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Abstract
One of the major open problems in sensor-based Human Activity Recognition (HAR) is the scarcity of labeled data. Among 
the many solutions to address this challenge, semi-supervised learning approaches represent a promising direction. How-
ever, their centralized architecture incurs in the scalability and privacy problems that arise when the process involves a large 
number of users. Federated learning (FL) is a promising paradigm to address these problems. However, the FL methods that 
have been proposed for HAR assume that the participating users can always obtain labels to train their local models (i.e., 
they assume a fully supervised setting). In this work, we propose FedAR: a novel hybrid method for HAR that combines 
semi-supervised and federated learning to take advantage of the strengths of both approaches. FedAR combines active 
learning and label propagation to semi-automatically annotate the local streams of unlabeled sensor data, and it relies on FL 
to build a global activity model in a scalable and privacy-aware fashion. FedAR also includes a transfer learning strategy 
to fine-tune the global model on each user. We evaluated our method on two public datasets, showing that FedAR reaches 
recognition rates and personalization capabilities similar to state-of-the-art FL supervised approaches. As a major advantage, 
FedAR only requires a very limited number of annotated data to populate a pre-trained model and a small number of active 
learning questions that quickly decrease while using the system, leading to an effective and scalable solution for the data 
scarcity problem of HAR.
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1 Introduction

The majority of approaches for Human Activity Recognition 
(HAR) based on data continuously acquired from mobile and 
wearable devices rely on supervised learning methods [1].

While supervised learning leads to high recognition rates, 
collecting a sufficiently representative amount of labeled 
data to train the recognition model is often a real chal-
lenge [2]. For instance, data annotation can be performed 
directly by the monitored subject while performing activities 
(self-annotation). However, this approach is very obtrusive 

and error-prone. Alternatively, external observers can anno-
tate the activity execution of a subject (in real-time or by 
semi-automatic video annotation), but these methods are 
time-consuming and privacy-intrusive.

Among the solutions that have been proposed to tackle 
the labeled data scarcity problem, semi-supervised learn-
ing represents a promising research direction that has been 
explored in the last few years [3]. Semi-supervised meth-
ods only use a small amount of labeled data to initialize the 
recognition model, which is continuously updated taking 
advantage of unlabeled data. However, there are still sev-
eral challenges that limit the deployment of these methods 
in realistic scenarios. Indeed, even though semi-supervised 
approaches mitigate the data scarcity problem, they do not 
consider the scalability and privacy issues that arise in train-
ing a real-world recognition model that includes data from 
a large number of different users. From the scalability point 
of view, the computational effort that is required to train 
a global model significantly grows as the number of users 
increases. Considering privacy aspects, activity data may 
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reveal sensitive information, like the daily behavior of a sub-
ject and her habits [4]. Accurate HAR also requires a certain 
amount of personalization on the end users [5].

In 2016, Google introduced the federated learning (FL) 
framework [6]. In the FL paradigm, the model training 
task is distributed over a multitude of nodes (e.g., mobile 
devices). Each node uses its own labeled data to train a local 
model. The resulting model parameters of each participating 
node are forwarded to a server that is in charge of aggregat-
ing them. Finally, the server shares the aggregated param-
eters to the participating nodes. FL is a promising direction 
to make activity recognition scalable for a large number of 
users. Moreover, FL mitigates the privacy problem since 
only model parameters, and not actual data, are shared with 
the server, and privacy-preserving mechanisms (e.g., Secure 
MultiParty Computation, Differential Privacy) are used 
when aggregating parameters [7].

FL has been recently applied to HAR showing that it can 
reach an accuracy very close to centralized methods [8]. 
However, all existing solutions assume that each node has 
complete availability of labeled sensor data. This is actually 
the general setting of existing works based on FL, which 
in the literature has been primarily considered for fully 
supervised learning tasks [9]. While this assumption may 
be valid for some applications (e.g., the Google approach 
for keyboard suggestions improvement relies on labeled 
data implicitly provided by users when typing or confirm-
ing suggestions [10]), it is not realistic for applications like 
HAR where labeled data availability is significantly limited. 
Extending FL to semi-supervised learning is one of the open 
challenges in this area [9].

In this work, we propose FedAR: a hybrid semi-super-
vised and FL framework that enables personalized privacy-
aware and scalable HAR based on mobile and wearable 
devices. Different from the majority of the existing solu-
tions, FedAR considers a limited availability of labeled data. 
In particular, FedAR combines active learning and label 
propagation to provide labels to a large amount of unlabeled 
data. Newly labeled data are periodically used by each node 
to perform local training, thus obtaining the model param-
eters that are then transmitted to the server that aggregates 
them using Secure Multiparty Computation. FedAR also 
relies on transfer learning to fine-tune the global model for 
each user, while generating a global model that generalizes 
over unseen users.

Considering the limitations of existing evaluation meth-
odologies for FL applied to HAR [11], we designed a novel 
evaluation methodology to robustly assess both the generali-
zation and the personalization capabilities of our approach. 
The results of our experimental evaluation on two publicly 
available datasets show that FedAR reaches recognition 
rates close to state-of-the-art solutions that assume the 
complete availability of labeled data. Moreover, both the 

generalization and the personalization capabilities of FedAR 
keep increasing over time. Last but not least, the amount of 
triggered active learning questions is small and acceptable 
for a real-world deployment.

To the best of our knowledge, FedAR is the first FL 
framework for HAR that tackles the data scarcity problem 
while considering personalization. Hence, we believe that 
FedAR is a significant step towards realistic deployments 
of HAR systems based on FL.

