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Abstract
Traditional regression-based approaches do not provide good results in diagnosis and prediction of occurrences of cardiovascular
diseases (CVD). Therefore, the goal of this paper is to propose a deep learning–based prediction model of occurrence of major
adverse cardiac events (MACE) during the 1, 6, 12 month follow-up after hospital admission in acute myocardial infarction
(AMI) patients using knowledge mining. We used the Korea Acute Myocardial Infarction Registry (KAMIR) dataset, a cardio-
vascular disease database registered in 52 hospitals in Korea between 1 January, 2005, and 31 December, 2008. Among 14,885
AMI patients, 10,813 subjects in age from 20 to 100 years with the 1-year follow-up traceability without coding errors were
finally selected. For our experiment, the training/validation/test dataset split is 60/20/20 by random sampling without replace-
ment. The preliminary deep learningmodel was first built by applying training and validation datasets and then a new preliminary
deep learningmodel was generated using the best hyperparameters obtained from random hyperparameter grid search. Lastly, the
preliminary prediction model of MACE occurrences in AMI patients is evaluated by test dataset. Compared with conventional
regression-based models, the performances of machine/deep learning–based prediction models of the MACE occurrence in
patients with AMI, including deep neural network (DNN), gradient boosting machine (GBM), and generalized linear model
(GLM), are also evaluated through a matrix with sensitivity, specificity, overall accuracy, and the area under the ROC curve
(AUC). The prediction results of the MACE occurrence during the 1, 6, and 12-month follow-up in AMI patients were the AUC
of DNN (1 M 0.97, 6 M 0.94, 12 M 0.96), GBM (0.96, 0.95, 0.96), and GLM (0.76, 0.67, 0.72) in machine learning–based
models as well as GRACE (0.75, 0.72, 0.76) in regression model. Compared with previous models, our deep learning–based
prediction models significantly had the accuracy of 95% or higher and outperformed all machine learning and regression-based
prediction models. This paper was the first trial of deep learning–based prediction model of the MACE occurrence in AMI
clinical data. We found that the proposed prediction model applied different risk factors except the attribute “age” by using
knowledge mining and directly used the raw data as input.

Keywords Cardiac event . Acutemyocardial infarction (AMI) . Deep neural network . Decision support system . Deep learning–
basedMACE predictionmodel . Knowledge and personal computing

1 Introduction

According to the World Health Organization (WHO), cardio-
vascular disease (CVD) was the primary cause of deaths in the
world [1]. In 2015, 17.7 million people died of CVD, and it held
31% of deaths in the world. With the publication of the
Framingham Heart Study in the 1960s [2], the concept of risk
factors for CVD was established and CVD risk prediction
models using the risk factors have been studied. So far, data
mining techniques of prediction models on CVD occurrences
in AMI patients can be cataloged into two different approaches
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such as regression-based and machine learning–based methods.
Currently, Framingham risk score (FRS) [3–5], QRISK [6, 7],
TIMI [8, 9], and GRACE [10–12] models are available in
regression-based cardiovascular risk prediction models. Their
developments aim to apply for clinical diagnosis by converting
the risk factors into risk indices by using the thorough study and
personal computation of dataset.

There are many technological features to promote physical
activities using smartphone apps [13].

Machine learning techniques are being effectively used in
order to collect medical data from divers’ sources [14]. There
were also various machine learning–based classification
methods for the prediction model of CVD occurrences, such
as random forests (RF) [15], neural networks (NN) [16–18],
and support vector machines (SVM) [19, 20]. Unstructured
data of CVD patients was used to identify early heart failure
using the Naïve Bayesian machine learning approach [21].
The machine learning–based approaches were known as
methods to solve the limitations of traditional regression-
based prediction models. The main characteristics of the ma-
chine learning–based models were available for finding the
associations between different diseases and had the high ac-
curacy of prediction and excellent ability to process missing
and outlier datasets using data mining tools and techniques. It
was also possible to perform large-scale data analysis by small
and incomplete training datasets and many dependent vari-
ables which were the disadvantage of the regression-based
model (logistic regression and Cox-proportional hazard re-
gression models) [22].

