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Abstract
When designing data science (DS) pipelines, end-users can get overwhelmed by the large and growing set of available data
preprocessing and modeling techniques. Intelligent discovery assistants (IDAs) and automated machine learning (AutoML)
solutions aim to facilitate end-users by (semi-)automating the process. However, they are expensive to compute and yield
limited applicability for a wide range of real-world use cases and application domains. This is due to (a) their need to execute
thousands of pipelines to get the optimal one, (b) their limited support of DS tasks, e.g., supervised classification or regression
only, and a small, static set of available data preprocessing and ML algorithms; and (c) their restriction to quantifiable
evaluation processes and metrics, e.g., tenfold cross-validation using the ROC AUC score for classification. To overcome
these limitations, we propose a human-in-the-loop approach for the assisted design of data science pipelines using previously
executed pipelines. Based on a user query, i.e., data and a DS task, our framework outputs a ranked list of pipeline candidates
from which the user can choose to execute or modify in real time. To recommend pipelines, it first identifies relevant datasets
and pipelines utilizing efficient similarity search. It then ranks the candidate pipelines using multi-objective sorting and takes
user interactions into account to improve suggestions over time. In our experimental evaluation, the proposed framework
significantly outperforms the state-of-the-art IDA tool and achieves similar predictive performance with state-of-the-art long-
running AutoML solutions while being real-time, generic to any evaluation processes and DS tasks, and extensible to new
operators.

Keywords Intelligent discovery assistant · Data science pipelines · Automated pipeline generation

1 Introduction

Data science (DS) has unarguably contributed to advance-
ments in science, industry, and society in general. This has
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been achieved via many libraries and tools that are available
today.Yet, designingmodernDSpipelines, i.e., compositions
of data preprocessing and modeling operators (e.g., filters,
transformers, estimators), can become overwhelming, espe-
cially for novice users and domain experts [10]. This is due to
the large and growing toolkit for data analysis and machine
learning (ML), exacerbated by the lack of explicit guidance
on how these techniques should be applied (both separately
and as part of an end-to-end pipeline). Even for ML experts,
keeping upwith the ever-increasing number of available tech-
niques and algorithms is challenging.

To facilitate users with common tasks, such as super-
vised classification, automated ML (AutoML) solutions [23,
47, 55] aim at fully automating the synthesis of effective
DS pipelines. They navigate an often large search space of
available models and their hyperparameters, execute each
explored pipeline to determine its performance, and output
the optimal pipeline. Similarly, intelligent discovery assis-
tant (IDA) is a family of tools that provide step-by-step
guidance to end-users with a particular task (e.g., data clean-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00835-2&domain=pdf
http://orcid.org/0000-0001-7131-745X


S. Redyuk et al.

ing, preprocessing, and modeling) by utilizing a fixed set
of meta-features, knowledge- or case- bases [45]. However,
both AutoML and IDA solutions inherit a common set of
drawbacks.

First, they support a limited set of operators and DS tasks.
This makes them inapplicable in certain domains that require
domain-specific techniques (e.g., marker gene identification
in genomics). This is because such techniques are not read-
ily available in existing tools, and incorporating them would
require substantial code changes. Second, both solutions
explore a predefined search space and require the execu-
tion of many pipeline candidates before finding the optimal
one. This requires extensive time and resources. Should
these solutions operate on a constantly growing search space
without advancing their underlying search process, their exe-
cution time might grow exponentially. Third, both AutoML
approaches and IDAs rely heavily on quantifiable evalua-
tion processes (e.g., Tenfold cross-validationwith ROCAUC
score) to identify the optimal pipeline. This is problematic
for many domain-specific applications, such as single-cell
research for cancer studies (see Sect. 2), where domain
experts cannot quantify the pipeline evaluation. Instead, they
rely on literature reviews and manual comparison of pipeline
outputs to validate the results and determine a satisfactory
variant.

Devising a solution that mitigates these drawbacks is not
straightforward. First, most existing approaches are very
rigid and not sustainably extensible to new operators, DS
tasks, evaluation processes and, thus, would require a com-
plete code re-design. Second, constant extensibility translates
to a continuously growing search space,which, consequently,
may significantly hurt the efficiency of finding DS pipelines.
Third, automating the design of DS pipelines in cases where
quantifiable performancemetrics cannot be formulated (very
common in emerging application domains such as astro-
physics or cell biology) is not feasible because of the lack of
processes for (pairwise) pipeline comparison.

In this work, we propose DORIAN, a human-in-the-loop
framework that is based on previously executed pipelines
for the assisted design of DS pipelines. The human-in-the-
loop aspect is crucial to tackle the challenge of non-existing
quantifiable performancemetrics. Using previously executed
pipelines tackles the challenge of extensibility, as the design
of the core components does not depend on the supported DS
tasks or operators. Our goal is to provide real-time pipeline
suggestions to users and support a broad range of arbitrary
DS tasks, operators, and evaluation processes. Given a user
query, i.e., data and a DS task (e.g., classification), DORIAN
outputs in real time a ranked list of relevant pipeline candi-
dates that the user can choose to execute or modify. DORIAN
achieves this by (1) efficiently storing all previous exper-
iments, i.e., executed pipelines together with the data and
the evaluation processes used, (2) finding relevant pipelines

and ranking them based on the user’s past and current inter-
actions, (3) converting the source code of DS scripts to a
stringent graph-based pipeline representation that is crucial
for storing and recommending pipelines.We have showcased
DORIAN in Redyuk et al., 2022 [42].

After introducing a use case that shows a clear need for
an extensible human-in-the-loop solution that can support a
broad range of applications (Sect. 2), we make the following
contributions:

(1) We formalize the generalized problem of the assisted
design of DS pipelines in a way that subsumes a wide
spectrum of specific problems in the areas of AutoML
and IDA (Sect. 3);

(2) After presenting an overview of our solution (Sect. 4),
we detail our recommendation engine that provides
user-tailored pipeline suggestions in real-time, is
online (i.e., with no delays in incorporating new user
input) and extensible (i.e., users can fine-tune the rank-
ing objectives used for the recommendation) (Sect. 5);

(3) We propose an efficient approach for storing and
retrievingpreviously executedpipelines, useddatasets,
and user interactions. These form an Experiment
Store that allows us to treat pipeline suggestion
as a search problem in contrast to the expensive
‘generate-evaluate’ iterative process of AutoML solu-
tions (Sect. 6);

(4) Wedevise a novelmethodology for extracting a graph-
based semantic representation of a DS pipeline from
its source code based on rewrite rules and a knowledge
graph. In this way, we can populate the Experi-
ment Store with pipelines from multiple sources and
improve recommendations (Sect. 7);

(5) WeevaluateDORIAN against several IDAandAutoML
baselines. As the baselines can only support quantifi-
able evaluation processes, we use three common DS
tasks, namely classification, regression, and cluster-
ing, and the respective evaluation metrics. In addi-
tion, we analyze the predictive performance of real
users via a preliminary user study. We show that
DORIAN significantly outperforms the state-of-the-art
IDA tool in both predictive and runtime performance.
It achieves accuracy similar to long-running AutoML
solutions while being real-time, generic, and extensi-
ble (Sect. 9).

2 Motivating use case

Consider the following scenario: a computational biologist
(i.e., domain expert) at a research laboratory is working
with single-cell gene expression data. Their task is to iden-
tify genes that are differentially expressed between two
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Fig. 1 Example of DS pipelines for RNAseq analysis

conditions—“healthy” and “exposed to a disease”—and play
a role in disease development (e.g., cancer).

The researcher starts with pipeline A in Fig. 1: 1 con-
version of raw data from a sequencer into count matrices,
2 frequency threshold filtering for quality control, 3 data
normalization, 4 principal component analysis for dimen-
sionality reduction, and 5 correlation analysis to calculate
gene co-expression scores. 6 Then, they create graph embed-
ding A that preserves relations between co-expressed genes
[32]. By analyzing the difference in the embedding between
the “healthy” and the “exposed to a disease” conditions, the
domain expert is able to identify key genes that might be
associated with that particular disease. During experimenta-
tion, the researcher decides to replace steps 4 and 5 with
4’ and 5’ (pipeline B in Fig. 1)—a new domain-specific
technique, SEMITONES [53], that performs marker iden-
tification (Challenge 1) and an algorithm for constructing
gene co-expression networks. The researcher then compares
the output of pipelines A and B in order to identify the most
informative embedding and verify the findings. This ad hoc
experimentation can be very complex (Challenge 2) and con-
tinues until a suitable pipeline is found. Pipeline evaluation
involves consultation with field experts and an exhaustive lit-
erature search for supportive evidence that particular genes
are associated with a disease (Challenge 3). In the following,
we detail the challenges that make the process of pipeline
design overwhelming:

(C1) Keeping up with the advances in methods and tools.
Many research fields similar to that of single-cell RNA
analysis are young, actively-evolving, and produce a
variety of experimental domain-specific methods for
data pre-processing and analysis at a rapid pace. For
IDAs and AutoML tools to support a new technique,
the developers (rarely, domain experts themselves)
need to update the code base. Yet, this approach can-
not sustain the pace of advancement in such research

fields. We, thus, require a solution that can be effort-
lessly extended to new operators and DS tasks.

(C2) Large search spaces. A large and growing set of
available techniques for data analysis and domain-
specific tools leads to large search spaces. When
domain experts design pipelines manually, a large
search space complicates the decision-making pro-
cess and becomes overwhelming, e.g., due to the high
variety of potential changes to make in the pipeline
and their order. In addition, large search spaces neg-
atively affect the efficiency of IDAs and AutoML
solutions, leading to a combinatorial explosion in the
number of choices. We, thus, require a solution that
assists end-users in the process of pipeline design effi-
ciently (ultimately, in real-time) under a growing set
of choices.

(C3) Absence of quantifiable performance metrics. In
many application domains, the option to specify the
training function or a quantifiable evaluation process
might be unrealistic. For instance, in this use case,
there exists no quantifiable metric to determine which
embedding is “better”. A single comparison of the
results of two pipelines can be inherentlymanual (e.g.,
searching for scientific evidence). That renders IDAs
and AutoML inapplicable due to the lack of quan-
tifiable loss functions to optimize. Thus, we require a
user-aided solution that supports arbitrary evaluation
processes.

3 Problem statement

We start by defining DS operators and tasks, a DS pipeline
and its evaluation process. Then, we formalize the problem:
assisting end-users with the design of DS pipelines, sup-
porting a large and growing set of DS operators, tasks, and
arbitrary evaluation processes.

A DS operator p ∈ P is a specific black-box implemen-
tation of an algorithm that includes a set of hyperparameters
{h1, . . . , hq} from the domain H (e.g., the sklearn imple-
mentation of a missing value imputation algorithm that is
parameterized by the imputation strategy, e.g., using the
median value of a numeric attribute). Each operator can per-
form one or more DS tasks T ∈ T (e.g., missing value
imputation), although it performs exactly one task in the con-
text of any given pipeline. Each DS task, in turn, is defined
by a (potentially overlapping) set of operators PTk = {p ∈
P | Tk ∈ Tasks(p)}.

ADSpipeline is a directed acyclic graph (DAG) G(V , E).
Nodes V comprise a finite set of DS operators {p1, . . . , pm}.
Edges E define theflowof data fromone operator to the other.
The sets of supported operators P and DS tasks T can be
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extended, as newDS algorithms are constantly implemented,
and domain-specific operators might be required.

The evaluation process eval(C, T , D) for a set of pipeline
candidates C that solve task T on input data D is, in a broad
sense, a sequence of actions—manual or automated—that are
required to identify a partial order among candidates c ∈ C
such that, for any two pipeline candidates cg, ch ∈ C, cg per-
forms better, worse, or equally compared to ch . The concept
of pairwise comparison of pipeline outputs on arbitrary input
data is important as it incorporates evaluation processes that
cannot be quantified by a specific loss function. Input data D
can be arbitrary (e.g., tabular, graph). A budget B is applied
as a termination criterion to limit either the total time spent
on comparing pipeline candidates in eval(C, T , D) or the
number of performed comparisons.