In summary, the contributions of this work are the 
following:

• We present FedAR, a novel hybrid approach that com-
bines federated, semi-supervised, and transfer learning to 
tackle the data scarcity problem for real-world personal-
ized HAR.

• We propose a novel strategy to reliably evaluate the evo-
lution of the personalization and generalization capabili-
ties of FedAR over time.

• An extensive evaluation on public datasets shows that 
FedAR reaches similar recognition rates with respect 
to well-known approaches that assume high availabil-
ity of labeled data. At the same time, FedAR triggers a 
small number of active learning questions that quickly 
decreases while using the system.

2  Related work

2.1  Labeled data scarcity in HAR

Considering HAR based on data collected from mobile 
devices’ inertial sensors, the majority of approaches rely 
on supervised machine learning [12–16]. However, these 
approaches need a significant amount of labeled data to train 
the classifier. Indeed, different users may perform the same 
activities in very different ways, but also distinct activities 
may be associated with similar motion patterns. The anno-
tation task is costly, time-consuming, intrusive, and hence 
prohibitive on a large scale [2]. In the following, we sum-
marize the main methodologies that have been proposed in 
the literature to mitigate this problem.

Unsupervised approaches have been proposed to derive 
activity clusters from unlabeled sensor data [17]. Those 
approaches still need annotations to reliably associate an 
activity label to each cluster. Since distinct human activi-
ties often share similar sensor patterns, purely unsupervised 
data-driven approaches for activity recognition are still a 
challenge considering real-world scenarios.

Some research efforts focused on knowledge-based 
approaches based on logical formalisms, especially target-
ing smart-home environments [18, 19]. These approaches 
usually rely on ontologies to represent the common-sense 
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relationships between activities and sensed data. One of the 
main issues of knowledge-based approaches is their inade-
quacy to model the intrinsic uncertainty of sensor-based sys-
tems and the large variety of activity execution modalities.

Data augmentation is a more popular solution adopted 
in the literature to mitigate the data scarcity problem, espe-
cially considering imbalanced datasets [20, 21]. In these 
approaches, the available labeled data are slightly per-
turbed to generate new labeled samples. With respect to 
our method, data augmentation is an orthogonal approach 
that could be integrated to further increase the amount of 
labeled data. Recently, data augmentation in HAR has also 
been tackled taking advantage of GAN models to gener-
ate synthetic data more realistic than the ones obtained by 
the above-mentioned approaches [22, 23]. However, GANs 
require to be trained with a significant amount of data.

Many transfer learning approaches have been applied to 
HAR to fine-tune models learned from a source domain with 
available labeled data to a target domain with low-availabil-
ity of labeled data [24–27]. FedAR  relies on transfer learn-
ing to fine-tune the personal local model taking advantage 
of the global model trained by all the participating devices.

An effective method to tackle data scarcity for HAR when 
the feature space is homogeneous (like in FedAR) is semi-
supervised learning [3, 28–30]. Semi-supervised methods 
only use a restricted labeled dataset to initialize the activity 
model. Then, a significant amount of unlabeled data is semi-
automatically annotated. The most common semi-supervised 
approaches for HAR are self-learning  [30], label propaga-
tion [31], co-learning [32], and active learning [33–35]. 
Active learning has also been adopted in HAR to handle 
the class imbalance problem [36]. Hybrid solutions based 
on semi-supervised learning and knowledge-based reason-
ing have been proposed in [37]. Existing semi-supervised 
solutions do not consider the scalability problems related to 
building a recognition model with a large number of users 
for real-world deployments. Moreover, the data required 
to build such collaborative models is sensitive, as it could 
reveal private information about the users (e.g., user health 
condition and habits) [4, 38, 39].

2.2  Federated learning for HAR

Recently, the FL paradigm has been proposed to distribute 
model training over a multitude of nodes [6, 7, 9, 40–42]. A 
recent survey divides FL methods in three categories: hori-
zontal, vertical, and transfer FL [7]. FedAR  is a horizontal 
FL method: the participating mobile devices share the same 
feature space, but they have a different space in samples 
(i.e., each device considers data for a specific user). Among 
the required characteristics of FL approaches, the person-
alization of the global model on each client plays a major 
role [43]

FL has been previously applied to mobile/wearable 
HAR to distribute the training of the activity recognition 
model among the participating devices [8, 11, 44–48]. In 
this area, recent works also proposed to learn the global 
model in a decentralized fashion  [49]. Existing works 
show that FL solutions for HAR reach recognition accu-
racy similar to standard centralized models [45]. More-
over, since personalization is an important aspect for 
HAR [5], existing works also show that applying transfer 
learning strategies to fine-tune the global model on each 
client leads to a significantly improved recognition rate [8, 
46]. One of the major drawbacks of these solutions is that 
they assume high availability of labeled data, hence con-
sidering a fully supervised setting.

The combination of federated and active learning 
has been recently proposed for Intrusion Detection Sys-
tems [50]. However, semi-supervised federated learning 
solutions for HAR have been only partially explored. The 
existing works mainly focus on unsupervised methods to 
collaboratively learn (based on the FL setting) a robust 
feature representation from the unlabeled stream of sen-
sor data. The global feature representation is then used to 
build activity classifiers using a limited amount of labeled 
data. For instance, the work in [47] proposes an approach 
based on autoencoders, while the work in [51] is based 
on self-supervised learning. However, those works do not 
consider model personalization and they do not propose 
approaches to continuously obtain new labeled data from 
each user. Nonetheless, we believe that those works focus 
on a very important orthogonal problem with respect to 
the one addressed by FedAR. Indeed, feature learning from 
unlabeled data could be integrated in FedAR to further 
reduce the amount of active learning questions and to 
improve the recognition rate. Recently, the work in [52] 
proposes a solution to build the global model by aggregat-
ing the local models’ gradients from a small number of 
clients with labeled data and a large number of clients with 
unlabeled data. This method is based on a semi-supervised 
loss that relies on a novel unsupervised gradients aggrega-
tion strategy. Differently from this work, we do not assume 
the existence of clients with full availability of labeled 
data, and we also propose a practical solution to continu-
ously improve the global model thanks to active learning 
and label propagation.