Nevertheless, we can summarize the challenging issues in
previous prediction models of CVD occurrence in AMI patients
as follows. First, most of the previous regression-based CVD
prediction models do not provide good results in the prognosis
and diagnosis of the CVDoccurrences in patients withmoderate
risk. For example, approximately half of myocardial infarction
(MIs) and strokes will occur in people who are not predicted to
be at the risk of CVD [23]. Moreover, previous guidelines for
CVD risk showed low prediction accuracy, and thus unneces-
sary treatments sometimes occurred in patients with moderate
risk due to inefficient knowledge of prediction models. Second,
we implicitly assumed that each risk factor in regression-based
CVD prediction model was related to the occurrence of MACE
in AMI patients and the non-linear interactive relations among
risk factors were oversimplified [22]. Third, conventional
regression-based CVD prediction tools included the major risk
factors such as age, blood pressure, heart rate, diabetes, choles-
terol, smoking, and history of heart disease, whereas machine/
deep learning approaches appeared different risk factors [24].
Fourth, machine/deep learning–based studies have done in var-
ious medical areas but mainly focused on analyzing medical
images using the convolutional neural network (CNN) [25].
Especially, there was no deep learning–based prediction model
for the prognosis and diagnosis of the MACE occurrences on

clinical data in AMI patients and there was insufficient knowl-
edge of prediction models in previous research works.

Therefore, this paper proposes a deep learning–based predic-
tion model of the MACE occurrences during the 1, 6, and 12-
month follow-up in the AMI clinical data with the aim to devel-
op a knowledge mining–based clinical decision support system
and assess the risk of after hospital discharge patients. The de-
tailed research contents of this paper can be summarized as
follows. First, our deep learning–based prediction model of the
MACE occurrences is generated by applying training dataset
and hyperparameter values obtained from the random
hyperparameter grid search method on the dataset. Then we
obtain many preliminary prediction models that consist of 20
input neurons, three hidden layers, and one output neuron.
Second, the preliminary prediction models are evaluated
through validation dataset, and then the best prediction model
is selected. Third, the selected prediction model is finally eval-
uated with test dataset. Lastly, the accuracy of proposed predic-
tion model will be compared with GBM, GLM, and GRACE
during the 1, 6, and 12-month follow-up after discharge.

2 Method and materials

2.1 Data preparation

The Korea Acute Myocardial Infarction Registry (KAMIR)
was the first nationwide, multicenter online registry designed
to describe the characteristics and clinical outcomes of pa-
tients presenting with myocardial infarction (MI) and reflected
current management of patients with acute myocardial infarc-
tion (AMI) in Korea [26]. The registry includes 52 community
and university hospitals with the capability of primary PCI.
Data were collected at each site by trained study coordinators
with the standardized protocol retrospectively. For the exper-
iment, this paper used 14,885 AMI subjects enrolled in
KAMIR from 1 October, 2005, to 28 February, 2008.
Among them, we selected 10,813 patients aged between 20
and 100 years old with the 1-year follow-up MACE after
hospital discharge. Excepted the records of 4072 with missing
values and with no attribute “MACE” value in the population
during the follow-up period, the experimental dataset
consisted of 10,813 records × 49 columns with 21 numerical,
26 categorical, and 4 discrete data. The dataset was
preprocessed by creating new variables (age, survival time)
and reevaluating variables (Killip class, LVF, etc.) before cre-
ating the prediction model of MACE occurrences.

2.2 Applied risk factors

The KAMIR data schema has 51 variables as shown in
Table 1, and their variables and types are divided into two
domains of demographic characteristics and clinical findings.
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The demographic characteristics are age, gender, height,
weight, blood pressure, heart rate, Killip class, heart rhythm,
hypertension, diabetes mellitus, pain, dyslipidemia, smoking
history, family history of heart disease, history of ischemic
heart disease, comorbidities, final diagnosis, and MACE.
Clinical features include glucose, creatinine, creatine kinase
(CK), CK-MB, Troponin-I, maximum Troponin-I, maximum
Troponin-T, total cholesterol, triglyceride, HDL-cholesterol,
LDL-cholesterol (hs-CRP), N-terminal brain natriuretic pep-
tide (NT-proBNP), and glycated hemoglobin. The primary
endpoints in this study are defined as major adverse cardiac
events (MACE) that occurred during the 1, 6, and 12-month
follow-up after discharge. We determined the MACE as car-
diac death, non-cardiac death, re-PCI, and CABG, and calcu-
lated as a patient experienced the MACE not the total of
events but at least one or more during the 1, 6, and 12-
month follow-up after discharge.