Definition 1 (Problem statement) Given a DS task T , input
data D, pipeline candidatesC , evaluation process eval(C, T ,
D), and budget B, assisted design of DS pipelines is an
interactive process of selecting pipeline c∗ ∈ C that is
“best” among all pipelines in C w.r.t. the evaluation process
eval(C, T , D) under budget B.

The problem formulation does not specify the process of
candidate generation, nor does it imply restrictions to the
degree of its automation. Thus, it accommodates awide spec-
trum ofmore specific problems in the design of DS pipelines,
ranging from AutoML to human-in-the-loop IDA problems
(e.g., suggesting the next operator to apply or hyperparameter
tuning).

4 Overview

The goal of DORIAN is to provide a solution for the assisted
design of DS pipelines that can be easily extended by
end-users (C1, e.g., by adding custom DS operators), main-
tain its efficiency under constantly expanding search spaces
(C2), and support arbitrary evaluation processes (C3). With
DORIAN, end-users receive interactive recommendations for
DS pipelines to solve a user-defined DS task on particular
data.

Figure 2 illustrates our proposed framework, comprised
of three main components: (1) the Recommendation Engine
that provides a ranked list of pipeline candidates to solve
the DS task at hand, (2) the Experiment Store that persists
all previous experiments, i.e., DS pipelines that were exe-
cuted with a particular set of hyperparameters, along with
the accompanying artifacts (e.g., data, source code, pipeline
specification, meta information), and (3) the DS Pipeline
Extractor that captures a stringent graph-based pipeline
representationdirectly fromsource codewith little to noover-
head from the end-user in order to populate the Experiment

Fig. 2 DORIAN overview: The end-user specifies a query, chooses a
preferred DS pipeline, alters it, submits it for execution, and evaluates
the results. Based on the user interaction and previous experiments,
DORIAN suggests new pipelines

Store and, consequently, improve the quality of recommen-
dation.

In the following, we describe the user interaction flow and
outline how it is reflected in the current implementation of
DORIAN’s user interface (UI). 1 Initially, the end-user spec-
ifies a query, i.e., data D and a DS task T 1 . Optionally,
they provide (1) the specification of a quantifiable evaluation
process (e.g., tenfold cross-validation and AUC ROC score
for classification) and (2) the initial DS pipeline to work with
if they need suggestions for improvements. This constitutes
the beginning of the User Interaction Cycle. In the UI, the
query form includes file uploads for data and two selectors
with auto-completion for the specification of DS tasks and
evaluation processes, respectively. The “DS Task” selector
allows adding new tasks as text tags, whereas the “Evalua-
tion Process” selector opens a code editor for new evaluation
processes. DS pipelines can be created via the visual pipeline
composition tool or imported as source code to the Pipeline
Extractor. In our example from Sect. 2, the biologist uploads
data from theRNAsequencer and selects “graph embedding”
from the list of supported DS tasks.

Once DORIAN receives the query (D, T ), the Recom-
mendation Engine (Sect. 5) retrieves pipelines from the
Experiment Store that were previously executed on data sim-
ilar to D (in our example, pipelines that were previously
applied on the RNAseq datasets), filters out pipelines that do
not perform a specified DS task T and ranks the candidates
based on relevance to the user query, giving preference to a
wide variety of suggested candidates. The notion of relevance
is defined by a list of ranking objectives that identify the order
of pipeline candidates. This ranked list of suggestions is then
presented to the end-user 2 (i.e., initial recommendation),
who, in turn, can alter the ranking objectives to tailor rec-

1 For a detailed description of the UI, we refer the reader to the demon-
stration paper [42] and video (https://dorian.studio/vldb22demo/).
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ommendations to their needs. The end-user then can (1) edit
candidates by adding, removing, altering operators, or adjust-
ing the corresponding hyperparameters; (2) discard them
as irrelevant based on the domain knowledge or personal
preference; (3) execute 3 . In the UI, suggested pipelines
are visualized as graphs and can be scrolled. Pipeline edit-
ing is performed via the visual pipeline composition tool.
Respective buttons discard and execute a pipeline. The rank-
ing objectives are presented as an ordered list of objectives
(i.e., their textual description) that end-users can re-order
or remove, and a selector with auto-completion to add new
objectives. Users can implement new objectives in the code
editor (with a fixed function signature that defines the inter-
face) if desired ranking objectives do not exist.

Pipeline performance is computed w.r.t. the user-defined
evaluation process. In case no quantifiable evaluation process
exists, the end-user can compare the pipeline structure and
the output results for any given pair of executed pipelines and
identify a “better” candidate in accordance with the domain
expertise and personal preferences of the end-user. In the
UI, the pairwise comparison functionality is implemented
as a dedicated window, where two pipeline candidates are
visualized as graphs side-by-side together with the visual
representation of the results (operators for user-defined tex-
tual output and data visualization are supported as part of
the pipeline structure). In our example, the computational
biologist directly compares two embedding graphs against
one another and identifies the most informative graph by
conducting an exhaustive literature search and consulta-
tions with other field experts. When the end-user specifies
a quantifiable evaluation process, the pairwise pipeline com-
parison is automated. We record the end-user decisions to
take user preferences into account and improve suggestions
over time 4 .

DORIAN iteratively repeats steps 2-4 until the end-user
finds a suitable pipeline (i.e., the recommendation for incre-
mental improvements). In the UI, iterations of suggestions
are visualized with pagination, where end-users can revise
suggestions across iterations at will, navigating manually
through the pages of suggested pipelines. Once the suitable
pipeline is found, the end-user can export it back to a DS
script if a need for further integration with other downstream
applications exists. The export procedure concatenates the
source code of every DS operator that the pipeline contains,
utilizes the nodes of the pipeline graph to generate function
calls and the edges—to generate variables2

Note that the end-user can interact with DORIAN to popu-
late the Experiment Store with past experiments, either from

2 In the cases where DS operators are implemented with different
programming languages, the edges of the graph, combined with the
information about the data types of operators’ inputs and outputs, are
used to implement a serialization protocol and pass data across runtimes.

Algorithm 1: DS pipeline recommendation.
Input: userQuery - input data; DS task; optionally, the offset

pipeline and the evaluation process;
objectives - the list of ranking objectives; default=empty

list;
n - the number of candidates to suggest, default=20;
m - the number of datasets to query, default=3;

Output: suggestions - the ranked list of pipeline candidates to
suggest

1 Initialize rankingScores = empty list; Experiment Store as
store;

2 if userQuery.pipeline is empty then
3 if objectives is empty list then objectives =

initialObjectives;
4 similarData, distances =

store.kdtree.getDatasets(userQuery.data, m);
/* (ID, distance) to NN datasets */

5 suggestions = store.btree.getPipelines(similarData);
/* Pipelines previously applied to
similarData */

6 else
7 if objectives is empty list then objectives =

incrementalObjectives;
8 suggestions, pdist =

store.bktree.getPipelines(userQuery.pipeline, n);
/* (ID, distance) to NN pipelines */

9 foreach candidate ∈ suggestions do
/* .getDiscarded retrieves pipeline

candidates that were previously
discarded during the user query */

10 if candidate ∈
store.interactionTable.getDiscarded(userQuery) or
candidate.Task != userQuery.Task then

11 suggestions.remove(candidate);
12 else
13 rankingScores.append([objective(candidate,

userQuery, store) foreach objective ∈ objectives]);
14 return non-dominated-sorting(suggestions, rankingScores)[:n]

/* sort candidates based on computed
objectives */

local repositories and code bases or from publicly avail-
able experiment databases such as OpenML and kaggle
(not shown in the figure for simplicity). As the experiments
are usually defined with general-purpose programming lan-
guages or workflow specification languages, theDS Pipeline
Extractor is responsible for converting the source code to a
semantic graph representation of the underlying DS pipeline.

5 User-tailored recommendation

The Recommendation Engine is at the heart of DORIAN
and is responsible for suggesting new relevant pipelines or
alterations to existing ones. It addresses the challenges of
selecting and ranking pipeline candidates for a given user
query in real-time.
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5.1 Recommendation process

The general idea of our proposed recommendation process
is first to select a subset of DS pipelines that are relevant
to the user and then rank them. This way, DORIAN avoids
unnecessary computation for ranking DS pipelines that do
not match the user’s input. DORIAN supports two types
of suggestions—initial recommendation when the end-user
does not specify any initial pipeline at the beginning of the
User Interaction Cycle and recommendations for incremen-
tal improvements when the end-user has already selected
an offset pipeline as part of the query. The pseudocode of
the entire recommendation process is shown in Algorithm 1.
Lines 3–6 concern the initial recommendation and line 8—
suggestions for incremental improvements. The rest fits both.

Pipeline Candidate Selection.Wedistinguish twoprocesses
for selecting a pool of pipeline candidates: one for the ini-
tial recommendation and one for the recommendations for
incremental improvements. Given a query (D, T ), the Rec-
ommendation Engine provides an initial recommendation by
finding pipelines that were previously executed on datasets
similar to D and filtering out the ones that do not solve task T
(line 11). This selection ensures the exploration element in
the recommendation process. For incremental suggestions,
the Recommendation Engine selects candidates that are sim-
ilar to the pipeline chosen in the last user interaction cycle
(line 9). This ensures exploitation in the recommendation. In
both cases, the Recommendation Engine efficiently retrieves
similar datasets and pipelines from the Experiment Store
(Sect. 6).

User-tailored Pipeline Ranking. Once we have a pool of
pipeline candidates, we need to rank them. Initial recom-
mendations exhibit different requirements for ranking than
incremental suggestions. This is due to the difference in
the amount of information available and the exploration-
exploitation trade-off. Despite the different requirements, we
frame the ranking of pipeline candidates in both cases as a
problem of multi-objective sorting where the user require-
ments for ranking are mapped to a list of quantifiable ranking
objectives, i.e., numerical values. This design decision allows
for a user-defined specification of “pipeline relevance” that
can be altered between user queries and within a single query
over time (to help the end-user better control the exploration-
exploitation trade-off). In the following, we formulate this
problem and discuss the different ranking objectives in detail.

5.2 Ranking as multi-objective sorting

We formulate the problem of candidate ranking as the
problem of multi-objective sorting. We map every pipeline
candidate to a small numeric vector that contains the values
of the identified objectives (described in the following sub-

section) in a specified order. A pipeline candidate A is said
to dominate over pipeline B if and only if, for every objec-
tive, the numerical values of A are greater or equal to the
values of B, and there exists at least one value (i.e., objec-
tive) where its value is strictly greater. Formally, given a set
of pipeline candidates C and function fo(p) that returns an
array of objectives for pipeline p ∈ C:

∀pi , p j ∈ C, pi dominates p j ⇐⇒
∀k f ko (pi ) ≥ f ko (p j ) and ∃k′ f k

′
o (pi ) > f ko (p j )

where f ko denotes the k-th objective returned by fo.
When comparing two pipeline candidates, not all objec-

tives will be greater than or equal for one candidate to declare
domination over another. For this reason, we resort to the
problem of non-dominated sorting. Specifically, we utilize
the modified Generalized Jensen algorithm [12, 25]. Can-
didates have rank 0 if they are not dominated by any other
candidate and rank i if they are dominated by at least one
candidate of rank i − 1. Solutions with equal ranks are con-
sidered “equally good”. The algorithm splits candidates into
a sequence of Pareto fronts of equal rank. Ranking within
one front is based on domination in the first k objectives.

