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Abstract
This paper presents a novel exploration of the use of an evolving neural network approach to generate dynamic content for
video games, specifically for a tower defence game. The objective is to employ the NeuroEvolution of Augmenting Topologies
(NEAT) technique to train a NEAT neural network as a wave manager to generate enemy waves that challenge the player’s
defences. The approach is extended to incorporate NEAT-generated curriculums for tower deployments to gradually increase
the difficulty for the generated enemy waves, allowing the neural network to learn incrementally. The approach dynamically
adapts to changes in the player’s skill level, providing a more personalised and engaging gaming experience. The quality of
the machine-generated waves is evaluated through a blind A/B test with the Games Experience Questionnaire (GEQ), and
results are compared with manually designed human waves. The study finds no discernible difference in the reported player
experience between AI and human-designed waves. The approach can significantly reduce the time and resources required to
design game content while maintaining the quality of the player experience. The approach has the potential to be applied to
a range of video game genres and within the design and development process, providing a more personalised and engaging
gaming experience for players.

Keywords Dynamic content generation · Game experience · NEAT

1 Introduction

This paper aims to explore the application of artificial intel-
ligence (AI) techniques within video games to investigate
whether dynamic content can be generated similar to that
of a human game designer. Additionally, we aim to evaluate
the impact of AI-generated content on player engagement
in comparison to manually created content. To accomplish
this, a machine learning-driven AI wave manager was devel-
oped for a tower defence game using NeuroEvolution of
Augmenting Topologies (NEAT) and then compared with
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human-designed waves to determine its viability as a content
generation system.

Developing video game content is often an expensive
and time-consuming process. Crafting each encounter that
a player may experience and manually tuning difficulty lev-
els for a range of skill levels can take up a large part of a game
designer’s work time. Even then, players may still reach the
end of the finite content and crave more. Hence, the goal of
this project is to investigate whether AI can ease this strain
on development by dynamically generating engaging content
for players to experience. By doing so, this project aims to
reduce the amount of human work hours required to create
content while simultaneously enhancing the value of the end
product for players and game studios alike.

The use of AI-generated content has the potential to be
more dynamic and engaging than finite manually designed
content. This project adapts the output into a tower defence
(TD) paradigm, a popular game genre that utilises similar
AI enemy waves versus player structure. Olesen et al.’s [1]
research on Dynamic Difficulty Adjustment (DDA) using
rtNEAT within a real-time strategy game shows that games
with easily observable game states and simple goals work
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best for this approach, and a TD game fits this criterion per-
fectly, making it an ideal candidate for a similar ML DDA
technique.

Neuroevolution, an approach to AI inspired by biolog-
ical nervous systems, employs evolutionary algorithms to
evolve complex artificial neural networks capable of intelli-
gent behaviour. A notable extension of this approach, NEAT,
combines topology and parameter evolution, incorporating
features such as complexification, historical markings to
avoid competing conventions, speciation, and fitness shar-
ing. NEAT’s performance has been enhanced over the years
with advancements like HyperNEAT and CoDeepNEAT [2].

The project aims to explore whether an evolving neu-
ral network can be effectively trained and applied to a
tower defence game to generate enemy waves that chal-
lenge the player’s strategy with the goal of increasing player
engagement. By achieving this goal, this project can have
implications for the video game industry, offering a more
efficient and cost-effective way to generate content that is
engaging, dynamic, and endlessly re-playable for players.

The contributions of this project can be summarised as
follows:

• Implementation of awave director using aNEATNN that
can observe the current game state and make informed
decisions about the composition of the next wave of ene-
mies

• Development of aNEATNN-based curriculum generator
for tiered learning environments to enhance the ability of
a wave director to learn generation of effective waves

• Evaluation of whether player engagement is increased by
the addition of the wave manager through A/B testing

• Analysis of whether AI-generated content is comparable
to human-designed content, to determine the effective-
ness of dynamic AI content generation in minimising
human designer time

• Usability evaluation of the wave director tool by profes-
sional game designers

• Discussion and suggestions of practical use cases for the
project

2 Related work

The development of artificial neural networks (ANNs) has
been tailored for specific tasks, such as image classifica-
tion (Krizhevsky et al. [3]), computer vision tasks (Guo
et al. [4]), and speech recognition tasks (Hochreiter and
Schmidhuber [5]). A unique aspect of ANNs is that their
topologies can be evolved alongside their weights and biases,
allowing for rapid evolution. In recent years, the develop-

ment of neuro-evolution and machine learning has also led
to the incorporation of ANNs into video games, such as
dynamic difficulty adjustment and automated game design.
For instance, the cgNEAT [6] was developed for auto-
mated content generation in real-time video games, while the
rtNEAT [1] was used to adjust the difficulty of a real-time
strategy game. Other genetic techniques have been applied
in the design of waves for video games [7]. The most recent
work in this area is a report by Risi and Togelius [8].