2.3 Training, validation, and test datasets

In case a prediction model either increases the number of
parameters or uses a non-linear model such as a neural net-
work model, the prediction performance by training data can
be high in a moment due to overfitting. With the overfitting
occurrence, the prediction accuracy by training data is high,
but the prediction performance by test data can be rapidly
reduced. Therefore, to objectively measure the performance
of prediction model, our proposed prediction model was eval-
uated by a new dataset that did not use for training, namely
validation and test datasets. Experimental datasets are divided
into training dataset of 60% for model learning, validation
dataset 20% for model selection, and test dataset 20% for
evaluating the final selected model by random sampling with-
out replacement on the bases of knowledge-based observa-
tions of dataset.

2.4 Applied machine learning algorithms

For the implementation of prediction model of MACE occur-
rences in AMI patients, this paper applied three machine

learning algorithms: deep neural networks (DNN) [27],
GBM [28], and GLM [29]. First, DNN is an artificial neural
network (ANN) with multiple hidden layers between the input
and output layers, consisting of three hidden layers in artificial
networks and non-linear patterns in unstructured data. In this
paper, we use the deep feedforward networks which are a
quintessential deep learning model of the DNN model. ANN
develops the relationship between input layer and output layer
using the same architecture as derived from the human brain.
All layers comprise of numerous neurons or nodes. The ANN
applies a backpropagation algorithm for training process.
Second, GBM is the method of boosting method plus gradient
descent. It creates a model, generates a fitting model to the
residual, and combines bothmodels. Then, in case the residual
again finds in the coupled model, then the fitting model cre-
ates in the residual, and the final prediction model generates
by repeating until the residual does not exist. GBM provides a
competitive approach for both regression and classification,
especially for classifying less clean data. A forward stage ad-
ditive model is designed by gradient descent function space to
build a regression tree for different features in a distributed
way [30]. We performed 50 bosting stages for GBM training.
The deviance-loss function has been applied for optimization
and Friedman mean-square-error function has been applied
measuring splitting quality. Third, GLM is an extension of
the linear regression model which enhances the linear model
so that it analyzed even when dependent variables are not in
the normal distribution. GLM is a combination of traditional
statistical methods and machine learning techniques in which
dependent variables are linearly related to independent vari-
ables through a specified link function and finds the combina-
tion of hyperparameter values via the grid search approach.
GLM contains Bayesian regression, ridge regression, elastic
net, and lasso estimator which is calculated by coordinate
descent and least angle regression.We implemented stochastic
gradient descent (SGD) algorithm for training GLM model.
For our experiments, the proposed prediction model will be
implemented using RStudio software with the caret library
package and the H2O package for the prediction and regres-
sion algorithms.

Table 1 Variables applied to the
prediction model of MACE
occurrences

Applied variables Type

Age, height, weight, SBP, DBP, abdominal circumference, hip circumference, heart rate, glucose
(on admission), creatinine (on admission), maximum CK, maximum CK-MB, maximum
Troponin-I, maximum Troponin-T, total cholesterol, triglyceride, HDL-cholesterol,
LDL-cholesterol, hs-CRP, NT-proBNP, BNP

Continuous

Gender, pain, dyspnea, previous angina before MI symptom, ECG on admission, ischemia
location, heart rhythm, history of ischemic heart disease, history of hypertension, history of
diabetes mellitus, history of dyslipidemia, history of smoking, family history of heart disease
(in first degree), comorbidities, past regular medication, STEMI, thrombolysis, PCI,
angiographic findings, target vessel, lesion type, treated vessel, complications, CABG,
electrophysiology study, and MACE

Categorical

Killip class, pre-TIMI flow, LV ejection fraction, post-TIMI flow Discrete
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2.5 Generation of the prediction model