A common limitation in the literature is the methodology 
adopted to evaluate FL for HAR applications [8, 11, 48]. 
Indeed, none of the proposed methodologies truly assess the 
generality of the global model over users whose data have 
never been used for training. Moreover, only one iteration of 
the FL process is evaluated, while in a realistic deployment 
this process is repeated periodically with different data. In 
this work, we propose an evaluation methodology that over-
comes the above-mentioned issues (see Section 5.2).
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3  Overview of FedAR

In this section, we describe the overall FedAR framework 
at a high-level.

3.1  Overall architecture

The overall architecture of FedAR is depicted in Fig. 1. 
For the sake of this work and without loss of generality, 
we illustrate FedAR applied to physical activity recogni-
tion based on inertial sensors data collected from personal 
mobile devices.

Following the FL paradigm, the actors of FedAR are 
a server and a set of clients that cooperate to periodi-
cally compute the weights of a global activity recognition 
model. In order to address the labeled data scarcity prob-
lem, FedAR initializes the global model in an offline phase 
with a limited amount of labeled data, while each client 
implements a semi-supervised learning strategy (i.e., a 
combination of active learning and label propagation) to 
semi-automatically label a portion of the unlabeled sensor 
data stream. An overview of our semi-supervised strategy 
is described in Section 3.3.

Periodically (e.g., every night), the server starts a pro-
cess to update the weights of the global model. Each client 
uses its available labeled data to train its local model. The 
resulting local weights are transmitted to the server, which 
aggregates them with the ones from the other clients to 
obtain a new version of the global model. Finally, the new 
version of the global model weights is transmitted to each 
client. Since different users may perform activities in very 
different ways, a model personalization module on each 
client is in charge of fine-tuning the updated global model 
weights on the specific user. A more detailed overview on 
the global model update and personalization is described 
in Section 3.4.

3.2  Local models

One of the strengths of FedAR is that it is designed consid-
ering both personalization and generalization aspects. Per-
sonalization is crucial for the local models to recognize the 
activities of each user more accurately. On the other hand, 
generalization is a desirable property for the global model. 
Indeed, some participating users may not wish to collect 
labeled data (not even a small amount), or may have devices 
not adequate to perform local training. Those users are not 
able to actively contribute to the federated learning process, 
and their clients would directly use the last version of the 
global model for activity classification.

In order to guarantee both personalization and generaliza-
tion, in FedAR, each client stores two distinct instances of 
the activity model. The former is called Shareable Model, 
and it is the one used for federated learning. In order to per-
sonalize the activity model on each user, a straightforward 
solution would be to fine-tune the Shareable Model with 
transfer learning approaches [53]. However, recent studies 
show that a global model built by aggregating the weights of 
fine-tuned models exhibits poor generalization capabilities 
on external users [11]. In order to overcome this problem, in 
FedAR, at the end of each global model update the clients 
that actively contribute to the federated learning process cre-
ate a copy of the Shareable Model that is called Personal-
ized Model. The Personalized Model is fine-tuned on the 
specific user and it is used for activity classification. Besides 
improving generalization, an advantage of keeping private 
the weights of the Personalized Local Model is a positive 
impact on privacy protection [54].

3.3  Semi‑supervised data labeling 
and classification

Figure 2 depicts the semi-supervised data labeling and clas-
sification flow of FedAR.

Fig. 1  Overall architecture of 
FedAR
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Each client in FedAR uses the Personalized Model to 
classify activities in real-time on the continuous stream 
of unlabeled pre-processed sensor data. Before classifica-
tion, each unlabeled data sample is stored in the Feature 
Vectors Storage. This storage collects both unlabeled and 
labeled data samples. After classification, if the confidence 
on the current prediction is below a threshold, an active 
learning process is started, and the system asks the user 
about the activity that she was actually performing. The 
feedback from the user is then associated with the cor-
responding feature vector in the Feature Vectors Storage. 
Active learning makes it possible to assign a label to those 
informative data points that can effectively improve the 
local model. For the sake of usability, the number of active 
learning queries should be low, since they may bother the 
user during activity execution. For this reason, FedAR 
also periodically applies a Label Propagation algorithm 
to spread the labels acquired through active learning to 
a larger number of unlabeled data points. The advantage 
of label propagation is to further improve the recognition 
rate by training the classifier with a significant amount of 
labeled data samples and, at the same time, to reduce the 
number of needed active leaning queries over time.

3.4  Global model update and personalizazion

Periodically (e.g., every night) the server asks to the par-
ticipating clients to update the global model. This process 
is depicted in Fig. 3.

First, each client replaces its Shareable Model with the 
current version of the Global Model. Then, the labeled 
data in the Feature Vectors Storage are used to perform 
local training of the Shareable Model. After training, the 
updated Shareable Model weights are then forwarded to 
the server, which is in charge of aggregating the weights 
from all the clients to generate a new version of the global 
model. These steps are repeated until convergence of the 
global model. At the end of this process, the Shareable 
Model of each client is replaced with the last stable version 
of the Global Model.

Then, the Model Personalization module generates a copy 
of the Shareable Model that is called Personalized Model, 
which is fine-tuned using the Feature Vectors Storage. The 
result of this process is a Personalized Model that takes 
advantage of the high-level features of the Global Model as 
well as the personalized aspects of the specific user.

