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Abstract

The advances in Internet of things lead to an increased number of devices generating and streaming data. These devices
can be useful data sources for activity recognition by using machine learning. However, the set of available sensors may
vary over time, e.g. due to mobility of the sensors and technical failures. Since the machine learning model uses the data
streams from the sensors as input, it must be able to handle a varying number of input variables, i.e. that the feature space
might change over time. Moreover, the labelled data necessary for the training is often costly to acquire. In active learning,
the model is given a budget for requesting labels from an oracle, and aims to maximize accuracy by careful selection of
what data instances to label. It is generally assumed that the role of the oracle only is to respond to queries and that it will
always do so. In many real-world scenarios however, the oracle is a human user and the assumptions are simplifications
that might not give a proper depiction of the setting. In this work we investigate different interactive machine learning
strategies, out of which active learning is one, which explore the effects of an oracle that can be more proactive and factors
that might influence a user to provide or withhold labels. We implement five interactive machine learning strategies as well
as hybrid versions of them and evaluate them on two datasets. The results show that a more proactive user can improve the
performance, especially when the user is influenced by the accuracy of earlier predictions. The experiments also highlight
challenges related to evaluating performance when the set of classes is changing over time.

Keywords Interactive machine learning - Activity recognition - Internet of things - Active learning - Machine learning

1 Introduction to acquire, there might not exist any to train the machine

learning model with. In this case the model can be

Ongoing advances in Internet of things technology lead
to new possibilities within the application area of smart
environment and activity recognition [1, 21, 26]. With an
increasing number of devices in our surroundings streaming
data, the opportunities to collect information about those
surroundings increase. In sensor rich environments, the set
of sensors that is streaming data might not be constant
over time. Furthermore, as labelled data typically is costly
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incrementally trained on labelled data that is repeatedly
provided by a user. It is unrealistic in most scenarios to
assume that that the user can label all incoming data.
In most cases only a limited ratio of the data can be
labelled. Because of the restrictions on labelling data, it is of
importance to choose the data instances to label such that the
information for the machine learning model is maximized.
The focus of our work is to classify the state of a specified
environment with a dynamic set of sensors and limited
labelled data provided by users.

By a dynamic set of sensors, we mean that the set of
sensors streaming data is varying over time. The reasons for
the dynamicity may vary, e.g. the sensors might be mobile
and can enter or leave the environment at different points in
time, they might stop streaming due to sensor malfunction,
or there might be network problems.

The estimation of the activity or environmental state
is done at each point in time by gathering and fusing
data collected from the sensors currently available in
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the environment. By including mobile sensors, e.g. in
smartphones, the number of possible data sources increases
compared with a static set of sensors, but it also introduces
challenges. For instance, by using data from a set of sensors
that is changing over time, a machine learning model used
for learning and data fusion must adapt to use the sensors
that currently are streaming data in an optimal way.

When using supervised or semi-supervised machine
learning techniques, not only data, but also labelled data is
needed, e.g. the activity corresponding to the current sensor
data. While the amount of generated data grows with an
increased number of devices streaming data, the annotation
of the data is still costly and often difficult to acquire. When
dealing with streaming data in real world applications, there
might not be any labelled dataset available to train the model
with at the start. In this case, often referred to as the cold
start problem, the model needs to be incrementally trained
on data that is annotated gradually over time. Furthermore,
in the case of streaming data and real-time estimation, the
statistical properties of the data might change over time.
This means that the information gathered at one point in
time might not correctly represent the scenario later. To
resolve this issue, referred to as concept drift, the model
needs to be updated with new labelled data [16].

The aim in active learning is that only a subset of the
entire dataset has to be labelled and used for training while
still receiving the same performance. The size of the chosen
subset is constrained by a labelling budget. Typically, there
is a trade-off between performance of the machine learning
model and the amount of labelled data needed. In active
learning, the subset is chosen with the goal to optimize
performance given the budget available. To obtain the
labels, an oracle is queried, which can be a human (expert
or non-expert) or another system. Generally, it is expected
that the oracle will always reply with a correct label when
queried. In many real-life scenarios these assumptions are
unrealistic, especially if the oracle is a human expected
to reply in real-time. We introduce interactive learning as
an extension of active learning. To distinguish interactive
learning from active learning, we adapt the term “user”,
instead of “oracle”. The term ‘“oracle” implies an all-
knowing entity, while the term “user” is better suited for
a situation where a person present in the environment
provides labelled data. With interactive learning we include
the possibility for the user to provide a label without being
queried but instead by their own initiative, as in machine
teaching [34, 35]. By relaxing the assumptions of active
learning and giving the user possibility to be proactive
in the learning process, our goal is to investigate how
different interactive machine learning strategies affect the
performance.

In this paper, we build upon previous work [29-31]
and examine how different labelling strategies affect the
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performance of the estimations from the learning strategy.
We use datasets simulating an environment of a user and
dynamic sensors streaming data. We present a first version
of a taxonomy for different strategies a user might have, or
in other words, what might influence a user whether or not
to provide labels.