In NEAT, each neuron in the network has an associated
activation function that determines how it processes its inputs
andgenerates an output. The choice of activation function can
have an impact on the network’s learning ability and perfor-
mance. While NEAT networks typically use fixed activation
functions, it is possible to introduce adaptive activation func-
tions within the NEAT framework [9]. Adaptive activation
functions can modify their behaviour dynamically based on
the network’s inputs, outputs, or other factors. These adap-
tive activation functions can learn and adjust their parameters
during the training process, allowing the network to adapt to
different data patterns and improve its performance.

The prevailing method for training deep neural networks
(DNNs) in various domains has been gradient descent (GD)
and its variants. However, gradient-based optimisation has
limitations, such as requiring differentiability between the
neural network and the loss function. Problems that cannot
be directly modeled or solved without alterations, such as
formal logic and hard attention [10], necessitate alternative
approaches that traverse the search space efficiently without
gradients. Neuroevolution, as an evolutionary optimisation
algorithm focused on DNNs, presents a promising alterna-
tive to stochastic gradient descent. While NEAT may not
be directly suitable for data classification, the introduction
of two methods, divide and conquer and backpropagation,
addresses this issue in a new algorithm called L-NEAT
(Learning NEAT). NEAT is used for searching the ideal
topology, and gradient descent is subsequently employed to
train the proposed networks. For a full exploration of the
latest state-of-the-art in current research trends for NEAT,
please see [2, 10].

In recent studies, researchers have explored the use of
automatic curriculum generation to build complex behaviours
for artificial agents in video games [11]. However, the man-
ual development of curricula is time-consuming, which has
led to the exploration of automatic curriculum generation.
It has been shown that considering goal validity, feasibility,
and coverage is vital for constructing useful curricula. These
curricula have proven to be effective in sparsely rewarding
environments where an agent is required to achieve a sin-
gle goal from a set of goals that varies between episodes,
which demonstrates the potential of automatic task curricula
towards learning complex goals.
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Automated game design (AGD) is a field that uses AI to
generate video game content or entire games from scratch.
This technology can help reduce the time and resources
needed for game development while also enabling the cre-
ation of endless procedural playable content that increases
the value of a game. AGD involves the use of AI to cre-
ate game content or entire games. The technology has been
used to combine existing game systems to create new games
using machine learning [12]. It has also been used to gener-
ate two-dimensional level layouts inspired by classic games
[13]. One of the recent developments in AGD is the imple-
mentation ofwave function collapse techniques in procedural
content generation to produce three-dimensional meshes as
game content [14]. This technique has been bolstered in its
utility with design-level constraints embracing knowledge
of tile-based connective structures of the used imagery [15].
AGD is essential as it reduces hands-on designer time and
the resources required for a given project.

Dynamic difficulty adjustment (DDA) is another key
theme in the incorporation of ANNs in video games, demon-
strated by Li et al. [16] and Ebrahimi and Akbarzadeh-T
[17]. It is the ability of video games to change their difficulty
level dynamically in real time to match the player’s skill
level. This technique has been used in several games and has
proven to be successful. Csikszentmihalyi’s [18] concept of
“flow” suggests that players enjoy games most when they
strike a balance between their skill and the challenge pre-
sented. The traditional approach of pre-set difficulties, such
as easy, medium, and hard, can be too restrictive and not
nuanced enough to account for a wide range of skill levels.
In the tower defence game genre, where levels are predictable
and can be solved once a viable strategy is found, this can
lead to players feeling disengaged and approaches exist to
improve engagement throughout the course of a game [19].
Sutoyo et al. [20] attempted to tackle this problem by creat-
ing a traditional DDA system for awave-based tower defence
game that adjusts the difficulty based on in-game metrics to
ensure that players of all skill levels are always presented
with a suitable challenge.

Sutoyo et. al. [20] proposed adjusting difficulty via three
in-game metrics: player health, enemy health, and skill
points. However, these generic metrics may not provide a
comprehensive picture of a player’s actual competence. For
instance, player and enemy health are simply side effects of
the player’s defence structure, making it more valuable to
evaluate the tower placement itself. In order to achieve this,
a machine learning method can be used to directly evalu-
ate tower placement and observe tower synergies, which can
provide a more direct estimate of actual player strategy. This
approach can facilitate more fine-tuned DDA through wave
generation and management.

