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Abstract
Navigating the web represents a complex cognitive activity that requires effective integration of different stimuli and the 
correct functioning of numerous cognitive abilities (including attention, perception, and working memory). Despite the 
potential relevance of the topic, numerous limitations are present throughout the literature about the cognitive load during 
online activities. The main aim of this study is to investigate cognitive load during comprehension and information-seeking 
tasks. In particular, we here focus on the comparison of the cognitive load required while performing those tasks using mobile 
or PC-based devices. This topic has become even more crucial due to the massive adoption of smart working and distance 
learning during the COVID-19 pandemic. A great effort is nowadays devoted to the detection and quantification of stressful 
states induced by working and learning activities. Continuous stress and excessive cognitive load are two of the main causes 
of mental and physical illnesses such as depression or anxiety. Cognitive load was measured through electroencephalography 
(EEG), acquired via a low-cost wireless EEG headset. Two different tasks were considered: reading comprehension (CO) 
of online text and online information-seeking (IS). Moreover, two experimental conditions were compared, administering 
the two tasks using mobile (MB) and desktop (PC) devices. Eleven participants were involved in each experimental condi-
tion, MB and PC, performing both the tasks on the same device, for a total of twenty-two people, recruited from students, 
researchers, and employees of the university. The following two research questions were investigated: Q1: Is there a differ-
ence in the cognitive load while performing the comprehension and the information-seeking tasks? Q2: Does the adopted 
device influence the cognitive load? The results obtained show that the baseline (BL) requires the lower cognitive load in 
both the conditions, while in IS task, the requirement reaches its highest value, especially using a mobile phone. In general, 
the power of all the brain wave bands increased in all conditions (MB and PC) during the two tasks (CO and IS), except for 
alpha, which is usually high in a state of relaxation and low cognitive load. People include website navigation into their daily 
routines, and for this, it is important to create an interaction that is as easy and barrier-free as possible. An effective design 
allows a user to focus on interesting information: many website architectures, instead, are an obstacle to be overcome; they 
impose a high cognitive load and poor user experience. All these aspects draw cognitive resources away from the user’s 
primary task of finding and comprehending the site’s information. Having information about how the cognitive load varies 
based on the device adopted and the considered task can provide useful indicators in this direction. This work suggests that 
using an EEG low-cost wearable device could be useful to quantify the cognitive load induced, allowing the development 
of new experiments to analyse these dependencies deeper, and to provide suggestions for better interaction with the web.
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1  Introduction

In recent years, we have witnessed a significant and 
extremely rapid mobile internet diffusion, to the point 
where the amount of mobile internet users almost equals 

the PC-based internet accesses. For what is more, data 
showed that mobile is the only means, or the only afford-
able means, by which novel internet users access the inter-
net, particularly those with lower incomes and possibly 
living in developing countries. A consistent number of 
findings suggest that mobile devices provide a wider range 
of contexts in which they can be used to access the internet 
[1–6, and references therein]. Because of the considerable 
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spread of such mobile device usage to access, it is there-
fore of great interest to gain a comprehensive understand-
ing of its specific characteristics if compared to PC-based 
web use, in particular in terms of ease of use (and related 
cognitive load) during different cognitive tasks like, for 
example, online reading and online information-seeking. 
For instance, mobile information-seeking patterns are 
significantly more constrained if compared to PC-based 
web patterns. Besides, substantial costs in terms of atten-
tiveness and productivity [7] and higher search costs have 
been recorded on mobile platforms [8].

It is well known that human cognitive capacity can 
only process a few elements of information at a given time 
because the cognitive resources available during the execu-
tion of a task are limited, and they are used selectively and 
limited towards achieving a specific goal [9–11]. The Cogni-
tive Load Theory is based on the idea that the intervention of 
cognitive processes that are closely connected to the mem-
ory happens while processing information or performing a 
task [9]. A heavy cognitive load may hinder information 
processing, perception of stimuli, and learning intended as 
study and memorization, particularly during complex activi-
ties that require processing a lot of information [9, 12].

