
The VLDB Journal (2024) 33:703–726
https://doi.org/10.1007/s00778-023-00834-9

REGULAR PAPER

Identifying similar-bicliques in bipartite graphs

Kai Yao1 · Lijun Chang1 · Jeffrey Xu Yu2

Received: 2 June 2023 / Revised: 23 November 2023 / Accepted: 19 December 2023 / Published online: 25 January 2024
© The Author(s) 2024

Abstract
Bipartite graphs have been widely used to model the relationship between entities of different types, where vertices are
partitioned into two disjoint sets/sides. Finding dense subgraphs in a bipartite graph is of great significance and encompasses
many applications. However, none of the existing dense bipartite subgraph models consider similarity between vertices from
the same side, and as a result, the identified results may include vertices that are not similar to each other. In this work,
we formulate the notion of similar-biclique which is a special kind of biclique where all vertices from a designated side
are similar to each other and aim to enumerate all similar-bicliques. The naive approach of first enumerating all maximal
bicliques and then extracting all maximal similar-bicliques from them is inefficient, as enumerating maximal bicliques is
already time consuming. We propose a backtracking algorithm MSBE to directly enumerate maximal similar-bicliques and
power it by vertex reduction and optimization techniques. In addition, we design a novel index structure to speed up a time-
critical operation ofMSBE, as well as to speed up vertex reduction. Efficient index construction algorithms are developed. To
handle dynamic graph updates, we also propose algorithms and optimization techniques for maintaining our index. Finally,
we parallelize our index construction algorithms to exploit multiple CPU cores. Extensive experiments on 17 bipartite graphs
as well as case studies are conducted to demonstrate the effectiveness and efficiency of our model and algorithms.

Keywords Maximal similar-biclique enumeration · Maximal biclique enumeration · Branch-reduce-and-bound · Structural
similarity · Large bipartite graph

1 Introduction

Bipartite graphs have been widely used in real-world appli-
cations to model relationships between entities of different
types, such as customer-product networks [50], author-paper
networks [29] anduser-event networks [13].Abipartite graph
is denoted byG = (VL , VR, E), where the vertex set is parti-
tioned into two disjoint subsets VL and VR which are referred
to as the L-side and R-side vertices of the bipartite graph,
respectively; each edge e ∈ E can only connect vertices from
different sides. Finding dense subgraphs in a bipartite graph
is of great significance and encompasses many applications,

B Kai Yao
kyao8420@uni.sydney.edu.au

Lijun Chang
Lijun.Chang@sydney.edu.au

Jeffrey Xu Yu
yu@se.cuhk.edu.hk

1 The University of Sydney, Sydney, Australia

2 The Chinese University of Hong Kong, Hong Kong, China

such as community detection [1, 27], anomaly detection [16,
44], and group recommendation [37, 46].

One classic notion of dense bipartite subgraph is biclique
[41],which requires every pair of vertices fromdifferent sides
of the subgraph to be connected by an edge. For example, for
the bipartite graph in Fig. 1which represents researchers pub-
lishing in conference venues, the subgraph in the shadowed
area is a biclique. In the literature, many algorithms have
been proposed to enumerate all maximal bicliques [1, 3, 14,
31, 34, 49, 56] and to identify a biclique of the maximum
size [37]. However, the biclique model has a fundamental
limitation: vertices in a biclique are not necessarily similar
to each other, despite that they share a set of common neigh-
bors (i.e., vertices on the other side of the biclique). Consider
the six researchers in the biclique in Fig. 1, all of them pub-
lish in database conferences. Besides, researchers r1, r2, r3
also publish in machine learning (ML) conferences, while
r4, r5, r6 publish in high-performance computing (HPC) con-
ferences. Thus, the two groups of researchers, {r1, r2, r3} and
{r4, r5, r6}, are likely from different backgrounds and com-
munities, i.e., ML versus HPC.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00834-9&domain=pdf
http://orcid.org/0000-0002-2570-2741

704 K. Yao et al.

Fig. 1 Example of researcher-venue bipartite graph

Motivated by this, we formulate the notion of similar-
biclique by requiring all vertices fromone side of the biclique
to be similar to each other. Our empirical studies show that
similar-bicliques can be detected much more efficiently than
bicliques. Identifying similar-bicliques is useful for the fol-
lowing applications.

– Community detection. Similar-biclique satisfies all the
key requirements of community structure for bipartite
graphs [27, 51, 57], and thus can be used to detect
communities in interaction-type bipartite graphs such
as user-rate-movie, customer-buy-product, and author-
write-paper. Firstly, being abiclique, interactions between
vertices from the two sides are intensive. Secondly, by
enforcing the similarity constraint, users in a similar-
biclique are similar to each other, e.g., having similar
behaviors or interests.

– Anomaly detection. Similar-biclique can also be used
for anomaly detection, which is a common task in e-
commerce [4, 12, 37].Here, the transactions of customers
purchasing products form a customer-product bipartite
graph. To improve the ranking of certain products, fraud-
sters may create fake accounts to purchase the products,
i.e., click farming [10]. These fake accounts and the prod-
ucts they promote inevitably form a densely connected
group, and meanwhile, these fake accounts will display
a high level of synchronized behavior with each other
[21]. Thus, suspicious groups (i.e., both the fraudulent
accounts and the products they promote) can be captured
by similar-bicliques.

Formally speaking, given a similarity threshold 0 < ε ≤ 1
and a size constraint τ ≥ 0, a vertex subset C ⊆ VL ∪ VR

in a bipartite graph G = (VL , VR, E) is a similar-biclique if
(1)C is a biclique (i.e.,CL ×CR ⊆ E), (2) all vertices ofCL

are similar to each other (i.e., sim(u, v) ≥ ε,∀u, v ∈ CL),
and (3) C satisfies the size constraint (i.e., |CL | ≥ τ and
|CR | ≥ τ). Here,CL denotesC∩VL andCR denotesC∩VR ;
sim(u, v) measures the structural similarity between u and
v, which is computed based on their neighbors N (u) and
N (v) and will be formally defined in Sect. 3; the size con-
straint τ is introduced to avoid generating too small or too
skewed results. Note that, we only apply the similarity con-

straint to one side of the vertices (either VL or VR as they are
interchangeable), since in applications we are usually only
interested in the similarity between “users.” Nevertheless,
the general technical ideas presented in this work can also
be applied to the variant of similar-biclique that imposes the
similarity constraint on both sides of vertices.