AGD and DDA are two exciting areas of research in video
game design. AGD can help reduce the time and resources

required for game development while also enabling the cre-
ation of endless procedural playable content. DDA, on the
other hand, can improve the gaming experience by dynami-
cally adjusting the game difficulty based on the player’s skill
level. Both technologies have the potential to enhance the
quality of video games and keep players engaged for longer
periods.

3 Methodology

In this study, the overarching objective is to develop an
innovative wave manager driven by a NEAT network. The
proposed wave manager will be trained to assess the player’s
defensive strategies in a tower defence game and make
informed decisions on which enemies to spawn for each
wave. The system will be equipped with a predetermined
number of points that will be allocated based on both tradi-
tional difficulty increments and the current wave count. This
method will ensure that the wave manager remains fair and
generates a balanced level of incremental difficulty for each
player, bespoke to them.

To ensure that the wave manager remains fair, we use a
combination of conventional difficulty increments and the
current wave count. These allocated points will be used to
control the number of enemies that are spawned, their types,
and their strengths. We believe that this methodology will
allow us to generate optimal enemy waves that challenge the
player while ensuring that they are still beatable.

To facilitate the visualisation of this process, Fig. 1 pro-
vides an overview of the inputs and outputs of the proposed
wave manager.

3.1 Game development and project setup

In this project, the Unity game engine (version 2020.2.1f1)
was utilised to develop the game. The selection of this game
engine was a logical choice due to its robust set of tools, vast
community support, and availability of templates. To fur-
ther expedite development, SongGameDev’s Tower Defense
Toolkit 4 (TDTK-4) was chosen as the foundation for the
game. This toolkit provides an all-in-one set of assets and
tools to swiftly construct a comprehensive tower defence
game.

For the implementation of the NEAT ANN, UnitySharp-
Neat was integrated into the project. This package provides
a user-friendly interface for training and testing ANNs, with
a wide range of available features tailored for Unity game
development. While most of the necessary features required
to start training an ANN are already provided within the
package, some project-specific setup was required to ensure
seamless integration.
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Fig. 1 Illustration of the inputs
and outputs for the neural
network for the tower defence
game

3.1.1 Units and towers

During the iterative process of development and rigorous test-
ing, it was discovered that the network generated waves that
favoured certain strategies, which was caused by an imbal-
ance in the features of individual units and towers in the game
design. This led to an adjustment in thewave unit spawn costs
and stats, which aimed to make them feel fair and provide a
balanced challenge to the player.

By tweaking the cost and stats, some units were made less
powerful, while others were made more challenging when
used against player tower strategies. The changes made are
summarised in Tables 1 and 2 respectively, with the ratios of
units chosen presented in Fig. 7 for a clearer representation
of the modifications made.

3.1.2 NEATmanagement and fitness

To facilitate the interaction between the NEAT agents and
the game environment, we designed and implemented an
AIWaveManager class, which not only provides the required
inputs to the agents but also handles their outputs, as well as
collecting and processing feedback data on the outcome of
each wave to calculate the network’s fitness.

The fitness function used for evaluating the NEAT agents’
performance is carefully crafted to optimise the gameplay
experience and ensure that the waves generated by the net-
work are challenging yet fair. The algorithm for computing
fitness, presented in Algorithm 1, takes into account several
factors, including the number of enemy wave units that man-
age to reach the end of the tower course, the average distance

Table 1 Showing the wave unit
stats that were used in game
development and for training the
AI

Icon Name SC HP S Sp Ar Special ability

Transport 1 17 0 1.5

Speeder 3 15 10 2.5 Physical

Support 5 50 30 1.5 50% resistance to nearby units

Carrier 7 40 40 1 Electric Spawns a drone when killed

Tank 25 650 0 0.5

Drone 3 1 10 2 Flying: can’t be slowed

SC spawn cost, HP health, S shield, Sp speed, Ar armour
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Table 2 Illustrating final tower stats that were used to train the NEAT network

Icon Name C Dmg CD Rng Crt DmgT Special ability

Machine gun 10 1–2 0.75 2 25% 1.25× Phys

Zapper 15 3 1.25 2.5 10% 2× Elec 10% to stun on hit

Laser 20 2–3 1 3 10% 2× Elec Damage over time 6 damage/3 s

Cannon 25 8-10 2 3.5 0% Phys Area of effect

Slow 25 2.25 Slows enemies in range 40% slow speed

Support 30 3 Fire rate increase 25% attack speed

C cost, Dmg damage, CD cooldown, Rng range, Crt critical modifiers (% chance and × multiplier), DmgT damage type (Phys physical, Elec
electric)

traveled by the units, and the number of units requested to
spawn versus the available spawn points.