Navigating the web represents a complex cognitive activ-
ity, similar to many activities carried out offline. Nonethe-
less, tasks such as reading, buying products, or seeking 
information online require a correct processing and inte-
gration of a variety of different stimuli, as well as the cor-
rect functioning of several cognitive capacities, including 
attention, perception, and working memory [13–15]. The 
availability of cognitive resources during the execution of 
a task is limited, and such resources are selectively used to 
achieve an aim or a specific objective [9–11]. Some studies 
[14, 16, 17] have pointed out that the web generally requires 
a high cognitive effort, and, therefore, it is often the cause 
of cognitive load increase [18, 19]. Previous literature has 
drawn a link between the Cognitive Load Theory and the 
principles of web usability. Among other things, usability 
has been shown to improve accessibility, defined as “the 
extent to which an environment, product, or service removes 
barriers and allows equal access to all components, irrespec-
tive of characteristics and difficulties/disabilities” [20], for 
various categories of users with sensory disabilities [21]. 
Therefore, a website design should take into consideration 
the principles of usability to be appealing to users with and 
without a disability or any special needs. For instance, there 
is consensus about usability requiring consistency in layouts 
and constitutive features of the webpages, ease of navigation 
[22], and simplicity, that is, the elimination of all unneces-
sary objects [23].

For these reasons, several studies have investigated the 
users’ cognitive load during navigation on the web, in par-
ticular referring to the diverse tasks that can be carried out 

online (e.g. information-seeking and text reading) and to 
how web design can positively or negatively affect cognitive 
load [16, 24–29]. Among the most frequently studied activi-
ties, information-seeking resulted to be particularly relevant 
in the examination of users’ behaviour on the web and of 
their cognitive load [14, 17, 30–33].

Despite the existing knowledge and the potential rel-
evance of the topic, numerous limitations are still present 
throughout the literature about cognitive load and web usa-
bility during online information-seeking activities. First of 
all, the methodology for the evaluation of both during web 
navigation has so far been mainly subjective (e.g. self-report 
questionnaires, interviews, and thinking-aloud protocols). 
On the contrary, very few studies have included physiologi-
cal measures in their data, such as brain activation, ocular 
movements, heart rate, or skin conductance. Moreover, even 
though people access the web from different devices, in par-
ticular mobile and PC-based devices, studies have mainly 
been directed towards the assessment of cognitive load dur-
ing the navigation on PC [17, 19, 32, 34, 35]. Most research 
on cognitive load and internet access to date has lacked 
comparative analyses, in which the usage patterns of mobile 
platforms are analysed alongside those of desktop devices.

Cognitive load comparison between mobile and desktop 
users is particularly important to build consciousness about 
the different effects that accessing the same information (i.e. 
learning material) can have on students with different equip-
ment. Since excessive cognitive load is considered respon-
sible for physical illnesses such as depression and anxiety 
[36], it is important to know if devices that permit the deliv-
ery of instruction to learners at any time and any place [37] 
actually have a different impact on cognitive load.

The novelty of the present study is in the methodology 
applied for analysing users’ cognitive load during online 
tasks. Besides the traditional self-report questionnaires and 
interviews, we here address the issue through the electroen-
cephalogram (EEG) users’ response.

The EEG is a multichannel signal widely used for stud-
ying brain activation. Due to its high temporal resolution, 
it provides useful data for investigating human brain func-
tioning. Specific brain activities induce changes in differ-
ent brain wave potentials. These variations can thus be 
correlated with multiple functions, such as movement, per-
ception, sensory registration, and tracking as well as cog-
nitive processes related to learning, attention, and memory 
[38]. Previous works suggested that EEG may be useful to 
analyse different cognitive processes [39, 40]. In particu-
lar, previous studies have evidenced a decrease of alpha 
activity while cognitive load increases and an increase of 
theta activity with higher task difficulty [41–44]. In par-
ticular, Cabañero et al. [44] reported that the theta-alpha 
ratio (TAR) obtained by dividing the spectral power of 
theta band in the middle frontal area (Fz) by the spectral 
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power of the alpha band in the central parietal area (Pz) 
significantly captures these spectral power variations for 
the theta and alpha bands. Other studies have shown that 
the decrease of alpha activity is counterbalanced by an 
increase of beta, related to workload complexity [45, 46]. 
Finally, Fitzgibbon et al. [47] have shown that cognitive 
tasks augment gamma EEG power.