We in this work aim to enumerate all maximal similar-
bicliques in a bipartite graph. We prove that this problem
is #P-complete. As each (maximal) similar-biclique is con-
tained in a maximal biclique, we could first enumerate all
maximal bicliques, then extract maximal similar-bicliques
from maximal bicliques, and finally eliminate all similar-
bicliques that are either duplicates or not maximal. However,
this approach is inefficient, as enumerating all maximal
bicliques by the state-of-the-art algorithm ooMBEA [8] is still
time consuming for large graphs. Thus, we propose theMSBE
algorithm to directly enumerate maximal similar-bicliques,
without first enumerating maximal bicliques.

MSBE follows the general backtracking framework of the
Bron–Kerbosch algorithm [5] that enumerates all maximal
cliques in a unipartite graph. Our observation is that once
the set of L-side vertices CL of a similar-biclique C is
determined, its R-side vertices can be simply obtained as
CR = ⋂

u∈CL
N (u). Nevertheless, it is worth pointing out

that we cannot ignore CR during the enumeration process,
since (1) the size of CR will be used for pruning and (2) both
CL andCR are needed for determining the maximality of the
similar-biclique.MSBE iteratively builds up a partial solution
〈CL ,CR〉, maintains a candidate set PL that is used to grow
CL , andmaintains an exclusive set QL that is used for check-
ing the maximality of 〈CL ,CR〉. In each recursion, a vertex
u ∈ PL is added to CL to grow the solution; after coming
back from the recursion, u is moved from PL to QL to avoid
duplicates. To prune the search space,we propose the concept
of dominating: u ∈ PL dominates v ∈ PL if sim(u, v) ≥ ε

and NCR (u) ⊇ NCR (v), where NCR (u) = N (u) ∩ CR . We
prove that if u dominates v, then we can prune the recursion
of adding v to CL when u is moved from PL to QL . Fur-
thermore, according to the definition, (1) each vertex u in a
similar-biclique C must have at least τ neighbors in C (i.e.,
|NC (u)| ≥ τ), and (2) each L-side vertex u ∈ CL must have
at least τ −1 vertices that are similar to it; we call the vertices
that are similar to u the similar neighbors of u, denotedΓ (u).
Thus, we propose to first prune all vertices that violate either
of these two conditions, in a preprocess referred to as vertex
reduction; our empirical studies show that a large portion of
the input graph is pruned by vertex reduction.

We observe that a time-critical operation, in both vertex
reduction and the recursion of backtracking, is computing
Γ (u) which would take O(

∑
v∈N (u) |N (v)|) time, for a ver-

tex u ∈ VL . Note that, Γ (u) is not stored in the graph
representation, and it is also not affordable to store Γ (u)

(either in main memory or on disk) after it is computed as

123

Identifying similar-bicliques in bipartite graphs 705

this would require a prohibitively large space. For exam-
ple, it would take over 400GB on Bibsonomy, one of the
graphs tested in our experiments. In view of this, we propose
an offline-constructed index to speed up the computation of
Γ (u); note that, our index can be used to process maximal
similar-biclique enumeration queries with different ε and τ

values. This is based on the fact that for any similarity thresh-
old ε, Γ (u) is always a subset of Φu = ⋃

v∈N (u) N (v), the
2-hop structural neighbors of u. Thus, we propose to first
compute the similarity between u and every vertex of Φu

in an offline process, and then compress them into a few
segments which are stored in the index. Specifically, each
segment is represented by seg = 〈vmin, vmax, smax, c〉 where
vmin ≤ vmax are two vertices of Φu , smax is the largest sim-
ilarity between u and vertices of Φu that are in the range
[vmin, vmax], and c is the number of vertices of Φu that are in
[vmin, vmax]; here, the comparison between vertices is based
on their ids. To obtain Γ (u), we go through each segment
seg of Φu that satisfies seg.smax ≥ ε, and compute the sim-
ilarity between u and each v ∈ [seg.vmin, seg.vmax]; note
that, segments with smax < ε are skipped. Furthermore, we
also use the index to speed up vertex reduction by first prun-
ing vertices based on upper bounds of Γ (u), which can be
efficiently obtained based on the index without computing
similarities.

Our main contributions are summarized as follows:

– We formulate the concept of similar-biclique, which can
be used to detect interesting dense subgraphs from a
bipartite graph. To the best of our knowledge, this is the
first work investigating structural similarity between ver-
tices in dense bipartite subgraph mining.

– We develop a backtracking algorithmMSBE to enumerate
all maximal similar-bicliques in a bipartite graph. Vertex
reduction and optimization techniques are proposed.

– We design a novel index structure to facilitate the com-
putation of similar neighbors and propose a two-phase
algorithm for efficient vertex reduction based on the
index.

– We propose effective and efficient index construction
algorithms by investigating two different strategies. We
also parallelize our index construction algorithms by uti-
lizing multiple CPU cores.

– We propose index maintenance algorithms to handle
dynamic graph updates.

– Extensive empirical studies on 17 real bipartite graphs
as well as case studies are conducted to demonstrate the
efficiency of our algorithms and the effectiveness of our
similar-biclique model. Our algorithm is up to 6 orders
of magnitude faster than ooMBEA.

A preliminary version of this work has been published in
[52]. Compared with [52], we in this work have proposed

a more efficient algorithm TPA for index construction, par-
allelized our index construction algorithms, proposed index
maintenance algorithms to handle dynamic graph updates,
and conducted new experimental studies to evaluate the effi-
ciency and effectiveness of our techniques.
Organization. Sect. 2 reviews the related works. Section3
provides preliminaries including the definition of similar-
biclique and the problem statement. Section4 introduces
a baseline algorithm and our MSBE algorithm. Section5
presents our index structure, index-based algorithms, index
construction algorithms, as well as parallelization techniques
for index construction. Section6 introduces our index main-
tenance algorithms. Section7 reports experimental results.
Section8 concludes the work.