2 Related work

Activity recognition is a popular research field, the use
of which has been acknowledged within many application
areas related to smart cities, such as, safety, security,
medicine and smart buildings. Recently, deep learning
methods applied to activity recognition problems have
in many cases outperformed other methods. Among the
most popular methods are Convolutional Neural Network,
Recurrent Neural Network and Restricted Boltzmann
Machine [32]. Ordéiiez et al. introduce a framework for
activity recognition based on convolutional and LSTM
recurrent units and test it on two benchmark datasets [20].
Ronao et al. propose a deep Convolutional Neural Network
for human activity recognition using sensors in a smart
phone [24]. Hasan et al. use deep hybrid feature models
that are incrementally trained through active learning [12].
All three works have divided up the data set into two, one
used in a initial train phase, and the other used for testing,
i.e. none addresses the cold start problem and require very
large amounts of data to be available before any actvity
recognition can be performed. While there are several
advantages to using deep learning for activity recognition
tasks, for instance the features can be constructed by the
algorithm without the need of human experience or domain
knowledge, it also comes with challenges such as being used
in real-time and reliance on training data [32]. Deep learning
is dependant on an adequate amount of data being available
to train the model on before it can be used to produce
estimations. Since we are focusing on a cold start scenario
within this work, training the model before prediction starts
is not possible.

The challenge of lacking labelled data for activity
recognition tasks has also been addressed by using
unsupervised learning [3, 9, 17, 23, 33]. Kwon et al.
propose unsupervised learning methods that use data
from smartphone sensors for activity recognition [17].
Ye et al. introduce USMART, a technique based on
unsupervised learning that combines knowledge- and data-
driven techniques [33]. Azkune et al. introduce a system
that combines unsupervised learning and knowledge-based
activity models [3]. They receive comparable results with
supervised learning approaches in the results presented. The
setup of the experiments in these works are all done in an
offline manner, i.e. not in the single-pass streaming fashion
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that is the case in many real world activity recognition
applications, and that we employ in our experiments. Using
unsupervised learning has the advantage of not needing
labelled training data [23, 33]. However, the models are
dependent on a domain expert to provide knowledge to the
model, a work effort that amounts to roughly one days work
for the expert in the systems proposed by Riboni et al. and
Azkune et al. [3, 23]. The presented strategies can be useful
in many settings, but in the cold start setting of this work,
it is assumed that there is no prior training or knowledge
provided.

Stikic et al. explore different methods that could reduce
the required amount of labelled data, including active
learning approaches [27, 28]. Data from wearable sensors
are used to aid psychiatrists in providing insight into their
patients behavioural patterns in a work by Dietrich et al.
[8]. The authors explore how different visualizations can be
used as feedback to the psychiatrists. Compared with these,
in our problem setting the feedback has to be provided in
real-time, starting from a cold start scenario.

Active learning within a static setting without streaming
data is a well-studied problem [16, 25]. The subset of data to
be labelled by the oracle is selected at one point in time as all
data is available from the start, based on the active learning
strategy and the labelling budget. With streaming data
however, the set of samples cannot be chosen beforehand,
because they arrive one sample at a time. Instead, the
choice of whether to query or not has to be made with
each arriving sample, still adhering to the labelling budget
over time. There are some work that have studied active
learning with streaming data, e.g. Lughofer presents an
overview of concepts, techniques, applications, challenges
and more related to online active learning [18]. Online
learning is a specific case of learning from streaming data,
where one instance of data is processed at a time. Cheng et
al. present a systematic framework with a feedback-driven
active learning approach for streaming data with multiple
classes and evaluate it on various datasets [7]. The approach
aims to balance exploration and exploitation during the
learning process.

Regardless of whether the data is streaming or not, active
learning typically assumes that if and when queried, the
oracle will always provide a correct label. However, in
many real world applications this assumption is not realistic.
Rather, the oracle is a human that is not necessarily an expert
and is asked to provide labels in real-time. Furthermore, the
person expected to answer the queries might not be the same
person over time, as people might come and go through the
environment, and sometimes no label at all is provided.

Previous work that takes into account the human factor
of the oracle in active learning have mostly focused on
interaction design or the user experience [2, 13]. Donmez
et al. present a work where the assumptions of the oracle in

active learning are relaxed [10]. The oracle can be reluctant
(i.e. might not reply to a query) and unreliable (i.e. might
provide an incorrect label). The authors suggest that by
introducing these parameters to the oracle, the model is
better suited for real-world applications. Cakmak et al.
perform experiments where different levels of involvement
and guidance from the oracle are compared with regular
active learning [4]. It is pointed out that performance can be
improved for active learning if the oracle also is allowed to
have a more active role.

3 Experimental setup

In this section, the different machine learning methods and
the different interactive learning strategies are explained.
The setup of the experiments performed, along with the
datasets used, are also presented.