We believe that this fitness function strikes a good balance
between encouraging the network to generatewaves that pose
a real threat to the playerwhile stillmaking sure that the game
remains winnable. By rewarding the network for each point
of damage dealt to the player’s health pool, we incentivise
the wave generator to create waves that are tough enough to
inflict damage by traversing to the end of the tower course
without dying, but not so overwhelming as to be impossible
for the towers to overcome. Similarly, by penalising the net-
work for spawning more units than there are spawn points,
we prevent the wave generator from creating waves that are
inherently unfair and impossible to beat.

We expect that this approach will lead to the creation of
a wave manager that can dynamically adjust the difficulty of
the game in real time, providing a challenging yet enjoyable
experience for players of all skill levels.

The SpawnManager class in the TDTK-4 framework only
allowed forwaves to be defined at the start of the game,which

limited the flexibility of wave generation. In this project, the
SpawnManager class was modified to allow for the genera-
tion of newwaves at runtime from theAIWaveManager class.
TheAIWaveManager systemwas used to infer units to spawn
and pass this list to the SpawnManager class for runtime
generation. Whenever a new wave was created, the AIWave-
Manager would signal to the NEAT supervisor that a new
wave had started, clear any fitness trackers from the previous
wave, and then request each NEAT agent to generate a wave
for its associated tower defence path. The project employed
ten NEAT agents (as can be seen in Fig. 2), each represented
by a NeatGameWaveGeneratorUnit class that handled all the
inputs, outputs, and fitness for a given agent.

When the AIWaveManager requested a wave to be gener-
ated, it supplied each NEAT agent with an associated path.
The agentwould thenquery the game state for relevant inputs,
activate itself, and evaluate the neural network to generate an
output array representing the wave to spawn. The agent’s
function was to return a double array [0-1] that represented

Fig. 2 Illustration of five NEAT
agents, concurrent training
within Unity of the NEAT
network used for wave
generation
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Algorithm 1 GetFitness implementation details for the
AIWaveManager class, relying on the method GetAver-
agePathCompletion.
Input: P,U � Path of defence and List of units
Output: R � Average Path Completion
function GetAveragePathCompletionP,U:

f T otComp ←− 0
foreach U ∈ Units do

f T otComp ←− f T otComp + P.U .PathCompletion
end for
i NumSpawned ←− U .Len()
if i NumSpawned = 0 || f T otComp = 0 then

R ←− 0
end if
R ←− f T otComp / i NumSpawned
R ←− Clamp(R, 0, 1)
return R

end function

Input: W � Wave applied to path
Output: F � Fitness Function
functionGetFitnessW:

f MaxFitness ←− 100
f AvgComp ←− Get AveragePathCompletion(P,U )

F ←− f MaxFitness ∗ f AvgComp
F ←− Clamp(F, 0, f MaxFitness)
return F

end function

the priority for which enemy units to spawn at the start of a
given wave.

3.2 Training

The AI wave manager’s input and output were designed to
optimise performance in the tower defence game. The inputs
for the network consisted of the number of each tower type
in the level, and the outputs were the spawn priority for each
enemy type. During training, each of ten lanes was initially
given a unique tower layout and used ten trials so that each
NEAT agent performed against each tower layout before
having fitness evaluated. The tower layouts were human-
designed to allow the network to learn the strengths and
weaknesses of each tower type and to also test it against dif-
ferent combinations of towers, effectively human-designed
curricula. The final fitness was determined by the average
path completion percentage of all enemies spawned in that
wave. The tower layouts used in training can be seen in Fig. 2.

During training on tower layouts created by humans, it
was observed that NEAT could be utilised not only for
generating waves to traverse the tower course but also for
generating automated curricula of tiered difficulty for the
waves to encounter. This approach is similar to those used
by Racaniere et al. [11] and Du et al. [21]. The curricula
approach effectively presents increasingly difficult envi-
ronments to the wave generator during its training, with

the curricula creating more challenging obstacles for the
spawned waves as the wave generator’s fitness improves.
This approach is believed to be generally applicable to other
domains, such as the development of waves of pedestrians
and traffic flows for automatic vehicle training [22].

3.2.1 Wave generator training

Figure4 presents the final neural network architecture devel-
oped by NEAT for generating waves of enemies in a tower
defence game. As depicted in Fig. 1, the input to the net-
work consists of the current number of each tower type, with
upgraded towers counted twice due to their increased impact.
The output is a [0-1] double for each of the 6 enemy types,
representing the spawn priority of each enemy type. These
priorities are then used to distribute available spawn points
across enemy types, proportional to their given priority. Any
remaining points are redistributed to the next highest priority
enemy type until all points are spent.