Fig. 2  Semi-supervised data 
labeling and classification data 
flow

Fig. 3  Local models training 
and personalized model update
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4  FedAR under the hood

In this section, we describe in detail the algorithms of 
FedAR.

4.1  The activity model

Since we consider a setting with limited availability of 
labeled data, activity models that automatically learn fea-
tures from raw data are not effective in FedAR. Indeed, 
based on our experiments that we describe in Section 5.3.6, 
CNN models reach significantly lower recognition rates in 
FedAR due to the high complexity of learning reliable fea-
tures from limited labeled data. For this reason, in FedAR, 
the activity classification model is based on a fully con-
nected deep learning model, and the input is a vector of 
handcrafted features. In particular, we choose features that 
proved to be effective for HAR [37]. Recent studies in the 
HAR domain demonstrate that a good choice of handcrafted 
features and fully connected models can lead to recogni-
tion rates comparable to the ones of state-of-the-art CNN 
models [55].

In particular, for each axis of each inertial sensor, we 
consider the following features: average, variance, standard 
deviation, median, mean squared error, kurtosis, symme-
try, zero-crossing rate, number of peaks, energy, and differ-
ence between maximum and minimum. These features are 
extracted from fixed-length temporal windows of sensor data 
of w seconds. Before feature extraction, we apply a median 
filter on each temporal window to reduce noise in sensor 
measurements. After feature extraction, we apply standardi-
zation as a feature scaling technique.

4.2  Initialization of the global model

At the very beginning, the participating clients in FedAR need a 
pre-trained global model to infer labels on unlabeled data. How-
ever, in this work we assume limited availability of labeled data.

Hence, FedAR initializes the global model using a 
restricted annotated dataset (we will call it pre-training data-
set in the following).1 The pre-training dataset is also used 
to initialize label propagation algorithm. In realistic settings, 

the pre-training dataset can be, for example, a combination 
of publicly available datasets, or a small training set specifi-
cally collected by a restricted number of volunteers. Figure 4 
summarizes the initialization mechanism of FedAR.

4.3  The federated learning strategy of FedAR

In the following, we describe the FL process to update the 
global and local models. Periodically (e.g., each night) the 
server starts a global model update process. The devices that 
are available to perform computation (e.g., the ones idle and 
charging) inform the server that they are eligible to take part 
in the FL process. Afterwards, the server executes several 
communication rounds to update the weights of the global 
model.

A communication round consists of the following steps:

• The server sends the latest version of the global weights 
to a fraction of the eligible devices

• Each device uses the labeled data in the Feature Vectors 
Storage to train the Shareable Model

• When local training is completed, each device sends the 
new weights of the Shareable Model to the server

• The server aggregates the local weights to compute the 
new global weights

The communication rounds are repeated until the global 
model converges. Then, the new weights are transmitted 
to each participating device including the ones that did not 
actively contribute to the communication rounds.

The server updates the global model weights by executing 
a weighted average of the locally learned model weights pro-
vided from clients. Since the local weights may reveal private 
information, the aggregation is performed using the Secure 
Multiparty Computation approach presented in [41]. The 
pseudo-code of the server-side federated learning process is 
described in Algorithm 1, while the client-side in Algorithm 2.

Fig. 4  Initialization of the global model in FedAR

1 Note that, considering out target application, a labeled dataset is a 
collection of timestamped inertial sensors data acquired from mobile/
wearable devices during activity execution. Examples of such sen-
sors are accelerometer, gyroscope, and magnetometer. The labels 
are annotated time intervals that indicate the time-span of each per-
formed activity.
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Fig. 5  Shared and personal layers

4.4  Model personalization

FedAR adopts a transfer learning strategy to fine-tune the 
Personalized Model on each user. The intuition behind the 
personalization mechanism is that the last layers of the 
neural network (i.e., the ones closer to the output) encode 
personal characteristics of activity execution, while the 
remaining layers encode more general features that are 
common between different users [56].

As depicted in Fig. 5, we refer to the last l layers of the 
neural network as the User Personalized Layers, while we 
refer to the remaining ones as Shared Hidden Layers. In 
FedAR, when the update of the global model is complete, 
each client creates the Personalized Model as a copy of the 
Shareable Model. In order to fine-tune the Personalized 
Model on each user, the Shared Hidden Layers are freezed, 
and the Feature Vector Storage is used to train the User 
Personalized Layers.

4.5  Semi‑supervised learning

In the following, we describe how each client semi-auto-
matically provides labels to the stream of unlabeled sensor 
data. FedAR relies on a combination of two semi-supervised 
learning techniques: Active Learning and Label Propagation.
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4.5.1  Active learning

An active learning process requires the user feedback about 
her currently performed activity when there is uncertainty 
in the classifier’s prediction. The intuition is the following: 
unlabeled data samples for which the classification confi-
dence is significantly low would have the most impact in 
improving the classifier if the label were available (i.e., they 
are the more informative ones).