Several popular evaluation methods for batch learning,
e.g. cross-validation, are not directly applicable in a setting
with streaming data. An evaluation method used in this type
of scenario needs to work for the cold start problem, as
well as respect the temporal order of data. The evaluation
procedure used for all experiments was test-then-train
[11]. When a new data instance is received through the
incoming stream of data, the system first produces an
estimate of the given instance. After this, the interactive
learning strategy decides whether or not the instance should
be labelled. If a label is provided, the machine learning
model is incrementally trained with the new labelled data
instance. The performance is then measured by calculating
the accumulated accuracy over time.

3.1 Machine learning approaches

Three different machine learning approaches were used
in the experiments: Support Vector Machine, k-Nearest
Neighbor and Naive Bayes classifier. Different parameter
settings were tested for all machine learning approaches,
but here we will only present results from using the ones
best suited for the given problem. The classifiers also had to
be adapted to be able to handle the dynamic sensor setting.
The adaption is described in the section for each respective
method.

Because of the regular influx of new data, all data
cannot be stored indefinitely. Instead, an upper limit is set
of how many labelled instances can be stored per class.
If the maximum number of instances are reached and a
new sample arrives, the oldest sample is discarded. After
different limits of sample size were tested, the limit was set
to 50 labelled instances of each class. This was big enough
to represent possible variation within a given class, while
still small enough to be updated in the case of concept drift.
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3.1.1 Naive Bayes classifier

The Naive Bayes classifier with Gaussian distributions
assumed for the variables was included in the experiments.
The classifier has several advantages that makes it a suitable
choice for our scenario [15]. Compared with many other
machine learning approaches, it requires less training data.
It is not computationally complex, which is important when
estimations are produced in real-time and is also suitable
for online learning. The Naive Bayes classifier handles the
different features separately, which makes it easier to adapt
to the dynamic sensor setting. If a sensor stops streaming,
the corresponding feature is simply discarded from the
model, as the other features are not affected by it. If a new
sensor starts streaming, the labelled data instances including
this new feature are stored in parallel with a dataset with the
old set of features. When enough data is collected of the new
instance it can be added to the model used for estimation.

3.1.2 k-Nearest Neighbor

The k-Nearest Neighbor approach is a good choice in
our scenario because of its simplicity [14]. Basically, the
method classifies a new sample based on the labels of the
k instances in the dataset that most resembles the sample
given a distance metric. The label which is most frequent
among these k neighbors is assigned to the new label.
In our experiments we had k = 3. The simplicity of
the method makes it suitable for online learning and its
computational work can be limited through the number
of labels being saved. Furthermore, only k labelled data
instances are needed to start classifying, which is useful in
a cold start scenario.

The adaption of k-Nearest Neighbor to the dynamic
sensor setting was similar to that of the Naive Bayes
classifier, but with some changes. As the features are not
dealt with independently, the addition of a new sensor is
less flexible for these methods. A larger number of labelled
samples are needed before including a new sensor in the
model. In this case, the samples that were added before the
arrival of the new sensor does not contain a value for the
new feature, but were filled with an average of the so far
collected samples of the new sensor.

3.1.3 Support Vector Machines

Support Vector Machines with a polynomial kernel was
also chosen for the experiments. Support Vector Machines
are, apart from also being suitable for online classification,
efficient regarding memory usage and dealing with high-
dimensional datasets [19]. Efficient memory usage is
important for real-time estimations. Being able to efficiently
deal with high-dimensional data is useful in a dynamic
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sensor setting which can result in many features. The
adaption of Support Vector Machines to the dynamic sensor
setting was the same as for k-Nearest Neighbor.

3.2 Interactive learning strategies

In this work we explored what can influence a user to
provide feedback in a real-time learning scenario and
implemented interactive learning strategies based on this.
Active learning can be seen as a special case of interactive
learning, where the user is triggered to provide a label by
being queried. However, other factors might prompt the
user to provide, or stop the user from providing, a label.
Below, the different factors detected that could influence a
user are described together with the implemented interactive
learning strategy used in the experiments.

— Uncertainty: In active learning, the user will provide
a label when queried by the active learning strategy.
One of the most popular active learning strategies is
to query when the model is uncertain regarding the
estimation. To decide when the model is uncertain an
uncertainty measurement has to be defined. There exists
several different versions of uncertainty measurement,
but they all depend on a boundary, such as a threshold
for the uncertainty measure, labelling budget and the
implementation of the strategy. Since we have three
different machine learning approaches, each one needs
their own implementation of an uncertainty measure.

For the Naive Bayes classifier, we use the Variable
Uncertainty Strategy presented by Zliobaité et al. [36].
The classifier produces probabilities for all classes and
the class with the highest probability is then chosen for
the classification. The probability is compared with a
given threshold to decide if the estimation is uncertain
or not (i.e. if the model should query). In this strategy
the threshold is not static over time. If there are few
queries, it might indicate that the threshold is set too
high and so the threshold is gradually lowered and vice
versa.