This approach provides a flexible solution where end-
users can alter, tune, and extend the list of objectives in a
straightforward way. For example: (1) A user wants to “pin”
an operator and prioritize suggestions where this exact oper-
ator exists in the pipeline. Then, they can simply add the first
objective to be a binary metric that denotes the presence of
an operator; (2) A user wants to take the concepts of explain-
ability and fairness of the suggested pipeline candidates into
account. The corresponding metrics can be added to the list
of objectives as well. Such extensions can be easily imple-
mented with DORIAN. The end-user can adjust the ranking
objectives by adding or removing an objective, changing their
order, or creating a custom one (e.g., prioritizing candidates
that demonstrated low average execution time on similar data
or contained a particular set of operators), thus tuning the
recommendations. The only requirement is that any objec-
tive has to be computed with the available data and used in
the specified order. Other solutions, such as learning-to-rank
algorithms [31], would require re-training of the classifier
and preparation of a completely new training set that repre-
sents the ground truth in accordance with newly established
objectives. They are, therefore, not suitable for our problem.

5.3 Ranking objectives

To provide a flexible user-tailored recommendation engine
and support multi-objective ranking, we propose the follow-
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Algorithm 2: Ranking objectives.

/* Implements the Objective interface */
1 objective1 (candidate, userQuery, store):
2 similarData, dist = store.kdtree.getDatasets(userQuery.data,

m);
3 performance = [getPerformance(candidate,

store.interactionTable.query(D)) for D ∈ similarData];
4 return weightedAverage(performance, weights=dist);
5 objective2 (candidate, userQuery, store):
6 return getPerformance(candidate, store)
7 objective3 (candidate, userQuery, store):

/* .getPrevious retrieves the count on
how often the candidate was suggested
for the given userQuery */

8 return store.interactionTable.getPrevious(candidate,
userQuery)

9 objective4 (candidate, userQuery, store):
10 suggestions, pdist =

store.bktree.getPipelines(userQuery.pipeline, m);
11 return pdist.query(candidate);
12

13 initialObjectives = [objective1, objective2];
14 incrementalObjectives = [−1×objective3, objective1,

objective2, −1×objective4]
15

16 getPerformance (candidate, storeSubset):
17 perf = storeSub-

set.interactionTable.query(’preferred’==candidate.id).
18 performance;

/* compute the percentile rank of a
performance score relative to a list
of all performance scores */

19 percentile = percentile_score(perf,
storeSubset.interactionTable.performance);

20 preferred = storeSub-
set.interactionTable.query(’preferred’==candidate.id)).

21 length();
22 compared = storeSub-

set.interactionTable.query(’compared’==candidate.id)).
23 length();
24 if preferred + compared == 0 then return percentile
25 else return 0.5 * (percentile + preferred / (preferred +

compared))

ing interface, which can be used to define a set of numerical
objectives:

rank(candidate , query , store)
−→ score

where candidate is a pipeline candidate to be ranked,
query is a user query (i.e., data, DS task, offset pipeline,
and evaluation process), store is a reference object that
enables access to the content of the Experiment Store, and
score is a numerical value returned by the user-defined
objective. In the following, we describe the default objec-
tives that DORIAN supports and how we represent them as
numerical values for both initial and incremental recommen-
dations (see Algorithm 2). Users can easily add new ranking
objectives if they implement the above interface and return a
numerical value.

Before defining the objectives, it is crucial to devise a
metric of pipeline performance that can be used in cases
where quantifiable evaluation metrics are absent, as well as
across different evaluation metrics, if available. For this, we
define the metric of pipeline preference ratio (PPR) as fol-
lows (Algorithm 2, lines 16–22). For a given dataset d and
pipeline p, PPR(p, d) is a ratio between the number of times
p was preferred by any end-user as a superior candidate
during pairwise comparison on d and the number of times
p was used with d in total. When the evaluation process
specifies a quantifiable performance metric (e.g., ROC AUC
score), we compute PPR as a percentile of the candidate’s
performance, given the performance distribution that other
pipelines exhibit on the same data (Algorithm 2, lines 17–
18). In the majority of cases, two ways to define PPR (with
or without quantifiable performance metric) are mutually
exclusive—we do not need to rely on pairwise comparison
when a quantifiable performancemetric exists. To support all
use cases, we compute the average between the leaderboard
percentile (scaled from 0 to 1) and the fractional notation of
PPR (each defaulting to 0 when no signals exist to compute
the metrics).

Initial Recommendations. Initial recommendations consti-
tute the beginning of the User Interaction Cycle where no
offset pipeline is specified in the user query. This case pro-
vides the least amount of information to determine candidate
ranking. Algorithm 1 (lines 3–6, 10–14) depicts the proce-
dure for initial candidate recommendation. We define two
objectives of the initial recommendation:

(1) We first choose to prioritize pipeline candidates that
were previously applied to similar data. Among those
pipelines, we prioritize the ones that performed relatively
better w.r.t. the chosen evaluation process. Suggesting
candidates that performed well in the past on similar data
is a common strategy that has been demonstrated to work
well in practice [50], even if no theoretical guarantees
exist: pipelines executed on similar data tend to yield
similar predictive performance. Based on this require-
ment, the first objective is the weighted average of the
pipeline preference ratio (PPR) normalized by the dataset
similarity score. The weights are the negative Euclidean
distances between a fixed-sized numeric representation
of the givendataset and each similar dataset (Algorithm2,
lines 1–4):

O1(p, d) =
Dsim∑

dsim

PPR(p, dsim) ∗ 1 − MSE(d, dsim)
∑Dsim

d
′
sim

MSE(d, d
′
sim)

where p is a pipeline candidate, d is a footprint of the
query data, Dsim is a set of footprints of similar datasets
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found in the Experiment Store, and MSE is a mean-
squared error.

(2) Furthermore, if the number of candidates that performed
well on similar data is low, we prioritize pipeline candi-
dateswith better performance in general as a proxymetric
for robustness and potential generalization of a particular
DS pipeline to a wide variety of tasks. This leads to the
following objective, which calculates the average PPR
ratio for a given pipeline on any datasets that it was pre-
viously applied (Algorithm 2, lines 5–6):

O2(p) =
∑

d∈D

PPR(p, d)

‖D‖

where p is a pipeline candidate, D is a set of data foot-
prints for the datasets that p was previously applied
to, ‖D‖ is the number of those datasets. This objective
ensures that highly similar pipelines can still be suggested
to a query with not-so-similar data.

Incremental Recommendations. The procedure for rec-
ommending incremental improvements is depicted in Algo-
rithm 1 (lines 8–18). Note that pipeline candidates that were
previously discarded by the end-user (within a single user
query, line 11) or the Execution Engine (in case of raised
exceptions) are removed from the set of candidates and do
not get any rank assigned. When choosing a pipeline candi-
date from the pool of suggestions, more user input becomes
available—pipeline candidates chosen, altered, discarded,
executed, and compared to one another. Thus, the ranking
objectives shift from exploration to exploitation, prioritizing
pipeline candidates that are relevant to the immediate past of
the user interaction rather than the “good on average" ones.
In that case, additional requirements and, thus, objectives
become necessary:

(1) We prioritize pipeline candidates that were not pre-
viously suggested to the end-user. Consequently, all
the suggested and never chosen candidates have to be
moved lower in the ranking. This requirement leads to
the following objective (Algorithm 2, lines 7–8):

O3(p, d, t, e) = −1 ∗ ‖ i ∈ it | idata = d ∧ itask = t

∧ ieval = e ∧ is = p‖

where p is a pipeline candidate, ‖‖ denotes the set size,
d, t, e are the query data, task, and the evaluation pro-
cess respectively, i t is the InteractionTable (Experiment
Store), is is a suggested pipeline.

(2) We prioritize suggestions that constitute smaller,
incremental updates to the offset pipeline
candidate—ultimately, one atomic change at a time:
addition, replacement, or removal of an operator— to

streamline the pipeline comparison process. Suggest-
ing pipeline candidates with significant changes would
increase the complexity of consequent root-cause anal-
ysis and overwhelm the users. To achieve this, we use
the graph edit distance between the pipeline candidate c
and the offset candidate off_c (Algorithm2, lines 9–11):

O4 = −graph_edit_distance(c, off_c)

As we must ensure a wide variety of suggestions that
go beyond the most “popular” pipelines, we use O4

to promote exploration. When a solution (i.e., pipeline
candidate) exists that none of the aforementioned rank-
ing objectives helped discover, a wide variety of recom-
mendations increases the chances of finding it. O4, in
turn, allows suggesting alterations to the offset pipeline
regardless of the observed predictive performance of the
altered variant.

6 Storage and search of DS experiments

To enable a real-time Recommendation Engine that makes
useful suggestions, we store and index information from all
previous DS experiments, i.e., DS pipelines together with
the datasets used, evaluation metrics (if available), and user
interactions into an Experiment Store. This component tack-
les the following main challenges: (1) how to store a large set
of datasets in a space-efficientmanner,which at the same time
allows for efficiently performing similarity search, (2) how to
efficiently perform similarity search on the graph-based rep-
resentation of DS pipelines so that online suggestions (i.e.,
< 2 seconds to render [35]) are possible, and, (3)which infor-
mation from the user interaction to store so that comparison
of DS pipelines without quantifiable metrics is also possible.
To make things harder, these challenges must be tackled on
the premise of a constantly growing set of DS experiments.
In the following, we detail our solution to each challenge.

6.1 Storing and finding similar datasets

Storing all the datasets used in the experiments would require
significant storage capacities. For this reason, we choose to
store only a numeric vector of meta-features that serves as a
lightweight data footprint for previously used datasets. The
benefit of doing so is twofold: data footprints are space-
efficient and can be used to efficiently search for similar
datasets that past experiments applied to.We compute a small
set of meta-features, which are a subset of the ones used in
the auto-sklearn library [21]:

• Generic features include the number of instances,
columns, numeric and categorical features, the inverse
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dataset ratio (i.e., the number of instances divided by the
number of columns), in ordinal and logarithmic scales;

• Statistical features include aggregated skewness and kur-
tosis for numeric attributes, represented as the mean,
minimum, maximum, and standard deviation of the vec-
tor over all numeric attributes of the dataset;

• Target-specific3 features include the number of classes,
the maximal class probability—the number of occur-
rences of the most frequent class divided by the number
of instances;

• Landmark-based∗ features are performance metrics of
relatively simple ML algorithms that are run over the
dataset under analysis and used as baselines. We use Lin-
ear Discriminant Analysis, Naive Bayes, Decision Tree,
Decision Stump (i.e., decision tree with the depth 1), and
1NN (kNN classifier with k = 1) as landmarks.

• PCA-based features that are based on Principal Compo-
nent Analysis include skewness and kurtosis of the first
principal component and the fraction of principal com-
ponents that “explain” 95% of the dataset variance.

The rationale behind the selection of these meta-features
is twofold. First, they are quantifiable characteristics of the
task: They represent the signals of pipeline scalability (num-
ber of instances), data imbalance (ratio of the least frequent
class to the most frequent class), feature normality and infor-
mativeness (Skewness,Kurtosis, Entropy) [50]. Second, their
compute time is suitable for real-time user interaction, i.e.,
< 2s.

For large-scale datasets, even Landmark- and PCA-based
meta-features can take longer time to compute. In this case,
we use a partial dataset footprint and update pipeline rec-
ommendations when the computation is completed. To get
a partial footprint in real time, we compute independent
meta-features in parallel and sort them in the order of faster
compute times. Upon any updates in a data footprint, we
repeat Algorithm 1 in an incremental manner: We take the
computed list of pipeline candidates, identify new candi-
dates that were not suggested in the previous version of
recommendations, and update the ranking by fitting new
pipeline candidates into the existing Pareto fronts instead
of re-running from scratch.