After approximately 5000 generations, shown in Fig. 3,
the network consistently defeated the training lanes with a
fitness level between 95 and 100. To challenge the network
further, the tower layouts were made significantly harder
(by human design) and the network was trained for another
500 generations, resulting in relatively consistent fitness lev-
els. The final selected champion network had a fitness of
56.3 against the harder tower layout and was found to be
sufficiently challenging and dynamic in internal playtesting
(Fig. 4).

3.2.2 Tower generator training

Using the same AIWaveManager, once the wave generator
was trained, we investigated whether the system could be
used to generate curricula of towers to encounter. Towers in
this paradigm can also be considered waves, and in the devel-
opment of the wave generator, were human-designed. This
paradigm can be considered a flipping of Fig. 1, whereby the
input is the wave to be sent down each lane and the output
of the NEAT wave generator is the spawn priority for each
tower type. The NEAT fitness function is not modified and is
evaluated again on the progress of average path completion
shown in Algorithm 1. As knowledge of the wave is required
to infer a set of tower spawn priorities, in this investigation,
the equivalent generation of the prior trained wave generator
was used to produce the waves. Additionally, tower place-
ment respected the first available slot on the lane, in contrast
to the centric distribution for the wave generator training
observable in Fig. 2. This results in the low fitness observed
in early generations shown in Fig. 3. This shows applications
of the technique towards automated curriculum; however, the
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Fig. 3 Top: Fitness of the Wave Generator over 5000 generations showing convergence to a network capable of designing challenging waves.
Bottom: Fitness of Tower Generator over equivalent generations to the Wave Generator

tower layout chosen by the curricula after generation 3400
is too strong to see waves progress, on average, past roughly
28% of the lane. This is largely due to the curriculum devel-
oping an optimal front-weighted tower deployment on the
lane.

3.3 Evaluation

To evaluate the success of this project, we use two key met-
rics: similarity of content generation and player engagement.

Fig. 4 Graph showing the
topology for the trained NEAT
network used for wave
management. Inputs at the top
and outputs at the bottom

123



Personal and Ubiquitous Computing

Table 3 The total scores from the GEQ A/B testing survey with 11
participants for each group (AI and human waves)

GEQ total scores
Co SaII Fl T/A Ch NA PA

AI 149 152 107 18 72 23 179

Human 120 115 86 33 86 32 167

p-value 0.19 0.06 0.21 0.19 0.41 0.34 0.38

This is complemented with a t-test to determine significance
Co competence, SaI I sensory and imaginative immersion, Fl flow,
T /A tension/annoyance, Ch challenge, N A negative affect, PA posi-
tive affect

Similarity of content generation is assessed by comparing the
NEAT-generated waves to human-generated waves. Player
engagement is evaluated by comparing the engagement lev-
els of players who played against the AI wave manager to
those who played against human-designed waves. In addi-
tion, we evaluate content generation capability via expert
assessment, engaging game designers to evaluate this sys-
tem’s usability in the context of the potential as a tool for
wave design.

To evaluate player engagement, A/B testing was employed.
According toWinkler [23], aminimumof ten participants are
required in each test group. Half of the participants played
against the AI wave manager, while the other half played
against human-designed waves. The A/B testing method-
ology involves testing a known “control” implementation
against an experimental “challenger” software. After playing
a set of levels for 25min or until they completed all three lev-
els, participants were surveyed using the Game Experience
Questionnaire (GEQ) developed by Ijsselsteijn et al. [24].
Due to the COVID-19 pandemic and associated new ethical
policies, the testingwas conducted remotely, and participants
were given a link to download the game, a participant infor-
mation leaflet, and a web consent form.

The GEQ Core Module was used to measure participants’
feelings and engagement levels throughout the play session.
The areas of the survey that were observed closelywere those
related to flow, tension/annoyance, and challenge, as these
areas were expected to be most influenced by the AI wave
manager.

4 Results and discussion

The surveywas conductedwith a total of 22 participants,with
11 participants assigned to each trial (A or B). It is impor-
tant to note that all participants met the inclusion criteria of
having prior experience playing at least one tower defence
game, which ensured that they had some understanding of
the genre’s fundamental gameplay. Additionally, all partici-
pants were able to complete the first level of the game during
the allocated timeframe. This criterion was important as it
ensured that participants were able to experience enough of
the game to provide meaningful feedback.

The final results of the survey are presented in Table 3
with question means and breakdown within Fig. 5. This
table displays the total scores achieved for both the AI and
human-generated waves across all seven aspects of the Game
Experience Questionnaire (GEQ). The survey results show
that theAI performed better than the humanwaves in positive
aspects such as competence, sensory and imaginative immer-
sion, flow, and positive affect. Additionally, the AI waves
scored lower in the negative aspects of tension/annoyance
and negative affect.