For the Support Vector Machine and k-Nearest
Neighbor, we chose active learning strategies proposed
by Pohl et al. [22]. For Support Vector Machine, the
distance from the given data point to the hyperplane
was chosen as the measurement of how certain the
classifier is. Like with the Naive Bayes classifier, this
measurement is compared with a threshold that can
be altered over time. In the active learning strategy
for k-Nearest Neighbor, more than two-thirds of the
neighbors must have the same label for the estimation
to not be considered uncertain.

— Error: A user can be influenced by the output from
the machine learning model. The model produces
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estimations of the current state of the environment,
and in some cases also the confidence of the given
prediction or, in the case of multi-class classification,
the probability of other candidates. If a user has access
to this type of information, it could influence them
on whether to provide or withhold labels. In our
experiments, the strategy has been implemented so
that the user will provide a label when the previous
prediction was erroneous.

— State change: Since the users are assumed to have
knowledge of the current state of the environment,
as they themselves are present, this awareness can
trigger users to provide labels. For instance, assume
the machine learning model is supposed to estimate the
currently ongoing activity in an office setting. If the
user first sits and works by themselves, but then several
other people enter and a meeting starts, the status has
changed from silent work to meeting, which will trigger
the user to provide a label. In our implementation, the
user provides labels when there is a change in the state
of the environment, otherwise not.

— Time: The user may provide labels at certain points
in time, regardless of queries, the correctness of
estimations, and the state of the environment. In this
strategy, labels are provided with a given frequency
which is calculated based on the labelling budget. The
user can either by their own initiative provide labels
with a given time interval, or they can be queried by a
labelling strategy systematically.

— Random: Labels can also be provided at random. In
this case there can either be a labelling strategy that
queries the user at random or the user themselves
might provide labels at random. The user might have
reasons related to themselves regarding why they would
provide labels or not. For instance, a user might
provide fewer labels when they are more stressed.
These labelling patterns might seem random, but
they are not necessarily that. While they might appear
random with regards to the sensor data, estimations,
time etc, it might only be because the dataset does
not include the relevant features such as the stress
level of the user over time. The lack of appropriate
data is the reason these types of strategies are not
included here. However, it could be interesting to
explore such strategies further in future work.

While the factors are listed separately above, they could
be combined to different degrees. For example, the decision
to provide a label or not could be based both on being
queried by the model and what is happening around the user
in the environment. To examine how such hybrid strategies
performs compared with the separate strategies, a number
of hybrid strategies were implemented as well. The different

implementations and combinations of strategies leads to a
large amount of possible hybrid strategies. In this work,
we decided to focus on the combinations of the strategy
Uncertainty, with the other interactive learning strategies
listed above. We chose these combinations, as the decision
on whether a label will be provided would not only be with
the learning model nor with the user, but based on strategies
of both. The different hybrid approaches are described
below.

— Uncertainty + Error: In this strategy, the first step is
the Uncertainty strategy (described further above). The
model queries the user when uncertain regarding its
prediction, but the user will only respond to the query
with a label if the latest prediction was incorrect.

—  Uncertainty + State change: Similarly to the previous
strategy, the first step is Uncertainty, querying when-
ever the uncertainty of prediction is considered big
enough. However, the user will only respond if the state
of the environment has changed since the last label was
given.

—  Uncertainty + Random: Also this strategy consists of
two steps, where the first is Uncertainty. In this case
however, it is randomly generated whether the user will
provide a label as a response to the query. This strategy
is similar to a setting where the Uncertainty strategy is
employed, but the user does not always reply to a query.

—  Uncertainty + Time: This strategy is also Uncertainty
combined with another interactive learning strategy,
but differs from the other hybrid strategies. Instead of
one strategy following the other in two separate steps,
the two strategies are run in parallel. The interactive
learning strategy, Time, has a separate counter that
keeps track of how many instances has appeared since
the last sample was labelled. Given that there is enough
budget, a label is provided at a certain frequency, which
is calculated from the labelling budget. At each point in
time, the frequency and the uncertainty of the prediction
is tested in parallel and if either one decides to provide
a label or query, a label for the sample will be given.
However, even though the strategies are run in parallel,
they share the same labelling budget.

3.3 Datasets

We used two separate benchmark datasets within Activ-
ity Recognition and smart environment to evaluate the
proposed methods. Both contain collections of sequential
data, i.e. the data was recorded in sessions, from multi-
ple heterogeneous sensors. Simulations were done on the
datasets to create the dynamic set of sensors that is changing
over time.
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3.3.1 Opportunity dataset

The Opportunity dataset is a collection of recordings of
different daily living activities performed separately by 4
subjects in a sensor-rich environment [6]. The subjects
performed a scripted scenario in five different runs, giving
a total of 20 recorded data sequences. The sequences
are between 12.35 minutes (22230 instances) and 28.4
minutes (51116 instances) long. In total 72 different sensors,
resulting in 242 features, were used for the recordings, some
sensors were worn by the subject, others placed on objects
in the room of the recording. For the experiments, 19 of
the separate recordings were used (one was excluded, as it
contained too many missing values). All tests were run on
the data sequences separately and then averaged.