It has thus been proven that during cognitive tasks, the 
spectral composition of EEG varies in response to changes 
in task difficulty or level of alertness [48]. However, pre-
cise workload estimation is an ongoing research challenge. 
Zarjam et al. [49] measured the entropy of wavelet coeffi-
cients extracted from EEG signals. In this way, the authors 
were able to distinguish seven different levels of workload 
induced using an arithmetic task.

Summarizing, in this article, we investigate if differ-
ences are observed from the EEG signal analysis when 
comparing users’ cognitive load associated with two differ-
ent tasks (comprehension, reading a text online vs. online 
information-seeking) and if these differences are affected 
by the device used (mobile vs. desktop). To this end, an 
experiment has been set up where EEG signals have been 
registered using a low-cost wireless EEG headset. Data 
will be made available upon request to the authors.

2 � Materials and methods

2.1 � Participants

Twenty-two participants, 14 females (63%) and 8 males 
(37%), age (years old) = 24.4 (SD 6.4), years of educa-
tion = 17.6 (SD 1.9), were recruited among students and 
personnel of the University of Milano-Bicocca and other 
universities. No credits nor economic rewards were pro-
vided during the research. Before participating, each indi-
vidual was informed by the researcher about the experi-
ment’s characteristics, both verbally and through a written 
information leaflet. To be included in the study, individu-
als had to meet the following criteria: (1) age between 18 
and 35 years old, (2) no major medical disorders (heart 
disease or high blood pressure, neurological disorders, epi-
lepsy), (3) no presence of pharmacotherapy (psychoactive 
drugs, anti-hypertensive, anti-depressants), (4) no signifi-
cant visual impairment (all with normal or corrected-to-
normal visual acuity), and (5) no left-handed.

2.2 � Procedure

Before starting the experiment, each participant was asked 
to sign a written consent to participate in the study. Partici-
pants were asked to wear the EEG device, to record their 

electroencephalographic signals. A brief baseline (3 min 
long) was recorded for each participant at rest condition, 
with their eyes open. After recording the baseline, the 
experimental session began. The order of each condition 
was counterbalanced and randomized. During the execution 
of the two tasks, EEG data activities were recorded to evalu-
ate the cognitive load of the users.

2.3 � Experimental design

The two tasks of comprehension, performed by reading 
a text, and of information-seeking have been considered 
within two experimental conditions:

•	 Mobile condition (MB). During the MB condition, par-
ticipants were seated at a desk and were given a mobile 
phone (Samsung S6) on which they were asked to com-
plete the tasks;

•	 Desktop condition (PC). In the PC condition, individu-
als were seated at a desk in front of a computer monitor 
and asked to complete the tasks, using a mouse and a 
keyboard to interact with the PC.

Eleven participants were involved in each condition and 
performed both tasks on the same device.

2.3.1 � Comprehension task

The comprehension task (CO) consisted of reading an online 
article selected in the “lanazione.it” website. The article was 
about the 1966 flood in Florence. An article about a histori-
cal event was chosen since it would not be affected by the 
passage of time and could be considered still relevant. For 
this stimulus, a 15-question test was devised.