Surprisingly, the AI scored slightly lower than the human-
designedwaves in the challenge aspect, indicating that theAI
wavemanagermay not be as challenging as it was intended to
be. This result is unexpected since the entire concept behind
theAIwavemanager’s implementationwas to train it to adapt

Fig. 5 Game experience score summary for the 22 A/B trials
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to player strategies and provide a challenging wave, which
should theoretically increase the level of engagement through
the principles of flow. However, the challenge scores were
lower than expected, and this may explain why the related
tension/annoyance scores were also lower than‘ anticipated.

One of the main findings of the survey is that the AI waves
were generally more engaging than the human-designed
waves, scoring 107 in the flow category, compared to the
human waves which only scored 86. Another key category
was tension/annoyance, where the AI scored a total of 18
compared to the 33 of the human waves. This suggests that
players were generally less frustrated when playing against
the AI, which likely contributes to the higher flow score too.
There was a concern that the AI would score higher in this
category since it would be less predictable and intentionally
counter the player’s strategy, which some players could find
frustrating.

Despite the apparent advantages of the AI wave manager,
a deeper look at the data in Table 3 reveals that the results are
not statistically significant when comparing the two groups.
This leads to the acceptance of a null hypothesis, indicating
that means are equal under testing and that there is no sig-
nificant difference between the two groups. No group can be
determined to be better or worse than the other with this sam-
ple in terms of the dependent variable of Game Experience
Factors. In this sample, the NEAT-guided wave management
system was observed to perform the function of a human
wave designerwhile delivering a similar (not statistically sig-
nificantly different) game experience to a player audience.

4.1 Engagement

An objective of this project was to determine whether an
evolving neural network could be employed to enhance
player engagement in video games. The results of the blind
A/B test GEQ survey did not show any statistically signifi-
cant improvement in player flow. However, the AI waves did
score higher than the human designs for flow, indicating that
the AI was subjectively evaluated to be comparable to the
human designs in this sample.

The plan to increase engagement involved using the ANN
to ensure that the player is constantly being challenged,which
in turn increases engagement due to the theory of flow. How-
ever, the survey results demonstrated that players generally
found the AI waves to be less challenging than the human
waves, implying that the AI did not achieve its intended goal.
There are several potential factors that may have contributed
to the AI being less challenging than the human waves. For
instance, the ANNmay not have been trained for a sufficient
period, the method of training may not have been represen-

tative of actual gameplay, or the fitness function used may
not have been adequate, thus training bad habits.

Another possible reason could be theway theAI structures
its waves. The AI can spawn any enemy type on any wave,
whichmeans that theAIwavemanagermay do a better job of
naturally introducing each enemy type to the player earlier
in the game compared to the human waves, which do not
introduce some of the harder units until later waves. Thismay
result in players playing against the AI waves developing
better strategies earlier in the game as any weaknesses in
their defences are exposed earlier in the game, where the
punishment for letting their defences get overwhelmed is far
less significant and less likely to lead to a game over, unlike
later in the game when the human-designed waves introduce
certain challenging enemies like the carrier unit. While this
survey did not include anymetrics to help confirm this theory,
a future study could track the damage taken by the player over
the course of the game to determine if this theory is correct.

Despite the fact that the AI waves were perceived as
being less challenging than the human waves, the AI still
scored higher in flow. This may indicate that the human
waves were too challenging, as they also had a higher score
for tension/annoyance, so lowering the challenge could have
increased flow if the high level of challenge was the limiting
factor at the time.While the AI and human waves conform to
the same spawn points limitation in an attempt to keep them
balanced, there are other factors that may affect the difficulty
of the human waves. Unlike the human waves, the AI waves
are structured with a constant 1-s gap between each enemy
being spawned, and enemies are spawned from highest cost
to lowest cost, meaning that the structure and timing are
predictable and consistent across all AI waves. The human
waves, on the other hand, are intentionally designed to take
advantage of the natural synergies between certain enemy
types, such as combining support units with closely grouped
collections of transport units. Although these combinations
are possible to generate with the current AI implementation,
they are not curated by design intervention, so it is possi-
ble that these specifically designed combinations and unique
wave timings are contributing to the increased challenge of
the human waves.

The results of this study suggest that an AI approach like
this has the potential to improve engagement in video games,
but further research is needed to draw a more definitive con-
clusion. There are numerous factors at play when it comes to
increasing engagement, and the results can be unpredictable.
Therefore, each game that uses this approach would likely
require a bespoke and fully tested system. This may prove to
be too costly and risky for some game developers. However,
if a game were to be designed with this method in mind from
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the start, it is possible that it could benefit greatly from this
approach.