2 Related works

We categorize the related works as follows.
Maximal biclique enumeration. The problem of enumer-
ating all maximal bicliques has been widely studied. The
existing studies can be classified into two categories, depend-
ing on whether the input graph is bipartite or not. When the
input graph is bipartite, the existing algorithms [1, 43, 56]
generally enumerate subsets of vertices from one side, and
then, the intersection of their neighbors forms the other side
of the biclique. Besides, frequent item-set mining techniques
have also been utilized to enumerate maximal bicliques [30,
31, 49, 55], as these two problems are highly related to each
other. The state-of-the-art algorithm for maximal biclique
enumeration over bipartite graphs is ooMBEA proposed in
[8], which is compared in our experiments. There are also
studies that aim at enumerating all maximal (non-induced)
bicliques from a general graph, i.e., the input graph is not
bipartite. For example, it is studied from a theoretical view-
point in [14], consensus algorithms are proposed in [3], and a
divide-and-conquer algorithm is proposed in [34]. However,
these algorithms are generally slower than the algorithms that
specifically handle bipartite graphs. Moreover, none of the
existing studies on maximal biclique enumeration take into
account the structural similarity between vertices.
Maximal clique enumeration. The problem of enumerat-
ing all maximal cliques in a unipartite graph has also been
extensively studied. The existing algorithms generally follow
the backtracking framework of Bron and Kerbosch [5] with
optimization techniques being proposed in [7, 9, 15, 38, 47].
However, these algorithms cannot handle bipartite graphs.
Dense bipartite subgraph identification. Other models
have also been proposed for dense bipartite subgraph identifi-
cation, such as quasi-biclique [35], k-biplex [54], (α, β)-core
[24], k-bitruss [59], and k-wing [44]. Quasi-biclique and k-
biplex relax the biclique model by allowing each vertex in
one side of the result to miss a certain number of neigh-

123

706 K. Yao et al.

bors from the other side. On the other hand, (α, β)-core
requires each vertex from one side to be connected to a cer-
tain number of vertices from the other side, and k-bitruss and
k-wing require each edge to be involved in a certain number
of (2, 2)-bicliques. None of these models consider similarity
betweenvertices, andour case study inSect. 7.3 demonstrates
that similar-biclique outperforms k-biplex and (α, β)-core in
anomaly detection. Note that it is also possible to integrate
similarity constraint into these dense bipartite subgraphmod-
els, in a similarway to similar-bicliques.However, thiswould
require thorough studies, from problem hardness analysis
to algorithm design, for each model. For example, although
(α, β)-core can be computed in polynomial time, computing
similar-(α, β)-cores may require an exponential time as the
number of maximal similar-(α, β)-cores could be exponen-
tial. Thus, we leave these to our future studies.
Structural vertex similarity. Structural vertex similarity
refers to similarity measures between pairs of vertices that
are computed based solely on the topology of the graph [28].
They are usually categorized as local-topology-based and
global-topology-based similarity measures. For the former,
the similarity between two vertices is computed based on
their neighbors, i.e., locally. Examples include Jaccard sim-
ilarity [19], cosine similarity [42], Dice’s coefficient [11],
hub depressed/promoted index [36], andAdamic–Adar index
[2]. For the latter, the global structure information is uti-
lized to derive the similarity between two vertices. Examples
include Katz [22], SimRank [20], C-Rank [53], P-Rank
[58], and MatchSim [33]. As global-topology-based mea-
sures usually need to access the entire graph to compute
the similarity, they are computationally more expensive than
the local-topology-based measures. Thus, we adopt local-
topology-based measures in this work.

3 Preliminary

We consider an unweighted and undirected bipartite graph
G = (VL , VR, E), where VL and VR denote the two dis-
joint vertex sets (i.e., L-side vertices and R-side vertices)
and E ⊆ VL × VR denotes the edge set. Without loss
of generality, we assume that vertices of VL take (integer)
ids from {1, 2, . . . , |VL |}, and vertices of VR take ids from
{1+|VL |, 2+|VL |, . . . , |VR |+|VL |}. For any vertex v ∈ VL

(resp. v ∈ VR), we say it is an L-side vertex (resp. R-side
vertex). For any vertex subset C ⊆ VL ∪ VR , we use CL and
CR to denote the subsets of vertices ofC that are from VL and
VR , respectively, i.e., CL = C ∩ VL and CR = C ∩ VR . We
call the set of neighbors of u in G the structural neighbors of
u, denoted NG(u) = {v | (u, v) ∈ E}, and denote the struc-
tural degree of u by dG(u) = |NG(u)|. Besides structural
neighbor and structural degree, we will also define similar
neighbor and similar degree based on structural similarity.

Fig. 2 Maximal biclique versus maximal similar-biclique

Definition 1 (Structural Similarity) Given two vertices u and
v in G, their structural similarity is defined as sim(u, v) =
|NG (u)∩NG (v)|
|NG (u)∪NG (v)| .

The structural similarity sim(u, v) is between 0 and 1. It
measures the Jaccard similarity between the set of structural
neighbors of u and that of v. Given a similarity threshold
ε > 0, we say u and v are similar if sim(u, v) ≥ ε. The set of
vertices that are similar to u is called the similar neighbors
of u, denoted ΓG,ε(u), i.e., ΓG,ε(u) = {v ∈ VL ∪ VR |
sim(u, v) ≥ ε}. Accordingly, denote δG,ε(u) = |ΓG,ε(u)|
the similar degree of u. Note that as the structural similarity
between vertices from different sides is always 0, similar
neighbors of vertexu only contain vertices from the same side
as u. For presentation simplicity, we call structural similarity
simply as similarity and omit the subscripts G and/or ε from
the notations.

Definition 2 (Similar-Biclique) Given a bipartite graph G =
(VL , VR, E) and a similarity threshold ε > 0, a vertex subset
C ⊆ VL ∪ VR is a similar-biclique if

– C is a biclique, i.e., CL × CR ⊆ E , and
– all vertices from the L-side are similar to each other, i.e.,
sim(u, v) ≥ ε,∀u, v ∈ CL .

We also denoteC as 〈CL ,CR〉. A similar-biclique ismaximal
if it is not a subset of any larger similar-biclique.

Note that for presentation simplicity, the similarity con-
straint is assumed to be considered for the L-side vertices. To
apply the similarity constraint for R-side vertices in applica-
tions, we can simply swap the roles of VL and VR in G.

Example 1 Figure2a shows a bipartite graph G with VL =
{v0, . . . , v3} and VR = {v4, . . . , v7}, in which the subgraph
C in the gray area is a maximal biclique. However, v1 and v2
in the L-side of C are not similar to each other for ε = 0.6,
i.e., sim(v1, v2) = 0.5. Subgraphs C1 and C2 as shown in
Fig. 2b are two maximal similar-bicliques, in each of which
all vertices on the L-side are similar to each other.

Problem 1 (Maximal Similar-Biclique Enumeration) Given
a bipartite graph G = (VL , VR, E), a similarity threshold
ε > 0, and a size constraint τ > 0, we study the problem
of enumerating all maximal similar-bicliques C in G that
satisfy the size constraint τ (i.e., |CL | ≥ τ and |CR | ≥ τ).

123

Identifying similar-bicliques in bipartite graphs 707

The size constraint τ is adopted here to avoid generating
too small or too skewed similar-bicliques (i.e., with very few
or no vertices in one side). For presentation simplicity, we
assume the same size constraint τ for both sides. Note that
the techniques that we are going to present in this work can
be straightforwardly extended to handle different size con-
straints on the two sides.