The main steps of the proposed deep neural network (DNN)–
based prediction model are shown in Fig. 1. First, a DNN
model generates twenty preliminary prediction models by ap-
plying training dataset and random hyperparameter values via
the grid search algorithm [31, 32]. The used DNN algorithm is
a deep feedforward network [33], consisting of 20 input neu-
rons and three hidden layers, and generates a model with all
combinations of hyperparameter values via not “hand tuning”
but random grid search (RGS). All nodes of different layers
used activation functions to determine the result of the neural
network like Yes or No. Activation functions are typically non-
linear functions such as Sigmoid, Softmax, tanh, ReLU, and
Leaky ReLU. We applied the ReLU activation function be-
cause of its effectiveness. It simply replaces the negative values
with zero and positive values remain unchanged. Moreover,
Adam optimizer which is a stochastic gradient–based optimizer
was used for weights optimization. During the model learning
and generation processes, early stopping and 10-fold cross-val-
idation method [34, 35] were used to select the optimal number
of iterations automatically. Second, the performances of the
preliminary prediction models were evaluated with the valida-
tion dataset. Third, the best hyperparameter values are selected
and the best prediction model is generated from it. Moreover,
the proposed model is evaluated by applying test dataset to
generalize the performance. Here the role of the test dataset is
to serve as a new dataset that the prediction model has never
been applied before. Lastly, various performance matrixes such
as accuracy, sensitivity, specificity, and the area under the ROC
curve (AUC) are applied to evaluate the performance of pro-
posed model.

2.6 Performance measures

We applied validation and test datasets to evaluate the accura-
cy of the MACE occurrence prediction models, and the exper-
imental results will be described in different matrixes includ-
ing accuracy, sensitivity, specificity, and the area under the
ROC curve (AUC) for actual results versus predicted results.

2.7 Statistical analysis

Continuous variables (i.e., age and BP) were analyzed using a
t test, and categorical variables (i.e., gender, DM, and
smoking) were done using the chi-square test. Statistical sig-
nificance is set to p value < 0.05. All the statistical analysis
and data processing of all datasets were implemented using R
software version 3.4.0.

3 Results

3.1 Baseline characteristics

After pre-processing the population, 10,813 AMI patients
were selected for the experimental data, and the basic infor-
mation of participating patients appeared in Table 2. The re-
sults showed that the occurrence of AMI was higher in young
males than in females. Both also had higher pain, more
STEMI in males, and higher dyspnea and Killip class in fe-
males than males. Clinical findings were higher in AMI pa-
tients than in healthy controls, especially in patients with
AMI, CK, maximum CK-MB, maximum TnI, maximum
TnT, NT-proBNP, and BNP. In the case of male’s medical
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history, smoking history, family history of heart disease, and
complications were high, whereas previous angina before MI
symptom, hypertension, and DM in female was higher than in
male. In the medical procedure, thrombolysis and PCI per-
formed much more in males than females.

3.2 Variable significance in prediction models

The significance of all variables in each prediction model was
calculated as a percentage. The significance degree of the vari-
ables varies between 0 and 1: the significance of the most instru-
mental variable is 1 and the significance of the lowest is 0. Table 3
showed the top eight instrumental variables that each prediction
model needs to predict theMACEoccurrence during the 1, 6, and
12-month follow-up duration after discharge inAMI patients. The
primary risk factors in the prediction model were different: (1)
complications, CABG, pain, and history of DM in the deep

learning model and (2) complications, taking a statin, NT-
proBNP and angiographic findings in the GBM model, as well
as (3)NT-proBNP, history ofDM, and family history ofHD in the
GLM model. The machine learning–based models appeared a
common variable for the attribute “complications” at 1 and 6-
month follow-up after discharge, and the remaining models ex-
cept for GLM did an instrumental variable for the attribute “age”
at the 12-month. Note that the primary risk factors were different
depending on the model and their significance was not always
related to the accuracy of prediction models. Furthermore, the
primary risk factors in machine learning–based models were also
very different from those in traditional regression-based models.