Simply storing dataset footprints as numeric vectors is
not enough because similarity search would be very ineffi-
cient: For every new dataset, we would need to (a) compute n
Euclidean distances from this dataset to the n other datasets
already in the Experiment Store, (b) sort the distances, and
(c) select the first k datasets. Such a strategy has an aver-

3 This feature requires a target column, e.g., the labels for supervised
classification. When the target column is not provided, e.g., in dimen-
sionality reduction, the value of this meta-feature is initializedwith zero
to keep the length of the vector fixed.

age complexity of O(nlogn), which can be very impractical
for real-time searches. We thus choose to utilize KD-trees
[5] as an index structure for dataset similarity search that
utilizes the Euclidean distance between a pair of dataset foot-
prints as a similarity score. When the end-user comes with
a new dataset, we compute its dataset footprint and insert
it into the KD-tree. To retrieve datasets similar to the input
data, which is required for the initial recommendations, the
Experiment Store queries the KD-tree for k nearest-neighbor
(kNN) dataset footprints.

This data structure is optimized for kNN search inmultidi-
mensional spaces,making it attractive for similarity search of
fixed-length numeric vectors. For k-dimensional data, each
tree node of depth d acts as a hyperplane that splits a set of
data points into two equal-sized disjoint subsets. That is done
by selecting a median data point by means of projection onto
the axis d mod k.

KD-Trees enable us to provide efficient similarity search4

without adding storage overhead (i.e., O(n) space complex-
ity) thanks to its O(logn) average complexity for search,
insertion, and deletion. Heterogeneity of features (i.e., values
of varying magnitudes) can lead to the phenomenon where
low-magnitude values have a negligible effect on the dis-
tance compared to the high-magnitude values. In otherwords,
when searching for similar datasets, the similarity of high-
magnitude values might become “more important” than the
similarity of low-magnitude values. To mitigate this, we use
Min-Max scaling before computing the Euclidean distance.

6.2 Storing and finding similar DS pipelines

To store previously executed DS pipelines and enable effi-
cient search among them, we make the following design
decisions. First, we represent each pipeline as a directed
acyclic graph (see Sect. 3) where any DS operator consists of
three elements: the specification of DS tasks that this oper-
ator is designed to perform (e.g., supervised classification),
the reference to the physical, black-box implementation of
the operator (e.g., the RandomForest), and the values of
hyperparameters that the operator can be configured with
(e.g., the number of estimators n_estimators=40). Fig-
ure3 illustrates four DS pipelines as graphs. Each operator
node can have multiple inputs, parameters, and outputs.
Edges between the operator inputs and outputs represent
data flow. Edges between the operator and the parameter
map the hyperparameter value. Note that the graphs are
simplified for illustration purposes. They are conceptually
similar to dataflow and task graphs, and depict functions,
their dependencies on data, parameters, and semantic anno-

4 In our preliminary experiments, our KD-Tree-based solution per-
formed up to 3 orders of magnitude faster compared to the naive
approach.
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Fig. 3 a Pipelines G1− G4 consisting of logical operators (pink), physical operators (blue), and hyperparameters (orange). b BK-Tree populated
with G1 − G4 in the direct order

tations. Each function is defined with a code snippet written
in a given programming language and, thus, is as expressive
as the grammar of the language allows. DORIAN’s Execu-
tion Engine then executes operators by forwarding their code
snippets, data, and parameters to an execution runtime of
that programming language. Therefore, the expressiveness of
DORIAN’s pipeline specification can accommodate pipelines
of varying complexity, including production machine learn-
ing applications.

Second, to support efficient similarity search over DS
pipelines, we utilize the discrete graph edit distance [2] as
a measure of similarity between pipelines and the Burkhard–
Keller tree (BK-Tree) [11] as an index to accelerate the
search process. The graph edit distance encodes the minimal
changes required to transform graph A to graph B. Given a
set of DS pipelines, every node of the BK-Tree corresponds
to a pipeline, and an edge in the tree depicts the discrete
graph edit distance between two pipelines. The root node of
the tree can be chosen arbitrarily. Every newly added pipeline
is recursively moved down the tree by following the path of
matching distances (i.e., edges with the distance value equal
to the distance between the newly inserted pipeline and the
parent node). A new subtree is created if no edge with a par-
ticular distance value exists. Pipelines with distance 0 are
equal.

BK-trees require O(n) space complexity and O(logn)
average complexity for search, insertion, and deletion. In
practice, the time complexity depends significantly on the
complexity of the distance measure and the choice of the
tolerance value. The tolerance value is applied to each node
to limit tree traversal to children with distances within the
range [d − tol, d + tol], where d is the distance between
the query pipeline and the node pipeline, tol is the tolerance
value. This step prunes children nodes that lead to sub-trees
with “dissimilar” pipelines. As computing the exact graph
edit distance is proven NP-hard [57], we utilize the DF-GED
[2] algorithm for computing the exact graph edit distance that
dynamically generates a tree-based space of all possiblemap-

pings between two given graphs and applies the depth-first
search algorithm to find a mapping with the least number of
edits. One property of this algorithm is that, depending on the
input graphs, it can dynamically yield sub-optimal mappings
with non-increasing edit costs. That is, a mapping that corre-
sponds to the exact but not necessarily minimal edit distance.
We turn this property to our advantage and return the first,
sometimes sub-optimal, edit path with the “not-necessarily
minimal” edit distance. This design decision allows us to
improve search performance without sacrificing the quality
of the search results, as computing the exact minimum graph
edit distance is not a critical requirement for our approach.

Figure 3(b) depicts an example BK-tree of the 4 pipelines
shown in Fig. 3(a). When G4 is added to the tree G1 − G3,
it is first compared against the root node G1. Graphs G1 and
G4 have graph edit distance d = 5 because G4 contains
two new operators (min–max scaling and variance threshold
feature selection, one new hyperparameter node (threshold
is set to 0.2). As an edge with d = 5 already exists for
G2, the insertion algorithm creates a new node G4 with the
depth of 2 and parent G2. The edge G2−G4 gets the graph
edit distance d = 6 (change to the missing value imputation
step, addition of the feature selection step, addition of the
min_samples_spli t = 3 hyperparameter to the Random
Forest estimator).

6.3 Storing user interactions

DORIAN stores user interactions in the Interaction Table
(I T ). This is used by the Recommendation Engine to com-
pute the ranking objectives for any pipeline candidate that is
potentially relevant to the user query. Importantly, the interac-
tion table stores the results of pairwise comparisons between
two pipeline candidates that the end-user executes. This is
crucial for cases where quantifiable performance metrics are
non-existent and for personalizing recommendations. Below,
we illustrate the information kept in I T . Importantly, for each
pairwise comparison, it records the pipeline candidates being
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suggested, compared, as well as the decision of which can-
didate is preferred by the user.

IT schema:
dataset_id | References Data
task_id | References Tasks
discarded_id | References Pipelines
compared_id | References Pipelines
preferred_id | References Pipelines
user_id | References Users
eval_id | References Eval

Processes
performance | Real (metric type

in eval)

7 DS pipeline extraction

The Experiment Store gets continuously populated with DS
pipelines that end-users choose to execute. Yet, we need to
find a solution for the cold-start problem, where the Exper-
iment Store is initially empty and, thus, DORIAN cannot
recommend pipelines. One way to tackle this is to incor-
porate AutoML operators to DORIAN itself so that multiple
pipelines can be generated, executed, and stored. Although
this is possible in DORIAN, it is not enough because it will
lead to a very low variety in the pipelines and, thus, affect
recommendations.

We, thus, propose an additional solution: The general idea
is to allow end-users to populate the Experiment Store with
their own initial pipelines or with pipelines that are pub-
licly available in sites such as OpenML [51], kaggle, or
Kipoi [4]. However, DS pipelines are usually expressed
by means of a general-purpose programming language, such
as python, R, julia, or a specific workflow specification
language (e.g., snakemake). To populate these pipelines
in the Experiment Store and make meaningful recommen-
dations, we need to extract their graph-based representation
from the source code. This extraction process should take
into account not only the syntax of the pipelines but also
their semantics (e.g., type of DS task a function performs).
To achieve this goal, DORIAN provides a Pipeline Extrac-
tor which proceeds in three steps (see Fig. 4). The first two
steps aim at extracting a syntactic language-agnostic repre-
sentation of the pipeline using a language parser and graph
rewrite rules (Sect. 7.1). The third step semantically enriches
the previously constructed graph based on a knowledge graph
(Sect. 7.2). Figure4 illustrates an example of the extraction
process that we will use in the following.

7.1 From source code to pipeline graph

Given the source code of a DS pipeline, we first use a
language-specific parser to extract the Abstract Syntax Tree
(AST) 1 . Then, we leverage graph rewrite rules to convert
a language-specific AST to a language-agnostic graph that
represents the data flow of the DS-related computations and
their corresponding hyperparameters (as defined in Sect. 3).
Such rewrite rules are, for instance, deleting any language-
specific control flow nodes from the tree. Each rewrite rule
comprises two parts: the left-hand side that depicts a pattern
represented as a DAG structure (being as expressive as the
grammar of the underlying programming language), and the
right-hand side that depicts a set of procedural commands
to alter the graph, e.g., add, remove, update a node, edge, or
attribute (i.e., a complete set of operations required to con-
struct any DAG structure). We also implement a regex-based
comparator for nodes and edges, enabling a more succinct
and reusable rule definition. However, this functionality is
usedmerely for convenience and does not expand nor restrict
the generic method of pattern matching and the rewrite rules.
The rewrite rules are applied in direct order, as applying one
rule changes the graph and, hence, affects the matches of
downstream rules. We specify the initial order of the rewrite
rules based on their inter-dependencies but enable the end-
user to change this order by adding new custom rewrite
rules. To support complex multi-line DS scripts, we use a
set of “dependency management” rewrite rules that gener-
ate edges between variable assignment nodes and variable
references. That allows the Pipeline Extractor to parse code
snippets without conceptual restriction. For code snippets
with repetitive variable assignments (i.e., not in the Static
Single-assignment Form) where different content is assigned
to variables of the same symbolic representation through-
out the source code, we provide a rewrite rule that keeps
edges to the most recent assignment in code (based on the
order of graph traversal and sequential application of rewrite
rules) to prevent the “reference before assignment” edges.
Currently, we have 10 python-specific rewrite rules and 4
sklearn-specific rules that process compositional inter-
faces for pipeline declaration. DORIAN parses data science
scripts that consist of up to 25 expressions in under 2 seconds,
and more complicated scripts of 100 expressions—under 5
seconds. Note that most rules (apart from “dependency man-
agement” and alias resolution for imported functions) are
confined to a single expression and executed concurrently.

The DAG structure embraces the Composite design pat-
tern that allows to treat a single DS operator X as a pipeline
with one step (i.e., an operator can be treated as a pipeline), as
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Fig. 4 Extraction of an exampleDS pipeline from source code.DORIAN parses the textual representationwith a language-specific parser, transforms
it to a graph with rewrite rules, and semantically enriches the DS graph with a knowledge graph

well as amulti-step pipeline can be treated as a complex oper-
ator. That allows end-users to compose (i.e., group together)
multipleDSoperators that, in the context of a pipeline, belong
to one atomic DS task, e.g., a definition of a feed-forward
neural network where each layer of the network is declared
separately (i.e., with a dedicated “Add Layer” operator). In
the UI, the Composite principle is represented as a drill-
down visualization where a high-level operator is shown, and
its detailed representation (i.e., dependent operators) can be
shown or hidden on demand.

To support generic pattern matching, these rules also
utilize wildcards to “ignore” parts of the subgraph (e.g.,
variable names or syntactic sugar of a particular program-
ming language). Based on the rewrite rules and a graph
pattern-matching mechanism, DORIAN generates the DS
pipeline graph 2 . Specifically, we utilize Sesqui-pushout
rewriting [17] as the deterministic approach to graph trans-
formation that supports “precedence of [node] deletion over
preservation”—a valuable property when it comes to graph
transformation by deletion; and VF2 [16]—a deterministic
mechanism for pattern matching and (sub)graph isomor-
phism testing that supports the graph-subgraph isomorphism
problem (in our work, patterns mostly represent subgraphs
of a pipeline and rarely involve the pipeline as a whole), is
efficient even for large-scale graphs and has reducedmemory
requirements compared to the related work [15, 33].