The data is annotated in several abstraction levels. For the
experiments in this work, the highest abstraction level was
used which includes four labels and a null category (which
represents unlabelled data instances). The annotations at
this level describe the mode of locomotion for the subject
(“Stand”, “Walk”, “Sit” or “Lie”).

The labelling budget was set to 5% for the experiments
on the Opportunity dataset based on tests on the different
machine learning approaches and the interactive learning
strategies. Figure 1 displays that 5% leads to a good
balance between keeping the budget low, while still trying to
maximize performance. The labelling budget is in reference
to the number of incoming samples, not the timestamp. With
this dataset a 5% labelling budget would equal 90 labels
being provided each minute on average, which might not be
realistic. While an ideal scenario would be recorded over
longer periods of time, we consider the results to still be
representative for our problem scenario, as the order in the
sequences are maintained and the learning approaches does
not use the timestamp as a feature.

3.3.2 Occupancy dataset

The Occupancy dataset contains recordings of whether or
not a room in an office setting is occupied [5]. The dataset
contains 3 separate sequences of recorded data, varying in
length from 1.8 days (2664 instances) to 6.8 days (9752
instances) (6.8 days) and five different features (light,
temperature, humidity, CO2-level and humidity ratio). The
pattern of when the room is occupied follows regular
working hours during weekdays, but the room was empty
the entire day on weekends.

With the Occupancy dataset, there was not as many
separate recordings as with the Opportunity dataset. Instead,
the data was divided by days (from midnight to midnight)
and randomly shuffled for each simulation, to obtain
variation in the sequence of incoming data. In total, 100
simulations were run and then averaged to produce the
presented results. The labelling budget for the experiments
on the dataset was set to 1%, based on findings in earlier
work [29].

3.3.3 Simulation of dynamic sensor set

To simulate a dynamic set of sensors streaming data, the
access to some sensors were restricted during periods of
time. The choice of sensors to be dynamic, and during which
part of the sequence their data streams would be restricted,
were randomly generated for each simulation. A sensor can
be present at first, but later drop off, it can be absent from
the start, but start streaming data at some point in time or a
combination of the two. In case of a combination, the sensor
could be streaming at the start, later drop off, and even later
reappear again or vice versa. If a sensor was streaming at the
start, then stopped and later start streaming again, the data
collected from the first period of streaming was not stored
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Fig.2 The actual amount of data labelled for different labelling budgets and interactive machine learning strategies for the Opportunity dataset

in the model for the reappearance. In a sensor-intensive
environment there might otherwise be a risk of an ever
increasing amount of data from sensors that might never
reappear. An alternative could have been to store the data for
a limited time for the possibility of the sensor reappearing
within this time period. While this was not implemented in
the following experiments, it is planned to be investigated in
future work.

First, experiments were done where the number of
dynamic sensors was set to a fixed number. When each
dynamic sensor would be streaming data and which sensors
they would be, was still randomly generated. In the second
part of the experiments, the number of sensors with a
dynamic presence may vary between simulations, but are
bounded by a minimum and maximum value. For the
Opportunity dataset, 20-80% of the sensors had a dynamic
presence, while it was 20-60% of the sensors for the
Occupancy dataset. The reason for the different intervals
is because the two datasets have different number of

features. While the Opportunity dataset has 242 features,
the Occupancy dataset only has five features. For each
dynamicity value, the average number of streaming sensors
over time has been calculated and it is this number that is
displayed in the results.

4 Results

Figure 1 displays how different labelling budgets affects
the accumulated accuracy for the three machine learning
methods and the interactive learning strategies on the
Opportunity dataset. The figure shows that an increased
budget leads to increased performance, with decreasing
relative improvements in performance for larger budgets.
When choosing a labelling budget, the trade-off between a
lower budget and a higher performance has to be considered.
While the optimal labelling budget might differ slightly
for the different strategies, due to consistency in the

Naive Bayes SVM k-NN

90 ] e N N ————— — ———s—————— -
80 e A e e e e e
x
> - - - Uncertainty
£70 Error
§ ——- State change
< —— Time

60 1 —-—- Random

() || S it e - | ]

160 180 200 220 240 160 180 200 220 240 160 180 200 220 240

Average number of streaming sensors

Average number of streaming sensors

Average number of streaming sensors

Fig.3 The accumulated accuracy over the average number of streaming sensors for the separate interactive learning strategies on the Opportunity

dataset

@ Springer



280 Pers Ubiquit Comput (2024) 28:273-286
Naive Bayes SVM k-NN
100 1
90 -
9
~ 80. -
- o
9 e t— -
g ) s ;
=1 2N - . A .
S 70+ B . R T S _ - - - - Uncertainty
< - - Error
60 1 ——- State change
— Time
—-—- Random
50 T T T - . - . : .
4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0

Average number of streaming sensors

Average number of streaming sensors

Average number of streaming sensors

Fig.4 The accumulated accuracy over the average number of streaming sensors for the separate interactive learning strategies on the Occupancy

dataset

experiments one budget was chosen for all strategies. When
taking the results of all strategies into account, the labelling
budget was set to 5%.

