪⎪⎩
(ψε

1 ,ψ2) :
ψε

1 + εϕ2 ∈ E1,ψ2 ∈ E2, and
∃Υ -continuous martingales Mi with Mi

0 = 0 such that
ψε

1 (ω(t1)) + ψ2(ω(t2)) +∑2
i=1 Mi

ti
(ω))

≥ γ ε ◦ r2(ω, t1, t2)

⎫
⎪⎪⎬

⎪⎪⎭
.

In particular, we have (ψ1,ψ2) ∈ D(γ ) iff (ψ1 − εϕ2,ψ2) ∈ Dε(γ − εϕ2(ω(t1))),
and so (with ψε

1 = ψ1 − εϕ2, γ ε = γ − εϕ2(ω(t1)))

inf
(ψ1,ψ2)∈D(γ )

{∫
ψ1 dμ1 +

∫
ψ2 dμ2

}

= inf
(ψε

1 ,ψ2)∈Dε(γ ε)

{∫
(ψε

1 + εϕ2)dμ1 +
∫

ψ2 dμ2

}

= inf
(ψε

1 ,ψ2)∈Dε(γ ε)

{∫
ψε

1 dμ1 +
∫

ψ2 dμ2

}

+ ε

∫
ϕ2 μ1(dx). (4.4)

In particular, the final integral can be bounded over the set of μ1 � μ2, and so by
taking ε > 0 small, this term can be made arbitrarily small. Moreover, by neglecting
it, we get in (4.4) an inequality ≥ instead of equality.

If we introduce the set

CV := {c : R →R : c convex, c ≥ 0, c ∈ C2, c(x) ≤ L(1 + |x|) for some L ≥ 0},
then we may test the convex ordering property by penalising against CV. In particular,
we can write, after another application of Theorem 4.4,

P ∗
2 ≥ inf

(ψε
1 ,ψ2)∈Dε(γ ε)

sup
μ1�μ2

{∫
ψε

1 dμ1 +
∫

ψ2 dμ2

}

= inf
(ψε

1 ,ψ2)∈Dε(γ ε)
sup
μ1

inf
c∈CV

{∫
(ψε

1 − c)dμ1 +
∫

(ψ2 + c)dμ2

}

.

In addition, for fixed ψε
1 ∈ Dε(γ ε), we observe that by the fact that ψε

1 +εϕ2 ∈ E1, we
must have ψε

1 (x) → −∞ as x → ±∞. Hence, we can find a constant K , which may
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depend on ψε
1 , so that ψε

1 (x) < ψε
1 (0) for all x /∈ [−K,K]. In particular, we may

restrict the supremum over measures μ1 above to the set of probability measures
PK := {μ : μ([−K,K]c) = 0}, where Ac denotes the complement of the set A. Note
that PK is compact; so we can then apply Theorem 4.4 to get

inf
(ψε

1 ,ψ2)∈Dε(γ ε)
sup

μ1�μ2

{∫
ψε

1 dμ1 +
∫

ψ2 dμ2

}

= inf
(ψε

1 ,ψ2)∈Dε(γ ε)
inf

c∈CV
sup

μ1∈PK

{∫
(ψε

1 − c)dμ1 +
∫

(ψ2 + c)dμ2

}

= inf
(ψε

1 ,ψ2)∈Dε(γ ε)
inf

c∈CV

{

sup
x∈[−K,K]

(
ψε

1 (x) − c(x)
)+

∫
(ψ2 + c)dμ2

}

.

In particular, for any δ > 0, we can find (ψε
1 ,ψ2) ∈ Dε(γ ε) and c ∈ CV such that

P ∗
2 ≥ sup

x∈R
(
ψε

1 (x) − c(x)
)+

∫
(ψ2 + c)dμ2 − δ.