Figure 4 (step 2 ) depicts two example rewrite rules for the
scikit-learn ML library. Here, the Pipeline class
simply denotes pipeline composition – chaining multiple DS
operators together in a sequence. Hence, when the full name
sklearn.composition. Pipeline is matched in the
AST, rewrite ruleR1 simplifies the graph by removing purely
syntactic nodes and chaining two operator functions together.
When the pipeline has more than two operators, the rewrite
is applied recursively, one per match, until all operators are
chained. Rewrite rule R2 simplifies the graph by removing
the Pipeline node and other purely syntactic nodes. The
final pipeline contains two operators: the standard scaling
mechanism for normalization of numeric data and the SVM
classifier.

7.2 Semantically annotating pipeline graphs

Once we get the syntactic DS pipeline graph composed of
physical operators and their hyperparameters, we need to
annotate each operator with its corresponding DS tasks. This
annotation provides semantic information about the type and,
thus, capabilities of each operator (e.g., whether it performs a
scaling transformation or builds an SVMmodel). This infor-
mation is crucial when searching for similar DS pipelines
and leads to better recommendations. In contrast to Patterson
et al., 2018 [40] who propose an approach for semantically
enriching DS programs using dynamic code analysis, we
focus on static code analysis only, as it does not require exe-
cuting a DS script. As most DS pipelines take a significant
amount of time to produce the results, it is very inefficient to
extract the corresponding graph.Given the scale of thousands
of DS programs that one would like to process to populate
the Experiment Store frompublicly available sites (OpenML,
kaggle), using an approach of Patterson et al., 2018 [40] is
impractical.

To enable this semantic enrichment, we construct a knowl-
edge graph that provides information on DS operators. The
knowledge graph contains a hierarchical categorization of
known DS tasks. An excerpt of our constructed knowledge
graph is shown in Fig. 4. Each node in the hierarchy (pink
nodes) represents a concept of a DS task, while an edge
denotes a generalization/specialization relationship. At the
leaves of the hierarchy, we place specific classes of algo-
rithms, e.g., SVM. These can be seen as logical operators
in database terminology. We then populate the hierarchy
with functions of publicly available DS frameworks5 (blue
nodes in Fig. 4). For instance,sklearn.svm.svc is a spe-
cific implementation of an SVM algorithm provided by the
scikit-learn library. These operators can be seen as
physical operators in database terms. In addition, the knowl-

5 Our preliminary experiments show that 93% of all function calls in
real-world DS scripts belong to libraries and frameworks, whereas only
7% correspond to user-defined functions, lambda expressions, and other
objects.
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edge graph contains the implementation-specific information
and hyperparameters of the operators’ physical implemen-
tations (orange nodes in Fig. 4). By matching the nodes of
the intermediate language-agnostic DS graph with the phys-
ical operators on the knowledge graph (blue nodes), we get
a semantically annotated DS pipeline graph 3 . The flex-
ibility provided by knowledge graphs allows us to handle
cases where certain hyperparameters belong only to a spe-
cific implementation and not to the algorithm. We manually
curate the knowledge graph, leveraging the involved contrib-
utors’ domain expertise and scientific literature. We believe
full automation of this task would be impractical and would
still require curation via feedback loops or voting. The user
interface allows end-users to add new DS tasks locally (on a
per-account basis) and extend the centralized ontology glob-
ally, pending a review.

Extension of known implementations of DS operators, on
the other hand, is done semi-automatically based on web
crawling of documentationwebsites.We implement crawlers
per website and reuse existing “building blocks” when pos-
sible, as the documentation of data science frameworks and
libraries is oftentimes generated automatically by code anno-
tations and comments.

At the time of writing, we crawled sklearn and pandas
as two core libraries that handled ML and data man-
agement tasks, respectively. When a new DS operator is
introduced in the Experiment Store, the minimal neces-
sary input from the end-user is the mapping between the
full name of the operator’s implementation (e.g., sklearn
[v0.24].preprocessing.MinMaxScaler) and its
corresponding DS task (e.g., data preprocessing, normaliza-
tion of numeric data). This meta-information immediately
becomes available to other users, keeping the manual over-
head low thanks to the collaborative environment of the
Experiment Store.

8 Extensibility

In this section, we discuss DORIAN’s extensibility. Namely,
we convey how end-users can add new ranking objectives
and functionality to support new DS tasks, operators, and
evaluation processes. In addition, we discuss the ability of
supporting multiple programming languages used in DS
scripts for converting them to DORIAN’s graph representa-
tion.

Ranking objectives. Although we propose a particular list
of ranking objectives for the initial recommendations and the
recommendations for incremental improvements, new user-
tailored ranking objectives can be added locally and shared
across other end-users using the interface we introduced in
Sect. 5. Example use cases for new ranking objectives are as
follows:

• An end-user wants to “pin” a particular DS operator or
a part of the pipeline in order to prioritize suggestions
where this exact part exists in the candidate. The user can
simply add the first objective to be a binary metric that
implements sub-graph matching to depict the presence
of the operator in a pipeline candidate;

• An end-user wants to incorporate a cost-based model
for estimating the pipeline execution time and prioritize
pipeline candidates that are faster to compute;

• Anend-userwants to explore pipelines that are frequently
selected by other end-users when querying similar data
or in general. This can be done by applying an SQL-like
query to the relational Interaction Table and computing
the count of a given pipeline identifier in the attribute
selected.

DS tasks.AsDORIAN treats the specification of data science
tasks as a tag annotation of a DS operator, the end-user can
add a new DS task in two ways: (a) to add a new DS operator
and annotate it with the string-based tag that depicts a task
that did not exist in the Experiment Store before, or (b) to
extend the knowledge graph directly via the user interface.
The latter option is preferred because the hierarchical rela-
tionships between the sub-tasks can be curated (i.e., a new
DS task can be connected to the existing tasks by one of the
supported relationship types), which, in turn, improves the
quality of the DS Pipeline Extractor.

DS operators. DORIAN represents a physical DS opera-
tor as a black-box implementation of an algorithm that is
parametrized by a set of hyperparameters. Therefore, each
DS operator has the following specification:

• Full function name and signature, i.e., the number of
data inputs and outputs, their corresponding names and
data types, and the corresponding hyperparameters with
their name, data type, default value, and, optionally,
the domain of values that this parameter accepts. If the
domain is not specified, DORIAN curates it automati-
cally by querying the Experiment Store and searching
for other pipeline candidates that previously applied this
operator. The record of each physical operator exists in
the knowledge graph and is connected by the relation-
ships “implements”, “has parameter”, and “is equivalent
to” to the specification of logical algorithms that these
physical operators implement;

• The annotation of corresponding DS tasks that the DS
operator performs which is linked within the knowl-
edge graph either directly (the “task-operator” link) with
the relationship “implements”, or via the corresponding
algorithm (the “task-algorithm-operator” link);
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• The operator’s implementation as a function with the
signature that matches the specification stored in the
knowledge graph.

Note that, in the caseswhen DORIAN uses theDSPipeline
Extractor to retrieve the graph-based pipeline representation,
new operators can be added automatically by means of static
code analysis, where the only remaining step for the end-
user is to provide the annotation of DS tasks that the operator
performs as it cannot be detected automatically.

Evaluation processes. Evaluation process for a set of
pipeline candidates is a particular case of a DS operator with
a distinctive interface—it takes a set of pipeline candidates,
specification of the DS task, and the dataset under evalua-
tion. In the majority of cases, the evaluation process assigns
a numeric score to each pipeline candidate that corresponds
to its predictive performance w.r.t. the given evaluation logic
(e.g., k-fold cross-validation for supervised classification and
the ROC AUC score as the performance metric). In some
cases, however, there are no quantifiable measures of predic-
tive performance (e.g., as in our running example). Then,
by receiving a set of pipeline candidates, the evaluation
process returns a partially ordered list that depicts relative
predictive performance without assigning objective scores.
Implementation of evaluation processes, apart from follow-
ing the specified programming interface, is analogous to the
implementation of DS operators—it is a black-box function
with a restricted function signature.

DS scripts languages. In practice, end-users build DS
pipelines as a composition of tools from various libraries,
frameworks, and languages. For this reason, the DS Pipeline
Extractor allows end-users to add new languages by simply
specifying their grammar and extending a set of graph rewrite
rules for additional language constructs (e.g., syntactic sugar,
loops, etc.). Note that the only restriction on a language that
DORIAN imposes is that it has a context-free grammar that
can be represented in the Extended Backus–Naur form [19].
We consider this condition reasonable as context-free gram-
mars have sufficient expressiveness to describe the recursive
syntactic structure of many languages, including workflow
specification languages, such as snakemake [36] or infras-
tructure automation tools, such as ansible [24].

9 Evaluation

The goal of DORIAN is to assist users with the design
of DS pipelines, especially in cases of unspecified evalua-
tion metrics and domain-specific operators, as discussed in
Sect. 2. Evaluating DORIAN in such cases is very challeng-
ing because it would require extensive user studies based on
a large pool of domain experts. In addition, a comparison

with AutoML and IDA approaches under non-quantifiable
use cases would not be possible. As we do not have the
resources for such a user study and would like to compare
our solution to existing AutoML and IDA tools, we choose to
evaluate both the effectiveness (i.e., predictive performance)
and efficiency (i.e., execution time) of DORIAN on three
common DS tasks using their corresponding evaluation met-
rics and compare it against both automated (Sect. 9.2) and the
human-in-the-loop baselines (Sect. 9.3).We conducted a pre-
liminary user studywith a fewdata scientists and a qualitative
interview and reported our findings (Sect. 9.4). Moreover, we
evaluate DORIAN’s extensibility, the diversity of rendered
recommendations, and the effects of the cold-start problem
(Sect. 9.5).

In summary, we found that DORIAN performs bet-
ter in predictive performance than human-in-the-loop
baselines and is similar to long-running automated
approaches while it requires shorter execution time.
At the same time, DORIAN is generic to fit arbitrary
evaluation processes, adapt to new operators, and pro-
vide user-tailored recommendations.

9.1 Experimental setup

Hardware, DS tasks, and datasets. We used an Ubuntu
workstation with 8 Intel i7-8550U CPU cores (1.80GHz)
and 24Gb RAM. As we cannot evaluate DORIAN with
domain-specific tasks, operators, or evaluation processes, we
evaluate it using three common DS tasks, namely super-
vised classification, regression, and clustering, and their
common evaluation metrics. For supervised classification,
we use 63 datasets and 3900 pipelines of theOpenML-CC18
benchmark suite [8] and choose ROC AUC score as the per-
formance metric. For regression, we use 33 datasets from
the OpenMLAutoML Regression Benchmark (OpenML ID:
269). As OpenML contains only 300 regression pipelines
available, we stored the intermediate DS pipelines that the
AutoML baselines generated in the Experiment Store result-
ing in 1000 pipelines in total. We choose the mean absolute
error as the performance metric for regression. For cluster-
ing, we use 40 datasets from OpenML and 1000 pipelines
(also selected from the intermediate results of the AutoML
baselines, as no clustering pipelines existed on OpenML at
the time of writing). We choose the silhouette score as the
performance metric.