2.3.2 � Information‑seeking task

The information-seeking (IS) task consisted of a search on 
the “Amazon.it” website. Participants explored this website 
to find the object (a computer) that best suited a set of char-
acteristics stated by the researcher. Instructions were given 
to the participants including a list of characteristics that par-
ticipants were required to find in a computer (i.e. display 
size, processor type, memory capacity, and maximum cost). 
Participants were asked to add the target product to their 
shopping cart, and the task was considered completed before 
subjects entered personal data in the online payment form. 
After completing the task, participants answered a question-
naire in which they indicated the result of their search. This 
questionnaire aimed to confirm that participants effectively 
scanned and explored the website [17, 31, 34]. The total time 
required to complete the information-seeking task by each 
participant was recorded.
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2.4 � Psychophysiological assessment

The electroencephalographic signals of each participant 
were recorded both in a resting condition (baseline) and 
during the experimental sessions.

EEG data were recorded using an Emotiv EPOC + 16-chan-
nel EEG wireless recording headset (Emotiv Systems Inc., San 
Francisco, CA, USA). Emotiv EPOC is a low-cost commercial 
device particularly useful for BCI use. The electrode scheme 
of this device is arranged according to the international 10/20 
system of electrode placement [50] and includes 14 active 
electrodes at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, 
F4, F8, and AF4 positions and two electrodes used as refer-
ence (CMS and DRL), corresponding to the position of the 
mastoids (see Fig. 1). Special attention was taken during our 
experiments in appropriately putting the headset on each sub-
ject’s head.

EEG data were acquired with an internal sampling fre-
quency of 2048 Hz. These data were properly bandpass filtered 
to avoid aliasing using hardware filters and down-sampled to 
128 Hz with a precision of 16 bit.

2.5 � EEG data analysis

Raw EEG data, directly registered from an EEG device, are 
significantly contaminated by several artefacts both physi-
ological (blinks, eye movements, muscle activity, heartbeat) 
and non-biological (electrode impedance, noise, and interfer-
ence from the electric line and other electric devices). This 
contamination is even more severe in case of the wearable 
devices such as the case of the headset adopted here and in 
uncontrolled environments. Thus, a pre-processing of the EEG 
data is needed before performing any kind of analysis.

2.6 � EEG data pre‑processing

The continuous EEG data recorded during the experiment 
were imported and initially pre-processed using EEGLab, an 
open-source environment for electrophysiological signal pro-
cessing [18]. The pipeline of the processing we have adopted 
to clean the data is reported in Fig. 2.

We have chosen the mastoids as reference electrodes 
because they record fewer signals from the brain. However, 
the mastoid signal does contain some neural signals. Thus, as 
a preliminary step, we re-referenced the EEG data to average 
reference, assuming that the overall electric field on the whole 
scalp is zero. Then, the 14-channel raw data were filtered using 
a high pass FIR filter of 0.16 Hz to remove the DC compo-
nent, and subsequently, a bandpass Notch filter was adopted 
to remove 50-Hz line noise.

To remove artefacts due to physiological and non-biological 
noise, we performed independent component analysis (ICA) 
that separated data in linearly independent components. The 
underlined assumption is that the multichannel EEG record-
ings are mixtures of brain activity and artefact signals that can 
be separated by ICA. Visual inspection and manual removal of 
the artefact components were then required to clean the data 
that was finally back-projected to the original time domain 
to get artefact-free EEG. To avoid loss of significant brain 
signals, we were conservative in component removal; thus, 
we also have added a further manual clean of the data, cutting 
time intervals where noise due to muscle activity, eye, and 
jaw movements were visually detected. An example of clean 
14-channel EEG data is reported in Fig. 3, corresponding to a 
recording in PC condition and IS task of one of the participants 
involved.

Fig. 1   Emotiv Epoc electrode scheme

Fig. 2   Pre-processing on the raw EEG data for each of the fourteen channels
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2.7 � Spectral analysis of EEG data

We performed spectral analysis of EEG data to correlate 
variations in frequency band power due to the different cog-
nitive tasks and workload of our experiment. Previous works 
[46, 51] suggested that different frequency brain waves are 
associated with different classes of cognitive processes. In 
particular, several studies have investigated cognitive load 
measurements, showing that alpha and theta waves play a 
great role in measuring cognitive load [41].