Theorem 1 Theproblemof enumeratingallmaximal similar-
bicliques is #P-complete.

Proof The #P-completeness of our problem directly follows
from the facts that (1) the problem of enumerating all maxi-
mal bicliques is #P-complete [23, 26], and (2) it is a special
case of our problem, i.e., by setting ε = 1

|VR | . Note that, for
this small ε, two vertices of VL are similar if and only if
they have at least one common neighbors in VR . Thus, every
maximal similar-biclique is also amaximal biclique, and vice
versa. �
Remark about Structural Similarity. In Definition 1, we
use the Jaccard similarity to measure the structural similar-
ity since it has been widely used and shown great success
in many graph analysis tasks, such as structural graph clus-
tering [6, 48], link prediction [32, 39], and local graph
sparsification [45]. Nevertheless, other local-topology-based
similarity measures reviewed in Sect. 2, such as cosine simi-
larity |NG (u)∩NG (v)|√

dG (u)×dG (v)
and hub promoted index |NG (u)∩NG (v)|

min{dG (u),dG (v)} ,
can be easily plugged into our model and algorithms. We
will point out the changes that need to be made to adopt
these measures, when presenting our algorithms.

4 Our algorithms

In this section, we propose anMSBE algorithm to enumerate
allmaximal similar-bicliques.Before that,wefirst inSect. 4.1
present a baseline algorithm based on the existing maximal
biclique enumeration algorithms.

4.1 A baseline algorithm

It is easy to observe that maximal similar-bicliques must be
contained in maximal bicliques, since every similar-biclique
is also a biclique. Thus, a naive approach is first enumerat-
ing all maximal bicliques by invoking one of the existing
maximal biclique enumeration algorithms, and then post-
processing the detectedmaximal bicliques to obtainmaximal
similar-bicliques. Specifically, for each maximal biclique,
we extract maximal similar-bicliques by imposing the sim-
ilarity constraint on L-side vertices, and then eliminate all
similar-bicliques that are either duplicates or non-maximal.
Weomit the details, since our empirical study inSect. 7 shows
that enumerating allmaximal bicliques by the state-of-the-art

Algorithm 1: MSBE(G = (VL , VR, E), ε, τ)

1 for each u ∈ VL ∪ VR do del(u) ← false
VReduce(G, ε, τ,del(·));

2 for each u ∈ VL s.t. del(u) = false do
3 CL ← {u}; CR ← {v ∈ N (u) | del(v) = false};
4 PL ← ∅; QL ← ∅;
5 Obtain Γ (u);
6 for each v ∈ Γ (u) do
7 if v > u then PL ← PL ∪ {v} else QL ← QL ∪ {v}
8 Enum(CL ,CR, PL , QL);

Procedure Enum(CL ,CR, PL , QL)

9 if �u ∈ PL ∪ QL s.t. N (u) ⊇ CR then
10 if |CL | ≥ τ and |CR | ≥ τ then output 〈CL ,CR〉
11 for each u ∈ PL do
12 C ′

L ← CL ∪ {u}; C ′
R ← CR ∩ N (u);

13 Obtain Γ (u);
14 P ′

L ← PL ∩ Γ (u); Q′
L ← QL ∩ Γ (u);

15 if |C ′
L | + |P ′

L | ≥ τ and |C ′
R | ≥ τ then

Enum(C ′
L ,C ′

R, P ′
L , Q′

L) PL ← PL \ {u}; QL ← QL ∪ {u};

algorithm ooMBEA [8] is already time consuming for large
graphs.

4.2 Our MSBE algorithm

According to the definition of similar-biclique, if we build
a similarity graph Gs for VL where two vertices of VL are
connected by an edge if their similarity is at least ε, then
for every (maximal) similar-biclique C , its L-side vertices
CL form a clique in Gs . Moreover, once the L-side vertices
CL of a maximal similar-biclique are determined, the R-side
vertices CR can be easily obtained as the set of common
neighbors of CL , i.e., CR = ⋂

u∈CL
N (u). In view of this,

we propose to adopt the general backtracking framework of
the Bron–Kerbosch algorithm [5] to enumerate all maximal
similar-bicliques. However, there are two issues. (1) The sim-
ilarity graph Gs is not available in the input. (2) The set of
L-side vertices CL of a maximal similar-biclique C is not
necessarily a maximal clique in Gs , though CL is a clique in
Gs . This is because, a too large CL may result in a too small
CR , violating the size constraint τ on CR .

We propose techniques to address the above issues, and
the pseudocode of our algorithm is shown in Algorithm 1,
denotedMSBE.We first prune unpromising vertices by invok-
ing VReduce (Lines 1–2), whichwill be introduced shortly in
Algorithm 2; a vertex u is pruned if del(u) = true. For each
remaining vertex u ∈ VL with del(u) = false, we enumerate
all maximal similar-bicliques containing u (Lines 3–10). To
do so, we iteratively grow a partial solution 〈CL ,CR〉 where
CL is initialized as {u} (Line 4). Besides CL and CR , we
also maintain PL and QL in a similar fashion to the Bron–
Kerbosch algorithm [5], such that each vertex of PL ∪ QL

is similar to all vertices of CL . Specifically, PL is a set of

123

708 K. Yao et al.

Algorithm 2: VReduce(G, ε, τ,del(·))
1 for each u ∈ VL ∪ VR do d(u) ← |N (u)| for each u ∈ VL do
Obtain Γ (u) and set δ(u) ← |Γ (u)| while (∃u ∈ VL ∪ VR s.t.
del(u) = false and d(u) < τ

)
or

(∃u ∈ VL s.t. del(u) = false
and δ(u) < τ − 1

)
do

2 for each v ∈ N (u) do d(v) ← d(v) − 1 if u ∈ VL then
3 Obtain Γ (u);
4 for each v ∈ Γ (u) do δ(v) ← δ(v) − 1

5 del(u) ← true;

candidate vertices that are used to grow CL , and QL is a set
of previously considered candidate vertices that are used for
checking the maximality of 〈CL ,CR〉. PL and QL are ini-
tialized at Lines 5–9, after which we invoke the procedure
Enum for enumeration (Line 10); to avoid duplicates, the
similar neighbors of u with larger vertex id than u are put in
PL , and those with smaller vertex id are put in QL .