FedAR relies on a state-of-the-art non-paramet-
ric active learning approach called VAR-UNCER-
TAINTY  [57]. This approach compares the prediction 
confidence with a threshold � ∈ [0, 1] that is dynamically 
adjusted over time. Initially, � is initialised to � = 1 . Let 
� = {A1,A2,… ,An} be the set of target activities. Given 
the probability distribution over the possible activities 
of the current prediction ⟨p1, p2,… , pn⟩ , we denote with 
p⋆ = maxi pi the probability value of the most likely 
activity A⋆ ∈ � (i.e., the predicted activity). If p⋆ is 
below � , we consider the system uncertain about the cur-
rent activity performed by the user. In this case, an active 
learning process is started by asking the user the ground 
truth Af ∈ � about the current activity. The feedback Af  
is stored in the Feature Vectors Storage. When Af = A⋆ , 
it means that the most likely activity A⋆ is actually the 
one performed by the user, and hence the threshold � 
is decreased to reduce the number of questions. On the 
other hand, when Af ≠ A⋆ , � is increased. More details 
about this active learning strategy can be found in [57]. 
The pseudo-code of classification and active learning is 
described in Algorithm 3

We assume that active learning queries are prompted to 
the user in real-time through a dedicated application, thanks 
to a user-friendly interface. Each query asks the user to 
choose the activity that she is currently performing among 
the possible ones. For the sake of usability, FedAR only pre-
sents a couple of alternatives taken from the most probable 
activities. Figure 6 shows a screenshot of an active learn-
ing application that we implemented for smart-watches in 
another research work.

4.5.2  Label propagation

The major drawback of active learning is that the queries 
may interrupt the user while performing an activity. In 
order to reduce the interaction with the user and, at the 
same time, to train the local models with a larger amount 
of labeled data, FedAR also relies on label propagation. 
The Label Propagation process is started when the server 
requires to update the global model (see Algorithm 1). 
Given a set of labeled and unlabeled data points, the goal 
of label propagation is to automatically spread labels to 
a portion of unlabeled data [58]. The intuition behind 
label propagation is that data points close in the feature 
space likely correspond to the same class label. The Label 
Propagation model of FedAR is a fully connected graph 
g = (V ,E) where the nodes V are all the data samples in 
the Feature Vectors Storage and the weight on each edge 
in E is the similarity between the connected data points. 
In the literature, this similarity is usually computed using 
K-Nearest Neighbors (KNN) or Radial Basis Function 
Kernel (RBF kernel). FedAR relies on the RBF kernel 
due to its trade-off between computational costs and accu-
racy [59]. Formally, the RBF kernel function is defined 
as K(x, x�) = e−�||x−x

�||2 where ||x − x�||2 is the squared 
Euclidean distance between the feature vectors of two 
nodes x and x′ (where x′ is a labeled node), and � ∈ ℝ+ . 
Hence, the value of the RBF kernel function increases as 
the distance between data points decreases. The kernel is 
used to perform inductive inference to predict the labels 
on unlabeled data points, based on a threshold on the 
similarity between the nodes. This process is repeated 
until convergence (i.e., when there are no more unlabeled 
data points for which label propagation is reliable based 
on the threshold).

In FedAR, the Label Propagation model (i.e., the graph) 
is initialized with the labeled data points of the pre-training 
dataset. Moreover, this model is personal and never shared 
with other users nor with the server.

5  Experimental evaluation

In this section, we describe in detail the extensive experi-
mental evaluation that we carried out to quantitatively assess 
the effectiveness of FedAR. First, we describe the public 
datasets that we considered in our experiments. Then, we 
present our novel evaluation methodology that aims at 
assessing both the generalization and personalization capa-
bilities of FedAR. Finally, we discuss the results that we 
obtained on the target datasets.

Fig. 6  Example of an active 
learning interface for smart-
watches
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5.1  Datasets

Since FL makes sense when many users participate in col-
laboratively training the global model, we considered pub-
licly available datasets of physical activities (performed both 
in outdoor and indoor environments) that were collected 
involving a significant number of subjects. However, there 
are only a few public datasets with these characteristics. One 
of them is MobiAct [60], which includes labeled data from 
60 different subjects with high variance in age and physical 
characteristics. The dataset contains data from inertial sen-
sors (i.e., accelerometer, gyroscope, and magnetometer) of 
a smartphone positioned in a trousers’ pocket freely chosen 

by the subject in any random orientation. 73% of the par-
ticipants were male, while 27 are female. The subjects’ age 
spanned between 20 and 47 (average: 26), the height ranged 
from 160cm to 189cm (average: 175), and the weight var-
ied from 50kg to 120kg (average: 76). The adopted data 
acquisition frequency is the highest enabled by the sensors 
of the selected smartphone (i.e., at most 200Hz). Due to its 
characteristics, this dataset was also used in other works 
that proposed FL applied to HAR (e.g., the work presented 
in [48]). In our experiments, we considered the following 
physical activities:2 standing, walking, jogging, jumping, 
and sitting. The distribution of activity labels in Mobiact is 
illustrated in Table 1.

We also consider the well-known WISDM dataset [12]. 
This dataset has been widely adopted as benchmark for 
HAR. WISDM contains accelerometer data (sampling rate 
20HZ) collected from a smartphone located in the front 
pants leg pocket of each subject during activity execution. 
WISDM includes data from 36 subjects. The data collec-
tion was supervised by one of the WISDM team members 
to ensure the quality of the collected data. The activities 
included in this dataset are the following: walking, jogging, 
sitting, standing, and taking stairs. The distribution of activ-
ity labels in WISDM is illustrated in Table 2. Unfortunately, 
further information about the participants like gender, age, 
and weight distribution is not publicly available.