The brain waves and frequency bands here considered, 
together with the main brain activities they are related to, 
are reported in Table 1.

Our signal analysis, reported in Fig. 4, has been per-
formed on a clean dataset composed of 14-channel EEG 
signals, for each device condition: mobile and PC, d = MB, 

PC, for each of the eleven subjects sbj, j = 1, 2, …11, for 
baseline (BL), and for the two tasks, comprehension (CO), 
and information-seeking (IS), t = BL, CO, IS. The time dura-
tion of each EEG recording varies between 2 and 5 min.

The first step of our procedure (frame segmentation) 
divided each record into frames of 5 s. On each of these 
frames, the power spectrum density (PSD) has been esti-
mated using the Welch method [53].

Then the band power for each of the brain waves consid-
ered was estimated for each frame, obtaining a distribution 
of values. To further clean the data, and assuming the EEG 
signal to be stationary over each record, we applied an out-
lier removal strategy. For each brain wave, the band power 
values, and thus the corresponding frames, that exceed the 
mean value of 2 standard deviations were discarded. Starting 
from the survived frames, the power spectrum density has 

Fig. 3   Band power estimation for each channel, each subject, each task: t = {CO, IS}, each experimental condition: d = {MB,PC}

Table 1   Brain waves considered 
and their frequency band. Note 
that for Gamma waves, the 
upper limit of 60 Hz is related 
to the sampling frequency of 
128 Hz of the EEG headset

Brain waves Frequency band 
(Hz)

Brain activities

Theta 4–8 They are related to working memory tasks [52]
Alpha 8–12 They are mainly related to relaxed mental states
Beta 12–30 They are involved in conscious thought and logical thinking and 

are associated with high levels of arousal
Gamma 30–60 They are involved in learning, memory, and information processing

Fig. 4   14 EEG channels after 
the pre-processing, correspond-
ing to one subject, IS task, PC 
condition
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been thus re-estimated, producing the new distributions of 
band power values.

3 � Results

After the pre-processing applied to filter the EEG raw data 
and the processing described in the previous section, we 
obtained 2464 power distributions: 2464 = 11 subjects × 2 
conditions (PC, MB) × 3 tasks (BL, CO, IS) × 4 brain waves 
(Theta, Alpha, Beta, Gamma) × 14 electrodes.

Following the results obtained in the literature [41], that 
report an increase in theta power and a decrease in alpha 
power while the cognitive load increases, we first considered 
the ratio of theta and alpha power over all the electrodes, 
and we averaged these values concerning the subjects, to 
compare the two tasks of IS and CO and the two conditions 
(PC and MB).

In Fig. 5, the ratios between Theta and Alpha average 
power are reported for the different tasks (left image, com-
prehension (CO); right image, information-seeking (IS)), 
comparing the two different devices.

For all the electrodes, tasks, and conditions, the ratios are 
greater than one, always indicating a higher activation in the 
theta rhythm than in the alpha one.

From Fig. 5, we observe that:

1.	 In the case of IS, for all the electrodes, the ratio is higher 
than in the case of PC, even if differences remain con-
tained, suggesting a higher cognitive load using a PC-
based device than using a mobile phone.

2.	 In the case of CO, the PC condition still shows the high-
est contributions, confirming that the cognitive load 
seems to be higher while adopting a PC-based device 
instead of adopting a mobile phone.

3.	 In the case of CO, differences in the ratio are in general 
higher than in the case of IS and appear significantly 
lateralized.

Several studies in the literature have shown that a later-
alized brain activity can be related to cognitive-emotional 
interactions. In particular, higher activity of the right pre-
frontal cortex compared to the left one has been referred to 
negative affective states [54, 55].

The lateralization of the responses, evident in Fig. 5 on 
the left, could be related to the negative emotions that the 
reading of the flood in Florence in 1966 (CO task) could 
have induced as it was a dramatic event that caused the death 
of 35 persons.