As Fig. 2 illustrates, even though the labelling budget
is increased, the actual amount of labelled samples is
not necessarily increased with an equal amount. While
Uncertainty and Time in most cases uses up their labelling
budget, Error never use up the allowed budget, but still
manages to perform better then the other two strategies.

In Figs. 3 and 4 the results from the experiments
when varying the dynamicity of the streaming sensors are
showcased. The figures show the final value of accumulated
accuracy given an average number of streaming sensors.
For the Opportunity dataset, the results are the average
of simulations done on 19 separate recordings. For the
Occupancy dataset, the results are the average of 100
simulations.

The results from the experiments on the separate inter-
active learning strategies and machine learning approaches
can be found in Figs. 5 and 6, for the Opportunity dataset

and the Occupancy dataset, respectively. Both figures dis-
play the accumulated accuracy over time, starting from the
first prediction. The results in Fig. 5 are the average of 19
simulations, each from a separate recording and a varying
dynamic set of sensors. Figure 6 displays the average of
100 simulations, also with a separate and varying dynamic
sensor setting.

Figures 7 and 8 contain the results from the hybrid
versions of the interactive learning strategies evaluated
on the Opportunity dataset and the Occupancy dataset,
respectively. The setup is the same as for the tests on the
separate interactive learning strategies, regarding number of
simulations, the dynamic sensor setting, etc.

The final Fig. 9, contains several plots, all displaying the
accumulated accuracy for the separate interactive learning
approaches over time. These tests were done on one of the
recordings of the Opportunity dataset to give an example of
how the learning curves differ when the sequence of data
from the recording is preserved compared with when all data
points are shuffled. The upper row contains the experiments
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Fig.5 The accumulated accuracy over time for the separate interactive learning strategies on the Opportunity dataset
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Fig.6 The accumulated accuracy over time for the separate interactive learning strategies on the Occupancy dataset

Naive Bayes SVM k-NN
100 -
90 -
9
> 80
(9]
g _ \
£ 3 e Uncertaint
S 701 * 1 1 y
g .~ \ === Error
....... . \_\ —— State change
601 B 1 -\_\. —— Time
N~ -
50 |

00 25 50 75 100 12500 25 50 75 100 12500 25 50 7.5 100 125
Time (minutes) Time (minutes) Time (minutes)

Fig.7 The accumulated accuracy over time for the hybrid interactive learning strategies on the Opportunity dataset

Naive Bayes SVM k-NN
100 1 - Uncertainty
981 ——- Error
\ —— State change
91 ‘.‘ —— Time
S 94 |
>
Q
© 921
]
9
& 901
88
86
0 24 48 72 96 120 0 24 48 72 96 120 0 24 48 72 96 120
Time (hours) Time (hours) Time (hours)

Fig.8 The accumulated accuracy over time for the hybrid interactive learning strategies on the Occupancy dataset

@ Springer



282

Pers Ubiquit Comput (2024) 28:273-286

Naive Bayes, preserved data sequence

SVM, preserved data sequence

k-NN, preserved data sequence

1004

90 1

80 A

70+

Accuracy (%)

60 A

50

40

80 A

Accuracy (%)
S
o

- - - Uncertainty
Error

——- State change

—— Time

——- Random

0 5 10 15 0 5
Time (minutes)

Time (minutes)

10 15 0 5 10 15
Time (minutes)

Fig. 9 The accumulated accuracy over time for the separate interactive learning strategies. Top row displays the results when the order of the
sequential data is kept, bottom row shows the results when the order is shuffled randomly

where the sequence is kept, while the lower row contains the
same data points, but in a randomly shuffled order.

Tables 1 and 2 contain the percentage of all data points
that were labelled, i.e. the actual labelling expenses used as
opposed to the allowed labelling budget for the experiments
with the separate interactive learning strategies. In Table 1
the actual amount of labelling used for the Opportunity
dataset is displayed (where the labelling budget was 5%)
and in Table 2 the same can be found for the Occupancy
dataset (where the labelling budget was 1%). While some
strategies used up the allowed labelling budget, all did not.
For the experiments on the separate interactive learning
strategies, the Error and State change strategies did not use
up the allowed budget in any of the cases. Error annotated
around 2.26% for the Opportunity dataset and around 0.35%
of all incoming samples for the Occupancy dataset. For
State change the numbers are 1.37% for the Opportunity

dataset and 0.30% for the Occupancy dataset. Uncertainty
even ended up slightly over the allowed budget for the
Occupancy dataset, with an actual budget around 1.33%.
These numbers where consistent with all of the machine
learning approaches used.