In Enum, if the current similar-biclique 〈CL ,CR〉 is max-
imal, we report it (Lines 11–12); note that 〈CL ,CR〉 is
maximal if and only if there is no vertex u ∈ PL ∪ QL such
that N (u) ⊇ CR . Next, Enum iteratively adds a vertex of PL
toCL , updates the correspondingCR , PL and QL , and recur-
sively invokes itself to enumerate more similar-bicliques
(Lines 14–17). After processing u ∈ PL , we remove u from
PL and add it to QL (Line 18).
Vertex Reduction. As a similar-biclique needs to have at
least τ vertices on each side, each vertex u in a similar-
biclique C must have at least τ structural neighbors in C
(i.e., |NC (u)| ≥ τ). Furthermore, as all L-side vertices in a
similar-biclique C are similar to each other, each L-side ver-
tex u must have at least τ − 1 similar neighbors in C (i.e.,
|ΓC (u)| ≥ τ − 1). As a result, we can exclude all vertices
that violate either of these two conditions from being con-
sidered in the enumeration procedure Enum, i.e., mark them
as deleted; we call this process as vertex reduction.

We propose an algorithm VReduce to conduct vertex
reduction, whose pseudocode is shown in Algorithm 2.
Firstly, we obtain the structural degree d(u) for each vertex
u ∈ VL ∪ VR (Line 1), and obtain the similar degree δ(u) for
each L-side vertex u ∈ VL (Line 2). Then, as long as there is
a non-deleted vertex u with d(u) < τ or a non-deleted L-side
vertex u with δ(u) < τ − 1, we mark u as deleted (Line 8),
decrease the structure degree of u’s structural neighbors by 1
(Line 4), and also decrease the similar degree of u’s similar
neighbors by 1 if u is an L-side vertex (Lines 5–7).
Compute Similar Neighbors Γ (u). One fundamental oper-
ation in bothAlgorithm1 andAlgorithm2 is computingΓ (u)

for an L-side vertex u; note that Γ (u) is not stored with the
graph G. A straightforward method to collect Γ (u) is com-
puting sim(u, v) for eachvertexv ∈ VL . The timecomplexity
would be O(|E |), as it needs to visit every edge of G. This is

Algorithm 3: SimNei(G, u, ε,del(·))
Output: Γ (u)

1 Γ (u) ← ∅;
2 for each v ∈ VL do c(v) ← 0 for each v ∈ N (u) do
3 for each w ∈ N (v) and w �= u do c(w) ← c(w) + 1

4 for each v ∈ VL s.t. c(v) �= 0 and del(v) = false do
5 if c(v)

d(u)+d(v)−c(v)
≥ ε then Γ (u) ← Γ (u) ∪ {v}

6 return Γ (u)

inefficient, by noting that Algorithm 1 and Algorithm 2 need
to compute Γ (u) for many vertices u and multiple times.

We propose a more efficient algorithm in Algorithm 3,
denoted SimNei. Instead of blindly computing sim(u, v) for
each v ∈ VL , we only compute sim(u, v) for those v with
sim(u, v) > 0. Our main idea is to first compute the number
of common neighbors c(v) between u and v for each 2-hop
structural neighbor v of u (Lines 3–4). Then, sim(u, v) can
be calculated as c(v)

d(u)+d(v)−c(v)
(Line 6).1 Note that, in our

implementation, to make the time complexity of SimNei to
be independent of |VL |whichmay be large, we only initialize
c(·) once at the beginning of the entire algorithm execution
(e.g., inMSBE), and after using c(·) at Line 4–6 of Algorithm
3 we reset those updated c(·) to be 0. In addition, we also
collect at Line 4 the set of vertices with non-zero c(·) into a
set S, such that Line 5 as well as the resetting of c(·) can be
conducted in O(|S|) time. As a result, the time complexity
of SimNei is O(

∑
v∈N (u) d(v)), which is lower than O(|E |).

Optimizations for Enum. We further propose two optimiza-
tion techniques to speed up the Enum procedure. Recall that,
an instance of Enum is represented by (CL ,CR, PL , QL)

where CR = ⋂
u∈CL

N (u) and |CR | ≥ τ ,2 and aims to enu-
merate all maximal similar-bicliques C∗ satisfying CL ⊂
C∗
L ⊆ CL ∪ PL . Firstly, an enumeration instance can be ter-

minated once we know that it will not generate any maximal
similar-biclique. That is, by including any subset of vertices
of PL into CL , the resulting similar-biclique would not be
maximal. This is formulated in the lemma below.

Lemma 1 (Early Termination) If there exists a vertex u ∈ QL

such that u is similar to all vertices of PL and N (u) ⊇ CR,
then there is no maximal similar-biclique C∗ with CL ⊂
C∗
L ⊆ CL ∪ PL and thus we can terminate this enumeration

instance.

Proof Suppose there is such a maximal similar-biclique C∗
with CL ⊂ C∗

L ⊆ CL ∪ PL . Then, we must have C∗
R ⊆ CR

and thus N (u) ⊇ CR ⊇ C∗
R . Since u ∈ QL is similar to all

1 The formula should be changed to c(v)√
d(u)×d(v)

for cosine similarity,

and to c(v)
min{d(u),d(v)} for hub promoted index.

2 To be more precise, we should exclude from CR all vertices that are
marked as deleted.

123

Identifying similar-bicliques in bipartite graphs 709

Fig. 3 Example of domination

vertices of PL (and also note that all vertices of QL , including
u, are similar to all vertices of CL according to the construc-
tion of QL), u is similar to all vertices of C∗

L . Consequently,
C∗ ∪ {u} is also a similar-biclique, contradicting that C∗ is a
maximal similar-biclique. �

Secondly, we can reduce the number of instances gen-
erated at Line 17 of Algorithm 1, based on the concept of
dominating set.

Definition 3 (Dominating Set) Given an instance (CL ,CR,

PL , QL) of Enum, for two distinct vertices u, v ∈ PL ∪ QL ,
we say that u dominates v if sim(u, v) ≥ ε and NCR (u) ⊇
NCR (v), where NCR (u) = N (u)∩CR . The dominating set of
u, denotedDomSet(u), is the subset of vertices of PL that are
dominated by u, i.e., DomSet(u) = {v ∈ PL | sim(u, v) ≥
ε ∧ NCR (u) ⊇ NCR (v)}.

Note that, a vertex does not dominate itself.

Lemma 2 Given an instance (CL ,CR, PL , QL) of Enum
and a vertex u∗ ∈ PL ∪ QL, any maximal similar-biclique
C∗ with CL ⊂ C∗

L ⊆ CL ∪ PL must contain a vertex of
PL\DomSet(u∗).