Take ψε
2 (ω(t2)) := supx∈R(ψε

1 (x) − c(x)) + ψ2(ω(t2)) + c(ω(t2)) + εϕ2(ω(t2)).
Then there exist M1, M2 such that

γ ε ◦ r2(ω, t1, t2) ≤ ψε
1

(
ω(t1)

)+ ψ2
(
ω(t2)

)+
2∑

i=1

Mi
ti
(ω)

= ψε
2

(
ω(t2)

)+
2∑

i=1

Mi
ti
(ω) − εϕ2

(
ω(t2)

)− c
(
ω(t2)

)+ c
(
ω(t1)

)

+ ψε
1

(
ω(t1)

)− c
(
ω(t1)

)− sup
x∈R

(
ψε

1 (x) − c(x)
)
.

Hence,

γ ◦ r2(ω, t1, t2) ≤ ψε
2

(
ω(t2)

)+
2∑

i=1

Mi
ti
(ω) + ε

(
ϕ2
(
ω(t1)

)− ϕ2
(
ω(t2)

))

− c
(
ω(t2)

)+ c
(
ω(t1)

)

= ψε
2

(
ω(t2)

)+
2∑

i=1

Mi
ti
(ω)

+ ε

((
ϕ2
(
ω(t1)

)− ζ 2
t1

)
−
(
ϕ2
(
ω(t2)

)− ζ 2
t2

))

+ ε(ζ 2
t1

− ζ 2
t2
)

+
(
c
(
ω(t1)

)− ζ c
t1

)
−
(
c
(
ω(t2)

)− ζ c
t2

)
+ (ζ c

t1
− ζ c

t2
).

Since ζ 2 is an increasing process compensating ϕ2, we get ζt2 − ζt1 ≥ 0 whenever
t1 ≤ t2. Similarly, ζ c is the increasing process compensating c, and the same argument



1164 M. Beiglböck et al.

as above holds. Note that ζ c is Υ -continuous since c is assumed to be in C2. It follows
that (ψε

1 ,ψ2) ∈ Dε(γ ε) implies ψε
2 ∈ D′(γ ), where

D′(γ ) :=
{

ψ2 ∈ E2 : ∃Υ -continuous martingales Mi with Mi
0 = 0 such that

ψ2(ω(t2)) +∑2
i=1 Mi

ti
(ω) ≥ γ ◦ r2(ω, t1, t2)

}

.

It follows by making ε, δ small that

P ∗
2 ≥ inf

ψ2∈D′(γ )

∫
ψ2 dμ2(x),

and as usual, the inequality in the other direction is easy.
To establish the claim in the general case, we can now successively introduce

more and more constraints accounting for more and more Lagrange multipliers
and use either only the first or the first and the second argument to prove the full
claim. �

To conclude, we can follow the reasoning of Sect. 3, more precisely Step 1 and
Step 3, and obtain the following robust superhedging result.

Theorem 4.6 Suppose that n ∈ N, I ⊆ {1, . . . , n}, n ∈ I and that μi is a centered
probability measure on R for each i ∈ I and let G : Cqv[0, n] → R be of the form

G(ω) = γ
(
t(ω)|[0,〈ω〉n], 〈ω〉1, . . . , 〈ω〉n

)
, (4.5)

where γ is Υn-upper semi-continuous and bounded from above. Let us define

Pn := sup

{

EP[G] : P is a martingale measure on C[0, n],
S0 = 0, Si ∼ μi for all i ∈ I

}

and

Dn := inf

⎧
⎪⎪⎨

⎪⎪⎩
a :

∃c > 0, f ∈ C∞(R,R) such that |f |/(1 + ϕn) is bounded,

(Hm)m∈N ⊆ Qf,c and (ψj )j∈I with
∫

ψj dμj = 0 such that
a +∑

j∈I ψj (Sj (ω)) + lim infm→∞(Hm · S)n(ω) ≥ G(ω),

∀ω ∈ Cqv[0, n]

⎫
⎪⎪⎬

⎪⎪⎭
,

where for f ∈ C2(R,R), we set

Qf,c :=
{

H : H is a simple strategy and

(H · S)t (ω) ≥ −c − ζ
f
t (ω),∀(ω, t) ∈ Cqv[0, n] × [0, n]

}

.

Under the above assumptions, we have Pn = Dn.

Finally, we note that Theorem 4.6 could be further extended based on the above
arguments. For example, we could include additional market information on prices
of further options of the invariant form (4.5).
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