Tables 3 and 4 similarly display the percentage of all data
points that were labelled for the hybrid interactive learning
strategies for the Opportunity dataset and the Occupancy
dataset respectively. In the experiments with the hybrid
strategies, the number of labelled samples acquired was in
general lower, but in some cases on par with the number
from the experiments on the separate strategies. The only
strategy that used up the budget regardless of dataset and
machine learning approach, was Uncertainty + Time. This
approach actually used slightly more than the labelling
budget when evaluated on the Occupancy dataset, as the
total ended up around 1.33% for all machine learning

Table 1 The labelling expenses used over time on the Opportunity dataset for the separate interactive machine learning strategies and the three
machine learning (ML) methods Naive Bayes (NB), Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) when the labelling budget

was set to 5%

ML Uncertainty (%) Error (%) State change (%) Time (%) Random (%)
NB 5.53 2.39 1.37 5.01 5.28
SVM 5.55 2.09 1.37 5.01 5.29
k-NN 5.59 2.30 1.37 5.01 5.27
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Table 2 The labelling expenses used over time on the Occupancy dataset for the separate interactive machine learning strategies and the three
machine learning (ML) methods Naive Bayes (NB), Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) when the labelling budget

was set to 1%

ML Uncertainty (%) Error (%) State change (%) Time (%) Random (%)
NB 1.34 0.33 0.30 1.00 1.02
SVM 1.30 0.32 0.30 1.00 1.00
k-NN 1.34 0.39 0.30 1.00 1.02

approaches. The hybrid strategy Uncertainty + Error, had
a slightly lower but similar number of labelled data points
compared with the separate strategy for both datasets.
Both the hybrid strategies Uncertainty + State change and
Uncertainty + Random acquired a similar amount or fewer
samples.

5 Discussion

The results make it clear that the choice of interactive
learning strategy has a significant effect on the performance
when tested on recordings of streaming data. The State
change strategy performs worst in almost all instances,
regardless of machine learning approach or the dataset
tested on. One reason might be that the strategy does not
use up the allowed labelling budget, but it is not the only
explanation, as the Error strategy does not use it up either
(see Tables 1 and 2). In fact, Error often collects a similar
amount of labelled samples as the State change strategy for
the Occupancy dataset. The Error strategy is the best, or
among the best, performing strategies for all experiments
displayed in Figs. 5 and 6. The reason for this could be
that the strategy corrects the model as soon as it has made
an incorrect classification, leading to a decreased risk of
repeating the mistake. The results indicates that choosing
an appropriate interactive learning strategy can have a
significant impact on performance, as a higher accuracy can
be achieved with fewer labels.

For active learning in a non streaming setting, a selection
from a set of unlabelled data is chosen according to a
specified strategy. By having all data available at once,

the full labelling budget can be utilized, without going
over the allowed budget either. Handling a labelling budget
with streaming data however, means that estimations has
to be made, as it only is possible to obtain a label for the
current data point and the size of the total amount of data
is unknown (or possibly infinite). Instead of using the entire
dataset (which would include future unknown data points),
the labelling budget is calculated over a window of time.
The total labelling budget can therefore only be estimated
at run-time. This leads to the approximate labelling budgets
that can be found in Tables 1, 2, 3 and 4 and also explains
why the actual amount of labels in some cases do not always
exactly match the labelling budget.

Another interesting observation from the experiments
on the separate interactive learning strategies is that the
active learning strategy, Uncertainty , has among the worst
results in many cases, implying that other information
than the uncertainty estimation of the model can be useful
when deciding which samples to label. However, this work
only contains one implementation per machine learning
approach. While the choice of Uncertainty was made
based on what would suit the problem at hand, it is not
possible without further experiments to conclude if the
lower performance is due to the strategy being used in
general or if it is due to the specific implementations.

When comparing the hybrid approaches, displayed in
Figs. 7 and 8, to their respective separate approaches,
it varies whether the combination improved, worsened
or did not affect the performance. Maybe unsurprisingly,
the separate strategies that performed worse had most to
gain from a combination with another strategy. The most
drastic improvement can be seen for the State change

Table 3 The labelling expenses used over time on the Opportunity dataset for the hybrid interactive machine learning strategies and the three
machine learning (ML) methods Naive Bayes (NB), Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) when the labelling budget

was set to 5%

ML Uncertainty Uncertainty Uncertainty Uncertainty
+ Error (%) + State change (%) + Time (%) + Random (%)
NB 2.29 0.49 5.58 4.10
SVM 1.90 0.45 5.55 2.67
k-NN 233 0.49 5.59 4.17
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Table 4 The labelling expenses used over time on the Occupancy dataset for the hybrid interactive machine learning strategies and the three
machine learning (ML) methods Naive Bayes (NB), Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) when the labelling budget

was set to 1%

ML Uncertainty Uncertainty Uncertainty Uncertainty
+ Error (%) + State change (%) + Time (%) + Random (%)
NB 0.33 0.35 1.34 0.69
SVM 0.31 0.34 1.31 0.48
k-NN 0.39 0.35 1.34 0.71

strategy, when evaluated with the Naive Bayes classifier
on the Occupancy dataset. In this case the performance is
much increased when compared with both Uncertainty and
State change separately. These results again show that the
Uncertainty strategies tested here are not always good at
assessing their own performance.