Proof Suppose there is such a maximal similar-biclique C∗
with CL ⊂ C∗

L ⊆ CL ∪ PL that contains no vertex of
PL\DomSet(u∗). That is, C∗

L\CL ⊆ DomSet(u∗). Then,
it is easy to verify that C∗ ∪ {u∗} is also a similar-biclique,
contradicting the maximality of C∗. �

Example 2 Consider the instance in Fig. 3 where QL = ∅.
For ε = 0.6, v1 ∈ PL is similar to both v2 and v3. More-
over, we can see that NCR (v1) ⊇ NCR (v2) and NCR (v1) ⊇
NCR (v3). Thus, DomSet(v1) = {v2, v3}, and we know
that every maximal similar-biclique C∗ with CL ⊂ C∗

L ⊆
CL ∪ PL must contain v1 since PL\DomSet(v1) = {v1}.

To apply Lemma 2, we revise Line 13 of Algorithm
1 as follows: we first choose a vertex u∗ from PL ∪ QL

before the “for loop,” and then replace “u ∈ PL” with
“u ∈ PL\DomSet(u∗)” in the “for loop” statement. This
means that we do not generate enumeration instances, at
Line 17 of Algorithm 1, for vertices u ∈ DomSet(u∗).
To maximize the benefit of Lemma 2, u∗ is chosen as the

one that minimizes |PL\DomSet(u∗)| among all vertices of
PL ∪ QL . If u∗ dominates a substantial number of vertices
in PL (i.e., when the cardinality of DomSet(u∗) is large),
applying Lemma 2 can significantly reduce the overall run-
ning time.

Theorem 2 The time complexity of Algorithm 1 is O(|VL | ·
|E | · 2|VL |).

Proof We first prove that the time complexity of VReduce
(i.e., Algorithm 2) is O(

∑
v∈VR

(d(v))2). In Algorithm 2,
Line 1 runs inO(|E |) time. Line 2 runs inO(

∑
v∈VR

(d(v))2)

time, since computing Γ (u) by Algorithm 3 takes time
O(

∑
v∈N (u) d(v)) as discussed above, by noting that

∑

u∈VL

∑

v∈N (u)

d(v) =
∑

(u,v)∈E
d(v)

=
∑

v∈VR

∑

u∈N (v)

d(v) =
∑

v∈VR

(d(v))2

Since each vertex u ∈ VL ∪ VR is removed at most once
at Lines 4–8, the total cost of running Line 4 for all deleted
vertices isO(|E |), and the total cost of running Lines 6–7 for
all deleted vertices isO(

∑
v∈VR

(d(v))2), the same as that of
Line 2. In addition, we use a queue to store the vertices that
should be deleted (i.e., satisfying the conditions at Line 3)
such that finding a vertex at Line 3 takes constant time. Thus,
the time complexity of VReduce is O(

∑
v∈VR

(d(v))2).
Now, we prove that the time complexity of MSBE (Algo-

rithm 1) isO(|VL |·|E |·2|VL |). Firstly, it is easy to see that the
time complexity of Algorithm 1 excluding Line 10 (i.e., the
recursion) isO(

∑
v∈VR

(d(v))2), by following the analysis of
the time complexity of VReduce. Secondly, invoking Enum
with input (CL ,CR, PL , QL) takes timeO(|E | ·2|PL |), since
the recursion builds a complete binary search tree with each
instance (CL ,CR , PL , QL) has two children: one including
u intoCL , one excluding u fromCL . The time for generating
the first child (Lines 14–17) isO(

∑
v∈N (u) d(v)) ⊆ O(|E |),

and the time for generating the second child isO(1) (Line 18).
In addition, the total number of leaf instances is 2PL . Thus,
each invocation to Enum at Line 10 ofAlgorithm 1 takes time
O(|E | ·2|PL |) ⊆ O(|E | ·2|VL |), and the total time complexity
follows. �
Discussions. MSBE is different from both maximal clique
enumeration algorithms for unipartite graphs and maximal
biclique enumeration algorithms for bipartite graphs, as fol-
lows. Firstly, MSBE needs to compute the similar neighbors
for L-side vertices, which are not required by any of the exist-
ing algorithms. Secondly, compared with maximal clique
enumeration algorithms, MSBE needs to consider common
structural neighbors CR of CL , in addition to common simi-
lar neighbors. Thirdly, our optimization techniques for Enum
are also different from the existing ones.

123

710 K. Yao et al.

In MSBE, we need to obtain the similar neighbors Γ (·)
of an L-side vertex multiple times, e.g., at Lines 6 and 15
of Algorithm 1 and Lines 2 and 6 of Algorithm 2. We can
either invoke SimNei to compute Γ (u) every time when it is
needed or storeΓ (u) inmainmemory after it is computed for
the first time and then directly retrieve it for all subsequent
requests. We use MSBE to denote the algorithm that uses
the first strategy, and mat-MSBE the algorithm that uses the
second strategy. (Here, mat stands for materialization.)

5 Speeding up similar neighbor
computation and vertex reduction

MSBE has the disadvantage of repeatedly computing the sim-
ilar neighbors from scratch which is time consuming, while
mat-MSBEmay demand an extremely large main memory to
store the similar neighbors. For example, it would take more
than 400GB main memory for the graph bibsonomy used in
our experiments even for a moderate ε = 0.5. In this sec-
tion, we propose an offline-constructed index to speed up the
computation of Γ (u) as well as vertex reduction. We give
an overview of the index structure in Sect. 5.1, present our
index-based algorithms in Sect. 5.2, discuss index construc-
tion in Sect. 5.3, and finally parallelize our index construction
algorithm in Sect. 5.4.

5.1 Overview of index structure

Let Φu be the set of 2-hop structural neighbors of u, i.e.,
Φu = ⋃

v∈N (u) N (v). Firstly, we have the following lemma.

Lemma 3 For any similarity threshold ε > 0, the set of sim-
ilar neighbors of u is a subset of Φu, i.e., Γε(u) ⊆ Φu.

Proof The correctness of the lemmadirectly follows from the
fact that any vertex v /∈ Φu ∪ {u} has no common neighbor
with u and thus sim(u, v) = 0. �

Based on Lemma 3, one possible indexing strategy is pre-
computing and storing sim(u, v) for each u ∈ VL ∪ VR and
each v ∈ Φu .3 However, the space complexity of this strat-
egy would be O(|VL |2 + |VR |2), which is prohibitively high
even for moderate-sized graphs since the space requirement
is essentially the same as the case of mat-MSBE when ε is
very small. For example, even for a moderate-sized graph
with 106 vertices, the storage space would be over 2TB.

Instead of storingΦu and the structural similarities in their
raw format, we summarize them into a few segments.

3 Note that, we also need to index Φu for u ∈ VR , since in practice the
similarity constraint can be put on either L-side or R-side vertices.