Table 1  MobiAct: distribution of the considered activities

Activity Percentage of samples

Standing 44%
Walking 42%
Jogging 6%
Jumping 6%
Sitting 2%
TOTAL 18.654 samples

Table 2  WISDM: distribution of the considered activities

Activity Percentage of samples

Walking 38%
Jogging 30%
Sitting 6%
Standing 5%
Upstairs 11%
Downstairs 10%
TOTAL 13.726 samples

2 Note that we omitted from MobiAct those physical activities with 
a limited number of samples. Indeed, as we will explain later, our 
evaluation methodology requires to partition the data of each user. 
Activities with a small number of samples would be insufficiently 
represented in each partition and hence they are not suitable for our 
evaluation. We believe that this problem is only related to this spe-
cific dataset and that, in realistic settings, even short activities would 
be represented by a sufficient number of samples.
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5.2  Evaluation methodology

In the following, we describe the methodology that we 
designed to evaluate the effectiveness of FedAR, both in 
terms of personalization and generalization. We split each 
dataset into three partitions that we call Pt, Tr, and Ts. The 
partition Pt (i.e., pre-training data) contains data of users 
that we only use to initialize the global model. Tr (i.e., train-
ing data) is the dataset partition that includes data of users 
who participate in FL. Finally, Ts (i.e., test data) is a dataset 
partition that includes data of left-out users that we only 
consider to periodically evaluate the generalization capabili-
ties of the global model. In our experiments, we randomly 
partition the users as follows: 15 % whose data will populate 
Pt, 65 % whose data will populate Tr, and 20 % whose data 
will populate Ts.

We partition the data for each user in Tr into sh shards of 
equal size. In realistic scenarios, each shard should contain 
data collected during a relatively long time period (e.g., a 
day) where a user executes many different activities. How-
ever, the considered datasets only have a limited amount of 
data for each user (usually less than 1 h of activities for each 
user). Hence, we generate shards as follows. Given a user 
u ∈ Tr , we randomly assign to each shard a fraction 1

sh
 of the 

available data samples associated with u in the dataset. Note 
that each data sample of a user is associated with exactly one 
shard. This mechanism allows us to simulate the realistic 
scenario described before, where users perform several types 
of activities in each shard.

Evaluation algorithm  In the following, we describe our 
novel evaluation methodology step by step. First, the labeled 
data in Pt are used to initialize the global model, which is 
then distributed to the devices of all the users in Tr that 
will use it as the first version of the Personalized Model. 
We evaluate the recognition capabilities of the initial pre-
trained global model on the partition Ts in terms of F1 score. 
This assessment allows us to measure how the initial global 
model generalizes on unseen users before any FL step.

As we previously mentioned, for each user, we partition 
its data samples in Tr into exactly sh shards. For the sake 
of evaluation, we assume a synchronous system in which 
the shards of the different users in Tr are actually tempo-
rally aligned and occur simultaneously (i.e, the first shards 
of every user occur at the same time interval, the second 
shards of every user occur at the same time interval, and 
so on). Note that, in the considered datasets, each user has 
a different data distribution and a different number of sam-
ples. Hence, within a specific shard, each client contributes 
with data collected considering its personal distribution. The 
evaluation process is composed by sh iterations, one for each 
shard. Considering the i-th shard we proceed as follows: 

1. The devices of the users in Tr exploits the Personalized 
Model to classify the continuous stream of inertial sen-
sor data in its shard. We use the classification output to 
evaluate the recognition rate in terms of F1 score provid-
ing an assessment of personalization. Note that, during 
this phase, we also apply our active learning strategy and 
we keep track of the number of triggered questions.

2. When all data in the shard have been processed (by all 
devices), the server starts a number r of communication 
rounds with a subset of the devices in order to update the 
global weights. Each round is implemented as follows: 

(a) The server randomly selects a certain percentage 
p% of users in Tr and sends to their devices the 
last update of the global weights.

(b) Each user’s device, by receiving the global 
weights, applies Label Propagation (See Sec-
tion 4.5.2) and uses the newly labeled data to train 
its Shareable Model. After training, the resulting 
weights are transmitted to the server.

(c) The server merges the received weights obtaining 
a new version the global model weights.

Fig. 7  MobiAct: The impact 
of label propagation and active 
learning on the subjects that 
participated in the FL process.
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(d) We evaluate in terms of F1 score the recognition 
rate of the resulting global model on the left-out 
users in Ts (providing an assessment of generaliza-
tion).

3. After the execution of all the communication rounds, 
each users’ device: 

(a) replaces the weights of the Shareable Model and 
Personalized Model with the ones of the latest 
global model

(b) fine-tunes the Personalized Model with labeled 
data from active learning and label propagation

(c) starts the personalization process described in 
Section 4.4.

Note that our evaluation methodology introduces several lev-
els of randomness: assigning users to Ts, Tr and Pt; assign-
ing data samples to shards; selecting devices at each commu-
nication round. We iterate experiments 10 times and average 
the results in order to make our estimates more robust.

5.3  Results

In the following, we report the results of the evaluation of 
FedAR.

5.3.1  Classification model and hyper‑parameters

As explained and motivated in Section 4.1, our classification 
model is a fully connected deep neural network. The network 
consists of four fully connected layers having respectively 
128, 64, 32, and 16 neurons, and a softmax layer for clas-
sification. We use Adam [61] as optimizer. The choice of 
this specific network architecture is due to the good per-
formance reported in the federated HAR literature [48]. As 
hyper-parameters, we empirically chose w = 4s , p = 30% , 
r = 10 , l = 2 , sh = 3 , and 10 local training epochs with a 
batch size of 30 samples. These hyper-parameters have been 
empirically determined based on data in Ts. The low number 
of epochs and communication rounds is due to the small 
size of the public datasets. This also limits the data in each 
shard. In a large-scale deployment, these parameters should 
be accurately calibrated.

Fig. 8  WISDM: The impact 
of label propagation (LP) and 
active learning (AL) on the 
subjects that participated in the 
FL process.

Fig. 9  MobiAct: the trend of F1 
score on the left-out users after 
each communication round. 
This Figure also shows the 
impact of active learning and 
label propagation. Each red line 
marks the end of a shard
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5.3.2  Impact of semi‑supervised learning

Figure 7 and Fig. 8 show how the F1 score and the percent-
age of active learning questions change at each shard for the 
users in Tr.

