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Abstract Smartphones are currently the most pervasive

wearable devices. One particular use of smartphone inertial

sensors is motion tracking in various mobile systems and

applications. The objective of this study is to validate

smartphone gyroscopes for angular tracking in mobile

biofeedback applications. The validation method includes

measurements of angular motion performed concurrently

by a smartphone gyroscope and a professional optical

tracking system serving as the reference. The comparison

of the measurement results shows that the inaccuracies of a

calibrated smartphone gyroscope for various movements

are between 0.42� and 1.15�. Based on the measurement

results and the general requirements of biofeedback

applications, smartphone gyroscopes are sufficiently

accurate for angular motion tracking in mobile biofeedback

applications.

Keywords Wearable devices � Biofeedback application �
Angular motion tracking � Smartphone gyroscope �
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1 Introduction

More devices are being made wearable due to advance-

ments in miniaturization. Wearables are among the

enablers of ubiquitous and mobile computing, making the

technology pervasive by interweaving it into our personal

lives. Various quantifying systems that are used for self-

sensing and self-monitoring combine wearable sensors,

data acquisition techniques, and wearable computing. One

such group of quantifying systems includes motion track-

ing and movement recognition applications [1–5]. Motion

tracking can be performed at different scales—from low-

precision tracking in navigation and closed buildings [3]

with required accuracies in metres to the submillimetre

scale in the high-precision tracking of the fine movement of

a speaker’s lips and jaw [4]. Various human body motion

tracking applications require accuracy in the range of

centimetres and fall between these extremities.

Microelectromechanical system (MEMS) inertial sen-

sors are portable, miniature, inexpensive, and low power.

Because of their properties, they are often the first choice

for integration into wearable devices used in motion

tracking systems. Inertial sensors, accelerometers, and

gyroscopes are used in many applications in sports, recre-

ation, rehabilitation, and well-being. One particular use of

accelerometers and gyroscopes is body motion tracking in

biofeedback systems in the above-mentioned applications.

In this paper, the term ‘‘biofeedback’’ refers to body

activity in the sense of physical movement, which is

classified as biomechanical movement biofeedback [6].

In a biofeedback system, a person has sensors attached

to his/her body for measuring bodily functions and

parameters (bio). Sensor signals are transferred to a signal

processing device, and the results are communicated back

to the person (feedback) through one of the human senses

(i.e. sight, hearing, touch) [9]. The person attempts to act

on received information to change the body motion as

desired. In contrast to natural or intrinsic biofeedback,

which is based on proprioception, augmented or extrinsic

biofeedback relies on information from artificial devices
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[6–9]. Thus, systems using inertial sensors are classified as

augmented biofeedback systems.

The most common use of augmented biofeedback is

motor learning in sports, recreation, and rehabilitation. The

process of learning new movements is based on repetition

[6]. Numerous correct executions are required to ade-

quately learn a certain movement. Biofeedback is suc-

cessful if the user is able to either correct a movement or

abandon its execution given the appropriate biofeedback

information. Real-time biofeedback can reduce the fre-

quency of improper movement executions and speed up the

process of learning the proper movement pattern. Such

movement learning methods are suitable for recreational,

professional, and amateur users in the initial stages of the

learning process [10, 11]. One example of a real-time

biofeedback system is the application that helps users

correct specific golf swing errors [12].

Biomechanical biofeedback is based on sensing body

rotation angles, posture orientation, body translations, and

body speed. These parameters are generally calculated

from raw sensor data that represent measured physical

quantities. In biofeedback applications, sensors are

attached to the body of the user. The assessment of posture

and translations can be performed by accelerometers

(gravity, acceleration); body rotations are calculated from

obtained gyroscope data (angular velocity).

The general requirements of biomechanical biofeedback

applications are defined by position and/or orientation

tolerance and by the duration of analysis. The typical

position errors allowed by biofeedback applications are up

to a few centimetres, the typical angular errors are up to a

few degrees, and the typical duration of the motion analysis

is only a few seconds. For example, in golf biofeedback

applications, the required accuracies are 2� in orientation

and 1 cm in position, and the motion duration is approxi-

mately 2 s [12, 13]. Sensors must exhibit sufficient accu-

racy, measurement range, and sampling rate to fulfil the

above requirements and cover the biofeedback application

movement dynamics.