Fig. 4 Overview of index structure

Definition 4 (Segment) A segment, denoted seg, of Φu is a
four-tuple 〈vmin, vmax, smax, c〉, where vmin ≤ vmax are two
vertices of Φu ,

smax = max
v∈Φu :vmin≤v≤vmax

sim(u, v)

and c = |{v ∈ Φu | vmin ≤ v ≤ vmax}|. Here, vertex
comparison is based on vertex id.

Given a segment seg = 〈vmin, vmax, smax, c〉 of Φu , we
use V (seg) to denote {v ∈ Φu | vmin ≤ v ≤ vmax}. It is
immediate from the definition that c = |V (seg)| and

– vmin (resp. vmax) is the smallest (resp. largest) vertex id
in V (seg);

– smax is the largest similarity between u and a vertex
of V (seg), and thus smax provides an upper bound of
sim(u, v) for all v ∈ V (seg).

Thus, we say that seg covers vertices V (seg). A set of seg-
ments Su = {seg1, . . . , segk} covers Φu if

⋃

seg∈Su
V (seg) = Φu

In this work, we only consider disjoint segments, i.e.,
V (segi) ∩ V (seg j) = ∅ for i �= j . Our index struc-
ture, denoted I, covers Φu by a set of segments, for all
u ∈ VL ∪ VR . That is, I consists of Su such that Su cov-
ers Φu , for all u ∈ VL ∪ VR .

Example 3 Figure4 shows the 2-hop structural neighborsΦu

of u, which are sorted in increasing order regarding vertex
id. The decimal below each vertex is the similarity w.r.t. u.
Φu is covered by three segments seg1, seg2, seg3. Take seg1
as an example, the two numbers in the first row (i.e., 1 and 3)
represent vmin and vmax, and the two numbers in the second
row (i.e., 0.5 and 3) represent smax and c.

5.2 Index-based algorithms

In this subsection, we present index-based algorithms for
similar neighbor computation and for vertex reduction.

123

Identifying similar-bicliques in bipartite graphs 711

Algorithm 4: indexedSN(u, ε,G, I,del(·))
1 Γ (u) ← ∅;
2 for each seg ∈ Su s.t. seg.smax ≥ ε do
3 for each v ∈ [seg.vmin, seg.vmax] do
4 if del(v) = false and v �= u then
5 if ub(u, v) ≥ ε and sim(u, v) ≥ ε then
6 Γ (u) ← Γ (u) ∪ {v};

7 return Γ (u)

Index-based Similar Neighbor Computation. The pseu-
docode of using the index I to efficiently obtain the similar
neighbors Γ (u) for a vertex u is shown in Algorithm 4,
denoted indexedSN. We go through each segment seg ∈ Su

with seg.smax ≥ ε (Line 2), and compute sim(u, v) for each
v ∈ [seg.vmin, seg.vmax] (Line 3); recall that (1) seg.smax

upper bounds sim(u, v) for each v ∈ V (seg), and (2) V (seg)

is not stored in the index structure I. As computing sim(u, v)

needs to intersect two sets N (u) and N (v) which is costly,
we propose to first apply a filtering for the pair u and v

based on an upper bound ub(u, v) of sim(u, v) (Line 5);
if ub(u, v) < ε, then we have sim(u, v) ≤ ub(u, v) < ε and
thus v /∈ Γ (u). For the similarity in Definition 1, it is easy to
verify that sim(u, v) ≤ min{d(u),d(v)}

max{d(u),d(v)} ; we set this as ub(u, v),

which can be calculated in constant time.4 indexedSN is
expected to run faster than SimNei (Algorithm 3) as the for-
mer can skip an entire segment if its smax is smaller than
ε.
Index-based Two-Phase Vertex Reduction. Based on
indexedSN, we can speed up VReduce (Algorithm 2) by
invoking indexedSN to compute Γ (u). However, this is still
inefficient, asVReduce needs to computeΓ (u) for all u ∈ VL

(see Line 2 of Algorithm 2).We propose to utilize the index I
to first obtain an upper bound of the similar degree for vertex
reduction, as proved in the lemma below.

Lemma 4 (Upper Bound of Similar Degree) Let Su be the set
of segments that cover Φu. Then, the similar degree δε(u) of
u is upper bounded by

∑

seg∈Su : seg.smax≥ε

seg.c

Proof This lemmadirectly follows from the fact that sim(u, v) <

ε for all v ∈ ⋃
seg∈Su : seg.smax<ε V (seg). �

Consider the part of the index in Fig. 4 and suppose ε =
0.4. By scanning Su , we obtain an upper bound of u’s similar
degree as 6, i.e., seg1.c + seg3.c = 6; seg2 is omitted since
its smax is only 0.2.

4 The upper bound for cosine similarity is min{d(u),d(v)}√
d(u)×d(v)

, while the upper
bound for hub promoted index is 1 and thus not useful.

Algorithm 5: indexedVR(G, I, ε, τ,del(·))
/* Phase-I: vertex reduction based on structural

degree and upper bound of similar degree */

1 for each u ∈ VL ∪ VR do d(u) ← |N (u)| for each u ∈ VL do
δ̄(u) ← ∑

seg∈Su : seg.smax≥ε seg.c while
(∃u ∈ VL ∪ VR s.t.

del(u) = false and d(u) < τ
)
or

(∃u ∈ VL s.t. del(u) = false
and δ̄(u) < τ − 1

)
do

2 for each v ∈ N (u) do d(v) ← d(v) − 1 del(u) ← true;

/* Phase-II: vertex reduction based on structural

degree and similar degree */

3 for each u ∈ VL ∪ VR do del2(u) ← del(u) for each u ∈ VL s.t.
del(u) = false do

4 (δp(u), idx(u)) ←
progressiveSN(u, ε,G, I,del2(·), τ − 1, 1);

5 while
(∃u ∈ VL ∪ VR s.t. del(u) = false and d(u) < τ

)
or

(∃u ∈ VL s.t. del(u) = false and δp(u) < τ − 1
)
do

6 for each v ∈ N (u) do d(v) ← d(v) − 1 if u ∈ VL then
7 Γ (u) ← indexedSN(u, ε,G, I,del(·));
8 for each v ∈ Γ (u) do
9 δp(v) ← δp(v) − 1;

10 if δp(v) = τ − 2 and d(v) ≥ τ then
11 (r , idx(v)) ←

progressiveSN(v, ε,G, I,del2(·), 1, idx(v));
12 δp(v) ← δp(v) + r ;

13 del(u) ← true;

Procedure progressiveSN(u, ε,G, I,del2(·), t, b)
/* Let Su be {seg1, seg2, . . . , seg|Su |} */