We observe that the F1 score significantly improves shard 
after shard, while the number of active learning questions 
decreases. Averaging the results of both datasets, the num-
ber of active learning questions at the first shard is around 
25% , while at the last shard is only around 5% . This result 
indicates that our method continuously improves the recog-
nition rate with a limited amount of labels provided by the 
users. Moreover, the continuous decrease of the number of 
questions militates for the usability of our method, which 
will prompt fewer and fewer questions with time. These 
figures also show the impact of combining active learning 
with label propagation. Without label propagation, active 
learning alone leads to a lower recognition rate and a higher 
number of questions. This means that the labeled data points 
derived by label propagation positively improve the activity 
model. On the other hand, we observe that label propaga-
tion leads to unsatisfying results without active learning. 
Indeed, the labeled samples obtained by active learning rep-
resent informative data that are crucial for label propaga-
tion. Hence, the evaluation on both datasets confirms that 
the combination of active learning and label propagation 
leads to the best results.

In Fig. 9 and Fig. 10 we show the generalization capabil-
ity of the global model on left-out users (i.e., users in parti-
tion Ts) after each communication round performed during 
the FL process with the users in Tr.

The red lines mark the end of each shard. The results indi-
cate that the federated model constantly improves also for 
those users that did not contribute with training data, even if 
the active learning questions continuously decrease. These 
plots also confirm that the combination of label propagation 
and active learning leads to the best results on both datasets.

5.3.3  FedAR versus approaches based on fully labeled data

We compared our approach with two existing FL methods 
based on fully labeled data. The first one is the well-known 
FedAVG [6], which is the most common FL method in the 

Fig. 10  WISDM: the trend of 
F1 score on the left-out users 
after each communication 
round. This Figure also shows 
the impact of active learning 
and label propagation. Each red 
line marks the end of a shard

Fig. 11  Comparison of FedAR with methods based on fully labeled 
data.
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literature. FedAVG simply averages the model parameters 
derived by the local training on the participating nodes 
(without any personalization).

The second method that we use for comparison is called 
FedHealth [8]. This is one of the first FL approaches pro-
posed for activity recognition on wearable sensors data. 
Similarly to our approach, FedHealth applies personaliza-
tion using transfer learning.

Since FedAR considers a limited amount of available 
labeled data, our goal is to achieve a recognition rate that 
is as close as possible to the one obtained by solutions that 
assume full availability of annotations.

For the sake of fairness, in our experiments we adapted 
FedAVG and FedHealth to use the same neural network 
that we use in FedAR. Hence, we performed our experi-
ments using our evaluation methodology by simulating 
that, for FedAVG and FedHealth, each node has the ground 
truth for each data sample on each shard. Hence, the evalu-
ation of those methods does not include active learning 
and label propagation. Moreover, differently from FedAR, 
FedAVG and FedHealth only use a single local model.

The results of this comparison for the users in Tr (i.e., 
the ones that actively participated in the FL process) are 
reported in Fig. 11a and b.

From these plots, we observe that FedAR converges 
to recognition rates that are similar to solutions based on 
fully labeled data at each shard. The advantage of FedAR 
is that it can be used for realistic HAR deployments where 
the availability of labeled data is scarce. Despite a reduced 
number of required annotations, FedAR performs even 
better than FedAVG on the WISDM dataset, while on 
MobiAct it performs slightly worse. Moreover, FedAR is 
only ≈ 3% behind FedHealth on both datasets.

5.3.4  FedAR performance on each activity

Figure  12 shows how the recognition rate improves 
between shards for each activity for the users in Tr on 
both datasets.

Fig. 12  F1 score at each shard for each activity on the users that par-
ticipated in the FL process.

Fig. 13  MobiAct: results on the users that participated to the FL pro-
cess for each shard, with and without personalization.
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We observed an improvement of the recognition rate 
shard after shard for each considered activity. The only 
exception is the standing activity on the MobiAct dataset in 
the third shard, which maintains the same F1 score.

In general, the greatest improvement occurs between the 
first and the second shards. This is due to the fact that, in the 
first shard, activities are recognized using the initial global 
model only trained with the pre-training dataset. Starting 
from the second shard, classification is performed with the 
Personalized Model updated thanks to FL and personalized 
using our transfer learning approach.

5.3.5  Impact of personalization

Figure 13 and Fig. 14 show the impact of the FedAR person-
alization strategy based on transfer learning. This evaluation 
is performed on the users in the Tr partition.

As expected, fine-tuning the personal models leads to an 
improvement both on the recognition rate and on the number 
of questions in active learning. Note that, during the first 
shard, classification is performed using the weights derived 
from the pre-trained dataset and personalization is applied 
starting from the second shard.

5.3.6  Fully connected vs convolutional models

The classification model in FedAR is a fully connected net-
work (we will refer it as MLP3 for the sake of brevity) that 
receives as input handcrafted feature vectors. Nonetheless, 
Convolutional Neural Networks (CNNs) proved to be very 
effective in fully supervised HAR approaches, since they can 
automatically learn features from raw data [55].

We performed a preliminary experiment to compare MLP 
and CNN in a fully supervised centralized approach using 
a leave-one-subject-out cross-validation. As CNN architec-
ture, we consider the one recently proposed in [62] since it 
proved to be one of the most effective for HAR. Figure 15 
shows the outcome of this comparison. We observe that, 
considering a fully supervised centralized setting, CNN is 
more effective on both datasets.