The most numerous and easily available inertial sensors

are MEMS accelerometers and gyroscopes integrated into

smartphones. Smartphones are also the most widely used

devices suitable for mobile applications. The main advan-

tages of using smartphones in mobile biofeedback appli-

cations are their wide availability, standardized platforms

(iOS, Android, Windows), and all-in-one packaging, with

integrated screens, a range of communication interfaces,

notable processing power, various sensors, and other user

interfaces. It is therefore straightforward and relatively

easy to develop and implement a mobile biofeedback

application that employs smartphone inertial sensors.

The most notable disadvantages of using smartphones as

a biofeedback sensing devices are their size and weight.

Size limits the choice of body attachment points, and

weight is the limiting factor in large dynamic movements.

Challenging environments, such as water, and operating

system restraints on the sensor performance parameters,

such as limiting the sampling frequency far below the

MEMS sensor capabilities, also narrow the use of

smartphones.

1.1 Motivation and research contributions

The primary goal and motivation of the research presented

in this paper is to measure, analyse, and evaluate the

accuracy of smartphone gyroscopes and their validation for

motion tracking in mobile biomechanical biofeedback

applications. These currently rely on various motion

tracking techniques; we use smartphone gyroscopes for

tracking of angular motion. Angular tracking results often

yield sufficient information for successful biofeedback

[12]. The evaluation of smartphone gyroscopes for angular

motion tracking is performed with the aid of a highly

accurate optical motion capture system that is used as a

reference system. The main contributions of this work are

the following:

(a) The design and implementation of a measurement

system capable of comparing angular tracking sig-

nals acquired from smartphone gyroscopes and a

professional optical tracking system in real time.

(b) The validation of smartphone gyroscopes for motion

tracking in mobile biomechanical biofeedback appli-

cations by identifying, measuring, and reducing

several influential gyroscope inaccuracies.

The remainder of the paper is organized as follows. In

Sect. 2, we present the related work. The experimental

design with measurement systems, applications, and

methodologies is described in Sect. 3. Section 4 is dedi-

cated to the identification of inaccuracies in smartphone

gyroscopes and their calibration. A comparison of smart-

phone gyroscopes with a reference tracking system is given

in Sect. 5 with the final gyroscope validation. We conclude

in Sect. 6.

2 Related work

Precision motion tracking is needed in various applications,

particularly in research fields related to healthcare, reha-

bilitation, and sports.

The authors in Ref. [14] used Optotrack, a high-preci-

sion optical motion tracking system, to validate body-at-

tached ProMove devices used for specific kinematic

parameters in cycling. They used an algorithm designed for

repetitive, well-defined, and bounded pedalling leg
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movement. Their results show that the achieved accuracy

of gyroscope angular tracking in pedalling is in the range of

2.2�–6.4�.
Many works have been published on golf swing motion

tracking. In Ref. [15], the authors used an XSens MTi

three-axis accelerometer and three-axis gyroscope for golf

swing motion tracking. Low-cost USB stereo cameras in

combination with active markers on the golf club were

used as a reference system. They focused on golf club

position and reported a measured average position error of

3.6 cm with a worst-case error of 13.2 cm. They used

gyroscope data for position calculation, but they did not

measure or report the angular error.

Another comparison of the optical and inertial tracking

of a golf swing is presented in Ref. [16]. The authors used

the Vicon high-precision optical motion tracking system

and commercial Memsense Nano IMU. They presented a

graphical comparison of the rotation vector and position

vector of both systems. Unfortunately, they did not provide

numerical results; however, the graphs indicated that

gyroscope angular tracking yields better results than

accelerometer position tracking.

A novel method to measure the angular motion of golf

swings in the global coordinate system using an

accelerometer and gyroscope is presented in Ref. [17].

Inertial sensors were attached to the grip end of the golf

club, and a Vicon DLT high-precision optical tracking

system was used as a reference. They reported root-mean-

square angular errors (RMSE) between the reference Vicon

system and the inertial sensor system of 2.14�, 22.99�, and
2.37�, all in the global coordinate system.