Figures 3 and 4 display the effect of varying the
number of streaming sensors has on performance. For
the Opportunity dataset, Fig. 3, the accuracy is almost
unchanged for all the interactive learning strategies, even
though the number of streaming sensors varies. This is
reasonable however, as the dataset contains a large amount
of features. As can be seen from the results, even if all
sensors are dynamic, i.e. have an interval where they are
not streaming data, there are still on average 153 sensors
streaming at each point in time.

For the Occupnacy dataset, Fig. 4, the performance does
change when the average number of streaming sensors
is altered. Interestingly, the performance does not always
increase with an increased number of sensors. For most
of the strategies, the performance increases to around an
average of 4.19 streaming sensors, after this, it either
stagnates or even decreases, before it increases yet again.
A possible reason for this result can be found with the
features in the Occupancy dataset. When studying how well
the different features correlates to the status of occupancy
in the room, it becomes clear that some of the features have
a low correlation. For instance one feature measuring the
humidity in the room, has a correlation coefficient close
to zero. In the experiments presented in here there was no
feature selection, but these results indicate that the model
might benefit from adding a preprocessing step of feature
selection however. From the results it can also be seen
that Error seems to be the most stable interactive learning
strategy when the number of streaming sensors is changing.

It is worth noting regarding the labelling budget that the
case is quite different with streaming data compared with
a static dataset. In a setting with streaming data, it is not
possible to store all incoming samples for an infinitely long
time or to know what the future samples in the stream are.
Instead of calculating the budget on the entire dataset, which
would include future unknown samples, it is calculated on a
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set of the most recent data points. Furthermore, the labelling
budget is the maximum percentage of incoming data points
that the model can query for labels, but there is no minimum
value. This means that a restrictive approach might not use
up the allowed labelling budget when calculated over a
period of time.

The chosen performance measurement for these experi-
ments was accumulated accuracy over time, starting from
the very first prediction, when the model in most cases
only has one labelled sample. The accuracy over time is
interesting to analyse, because of the data being provided
sequentially and the fact that the model begins training
without any stored data. The performance measurement
falls short of providing a complete picture for several rea-
sons however, with the changing number of classes over
time possibly being the most prominent one. At the very
beginning of each experiment, the learning model has only
encountered one class, making the estimation trivial. Gradu-
ally, as more classes are introduced, the estimation becomes
increasingly more complex. Other common performance
metrics for machine learning problems suffer from the same
issue, however. To the best of our knowledge there is not an
established measurement that takes this into consideration.

The gradual introduction of new classes is one factor in
the decreasing accuracy seen in many of the experiments.
The accuracy decreased even after all classes had been
incorporated into the model however, implying that it was
not the only reason for the downward trend. To see whether
the specific sequence of data from the recordings could
influence the performance curves, tests were carried out
where a sequence of data was shuffled in a random order.
As Fig. 9 shows, this does affect the shape of the learning
curve significantly. Here, all classes are introduced early on,
which results in a poor performance at the start. As more
labelled samples are collected, the performance increases
rapidly at first, but stabilizes after a while. The reason for
the smooth look of the curve with the shuffled dataset, is
probably because the entire spectrum of possible feature
values for each class is introduced from the start. While
this might be an overwhelming task at first, the model can
learn more effectively. When the order of the sequence is
kept the model might first give an impression of being
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able to estimate well, but as time moves forward the full
complexity of the problem unfolds. In real-world scenarios
however, streaming data does arrive with a higher possibility
of resembling other data points close in time and not as a
shuffled sample set for the model to begin its training on.

6 Conclusion and future work

In this work we explored the effect of interactive machine
learning strategies on performance in a real-time learning
scenario. The strategies were implemented and evaluated
on two datasets related to activity recognition with a
simulated dynamic sensor setting, both as separate strategies
and as hybrid versions. The experiments show that by
giving the user a more proactive role, the performance
can be increased. In the overall best performing strategy,
the decision of whether to provide a label was based
on the accuracy of the previous prediction, i.e. a user
would provide feedback in the form of a correct label
when the previous estimation was incorrect. Future work
includes further developing the taxonomy and broaden
the different types of implementations and strategies
used in experiments. This can be done by, for instance,
testing multiple different active learning strategies for
comparison, and in combination, with other interactive
learning strategies. Future work also include testing more
machine learning methods.

The experiments highlight the difficulty in comparing
performance over time when the complexity of the
problem is not constant, e.g. by a varying number of
classes. In future work we intend to define and explore
possible measurements suitable for comparing problems
with different complexities or in a streaming data setting
where the complexity of the problem is changing over time.

Even though the datasets used here were adequate for
evaluating the proposed strategies, there is a need of
good datasets in the area of activity recognition or smart
environment which includes longer recordings of streaming
data, heterogeneous types of sensors and multiple classes.
The aim for future work is to create an open source dataset
with multiple heterogeneous sensors recording the state of
office environments.
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