However, we observed that CNN struggles in learning 
reliable features considering our federated and semi-super-
vised setting, since the amount of labeled data to train the 
classifier is limited (cold start issue). Figures 16 and 17 
show the comparison of FedAR using our MLP model with 
handcrafted features and the CNN model. On both datasets, 
MLP quickly reaches a higher F1 score with respect to CNN 
with a significantly lower number of active learning que-
ries. Since features are computed a priori, the MLP model 

Fig. 14  WISDM: results on the users that participated to the FL pro-
cess for each shard, with and without personalization.

Fig. 15  Centralized setting: MLP vs CNN based on leave-one-sub-
ject-out cross-validation.

3 MultiLayer Perceptron
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can immediately focus on training the classification layers 
rather than learning features. Hence, these results motivate 
our choice of adopting a MLP model with handcrafted fea-
tures in FedAR.

6  Discussion

6.1  Generality of the approach

While we designed FedAR with wearable-based activ-
ity recognition as target application, we believe that this 
combination of semi-supervised and FL can be applied 
also to many other applications. Our method is suitable 
for human-centered classification tasks that include the 
following characteristics:

• There is a large number of clients that participate in the 
FL process.

• Classification needs to be performed on a continuous 
data stream, where labels are not naturally available.

• Each node generates a significant amount of unlabeled 
data.

• It is possible to periodically obtain the ground truth 
by delivering active learning questions to users that 
are available to provide a small number of labels. Note 

that, in real-time applications like HAR, for the sake of 
usability active learning questions should be prompted 
temporally close to the prediction.

• It is possible to obtain a limited training set to initialize 
the global model. Hence, a small group of volunteers 
should be available (in an initial phase) for annotated 
data acquisition.

• The nodes should be capable of computing training 
operations. Clearly, nodes can also rely on trusted edge 
gateways/servers (like proposed in [48]).

6.2  Privacy concerns

Despite FL is a significant step towards protecting user 
privacy in distributed machine learning, the shared model 
weights may still reveal some sensitive information about 
the participating users [63, 64]. Similarly to other works, 
FedAR uses Secure Multiparty Computation (SMC) [65, 
66] to mitigate this problem. However, other approaches 
have been proposed, including differential privacy 
(DP) [67, 68], and hybrid approaches that combine SMC 
and DP [69].

The advantage of DP is the reduced communication 
overhead, with the cost of affecting the accuracy of the 
model. For the sake of this work, we opted for SMC in 
order to more realistically compare the effectiveness of our 

Fig. 16  WISDM: results on the 
users that participated to the 
FL process for each shard using 
both CNN and MLP networks

Fig. 17  MobiAct: results on the 
users that participated to the 
FL process for each shard using 
both CNN and MLP networks
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semi-supervised approach with other approaches, consid-
ering privacy as an orthogonal problem. However, we also 
plan to investigate how to integrate differential privacy 
in our framework and its impact on the recognition rate.

6.3  Need of larger datasets for evaluation

We evaluated FedAR choosing those well-known public 
HAR datasets that involved the highest number of users, 
simulating the periodicity of FL iterations by partition-
ing the dataset. However, the effectiveness of FedAR on 
large-scale scenarios should be evaluated on significantly 
larger datasets. By larger, we mean in terms of the number 
of users involved, the amount of available data for each 
user, and the number of target activities. Indeed, FedAR 
makes sense when thousands of users are involved, con-
tinuously performing activities day after day. However, 
observing the encouraging results on our limited datasets, 
we are confident that FedAR would perform even better 
on such large-scale evaluations.

Another limitation of the considered datasets is that both 
of them include data from only one position of the mobile 
device (trousers pocket). Since mobile devices can actually 
have different positions (e.g., wristbands), a larger evaluation 
should also consider different positions of the mobile device.

6.4  Resource efficiency

It is important to mention that FedAR is not optimized in 
terms of computational efficiency. Indeed, training two deep 
learning models on mobile devices may be computationally 
demanding and it may be problematic especially for those 
devices with low computational capabilities. This problem 
could be mitigated by relying on trusted edge gateways, as 
proposed in [46].

We want to point out that several research groups are pro-
posing effective ways to dramatically reduce computational 
efforts for deep learning processes on mobile devices [70, 
71]. Moreover, the GPU modules embedded in recent smart-
phones exhibit performances similar to the ones of entry-
level desktop GPUs and this trend is expected to improve in 
the next few years [72].

Another limitation of our work is that the label propaga-
tion model requires storing the collected feature vectors as 
a graph. This is clearly not sustainable for a long time on a 
mobile device. This problem could be solved by imposing a 
limit on the size of the label propagation graph and periodi-
cally deleting old or poorly informative nodes.

7  Conclusion and future work

In this work we presented FedAR, a novel semi-supervised 
federated learning framework for activity recognition on 
mobile devices. FedAR takes into account the data scarcity 
problem, combining active learning and label propagation 
to semi-automatically annotate sensor data for each user. To 
the best of our knowledge, FedAR is the first application of 
federated learning to personalized activity recognition that 
is not based on the assumption that labeled data exists for all 
participating clients. Our results show that the combination 
of active learning and label propagation leads to recognition 
rates that are close to the ones reached by solutions that rely 
on fully supervised learning to train the local models.

In future work, we plan to investigate how federated clus-
tering can further help improving the non-IID problem for 
HAR [73]. Indeed, HAR is more effective when the col-
laborative model only involves users that are similar between 
them [74]. We will study solutions based on federated clus-
tering to automatically group users considering model simi-
larity, creating a dedicated federated model for each cluster. 
Also, we plan to extend FedAR to automatically learn fea-
tures from the unlabeled data stream, following the research 
direction proposed in [51].
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