3 Experimental design

The experiments are designed to track the angular motion

of a 3D rigid body. Two different tracking systems are

used: (a) a professional high-accuracy optical tracking

system as a reference system and (b) a smartphone with an

integrated MEMS gyroscope as the system for evaluation.

The reference tracking systems measure the motion of the

rigid body in the global Cartesian coordinate system,

whereas the evaluated system measures the motion of the

rigid body in the local coordinate system. The relation

between both systems is explained in the following

subsections.

3.1 Smartphone with an integrated MEMS

gyroscope

The evaluated system is a MEMS gyroscope integrated into

an iPhone 4 smartphone. As identified by Chipworks [18],

the gyroscope embedded into iPhone 4 is an L3G4200D,

manufactured by STMicroelectronics. The specifications of

the gyroscope can be found in Ref. [19, 20].

The experimental smartphone is running on the iOS

version 7.1.2 operating system. Gyroscope data are cap-

tured by the application Sensor Monitor (Pro) version 1.0.9

(Ko, Young.woo, Fuzz-Tech, Korea, 2010). The applica-

tion wirelessly streams gyroscope data from the smart-

phone to the laptop computer, both connected to the same

WLAN network. Gyroscope data are processed by the

LabVIEWTM application running on the laptop.

The smartphone defines the local coordinate system and

gyroscope rotation directions as shown in Fig. 1. Rotation

of the smartphone body around each of the local coordinate

system axes yields the corresponding gyroscope signals, as

shown in Fig. 1. The x–y plane of the local coordinate

system is parallel to the surface of the smartphone screen,

and the z axis is pointing upward when the phone is in the

position with its face up.

3.2 Optical tracking system

We used the optical motion capture system QualisysTM

(Qualisys Inc.) as a reference for the 3D rigid body angular

tracking. QualisysTM is a professional, high-accuracy

tracking system [21] with eight Oqus 3? high-speed

cameras that offers real-time tracking of multiple reflective

markers predefined rigid bodies. As stated in Ref. [22], the

measurement noise for a static marker is given by its

standard deviation for each individual coordinate:

SDX = 0.018 mm, SDy = 0.016 mm, and SDz = 0.029

mm. In view of the given results, we can regard the

Fig. 1 Smartphone with the definitions of the local coordinate system

and gyroscope rotation directions
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measurement inaccuracy of the reference system as negli-

gibly small.

The motion of the rigid body is captured by the Qualisys

Track Manager (QTM) software application and is dis-

played in a 3D view window, as shown in Fig. 2. The QTM

defines the global coordinate system, determines the 3D

position of each tracked marker, and calculates the 3D

orientation of the rigid body. QTM streams the rigid body

orientation to the laptop computer over the network. Ori-

entation data are processed by the LabVIEWTM application

running on the laptop.

3.3 Signal processing application

Streamed data from the gyroscope and optical tracking sys-

tem are processed by a custom-designed application in

LabVIEWTM running on the laptop computer (Intel�CoreTM

i7 CPU 3.4 GHz, 8 GB of RAM) with the Windows 8.1

operating system. The application (a) synchronizes the

streamed data, (b) calculates the Euler orientation angles

from gyroscope data, (c) calibrates the smartphone gyro-

scope, and (d) presents the results. All of the above tasks are

performed in real time and saved for possible later analysis.

3.4 Technical set-up

Two sets of experiments with different set-ups were con-

ducted. The first set of experiments comprises a series of

hand-driven test movements of the custom-made rigid

body. It is aimed at the precise measurement of the rigid

body motion with well-defined positions at start, stop, and

intermediate times. The second set of experiments com-

prises a series of golf swings. It is aimed at measuring the

typical motion of the player’s hand (rigid body) during the

golf swing.

3.4.1 Test movement set-up

Lego bricks are used for the custom-made rigid body

shown in Fig. 3, which is also the encasement for the

smartphone. It is possible to find Lego bricks that allow a

perfect fit for an iPhone 4 smartphone in the Lego frame.

Lego bricks are used because they are widely available,

offer high adaptability, and are manufactured with an

accuracy of 10-5 m.