4.2 Content generation

A second objective of the project was to investigate the feasi-
bility of using an artificial neural network (ANN) to generate
valuable game content, and it has successfully achieved that
goal. Although the survey results were inconclusive, the AI-
generated waves were not statistically separable from the
human-generatedwaves, implying that theAI-generated con-
tent was subjectively rated comparably to the human content,
and therefore has some value in automated game design pro-
cesses.

One of the key benefits of an AI content generation sys-
tem, such as the one developed for this project, is that it
allows for endless content generation and replayability. The
AI generates waves in real time as the player is playing,
so there is no limit to the amount of content that can be
generated, resulting in theoretically unlimited playtime. This
could increase revenue streams through replayability, which
is often an important factor for prospective players. Another
significant advantage is that time and money can be saved
during development by having the AI handle all of the wave
generation, while human designers focus on other aspects
of the project. Designing unique waves for each level and
difficulty can be a time-consuming process, and the ANN
developed in this research does not require specific training
for each level, enabling rapid iteration and early playtesting
of levels without needing to curate waves. The system allows
designers to tweak parameters such as the allowed spawn
points and individual cost for each unit, and it is easy to add
additional tweakable parameters, such as blocking certain
unit types from spawning until specified waves or changing
the wave timings.

With this in mind, an additional consultation phase took
place with 19 professional game designers, drawn from con-
venience sampling connections at game studios local to
Silicon Spa in the West Midlands of the UK. These expert
participants were presented with the game demonstration,
accompanied by an explanation that the waves were gen-
erated by AI and asked questions derived from the System
Usability Scale:

1. I think that I would like to use this tool frequently in my
design work.

2. I would find this design tool unnecessarily complex.
3. I think the tool would be easy to use.
4. I think that Iwould need the support of a technical person

to be able to use this.
5. I think the various functions in this tool could be well

integrated.

6. I think there may be too much inconsistency in this tool.
7. I would imagine that most people would learn to use this

as a design tool very quickly.
8. I would find the tool very cumbersome to use.
9. Iwould feel very confident using this tool in designwork.

10. I would need to learn a lot of things before I could get
going with this system.

This was a consultation on the possibility of tool adoption
into the design workflow and was not an evaluation on a fully
functioning system, and mockups and prototypes are com-
monly evaluated in this waywith SUS [25]. The average SUS
score reported was 75.8, which is considered to be “Good”
and participant-level data for each question is presented in
Fig. 6.

However, therearesomepotentialdrawbacks to thisapproach.
The initial training of the network took a significant amount
of time and could prove to be a bottleneck in the game devel-
opment process, as the rest of the gamemechanics need to be
in place before the network can begin learning. More com-
plex games with additional features and mechanics would
likely require more training time and bespoke automated
training configurations, particularly if the player can impact
thewavewhile it is in progress. Updating gameswith balance
changes or new content post-release is a common practice
throughout the industry, but making any changes to the game
will require the network to be retrained. For small balance
changes, thismay not be too costly, but larger changes, partic-
ularly with new towers or enemies, would require the entire
network to be retrained rather than fine-tuned.

An alternative approach to having the AI generate waves
from scratch would be to have it choose from pre-set sub-
waves designed by humans. For example, a subwave of
support and transport units with their wave timings set, or
a subwave of alternating physical and electrical resistant
enemies. This could provide some of the benefits of human-
designed content, such as customisedwave timings, designed
enemy synergies, and more unit variation, while still allow-
ing for potentially endless content generation. However, this
would require additional human design time, but the higher
quality content may make it worthwhile. Another potential
improvement could be to allow designers to set which enemy
types are allowed to spawn on which waves, enabling a more
naturally designed difficulty curve as new units could be
introduced one at a time, which is typical for the genre.

While the specific system developed for this research may
not be suitable for use in a real product, a similar purpose-
built system could be viable for use within video games to
generate endless content. The research demonstrates that AI-
generated content can be subjectively rated to be comparable
to human-designed content, providing value to developers
who want to save designer’s time.
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Fig. 6 System Usability Scores from 19 game designers evaluating the
possibility of this technique as an assistive tool in the design process.
The SUS scores in general cannot be considered in isolation; however,

when looking across the trends, it is clear that distributions across every
participant follow the common positive and negative responses

4.3 Future use cases

The presented methodology for automated content genera-
tion using artificial neural networks has a range of potential
applications in video game development beyond the tower
defence game explored in this project. One promising avenue
for this methodology is its potential to aid game designers in
balancing a game. During the training process of the tower
defence game, it was observed that the AI-generated content
exhibited a preference for certain enemy types over others.
This observation helped to fine-tune the enemy stats and
ensure that the game units were more balanced.