For all of the collected pipelines, we utilized the DS
Pipeline Extractor to convert DS scripts from different users
and sources to the graph-based pipeline representation. For
human-in-the-loop baselines, we needed to select a small
number of datasets (10) that would make the preliminary
user study tangible. To ensure a fair and realistic evaluation,
we chose all datasets to be as diverse as possible.We achieved
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this by running the incremental farthest neighbor search algo-
rithm [41] over the data footprints of all available datasets.
As the outcome of this algorithm depends on the initial seed
(i.e., the first randomly selected dataset), we iterate over all
available datasets and select a sample with the largest mean
Euclidean distance. This procedure aims at selecting datasets
with the most distinct data footprints and, hence, the highest
variety.
Baselines.Weuse (1) theDABL6 library for baseline pipeline
generation that applies a static set of pipeline synthesis
rules to generate a pipeline for a given task, (2) the pop-
ular auto-sklearn [21] AutoML solution using two
variants: with the total execution budget of 5min and 1h
respectively, (3) the Ray Tune [28] library as a state-of-the-
art hyperparameter tuning solution, (4) the RapidMiner
Auto Model as the state-of-the-art IDA solution, (5) a syn-
thetic “oracle” baseline that imitates the end-user that knows
the optimal path to the best-performing pipeline candidate,
and (6) FLAML 7—a fast AutoML solution that optimizes
the cost of training as well as predictive performance. As
Ray Tune comprises a framework with hyperparameter
optimization algorithms and not a full-fledgedAutoML solu-
tion, one has to define the set of algorithms and the domain
of hyperparameters that the framework will consider dur-
ing the search. Therefore, for supervised classification and
regression, we define Ray’s search spaces equivalent to that
of auto-sklearn. For clustering, we use the common
algorithms supported by sklearn8 with the values of the
hyperparameters suggested in the documentation. Note that
not all baselines support all three DS tasks, e.g., DABL,
auto-sklearn, and FlaML do not support clustering.
DORIAN. We implemented DORIAN in Python and show-
cased it in [42]. We run three variants of DORIAN: with
simulated user behavior, with a simulated oracle user, and
with real users as part of a preliminary user study. Simulated
variants are necessary for comparison against baselines on
a large set of queries. To simulate user behavior, we apply
an exhaustive (i.e., does not “skip” suggestions) breadth-
first search strategy: We first execute pipeline candidates
from one iteration and then recursively choose the sugges-
tions for incremental improvements in the direct order. We
choosebreadth-first searchbecause it fits a commondecision-
making pattern of evaluating all available options first and
then selecting an attractive candidate to drill down. Note
that the breadth-first search algorithm is exhaustive—e.g.,
n suggestions in the first iteration lead to n new iterations, n
suggestions each, totaling n2 suggestions in the second iter-
ation, and so on. Parameters k for kNN similarity search

6 https://amueller.github.io/dabl/dev/, A.: 2023-01-26.
7 https://microsoft.github.io/FLAML/, A.: 2023-10-19.
8 https://scikit-learn.org/stable/modules/clustering.html, Accessed:
2023-01-26.

are system constants and set to 3 and 20 for the datasets and
pipelines, respectively. We study these values in Sect. 9.6.
Evaluation strategy. As DORIAN bases suggestions on the
information about past user queries and accumulated DS
experiments, we need to synthetically exclude all the meta-
information about the user query under evaluation from the
Experiment Store to ensure the validity. For each task, we
apply a leave-one-out scheme where the experiments related
to all but one dataset are kept in the Experiment Store, and the
one dataset with all corresponding pipelines specifies a previ-
ously unseen user query (i.e., benchmark dataset). We use all
pipelines executed on the benchmark dataset and their cor-
responding predictive performance metrics as ground truth.
We choose fivefold cross-validation as the evaluation process
eval(C, T , D) for AutoML solutions on benchmark data.
When evaluating the quality of DORIAN’s suggestions, we
take the maximal predictive performance across suggested
pipelines as the performance of the best-found candidate.

9.2 Comparison against AutoML baselines

Evaluation scenario. We use the evaluation strategy on all
the datasets as specified in the setup.
Results. Figure5 depicts the average predictive perfor-
mance and total execution time of the baselines on all the
datasets for supervised classification, regression, and cluster-
ing.DORIAN, on average, performs on the level of automated
baselines, outperforming DABL and auto-sklearn
5min. Although the state-of-the-art AutoML baselines can
show slightly better predictive performance toDORIAN, they
take more time to execute (1h compared to 0.5−2.5min that
DORIAN needs). For example, for classification DORIAN
achieves an average ROC AUC score of 97% in few sec-
onds while auto-sklearn requires 1 hour to arrive to
an average ROC AUC score of 99%. In addition, AutoML
solution require more resources while DORIAN can pro-
vide suggestions to the end-user asynchronously to (or even
without requiring) the execution of pipeline candidates.
DORIAN simulated user by design cannot outperform
the oracle user baseline, as both baselines draw sugges-
tions from the same set of pipelines, but DORIAN oracle
user simulates the end-user who knows how to find the best
performing DS pipeline. However, DORIAN simulated
user reaches predictive performance that is comparable to
the oracle user baseline (for regression and clustering),
which suggests DS pipelines with predictive performance
similar or equal to the best performing DS pipeline even
under the limited search budget.

Moreover, the AutoML baselines require the end-user to
specify quantifiable loss functions in order to find the best-
performing pipeline candidate, as well as the bounded search
space to draw candidate configurations. We point out that
setting the baselines for this experiment took a matter of
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Fig. 5 Comparison against six AutoML baselines: DORIAN performs similarly to its automated counterparts in predictive performance while being
significantly faster

hours and a reasonable level of familiarity with various ML
models and data preprocessing techniques in order to spec-
ify the search space (the set of algorithms and domains of
acceptable hyperparameters) and successfully execute the
baselines. When assuming an audience with limited profi-
ciency in DS and ML (novice users and domain experts) or
the complexity of the underlying domain-specific task, these
AutoML solutions might be impractical to utilize. DORIAN
with a simulated user represents a trade-off that performs
better than simpler baselines and faster than the full-fledged
AutoML solutions.

9.3 Comparison against IDA baselines

Evaluation scenario. As we cannot evaluate human-in-the-
loop baselines for all the available datasets due to the manual
overhead,we selected six datasets for eachDS task. To ensure
a fair and realistic evaluation, we chose the datasets to be
as diverse as possible by running the incremental farthest
neighbor search algorithm [41] over the data footprints of
all available datasets. For RapidMiner, we use each of the
datasets and the corresponding DS task as a query for the
Auto Model component that provides partial automation
of the pipeline candidate generation and search process yet
requires input from the end-user. For DORIAN, we conducted
a preliminary user study with 6 PhD students with varying
expertise in DS. We asked them to use DORIAN in order to

design a DS pipeline that satisfies a pre-selected user query
(i.e., each of the 6 datasets, supervised classification). We
report the results of the user study as DORIAN real user,
while we also included results for the simulated user.
We apply the leave-one-out scheme as described in Sect. 9.1.
Results. Figure6 depicts the average predictive performance
for classification, regression, and clustering, as well as the
total execution time of the three baselines—RapidMiner
Auto Model, DORIAN simulated user (automated),
and DORIAN real user. In this experiment, the total
execution time includes delays for user interaction (i.e.,
real end-user). We observe that, for supervised classifica-
tion, both DORIAN baselines are one order of magnitude
faster than RapidMinder and provide superior perfor-
mance (92 − 96% against 81%). DORIAN real user
reaches the ROC AUC score of 92% that is comparable
to DORIAN simulated user, requiring, on average, 1
minute longer to compute. The difference in the total time
between DORIAN simulated and real is due to the time
spent on user interaction and the fact that fewer pipelines
were submitted for execution by real end-users compared to
the automated DORIAN simulated user baseline. For
regression and clustering, the human-in-the-loop baselines
require comparable total time, while DORIAN simulated
user systematically outperforms RapidMiner in terms
of accuracy metrics. This is due to the amount of infor-
mation that DORIAN stores for decision making and the

123



Assisted design of data science pipelines

Fig. 6 Comparison with state-of-the-art IDA tool: DORIAN with both simulated and real users significantly outperforms the baseline in predictive
performance while requiring one order of magnitude less time in the best case (classification) and slightly more time in the worst case (clustering)

variety of pipeline configurations that it can recommend.
RapidMiner, in turn, has a small fixed number of pipeline
configurations that can be reduced for efficiency purposes
based on the data features.

9.4 Preliminary user study and qualitative interview

Evaluation Scenario. We conducted a preliminary user
study with 6 PhD students with varying expertise in DS—
they were tasked to use DORIAN to design a DS pipeline
that satisfies a pre-selected user query (i.e., 10 datasets and
the corresponding DS task). When the user interacted with
DORIAN, we recorded the user interaction, such as the rank
of selected pipeline candidates in the list of suggestions, the
number of iterations that the user chose, the best trailing pre-
dictive performance among all the pipelines that the user has
chosen for each user query, the total time that the user spent
working on each query (including the time for browsing and
idle time).We also selected one user query for which the exe-
cution engine was disabled. In that case, the end-user could
only rely on the visual inspection of the pipeline structure to
make decisions about pipeline comparison and not the pre-
dictive performance. This baseline task served two purposes:
(a) to estimate the level of user expertise in DS, and (b) to
answer the question of whether it is reasonable to assume
that the users are capable of assessing the pipeline predictive
potential by visual inspection only.

Results. For all the users and queries that we evaluate in this
study, we observe that: (a) in 90% of the cases, the users
stopped after 4 iterations of recommendations; (b) in 90%
of the cases, the users selected one of the top-5 suggested
pipelines, with the lowest selected candidate in the list of
recommendations having the rank 9; (c) suggested pipeline
candidates follow the power law distribution where 5 candi-
dates were chosen in the majority of cases (account for 20%
of all execution requests) and over 70 pipeline candidates

were chosen for execution with the frequency under 2% (the
long tail of infrequent pipeline candidates accounts for 60%
of all execution requests); (d) the users applied a mixture of
browsing patterns that resemble the logic of traversal algo-
rithms for search trees, such as breadth-first search andA-star
search, and less frequently—random, depth-first or always-
top search patterns; (e) more experienced users (the ones that
correctly compared a higher fraction of pipelines in the base-
line task with the disabled execution engine) tend to be more
selective in their search, varying the browsing pattern based
on the given pipeline suggestions andmakingmore decisions
to select or discard a pipeline candidate without executing it;
(f) less experienced users oftentimes employed the execute-
discard pattern where they submit a pipeline for execution
and immediately discard it from the list of suggestions in
case they perceive the reported predictive performance as not
satisfiable; (g) the users perceive the tool as useful in scenar-
ios where they want to explore new DS operators or pipeline
candidates that might be relevant to their query and where
they want to receive a pool of potentially relevant pipeline
candidates fast, without writing code.

Interview Protocol. We base the protocol of the qualita-
tive interview on the setup of the preliminary user study and
expose another control group of end-users (domain experts
and software engineers) with varying expertise in data sci-
ence to DORIAN’s user interface with several pre-specified
queries. For the qualitative interview, we provide four tasks:
(a) an introductory task where end-users explore DORIAN
and its UI while selecting a pipeline for the supervised clas-
sification task with the execution engine being disabled and
the evaluation process set to pairwise comparison—in this
scenario, end-users cannot get quantifiable performancemet-
rics and have to make decisions based on their experience
and intuition, comparing pipeline only by their structure; and
three scenarios where the end-users need to add (b) a newDS
task, (c) a DS operator, and (d) a ranking objective. While
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performing the tasks, the control group can ask questions and
provide suggestions that are later aggregated.
Insights. We present the aggregated observations and sug-
gestions from both control groups, marking the commentary
of domain experts as [D] and software engineers as [S].When
evaluating an action in terms of intuitiveness and complex-
ity, the individuals identified three categories: “easy” (i.e.,
“makes sense”, “reasonable”, “fast”, “straightforward”),
“requires effort” (i.e., “learning curve”, “commitment”), and
“complicated” (i.e., “do not know”, “skip”, “would not spend
time”). In summary, the respondents appreciated the prac-
tical relevance and timeliness of our approach. Moreover,
when discussing the use case of non-quantifiable evalua-
tion processes, most respondents characterized DORIAN’s
fallback pairwise comparison as intuitive. They also iden-
tified two challenges to DORIAN’s practical adoption and
extensibility—the learning curve of the UI and the extension
of the knowledge graph.