Four infrared reflecting markers are attached to the rigid

body, and the smartphone is tightly embedded into the Lego

frame. Three markers are attached to the frame to form the

orthogonal vector basis of the x–y plane and define the local

coordinate system xyz of the rigid body, as shown in Fig. 3.

The local coordinate system of the rigid body is aligned to the

smartphone’s coordinate system, as shown in Fig. 1.

The series of hand-driven test movements is performed

on a stable, levelled wooden table. The origin of the global

coordinate system XYZ is defined by the Qualisys refer-

ence motion tracking system and is marked with the Lego

plates that are firmly attached (glued) to the table, as shown

in Fig. 3.

3.4.2 Golf swing movement set-up

For the golf swing movement, the smartphone is attached

directly onto the forearm of the player, as shown in Fig. 4.

Fig. 2 Qualisys Track Manager 3D view window showing the

position and orientation of the tracked rigid body. Reference frame

(thick arrows) shows the global coordinate system. The body frame

(narrow arrows) shows the local coordinate system

Fig. 3 Rigid body with the local and global coordinate systems in the

test movement set-up
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Four infrared reflecting markers are attached directly to the

smartphone, three of which are attached to form the

orthogonal vector basis of the x–y plane of the local

coordinate system of the rigid body. The local coordinate

system of the rigid body is aligned to the smartphone’s

coordinate system xyz shown in Fig. 1. The origin of the

global coordinate system XYZ defined by the reference

system is not visible in the picture.

The series of golf swing movements is performed on the

laboratory floor. The origin of the global coordinate system

is defined by the Qualisys reference motion tracking sys-

tem and is marked by self-adhesive tape on the floor.

3.5 Methodology

The smartphone gyroscope is evaluated through the com-

parison of rigid body orientations gained from the smart-

phone gyroscope and QTM signals. Validation is based on

determining the fulfilment of the biofeedback application

requirements presented in ‘‘Introduction’’.

The Qualisys 6DOF tracking function computes the

body origin vector Porigin and the rotation matrix R, which

describes the rotation of the rigid body, as illustrated in

Fig. 2. Both parameters uniquely define the current posi-

tion and orientation of all rigid body points Plocal in the

global coordinate system Pglobal [21]:

Pglobal ¼ R � Plocal þ Porigin ð1Þ

Only the rotation matrix or equivalent Euler angles (roll,

pitch, and yaw) are needed for the gyroscope evaluation.

The real-time motion tracking data stream originating from

the Qualisys Track Manager software is captured by the

Qualisys LabVIEW client. The gyroscope data stream from

smartphone is captured by the custom-designed LabVIEW

application. Both data streams are synchronized inside the

main LabVIEW signal processing loop running at 60 Hz.

The reference QTM system and evaluated gyroscope sys-

tems cannot be directly compared for two reasons:

(a) QTM gives rotation angle data (roll, pitch, and yaw),

and the gyroscope gives angular velocity data.

(b) The aforementioned physical quantities are

expressed in two different coordinate systems (local

and global).

3.6 System comparison methods

We identified two methods for comparing results from the

smartphone gyroscope and the optical tracking system.

1. Transformation of QTM rotation matrices RQTM[n] (2)

to partial rotation matrices of the sensor-attached rigid

body Rlocal[n] (3) and calculation of the corresponding

body rotation angles DHlocal[n] (4) between successive

QTM analysis frames, thus enabling the evaluation of

the virtual gyroscope data XQTM[n] (5). The parameter

fs represents the synchronized sampling rate. The

comparison of the reference system with the evaluated

system is expressed in the local sensor-attached body

coordinate system by the angular error elocal[n] (6).

RQTM n½ � ¼ Rglobal n½ � ¼
Yn

i¼1

Rlocal i½ � ð2Þ

Rlocal n½ � ¼ R�1
global n� 1½ � � Rglobal n½ � ð3Þ

DHlocal n½ � ¼ H Rlocal n½ �ð Þ ð4Þ
XQTM n½ � ¼ DHlocal n½ � � fs ð5Þ

elocal n½ � ¼ Ts �
Xn

i¼1

XQTM i½ � � Xgyro i½ �
� �

ð6Þ

2. Gyroscope data Xgyro[n] are used to calculate the

successive local body rotation angle vectors DHlocal[n]

(7), where Ts represents the sampling time. Transfor-

mation of successive rotation matrices of the sensor-

attached marked rigid body Rlocal[n] (8) to the global

coordinate system rotation matrices Rglobal[n] (9),

followed by the calculation of equivalent Euler angles

around all principal axes DHglobal[n] (10) (roll, pitch,

yaw). The angular error eglobal[n] is expressed in the

global reference coordinate system (11), where HQTM

represents the QTM body Euler angle vector.