To further analyse the results shown in Fig. 5, we recall 
that several works have underlined that theta waves at Fz 
(frontal lobe) and alpha waves at Pz (parietal lobe) position 
are mostly modulated by different level of cognitive load. 
However, since these positions are not provided by the Emo-
tiv headset, we have estimated their theta and alpha power 
values, linearly combining the theta and alpha power values 
of F3 and F4 and P7 and P8, respectively.

In Fig. 6, the power of the theta waves, estimated in the Fz 
position divided by the power of the alpha waves estimated 
in the Pz position, is reported, comparing the two devices 
and the three types of tasks: BL, CO, and IS. From Fig. 6, 
we observe that:

Fig. 5   Ratio between theta and alpha average power. On the left the CO task, while on the right the IS task
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1.	 In the baseline (BL) as expected, the considered ratio is 
about one in both the conditions.

2.	 In both CO and IS tasks, it seems that the PC-based 
device requires a higher cognitive load.

3.	 The IS task seems to require more cognitive load than 
the CO task, especially using a mobile phone.

Finally, we analysed the variations in brain wave activi-
ties comparing respectively the baseline (BL) with the two 
task conditions (BL-CO and BL-IS) and the CO with IS 
(CO-IS). To this end, for each device and electrodes and 
each subject, we studied the power distributions in the three 
comparisons: BL-CO, BL-IS, and CO-IS, applying an F-test 
statistical analysis to reject the null hypothesis that two con-
sidered distributions belong to the same population. In our 
investigation, we adopted a p-value of < 0.05.

In Fig. 7, the results of this analysis are reported in tables 
that can be interpreted underlying that:

•	 Tables on the left column are referred to the mobile con-
dition, while tables on the right to the PC-based one.

•	 Each table refers to a brain wave, and each table row 
refers to an electrode.

•	 Within each table, the three comparisons BL-CO, BL-IS, 
and CO-IS are considered, reporting two values, labelled 
as positive (pos) and negative (neg).

	   Pos means that the mean power of the considered 
power distribution (subject, electrode, brain wave, and 
device) is higher for the task on the left in the comparison 
(for instance, BL in case of BL-CO or BL-IS and CO in 
CO-IS) implying a positive difference in mean powers. 
Neg means that the mean power is higher for the task on 
the right, implying a negative difference in powers. The 

reported values are the number of subjects (out of 11) 
that show a positive (pos) or negative (neg) difference 
which is statistically significant (p < .05).

•	 Within the tables, we have adopted a colour-coding that 
goes from dark blue, for the lowest values, to dark red 
for the highest ones. White corresponds to values in the 
middle of the range for that table.

•	 Analysing for instance the table at the bottom of the first 
column, that is referred to the mobile device and gamma 
waves, we can observe that in the comparison between 
baseline and comprehension (BL-CO), all the subjects 
(11 out of 11) show an increment (that is statistically sig-
nificant) in the gamma power for the parietal, occipital, 
and temporal electrodes of the left hemisphere. For all 
the electrodes, we can then affirm that the majority of the 
subjects showed a positive increment. It is worth noting 
that the reported values indicate the accordance among 
subjects in terms of coherent variations in power, but not 
absolute values of this power.

Thus, keeping in mind these notes, analysing Fig. 7, we 
observe that:

•	 There are significant variations in all the bands and for 
both devices, comparing each of the two tasks for the 
baseline (BL-CO and BL-IS), indicating that CO and IS 
required higher cognitive load than BL did. Power gener-
ally increases during the tasks for all the bands except for 
alpha, which is coherent with the expectation, as alpha 
rhythm is related to a state of relaxation. In particular, 
there is higher accordance in the response of the brain 
activity among subjects in the mobile condition.