(1) [D, S] Adding new data science tasks is straightforward
because they are represented as string tags (i.e., anno-
tations); adding relations to the new task entity (i.e., to
position the task in the existing data science ontology)
is an extra effort yet not necessary—the relation “X is a
subclass of Data Science Task” is generated by default.
Several individuals resorted to adding new taskswith the
default relation.

(2) [D, S] adding new ranking objectives and data science
operators is straightforward as the function signatures
are specified, but it takes effort to write code. Individuals
noted that they would instead implement and test the
functions in their development environment and copy-
paste it into the DORIAN’s code editor.

(3) [D, S] collaborative user interactions, e.g., curating the
data science ontology, suggesting changes, and request-
ing confirmation of the original authors;

(4) [S] inexperienced users are believed to be “less forgiv-
ing” in adopting DORIAN. They would require explicit
guidance for user interaction and feedback loops, imple-
mentedprimarily as sequencesof automatically-triggered
pop-up dialogues and explanatory visual cues (text,
sound, andvideo tutorials). Individuals reported automa-
tion of user interaction in “teach me by guiding me
through” scenarios as particularly important for driving
DORIAN’s extensibility.

9.5 Quality of ranked recommendations

We evaluate the quality of our recommendations by measur-
ing (1) the success rate of getting a promising pipeline in
the suggestions, (2) the diversity of the recommendations,
and (3) the quality of recommendation under the cold-start
problem, i.e., when operators or DS tasks of a user query are

not present in the Experiment Store. In all cases, we consider
the variant of DORIAN with the simulated user to be able
to scale to all datasets. We report the metrics for the super-
vised classification task only, as the metrics for regression
and clustering are similar across the tasks.

9.5.1 Success rate: NDCG@k, Precision@k, Recall@k

We answer the questions on how many iterations of pipeline
suggestions are required to yield a “high-quality” pipeline
and how many candidates per iteration are necessary, and
measure DORIAN’s ranking quality with the ndcg@k, preci-
sion@k and recall@k metrics.

Evaluation Scenario. We provide a drill-down analysis of
the ranking quality of DORIAN under the varying number
of iterations k of the User Interaction Cycle and the vary-
ing number of pipeline suggestions n per iteration. We find
the best-performing pipeline candidate under the constrained
budget (i.e., k and n) and report the normalized discounted
cumulative gain (NDCG9) as a common measure of ranking
quality [54].

In addition, we evaluate the ranking of suggestions that
DORIAN provides against the ground-truth leaderboard—an
ordered list of pipeline candidates and their correspond-
ing predictive performance (evaluation metric in accordance
with the DS task). We report the precision@5 and recall@5
metrics for top-5 suggested pipelines that DORIAN provides
as recommendations “from scratch”, i.e., without user inter-
action.Whenevaluating recommender systems, precision@k
is defined as the ratio of relevant recommendations to the
number of recommendations (i.e., k), and recall@k is defined
as the ratio of relevant recommendations to the total number
of relevant pipelines. As datasets under evaluation differ in
complexity, we call a pipeline ‘relevant’ if its predictive per-
formance exceeds the 90th percentile of the leaderboard. We
limit the number of iterations k and the number of sugges-
tions n to 5 as a heuristic of the human capacity for processing
information efficiently [34].

Results. Figure7 shows a heatmap with the average NDCG
score aggregated across 63 datasets for supervised classi-
fication. The NDCG metric increases consistently with the
growing budget for suggestions, ranging fromaone-shot sug-
gestion (top-left) to 3905 suggestions (bottom-right) within
one session. Note that, as this number also corresponds to
the number of pipelines available in the Experiment Store in
the context of this experiment, suggestions with the budget
[k = 5, n = 5] likely rank the complete list of avail-

9 Note that, as NDCG is a discounted metric (it penalizes high-
performing pipelines that are suggested lower in the list), its values
cannot be interpreted as aggregated predictive performance but serve as
a comparative ranking quality metric.
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Fig. 7 Ranking quality (NDCG metric—the higher, the better) with
varying numbers of iterations and candidates per iteration. DORIAN
suggests reasonable candidates early on and improves its suggestions
over time

able pipelines. The consistent increase of the NDCG score
with the growing budget corresponds to (a) the comparative
improvements of the ranking quality (i.e., high-performing
candidates have high rank and low-performing candidates
have low rank) and (b) the fact that the top performance
score grows with the increasing budget (i.e., the maximum
ROC AUC score among the suggested candidates is higher
with suggestions made).

We report the aggregated precision@5 of 0.42 ± 0.25.
In other words, on average, DORIAN recommends 1 to 3
(within 1 standard deviation) top-performing pipelines out of
5 suggested from scratch.We report the aggregated recall@5
of 0.54 ± 0.24. On average, for 5 pipeline candidates that
DORIAN suggests, it accounts for half of the top-performing
pipelines in the leaderboard. Please note, however, that the
value of recall@5 is skewed, as the public leaderboard does
not fully cover the pool of known pipeline candidates. In
other words, not all of the known pipelines were executed on
any given dataset. Thus, the actual recall@5 might be lower,
as the denominator is likely higher.

9.5.2 Diversity

Wemeasure the diversity of pipeline suggestions for a single
user query as well as the adaptivity of recommendations to
new user queries for all baselines for supervised classifica-
tion.

Evaluation Scenario. We compute (1) how many unique
candidates were suggested among all user queries and, in the
case of similar candidates, their overlap, (2) the number of
operators involved in these pipelines excluding their hyper-
parameters, (3) the number of pipelines that appear in the list
of suggestions for more than 80% of the datasets (frequent
pipelines), less than 20% of the datasets (rare pipelines),
and (4) the average pairwise Jaccard distance between lists
of suggestions for different user queries.
Results. Table 1 presents the results. For 63 datasets,
DORIAN used 54 pipeline candidates for suggestions (col-
umn #Unique). These pipelines consisted of 34 operators.

Table 1 Diversity of suggestions across user queries

Baseline #Unique #Op. 80/20 Jaccard

DORIAN 54 34 11/26 .37 +-.16

DABL 8 11 8/0 1.0 +- 0.0

RapidMiner 9 19 9/0 1.0 +- 0.0

auto-sklearn 41* 15 41/0 1.0 +- 0.0

Ray Tune 41* 15 41/0 1.0 +- 0.0

DORIAN suggests a larger number of distinctive DS pipelines and oper-
ators with higher variety (i.e., lower pairwise Jaccard similarity metric),
and ‘tunes’ recommendations to user queries, as opposed to baselines

11 pipeline candidates were suggested for more than 80% of
the datasets, whereas 26 pipelineswere suggested in less than
20% of the cases (column 80/20). On average, the pairwise
Jaccard similarity measure is in the range of [0.3, 0.6] (col-
umn Jaccard), accounting for approximately half of the
generated suggestions as common or popular and another
half—rare and more specialized to a particular dataset. In
contrast, the baselines exhibit no variation in the structure of
their pipeline candidates. DABL tries only 8 pipelines, while
RapidMinerAutoModel considers only 9 pipelineswith
different hyperparameters, leading to 205 models, with no
variation from one dataset to another. auto-sklearn uses
15 operators and 41 pipelines (without considering the choice
of hyperparameters). As we base the search space of Ray
Tuneon that of auto-sklearn,we report equivalentmet-
rics.We, thus, conclude that DORIAN achieves a much wider
variety of suggestions compared to the baselines, involv-
ing more DS operators and, hence, applying more unique
pipelines. DORIAN’s 80/20 ratio of 11/26 demonstrates its
ability to account for the “fat-tail distribution” in recom-
mendation [9]. We also show that DORIAN is able to make
a trade-off between generic suggestions that are based on
the common, well-performing pipelines (initial recommen-
dations) and the specialized suggestions that are based on
prior user actions (incremental improvements).

9.5.3 Cold-start problem

We measure the difference in the predictive performance of
the best-found pipeline candidate that DORIAN recommends
under two conditions—(a) where the whole Experiment
Store is available to render suggestions and (b) where part of
the Experiment Store is held out (e.g., a subset of DS oper-
ators, all the pipelines that contain this operator, and logs of
user interaction that involves these pipelines). That allows us
to evaluate the effects of the cold-start problem on DORIAN’s
recommendations.

Evaluation Scenario. We compute the difference in per-
centile scores of the leaderboard for two conditions and
evaluate the performance drop as a quantifiable negative
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impact that the absence (i.e., not knowing) of an operator
carries. We parameterize the DS operators to be held out
from the Experiment Store together with all the correspond-
ing meta-information that relates to these pipelines. This is
a retrospective simulation of the cold-start problem that esti-
mates the gain in predictive performance when new pipeline
candidates that utilize a new operator or a new family of
operators are introduced to the Experiment Store.

Results. We report that, depending on the operator (e.g.,
missing value imputer or a data transformer), the aggregate
ROCAUC score drops from 1 to 17 points in the leaderboard
percentiles. In other words, if the best-performing ground-
truth pipeline candidate for a given user query corresponds to
the 100-th percentile in the distribution of ROC AUC scores,
the best-performing pipeline candidate for the same query
on the reduced Experiment Store occupies just the 83-rd per-
centile.

In the case when estimators are excluded from the Exper-
iment Store, we reach the error rate of 100%, as DORIAN
cannot suggest a single pipeline candidate thatwouldperform
theDS task from the user query (supervised classification and
regression, respectively). The absence of data transformation
techniques, such as missing value imputation or categorical
encoding, also leads to a fraction of queries where none of
the suggested pipelines could be executed without runtime
exceptions. In this case, even though DS operators that per-
form the DS task at hand exist, they cannot process the raw
dataset from the user query without additional data transfor-
mation.

9.6 Varying k for the nearest-neighbor search

We measure DORIAN’s relative predictive performance
under varying k for the nearest neighbor search for datasets
and pipelines, respectively, as well as the execution time that
is required to render suggestions.

Evaluation Scenario. For every query in the experimental
setup, we compute the leaderboard percentile of the best-
found pipeline candidate given the search budget, the value of
parameter k for the nearest neighbor search on datasets (from
2 to 10 included), and pipelines (from 10 to 40 included, with
the increment step of 5). We also measure the total execution
time (in seconds) for rendering the suggestions and evaluate
the trade-off between the number of pipeline candidates to
evaluate and the time it takes.

Results. Figure8a depicts the steady relative predictive
performance of best-found pipeline candidates across the
queries. For k ∈ {3, 4}, the standard deviation of the per-
centile is relatively smaller, and for k = 8, the median value
is relatively higher than the average across different k. How-
ever, there is no systematic evidence to demonstrate that the
recommendationswith parameter k ∈ {3, 4, 8} are inherently
better.When it comes to the execution time, on the other hand,
we observe a high correlation between the parameter k and
the required execution time. Note that the median execution
time is under 2 seconds regardless of k, which qualifies as a
real-time response. Based on this experiment, we made the
decision to use k = 3 by default, as it does not lead to signif-
icant improvements in the quality of recommendations but is
faster.