DHlocal n½ � ¼ Xgyro n½ � � Ts ð7Þ

Rlocal n½ � ¼ RðDHlocal n½ �Þ ð8Þ
Rglobal n½ � ¼ Rglobal n� 1½ � � Rlocal n½ � ð9Þ

Hglobal n½ � ¼ H Rglobal n½ �
� �

ð10Þ

eglobal n½ � ¼ HQTM n½ � �Hglobal n½ � ð11Þ
Fig. 4 Golf swing movement set-up
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The transformation formulas between rotational matri-

ces R(H) and Euler angles H(R) are expressed by the

rotation sequence around all three axes in a defined order

(x, y, z), which is a default convention in Qualisys [21]. The

QTM reference system and evaluated system with smart-

phone MEMS gyroscopes are compared in both coordinate

systems in Sect. 5.

4 Inaccuracies and calibration of the smartphone
gyroscope

Motion tracking applications based on raw smartphone

gyroscope data have limited use. Various gyroscope inac-

curacies cause significant angular errors. Gyroscope errors

can be predicted for a simplified exemplary movement

when one of two conditions is defined: (a) the gyroscope

signal integration time Tw is 10 s or (b) the rotation angle a
is 90�. Table 1 lists the predicted gyroscope angular errors

originating from various sources.

Gyroscope bias measurements were taken on ten iPhone 4

smartphones. Biases were estimated by averaging samples

over time intervals s = 10 s when the smartphone was in the

standstill position. The measured bias values are in the range

of ±1 deg/s. MEMS gyroscope biases vary with time, and

temperature is the most influential factor in bias instability

[23, 24]. Sensors in smartphones experience changes in

temperature not only because of their own heating but also

because of the heating of other parts of hardware integrated

into the smartphone’s enclosed casing. The change in the

inner temperature caused by running applications has a

greater and more instant effect than changes in the room air

temperature. From our experience, the bias drift acquired

from the repeated biasmeasurements after 1 h of smartphone

operation does not exceed ±0.1 deg/s.

The results of gyroscope scaling factor measurements

show that the scaling errors do not exceed 2 %. The

angular error in the local coordinate system dimension

depends on the scaling factor error and total rotation angle.

In the worst case, the angular errors in each of the global

reference frame dimensions can be larger because errors

are simultaneously superimposed from other sensor

dimensions. The results of the calibration procedure

applied to several smartphones show that the axis

misalignment error does not exceed 1�.
Regardless of the calibration methods used for identi-

fying deterministic errors, random noise represents the

limit of the gyroscope accuracy [25]. We investigated the

gyroscope random noise model by measuring the Allan

variance. The gyroscope Allan deviation plot rA(s) follows
the slope of the white noise model for short averaging time

s\ 100 s. The measured gyroscope Allan deviation rA(-
s = 1 s) of ten smartphone devices is in the range of 25–

30 mdeg/s. The angle random walk has a zero mean with a

standard deviation r/ that increases with the square root of

the integration time [26]:

r/ðtÞ ¼ rAðs ¼ 1sÞ �
ffiffi
t

p
ð12Þ

Thus, the predicted angular deviation after a 10-s signal

analysis, calculated from Eq. (12), is\0.1�. Sensor noise
also affects the precision of the bias measurement. The

initial bias measurement error in a 10-s averaging interval,

estimated with a 1r confidence interval, is\10 mdeg/s.

To improve the gyroscope angular tracking accuracy,

one or more deterministic errors from the top rows of

Table 1 should be reduced. Smartphone gyroscope cali-

bration is a prerequisite for its comparison with the optical

tracking system. We first took bias measurements with a

10-s averaging time and bias compensation, followed by

calibration of the scaling factors and the axis alignment.