3.3 Comparisons of AUC in prediction models

To evaluate the prediction models of the MACE occurrences
in AMI patients, we compared the performance of prediction

Table 2 Baseline characteristics of all subjects (10,813 patients)

Variables Male Female p value

Demographic characteristics
Age, years 59.81 ± 12.15 69.06 ± 10.26 < 0.001
Height, cm 167.35 ± 5.91 153.82 ± 5.89 < 0.001
Weight, kg 67.41 ± 9.83 55.97 ± 8.84 < 0.001
Abdominal circumference, cm 88.77 ± 37.85 86.45 ± 27.08 0.006
Hip circumference, cm 94.07 ± 34.92 91.90 ± 31.37 0.008

Clinical findings
Pain, yes 84.3(8095) 78.9(3245) < 0.001
Dyspnea, yes 22.9(1770) 29.3(900) < 0.001
Killip classification, II~IV 21.1(1634) 29.4(904) < 0.001
Initial therapeutic strategy 62.2(4809) 52.1(1603) < 0.001
Systolic blood pressure, mmHg 129.10 ± 27.94 130.26 ± 29.30 0.055
Diastolic blood pressure, mmHg 79.09 ± 16.78 77.96 ± 16.81 0.002
Heart ratio 76.93 ± 20.92 79.02 ± 23.22 < 0.001
Glucose, mg/dL 163.64 ± 73.71 178.94 ± 86.76 < 0.001
Creatinine, mg/dL 1.24 ± 1.52 1.11 ± 1.83 < 0.001
Maximum CK, ng/dL 1544.82 ± 2205.57 1058.37 ± 1484.85 < 0.001
Maximum CK-MB, ng/dL 150.55 ± 289.51 118.55 ± 308.80 < 0.001
Maximum TnI, ng/dL 49.19 ± 99.27 39.34 ± 191.39 0.015
Maximum TnT, ng/dL 6.00 ± 32.84 4.01 ± 9.26 0.003
Total cholesterol, mg/dL 180.49 ± 42.49 189.25 ± 48.19 < 0.001
Triglyceride, mg/dL 130.72 ± 109.27 121.54 ± 87.42 < 0.001
HDL-cholesterol, mg/dL 44.51 ± 20.33 47.28 ± 18.79 < 0.001
LDL-cholesterol, mg/dL 114.96 ± 38.12 122.60 ± 50.36 < 0.001
hs-CRP, mg/dL 10.31 ± 43.33 12.98 ± 55.35 0.031
NT-proBNP, pg/dL 1851.56 ± 4915.05 3919.16 ± 7058.54 < 0.001
BNP, pg/dL 353.63 ± 797.48 716.38 ± 1267.28 < 0.001

Medical history
PabMIs, yes 42.2(3260) 48.0(1475) < 0.001
History of IHD, yes 15.6(1203) 16.1(494) 0.86
History of hypertension, yes 42.7(3302) 61.2(1881) < 0.001
History of DM, yes 24.7(1910) 34.3(1504) < 0.001
History of dyslipidemia, yes 9.6(741) 10.0(309) 0.815
History of smoking, yes 56.5(4370) 12.1(372) < 0.001
Family history of heart disease 7.8(603) 4.2(128) < 0.001
Complications, yes 9.9(769) 11.3(348) 0.174
Medical procedure
Thrombolysis, yes 7.7(595) 4.3(132) < 0.001
PCI, yes 85.5(6610) 79.5(2444) < 0.001
CABG, yes 2.0(152) 2.2(68) 0.936

Boldface values denote statistical significance between and male and female patients. Values were presented as mean ± SD or n(%). PabMIs previous
angina beforeMI symptom, SBP systolic blood pressure,DBP diastolic blood pressure, IHD ischemic heart disease,DM diabetes mellitus,NSTEMI non-
ST segment elevation myocardial infarction, STEMI ST segment elevation myocardial infarction, MI myocardial infarction, HDL high-density lipopro-
tein, LDL low-density lipoprotein, NT-proBNP N-terminal brain natriuretic peptide, hs-CRP high-sensitivity C-reactive protein, HbA1C glycosylated
hemoglobin, CK-MB creatine kinase myoglobin, TnI troponin-I TnT troponin-T
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models according to the accuracy, sensitivity, specificity, and
AUC. Table 4 showed the performance of all prediction
models according to the evaluation indicators. The accuracy
of all prediction models except the GRACE model was the
highest at 1-month follow-up after discharge, and the DNN
model showedmore than 95%accuracy at 1, 6, and 12months.
Sensitivity showed the best value at the 12-month forecast in
GBM model, and specificity was more than 95% in all
models. Note that the DNN model showed the highest AUC
value at 1-month follow-up after discharge, the GBM at 6-
month, and the DNN and GBM models at 12-month.