Figure 8b depicts improvements in the quality of rec-
ommendation across different k for the nearest-neighbor
search on pipelines, as the median value of the percentiles
increases slightly with the increase of k, and the standard
deviation of percentile distribution decreases. The execution
timeline chart (blue) consists of three distinctive parts—(a)
steady growth for k ∈ {5, 10, 15}, (b) significant decrease
for k = 20, and (c) a constant-like pattern for k ≤ 25 with
minor variation. The breakdown analysis of the execution
time to render suggestions showed the following: for pattern
(a), the choice of k was insufficient to render the required
number of suggestions after filtering out pipeline candidates
that were either previously suggested or explicitly discarded
by the end-user. To compensate for the insufficient number of
candidates to suggest, we repeat Algorithm 1 with the higher
value of k. The fact of re-running the kNN query twice leads
to increased overhead in execution time. For pattern (c), the
choice of k was high enough to lead to the convergence in the
number of distinctive pipeline candidates that were retrieved
as a result of the kNN query. For k = 20, we reached a
“sweet spot” given the state of the Experiment Store dur-
ing the evaluation. Thus, for this evaluation, we chose to
use k = 20 by default, which yielded a sufficient amount
of pipeline candidates, even after filtering out the irrelevant
ones.Note that, in practice, the optimal value of the parameter
k can vary depending on the number of distinctive pipelines
that are persisted in the Experiment Store and their pairwise
similarity. In the case when DORIAN starts producing an
insufficient number of suggestions or re-runs extended kNN
queries (with 2 × k) frequently, we can tune k by repeating
this experiment on the new state of the Experiment Store.

9.7 DORIAN as a warm-starting scheme for AutoML

Wenow evaluate whether DORIAN’s suggestions can be suc-
cessfully used as warm-starting other AutoML solutions. We
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Fig. 8 The trade-off between
the relative predictive
performance of suggested
pipelines (boxplot) and the time
to render suggestions (blue),
depending on the parameter k
for the nearest neighbor search
on datasets (a) and pipelines (b)

answer two questions: whether the warm-started alternative
outperforms the original baseline in terms of predictive per-
formance and whether an equally good pipeline is suggested
faster.

Evaluation strategy.Weuse the evaluation strategyonall the
datasets for supervised classification and test three baselines:
Ray Tune 5 min, Ray Tune 1 h, and a variation of
Ray Tune 5 min that is warm-started by using 5 ini-
tial suggestions that DORIAN renders for the query. We
then compare the predictive performance (ROC AUC) of
best-found pipeline candidates and claim that the warm-
started variation outperforms the original Ray Tune 5
min baseline when its average score during cross-validation
is higher than that of Ray Tune 5 min plus 2 standard
deviations of the ROC AUC score recorded during k-fold
cross-validation.

Results. We report that, for the search budget of 5min,
the warm-started variation outperformed the original base-
line in 38% of the cases. In 3 datasets (i.e., user queries),
thewarm-startedRay Tune 5 min also outperformed the
Ray Tune 1 h baseline. In absolute terms, the average
difference in predictive performance between the original
baseline and its warm-started variation is 0.025 (ROC AUC
scores aremeasured from 0 to 1). In the following, we outline
several observations regarding DORIAN’s potential to act as
a warm-starting scheme for other AutoML solutions.

First, not all of the AutoML solutions allow for user-
defined warm-starting—across the baselines under analysis,
onlyRay Tune is flexible enough to supportwarm-starting.
Secondly, such a scheme necessitates the implementation
of an adaptor that converts DORIAN’s suggestions (i.e.,
pipeline DAGs) into an instantiation of the search space that
the AutoML solution operates. Furthermore, it requires an
assumption that such a conversion is possible, i.e., there
are no operators that DORIAN suggests and the AutoML
solution “does not know about”. In this experiment, we
curated the search space of the Ray Tune baselines and
could guarantee one-to-one mapping. However, in practice,
the implementation of the adaptor should be responsible for
accurate conversion and fallback options for exception han-
dling.

10 Limitations and future work

In this section, we discuss the main limitations of our frame-
work, namely recommendations under the cold-start problem
and error-prone decisions of end-users.
Cold-Start Problem and learning from the past. The qual-
ity of recommendations that DORIAN makes is as good as
the curated past experiments persisted in the Experiment
Store and cannot provide high-quality recommendations for
unknown or insufficiently represented DS operators and
tasks. This is a well-known problem in recommendation sys-
tems in general [29].However,DORIAN is designed to render
suggestions regardless of the extent of available evidence and
incorporate human feedback to improve. In case little infor-
mation is available, we rely on human creativity that con-
stitutes the exploration part of the exploration-exploitation
trade-off. To keep the Experiment Store up-to-date, we allow
for (1) populating the Experiment Store from other publicly
available experiment databases using the Pipeline extractor
(Sect. 7), (2) persisting intermediate results when AutoML
operators are used in a pipeline, and (3) incorporating feed-
back loops where end-users report identified blank spots in
DORIAN’s knowledge and, when appropriate, fill these blank
spots themselves. As one direction for future work, we con-
sider extending the knowledge graph and adding extra logic
to generate pipelines that include unseen DS operators. That
allowsDORIAN to render suggestions where all the baselines
would not be able to function, providing an environment for
productive exploration of available options.
Imperfect End-Users.DORIAN is uniquely positioned among
other existing solutions by treating user interaction, past and
present, as a first-class modality for rendering recommen-
dations. In this case, however, we have to operate under the
assumption of trust in (and the authority of) the end-user
as the domain expert, especially in cases when no quan-
tifiable evaluation processes exist. Systematic mistakes or
random actions might lead to suboptimal recommendations.
We attempt to counteract by incorporating ranking objectives
that aggregate across end-users, queries, datasets, and thus
promote the wisdom of the crowd—a theory that assumes
groups to be collectively smarter than individual experts [49].
In this case, even a fraction ofmistakesmade by one end-user
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is unlikely to bear significant effects on the overall quality of
recommendations.
Future work. We aim to continue curating the knowledge
graph, expanding to newdata science tasks, operators (guided
by the input of end-users), and libraries (by introducing
more crawlers). For streamlining the incremental creation
of rewrite rules and adapting DORIAN to new programming
languages, we plan to introduce the “generate by example”
functionality where the rule i + 1 is suggested automatically
by comparing the pipeline graph after applying rules 0 : i
with the graph corrected by the end-user (i.e., ground truth).

Furthermore, as end-users are prone to make mistakes, we
plan to utilize the User Interaction Table in order to identify
potential contradictions in user actions, when the user actions
are compared either to the past actions, or to actions of other
end-users.

11 Related work

We outline related work for both AutoML and IDA solutions
but also for every component of DORIAN.
Intelligent Discovery Assistants. In the area of IDAs [20],
existing solutions vary in the spectrum of supported use cases
and the means for knowledge representation. Expert systems
[18] store expert-curated rules for the design of DS pipelines.
They use multiple-choice questions as a trigger to return a
ranked list of recommended techniques. Compared to the
rule-based expert systems, DORIAN supports growing evi-
dence (i.e., updates in the experiment database). Case-based
reasoning systems [1], in turn, search for previously executed
pipelines that performed well in similar cases that are main-
tained by the experts. As opposed to case-based systems,
DORIAN takes into account all stored pipelines that are auto-
matically updated and does not require the involvement of
the experts. Meta-learning systems [7, 38] compute meta-
features for the data of interest and predict DS pipelines that
are likely to perform well on a given user query. These solu-
tions train meta-models to recommend pipeline structure and
reduce the search space for hyperparameter tuning. DORIAN
does not apply anyMLmodels for pipeline recommendation
or require to curate training data or re-train meta-classifiers
when new evidence arrives. Fusi et al. [22] propose a collab-
orative filtering approach to the recommendation of pipeline
candidates that utilizes probabilistic matrix factorization on
the dataset-pipeline-performancematrix, where the goal is to
utilize prior knowledge and identify high-performing candi-
dates quickly. In contrast, DORIAN allows for varying tasks,
evaluation processes, and performance metrics.
AutoML. Related AutoML solutions [6, 21, 23, 26, 27, 39,
46, 47] consider the problem at hand an optimization task by
iteratively generating and evaluating pipelines. To evaluate
the generated candidate, these solutions require defining an

objective loss function. In contrast, our approach is generic to
provide support for arbitrary evaluation processes, including
the oneswith no objective loss functions available.We search
for previously executed pipelines instead of generating new
candidates. Interactive AutoML solutions [7, 47] combine
design decisions from AutoML and IDA and highlight the
necessity of keeping the end-user in the loop. Unfortunately,
these solutions focus only on a particular DS task (e.g., clas-
sification or data preprocessing) and utilize a fixed set of
supported operators and pipelines to choose from. Existing
IDA solutions also vary in terms of the scope of supported
functionality, e.g., data preparation [14, 43] or end-to-end
pipeline synthesis [47]. DORIAN, in turn, is extensible by
design.
Recommendation Engine. Existing solutions in the area of
non-dominated sorting (i.e., multi-objective ranking) have
an average running complexity of O(NlogK−1(N )), where
N is the number of candidates to rank and K—the number of
objectives. DORIAN utilizes the implementation of the non-
dominated sorting algorithm proposed by Buzdalov et al.
[12] as its worst-case running complexity is asymptotically
proven to be of O(NlogK−1(N )). This property is critical as
DORIAN is explicitly required to generate suggestions in real
time. Learning-to-rank [3, 30] is another family of algorithms
that uses Machine Learning to fit a ranking model. However,
it requires training data for ranking, ground truth that we do
not have in our context, and which would lead to constant
model re-training in order to adapt to scenarios where the set
of supported operators expands.
Experiment Store. There exist several open-source and com-
mercial solutions of experiment databases [4, 37, 44, 51, 52,
56] whose goal is reproducibility and tracking of provenance
and metadata (e.g., for root-cause analysis) as well as man-
agement of digital artifacts that correspond to a data science
experiment (e.g., persistedMLmodels and performancemet-
rics). These solutions store metadata with the identifier of
the experiment session and the trial. They persist the under-
lying DS pipeline either as a source code text file or by
outsourcing the task altogether to a version-control system
(e.g., git). Commercial solutions like Comet,10 KNIME,11

Rapid Miner,12 SAS Enterprize Miner13 implement their
internal workflow management component to represent DS
pipelines as graphs and persist them in a proprietary data
format. DORIAN, on the other hand, represents DS pipelines
in an open-source format directly in the Experiment Store.
That enables operations on graphs as part of the programming
interface for ranking objectives.

10 https://www.comet.com/site/, Accessed: 2023-01-26.
11 https://www.knime.com/, Accessed: 2023-01-26.
12 https://rapidminer.com/, Accessed: 2023-01-26.
13 https://www.sas.com/, Accessed: 2023-01-26.
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DS Pipeline Extractor. The ML Bazaar project [48] allows
treating DS operators as the “building block” primitives
for pipeline composition. As the representation of operators
contains the specification of interfaces to fit a predictor or
perform data transformation, this tool automatically handles
the “glue code” between primitives that come from differ-
ent libraries and frameworks. IBM’s Data Science Ontology
project14 aims to catalog data science concepts and seman-
tically annotate various frameworks and libraries of the data
science toolbox. Extending the knowledge bases of these
projects, however, incurs a significant learning curve and
manual overhead for the end-user. AL [13] is a tool for the
automated generation of supervised learning programs that
analyzes dynamic program traces and learns a conditional
probability model to generate pipeline candidates for new
data.DORIAN, in turn, extracts pipelines based on static code
analysis (i.e.,without the necessity to execute aDSscript) and
does not require model re-training when new DS pipelines,
tasks, or operators become available.

12 Conclusion

We proposed DORIAN, a human-in-the-loop framework for
the assisted design of data science pipelines that is based
on previously executed pipelines. Based on a user query
(i.e., dataset and DS task), DORIAN outputs in real-time a
ranked list of pipeline candidates that the user can choose
from to execute or modify. To achieve this,DORIAN stores in
an efficient manner all previous DS experiments and utilizes
similarity search to identify relevant datasets and pipelines.
Its recommendation engine can easily be extended with
user-defined objective functions using a simple interface. It
uses multi-objective sorting to rank the retrieved candidate
pipelines and takes user interactions into account to improve
suggestions over time.We showed that DORIAN significantly
outperformed the state-of-the-art IDA tool and achieved simi-
lar predictive performance with state-of-the-art long-running
AutoML solutions while being real-time, generic to any eval-
uation processes and DS tasks, and extensible to new DS
operators.
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