Gyroscope bias measurement and bias compensation is

performed in the stand-still position in the vibration-free

environment. Measurements of scaling factors and of the

misalignment of the MEMS sensor axis with the smart-

phone axis are taken through the following procedure: The

smartphone is mounted into the specially designed

mechanical calibration frame, several full-circle rotations

around one of the smartphone principal axes are performed,

and the rotation angles for all sensor axes are calculated;

the same procedure is repeated for the remaining two

smartphone principal axes. Finally, scaling factors and axis

misalignments are derived from the measured values. The

method is similar to that presented in Ref. [27].

The calibration method is based on the assumptions of

gyroscope linearity and requires stable temperature condi-

tions without bias drift. In practice, biases change with

Table 1 Gyroscope inaccuracy

sources and their predicted

angular errors

Inaccuracy source Parameter value Condition Predicted error [�]

Bias 1 deg/s Tw = 10 s 10.0

Bias drift 0.1 deg/s Tw = 10 s 1.0

Scale error 2 % a = 90 deg 1.8

Axis misalignment 1 deg a = 90 deg 1.6

Angle random walk ARW = 30 mdeg/s Tw = 10 s 0.1

Bias measurement error ARW = 30 mdeg/s Tw = 10 s 0.1
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Fig. 5 Comparison of smartphone gyroscope signals (blue plots) and

the derived reference system virtual gyroscope signals (red plots) in

the local coordinate system. a–d show signals of the test movement.

e–h show signals of the golf swing movement, as defined in Sect. 3. a,
e show the smartphone and virtual gyroscope x axis (roll) angular

velocity, b, f show the smartphone and virtual gyroscope y axis

(pitch) angular velocity, and c, g show the smartphone and virtual

gyroscope z axis (yaw) angular velocity. The difference in orientation

angles is shown in d, h (colour code: red = roll, green = pitch,

blue = yaw)
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time, and smartphone gyroscopes exhibit small nonlinear-

ities. Thus, scaling factors and axis misalignment remain

partially uncompensated, causing residual angular errors.

Bias drift errors can be reduced by repetitive bias

measurements. Random angular errors induced by sensor

noise are negligible compared with the other error sources

in Table 1.

5 System comparison and validation

The smartphone gyroscope evaluation procedure is based

on measurements of rigid body angular motion. The mea-

surements are taken concurrently in both systems: the

reference professional optical tracking system and the

evaluated smartphone gyroscope. Angular motion is

expressed and compared by one of the two proposed

methods presented and explained in Sect. 3.6. The sam-

pling rate of both systems is set at 60 samples per second.

1. The test movement sequence is composed of four hand-

driven phases with the following rotations: (a) roll of

approximately 90�, (b) yaw of approximately -90�,
(c) pitch of approximately -90�, and (d) rotate back to

initial orientation by simultaneously rotating around all

three rigid body axes. Each phase is smoothly executed

in approximately 2 s. After each phase, the smartphone

was left in a standstill position for several seconds. The

total duration of the measured signal is 30 s, with 18 s

of observed movement.

2. The golf swing is executed in full, but only its

backswing component is tracked. The backswing phase

measurement takes approximately 2 s, with 1.5 s of

observed movement.

The evaluated gyroscope data are compared with ref-

erence virtual gyroscope data using Eqs. (2)–(6), and the

results are presented by two sets of measurements.

Figure 5 shows the comparison results of measured 3D

rotation angles for both sets of movements presented in the

local coordinate system. Graphs (a)–(c) show test move-

ment measurements, and graphs (e)–(g) show golf swing

measurements. Some high-frequency noise can be

observed in all three virtual gyroscope signal components.

However, when calculating angular orientation error (6),

high-frequency noise components are largely filtered out.