4 Discussion

This paper proposed a deep learning–based prediction model of
theMACE occurrences during the 1, 6, and 12-month follow-up
after discharge in AMI patients and our results could be summa-
rized as follows. This paper was the first trial of deep learning–
based prediction model of the MACE occurrence. DNNmethod
is a very successful technique that follows the same training
method as the human brain for the prediction of the relationship
between input data and target data. First, the primary risk factors
in machine/deep learning models were CABG, complications
(especially complications with DM), and pain. The attribute
“age” in other models except GLM was the most instrumental
variable in the prediction of MACE occurrences at 12-month
follow-up. Second, the AUC values of MACE occurrence dur-
ing the 1, 6, and 12-month follow-up after discharge were (1 M
0.97, 6 M 0.94, 12 M 0.96) in DNN and (0.96, 0.95, 0.96) in
GBM. Consequently, the prediction accuracy in machine
learning–based models was significantly superior to those of
GRACE (0.75, 0.72, 0.76) in the regression-based model. The
DNNmodel also showedmore than 95%of accuracy at 1, 6, and
12-month follow-up after discharge.

It showed that machine/deep learning–based prediction
models were suitable for the prediction of the MACE occur-
rences at 1, 6, and 12-month follow-up after discharge, and
especially the prediction accuracies in machine/deep learning–
based prediction models were superior to the established
regression-based prediction model. The deep learning–based
prediction model highly improved the prediction accuracy by
automatically determining the primary risk factors required for
MACE prediction in real time according to the characteristics
of input data. In this paper, we found new primary risk factors
for the prediction model of the MACE occurrences during 1,
6, and 12-month follow-up after discharge instead of tradition-
al risk factors, such as smoking history, high blood pressure,
high blood cholesterol, diabetes, physical inactivity, being
overweight or obesity, family history of heart disease, and
chest pain. As a result, the deep learning–based prediction
model showed that it was not necessary to find the significant
risk factors for the prediction model of MACE occurrences in
AMI patients. The proposed model outperformed all the other
machine learning and proved to be more successful for the
prediction of the MACE occurrence in AMI clinical data.

There were some potential limitations in our research. First,
KAMIR is not representative of all the world AMI patients
because it is only a collection of Korean AMI patients.
Second, the experimental data can be biased because the reg-
istered dataset does not have the information about the details
of dosage, dose, and duration of taking drugs and beta
blockers in each patient, as well as be limited to the short
period follow-up of 1 year after hospital discharge.

5 Conclusion

This paper was the first deep learning–based prediction model
ofMACE occurrences during 1-year follow-up after discharge

Table 4 Comparison of the
performance in four prediction
models of the MACE occurrence
during 1, 6, and 12- month
follow-up after hospital discharge

Indicators Accuracy Sensitivity Specificity AUC

Machine learning models DNN 1M 95.98 81.25 96.10 0.97

6M 95.28 71.43 95.44 0.94

12M 95.43 88.89 95.46 0.96

GBM 1M 95.80 68.75 96.00 0.96

6M 95.15 57.14 95.40 0.95

12M 81.82 96.44 96.36 0.96

GLM 1M 93.69 22.50 96.97 0.76

6M 87.11 17.52 95.24 0.67

12M 91.96 16.56 97.32 0.72

Regression models GRACE 1M 81.51 81.36 82.88 0.75

6M 89.34 25.71 92.51 0.72

12M 94.93 76.25 97.16 0.76

Boldface values denote the highest values in different performance measures during 1, 6, 12-month follow-up,
respectively
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in AMI clinical data and highly improved the accuracy of
prediction on KAMIR dataset using the knowledge and per-
sonal computing. Compared with a traditional GRACE risk
prediction tool, the prediction accuracy of machine/deep
learning–based prediction model was significantly higher.
Especially, the proposed deep learning–based prediction mod-
el showed the accuracy of 95% or higher at 1, 6, and 12-month
follow-up after discharge. Consequently, the deep learning
approach was expected to provide a more efficient diagnosis
and prediction tool for the MACE occurrences in AMI pa-
tients as a result of the knowledge-based personal computation
in the future.
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