As shown in Fig. 7, which depicts the proportions of each
enemy type spawned in the final network, data such as this
is very useful for game designers who are looking to cre-
ate a balanced game experience. The proposed approach can
enable game designers to make balance changes to a game,
train the AI model, and harvest data from the resulting cham-
pion network to observe how the balance changes affected the
game compared to the results before the changes. By running
these simulated waves constantly, this approach can also be
used as a form of automated testing, and additional analytics
can be recorded to provide more insight into the health of the
software.

This methodology offers numerous advantages over tra-
ditional methods of game balancing. First, it allows for
automated and continuous game balancing, enabling design-
ers to make changes and test them in real time. Second, it
saves time and resources that would otherwise be spent on
manual testing, as the AI generates a large amount of data

that can be used to analyse the impact of balance changes.
Third, it provides objective data on the effectiveness of bal-
ance changes, which can help to avoid subjective bias in the
design process.

However, some challenges may arise when applying this
methodology to other game genres. For instance, more
complex games with a greater number of game mechanics
and features may require longer training times and more
bespoke configurations for training the model. Additionally,
for games where the player can impact the wave while it is
in progress, balancing the game may be more challenging.
Moreover, as the network needs to be retrained whenever

Fig. 7 Proportion of each enemy spawned by the final champion net-
work when being run through the ten test lanes
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significant balance changes are made, updating games with
new content or balance changes may be a more costly and
time-consuming process.

This methodology has the potential to be applied beyond
tower defence games and could easily be mapped to other
prominent game genres in which the player competes against
an AI opponent, such as real-time strategy games, base-
building games, or horde-style games. For instance, in Left
4 Dead 2 (2009), a similar system is used to observe the cur-
rent game state when procedurally generating enemy waves,
but these encounters are predetermined and limited in their
nature. However, a machine learning approach could allow
for this content to be generated infinitely, resulting in enemy
waves that are far less predictable and repetitive.

Furthermore, AI-generated content like this is not neces-
sarily limited to the wave generation demonstrated in this
project. Given the promising results of this experiment, it is
possible that a similar machine learning approach of allow-
ing a network to observe the current game state and make
informed decisions could be applied to other areas of game
development. For example, an artificial neural network could
be trained to generate rooms and scenarios in a dungeon-
crawler-style game, or it could generate dynamic quests
in a role-playing game. The potential applications of this
approach are near limitless, providing game designers with
a powerful tool to create novel and engaging content.

Moreover, this approach could be a great way to incor-
porate dynamic difficulty adjustment (DDA) within games,
as the AI can observe the game state to see how well the
player is doing and adjust difficulty accordingly. This could
provide a more tailored and enjoyable experience for play-
ers, while also improving the overall game design. By using
this method, game designers can continuously test and fine-
tune their games, resulting in more balanced and engaging
gameplay.

5 Conclusion

This work explored the use of an evolving neural network
approach to generate dynamic content for video games,
focusing on a tower defence game. The study demonstrates
that the NEAT technique can effectively train a neural net-
work as a wave manager to generate challenging enemy
waves. The AI-generated content was found to be compara-
ble to human-designed content in terms of observedmeans in
player experience, engagement, and subjective ratings. The
approach has the potential to reduce the time and resources
required for designing game content while maintaining the
quality of the player experience. It offers possibilities for

creating personalised and engaging gaming experiences in
various genres and can aid in game balance and automated
testing. The research suggests the potential of AI-driven
content generation systems as valuable tools for game devel-
opment.

The findings suggest that this approach led to an increase
in overall player engagement; however, it also resulted in a
decrease in the game’s perceived difficulty. This observation
is contrary to the assumption that a link between challenge
and engagement exists, as posited by the principles of flow.
Therefore, additional research is required to further evaluate
the applicability of this approach.

Although there were some differences in means between
the human-designed and AI-generated waves, the results
indicated no statistically significant difference between the
two. This outcome implies that in this sample, the AI-
generated waves were subjectively rated as similar to those
designed by human game developers, which suggests the
potential of this approach as a form of dynamic content gen-
eration.

Moreover, the present study revealed several potential uses
for this technology, such as game balance and automated
testing. The approach used in this research could serve as a
valuable tool for game designers to fine-tune enemy stats and
create a balanced experience. Additionally, the simulation
and automated testing capabilities of the proposed method-
ology could provide valuable insights into the health of the
design and interplay of agents in simulation software.
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