The orientation angle error in the local coordinate system is

shown in graph (d) for the test movement and graph (h) for

the golf swing. The calculated RMSE is 0.46� for the test

movement and 1.86� for the golf swing.
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Fig. 6 Comparison of smartphone (dotted black plots) and QTM

body rotation angles (solid coloured plots) in the global coordinate
system (colour code: red = roll, green = pitch, blue = yaw). a,
b show test movement and c, d show golf swing movement, as defined

in Sect. 3. a, c show smartphone and QTM rotation angles. b, d show

the difference in rotation angles of the QTM system (reference) and

smartphone gyroscope
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From the experiment observer’s view, it is more natural

and more convenient to express the rotation angles in the

global coordinate system. Rotation angles calculated from

gyroscope data using Eqs. (7)–(11) are compared with the

reference QTM rotation angles in Fig. 6. Graphs (a) and

(b) show the test movement measurements, and graphs

(c) and (d) show the golf swing measurements. Graphs

(a) and (c) show the rotation angles given by both systems,

and graphs (b) and (d) show the rotation angle errors in the

global coordinate system (11). The calculated RMSE is

0.42� for the test movement and 1.15� for the golf swing.

The comparison results in Figs. 5 and 6 are obtained

after employing the gyroscope bias compensation and

gyroscope scaling factor calibration. The residual gyro-

scope errors are relatively small and are analysed in the

next section.

5.1 Identified sources of gyroscope inaccuracies

Gyroscope bias is the most relevant gyroscope error source.

Uncompensated gyroscope bias has a significant effect on

angular error, as illustrated in Fig. 7a. A deterministic

linear ramp angular error in the current example results

from the measured but intentionally uncompensated biases:

(0.92, -0.25, 1.08) deg/s.

The calculated RMSE is 9.26�. The gyroscope angular

errors after bias compensation are shown in Fig. 7b. The

calculated RMSE is 2.05�. The angular errors are further

reduced after the gyroscope calibration as shown in

Fig. 7c. The remaining angular errors are mainly in the

range of ±1�. The calculated RMSE is 0.42�.
The residual error is partially the result of an imperfect

calibration of gyroscope scaling factors and axis

misalignments. Gyroscope errors also occur from non-de-

terministic sources, such as bias measurement error, angle

random walk generated by white sensor noise, and bias

drift. Residual gyroscope random errors from the above-

mentioned sources are considerably smaller than 1� and are

thus less visible in angular error measurement results in

Fig. 7c.

5.2 Smartphone gyroscope validation

Based on the comparison results presented in this section

and the general requirements of biofeedback applications

from the Introduction section, smartphone gyroscopes are

validated for angular motion tracking in mobile biofeed-

back applications.

The typical required angular accuracies of biofeedback

applications are up to a few degrees; after full gyroscope

calibration, the measured inaccuracies are 0.42� for the test
movement and 1.15� for the golf swing; under partial

gyroscope calibration, they are 2.05� for the test movement

and 1.67� for the golf swing (bias compensation only).

6 Conclusion

The main purpose of our research is to validate smartphone

gyroscopes for mobile biofeedback applications. For that

purpose, we designed and implemented a real-time mea-

surement system capable of tracking rotation angles from

two asynchronous signal sources: a smartphone and an

optical tracking system. The smartphone gyroscope vali-

dation procedure is based on concurrent measurements and

a comparison with a reference professional optical tracking

system.

Smartphone gyroscope calibration is a prerequisite for

its comparison with the optical tracking system. Gyroscope

bias compensation must achieve an angular tracking
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Fig. 7 Influences of basic gyroscope inaccuracies in the global

coordinate system (colour code: red = roll, green = pitch, blue = -

yaw). Gyroscope angular error without compensation is shown in

graph (a). Gyroscope angular error after the bias and scaling factor

calibration is shown in graph (b). Residual angular errors are shown

in graph (c)
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precision of 1�. Biofeedback applications should include an
initial gyroscope calibration and occasional bias compen-

sations when needed.

A comparison is made using two methods of error

measurement in both local and global coordinate systems.

Two sets of experiments with different set-ups were con-

ducted: a series of hand-driven test movements of the

custom-made rigid body and a series of golf swings. The

root-mean-square angular errors are 0.42� for the test

movements and 1.15� for a golf swing. The measurement

results confirm that the gyroscope precision is adequate for

most biofeedback applications.

Smartphones are the most widely available mobile

sensing devices. Thus, it is highly beneficial that smart-

phone gyroscopes can be used for most health-related

biofeedback applications in sports, recreation, rehabilita-

tion, and well-being.
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