•	 From the comparison of CO and IS, it emerges for both 
the conditions (MB and PC) that there is a high coher-
ence of the subjects in showing an increase of power 
in IS with respect to CO, for theta, beta, and gamma 
rhythms and a decrease of alpha power, suggesting that 
IS requires a higher cognitive load than CO.

These analyses are in line with similar studies in the lit-
erature [12]. As already reported, theta waves are refereed to 
be related to the processing of new information and increase 
as mental workload increases [56]. Alpha waves are mainly 
related to relaxed and reflecting state, and literature in the 
state of the art underlines the inverse correlation between the 
EEG power in the alpha frequency band and mental work-
load [57]. Beta waves are associated with states of alert-
ness, engagement, and working. In particular, changes in 
complexity and mental loads have been reported to cause an 
increase in beta band powers [57, 58]. Finally, gamma waves 
are associated with high mental activity [46].

Fig. 6   Ratio between theta power on the estimated Fz and alpha 
power on the estimated Pz
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4 � Conclusions

This study investigated how different online activities can 
affect the cognitive load experienced by the users and if 
tasks and devices can influence this cognitive process. To 
this end, the power of EEG brain waves, collected with a 
wearable device, has been studied.

The results obtained analysing the ratio of theta and 
alpha power, a well-known indicator in the literature of 
the presence of cognitive load, show that the baseline 
(BL), as expected, requires the lower cognitive load in 

both the conditions, while IS task seems to require more 
cognitive load than the CO task, in both conditions and 
especially using a mobile phone.

In general, the power of all the brain wave bands 
increases in all conditions (MB and PC) during the two 
tasks (CO and IS), except for alpha, which is usually high 
in a state of relaxation and low cognitive load.

One interesting observation comes from the lateralization of 
the brain wave responses in the case of the CO task. This can be 
attributed to the emotional state, as already reported by the lit-
erature, recalling that the text read was about a dramatic event.

Fig. 7   Comparison of the mean 
power of the four brain waves: 
theta, alpha, beta, and gamma in 
the two conditions, MB and PC. 
The reported values compare 
respectively baseline (BL) with 
the two tasks: comprehension 
(CO) and information seek 
(IS)): BL-CO, BL-IS, and CO 
with IS: CO-IS. The first col-
umn of tables reports the analy-
sis for each of the 14 channels 
in case of the mobile condition, 
while the second column of 
tables reports the same analysis 
in the case of PC. These 
comparisons are reported as the 
number of subjects that shows 
a positive (pos) or negative 
(neg) difference of power within 
each band, which is statistically 
significant (p < 0.05)
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This observation deserves a deeper analysis in future 
work, together with further comparisons between different 
devices considering different levels in terms of cognitive 
load required by the same task (either CO and IS).

As underlined before, people include website navigation 
into their daily routines, and for this, it is important to create 
an interaction that is as easy as possible. As the web contin-
ues to evolve, more and more website designs depend upon 
a complex, flexible structure [59–61]. However, the lack of 
understanding of the major impediments for the user within 
that structure presents a substantial problem to both design-
ers and users. The designers lack a clear view of what areas 
to focus on to improve the interaction, and users experience 
higher frustration levels and inability to find information. 
One method of determining critical aspects within a website 
is to measure the user’s cognitive load level. The designer 
can then take the results of the cognitive load measurements 
and work to redesign the problematic areas [59–61].

In conclusion, an effective design allows users to focus 
on the information of interest. While this statement sounds 
obvious, many website architectures are an obstacle to be 
overcome. They impose a high cognitive load with poor 
navigation or forcing the user to figure out cryptic categories 
or link names, drawing cognitive resources away from the 
user’s primary task of finding and comprehending the site’s 
information [59–62]. Having information about how the 
cognitive load varies for the device adopted and the consid-
ered task can provide useful indicators in this direction. This 
work suggests that using a low-cost EEG wearable device, it 
is possible to effectively quantify the induced cognitive load, 
allowing the development of new experiments to deeply ana-
lyse these dependencies and provide suggestions for an ideal 
web user experience.
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