14 r ← 0;
15 for each i ∈ {b, b + 1, . . . , |Su |} s.t. segi .smax ≥ ε do
16 for each v ∈ [segi .vmin, segi .vmax] do
17 if del2(v) = false and v �= u then
18 if ub(u, v) ≥ ε and sim(u, v) ≥ ε then
19 r ← r + 1;

20 if r ≥ t then return (r , i + 1)

21 return (r , |Su | + 1)

Furthermore, we also observe that the structural degree
can be obtained efficiently. Thus, we propose a two-phase
approach for vertex reduction, which first conducts vertex
reduction by using structural degree and upper bound of
similar degree in Phase-I, and then using structural degree
and similar degree in Phase-II. The pseudocode of our two-
phase vertex reduction is shown in Algorithm 5, denoted
indexedVR. In Phase-I, we first obtain the structural degree
d(u) for each u ∈ VL ∪ VR (Line 1), and an upper bound
δ̄(u) of the similar degree for each vertex u ∈ VL (Line 2).
Then, as long as there is a non-deleted vertex u ∈ VL ∪ VR

satisfying d(u) < τ or a non-deleted vertex u ∈ VL satisfy-
ing δ̄(u) < τ − 1 (Line 3), we mark u as deleted and update
the structural degree of its structural neighbors (Lines 4–5);
note that, we do not update δ̄(·) in Phase-I. In Phase-II, we
first compute a progressive similar degree, denoted δp(·), for
each non-deleted L-side vertex, by invoking progressiveSN
(Lines 7–8). Here, δp(u) is a lower bound of u’s similar

123

712 K. Yao et al.

degree δ(u), and it records the number of similar neighbors
that have been computed for u; our computation of δp(u)

ensures that δp(u) ≥ τ −1 if and only if δ(u) ≥ τ −1. Then,
as long as there is a non-deleted vertex u ∈ VL ∪ VR satis-
fying d(u) < τ or a non-deleted vertex u ∈ VL satisfying
δp(u) < τ − 1, we mark u as deleted (Line 18) and update
the structural degree of its structural neighbors (Line 10).
Furthermore, if u is an L-side vertex, we also obtain the set
Γ (u) of similar neighbors of u (Line 12) and update the
progressive similar degree δp(v) to satisfy the invariant that
δp(v) ≥ τ − 1 if and only if δ(v) ≥ τ − 1 for each v ∈ Γ (u)

(Lines 13–17). Note that, in our implementation, we use a
queue to maintain the vertices that satisfy the condition at
Line 3 or Line 9; as a result, we do not need to loop through
all non-deleted vertices to find the unpromising vertices.

In Algorithm 5, for an L-side vertex u, we compute δp(u)

instead of δ(u). Ourmainmotivation is that for an L-side ver-
texu satisfyingd(u) ≥ τ ,weonly need to compute τ−1of its
similar neighbors to certify that it is a promising vertex. That
is,we stop the computation ofΓ (u)once δp(u) ≥ τ−1; how-
ever, if some similar neighbors of u are later removed (i.e.,
marked as deleted), then we need to update δp(u) by comput-
ing more similar neighbors of u (Lines 15–17 of Algorithm
5). As a result, for vertices with high similar degrees in the
remaining graph (i.e., obtained by removing all unpromising
vertices), we only need to compute a small portion of their
similar neighbors to prevent them from being removed and
thus save unnecessary similar neighbor computations. The
pseudocode of computing δp(u) is shown in Lines 19–26
of Algorithm 5, denoted progressiveSN. It is invoked only
when δp(u) < τ − 1 and there are still unchecked segments
of Φu . In progressiveSN, we check the segments of Su one
by one (Line 20–24) and stop once we have found enough
similar neighbors for u (Line 25). We record the index of the
first unchecked segment in idx(u) (Line 8). Note that inAlgo-
rithm 5, a copy of del(·) is stored in del2(·) at Line 6. The
usage of del2(·) is specific to the progressiveSN procedure.
This distinction of del(·) and del2(·) is necessary because for
each L-side vertex v, we compute its similar neighbors and
thus similar degree δp(v) progressively (Lines 8 and 16).
When we remove an unqualified vertex u at Lines 10–18,
we also decrement δp(v) by one for each similar neighbor
v of u (Line 14). Consequently, it is possible that u has not
yet been considered in δp(v) when u is removed, but δp(v)

is decremented by one due to the removal of u. As a rem-
edy, progressiveSN considers all vertices that are alive when
entering thewhile loop of Line 9, i.e., all verticeswithdel2(·)
being false.

indexedVR is better than VReduce (Algorithm 2), since
(1) Phase-I of indexedVR is lightweight but very effective at
pruning vertices as demonstrated by our empirical studies,
and (2) indexedVR uses indexedSN and progressiveSN to
compute the similar neighbors.

Overall Algorithm. Our index-based MSBE improves on
Algorithm1 by replacing the invocation toVReduce at Line 2
with invoking indexedVR for vertex reduction, and invoking
indexedSN to compute Γ (u) at Lines 6 and 15. Never-
theless, the time complexity of index-based MSBE remains
O(|VL | · |E | · 2|VL |) as proved in Theorem 2, by noting that
the time complexity of indexedSN remainsO(|E |). Despite
of having the same time complexity, our empirical studies in
Sect. 7 show that the index-based approach can improve the
efficiency of MSBE by several orders of magnitude.

5.3 Index construction

In this subsection, we present two algorithms to construct the
index based on the ideas of largest gap and steady segment,
respectively. Note that, the indexes are constructed offline,
and once constructed, they can be used to process maximal
similar-biclique enumeration queries with different ε and τ

values.
Largest Gap (LG) Index. Recall that, our index structure
summarizes a subset of vertices of Φu and their similarities
to a vertex u by four numbers seg = 〈vmin, vmax, smax, c〉,
where smax is an upper bound of the similarity between u and
each v ∈ Φu such that vmin ≤ v ≤ vmax. To obtain the similar
neighbors of u that are in the range [vmin, vmax], we need to
go through each vertex v ∈ [vmin, vmax] and test its similarity
with u (e.g., see Line 3 of Algorithm 4) even if v /∈ V (seg).
We call a vertex v that is in the range [vmin, vmax] but not in
V (seg) a fake vertex.

Intuitively, we should minimize the number of fake ver-
tices when constructing the index. We call the index built by
this strategy the largest gap (LG) index. It is constructed as
follows. Suppose we are going to cover Φu by k segments.
This is equivalent to find k − 1 cut points in the sequence of
vertices of Φu that are ordered in increasing vertex id order;
denote the sequence of vertices as {v1, v2, . . . , v|Φu |}. Note
that, the vertex ids are not consecutive, i.e., it is possible that
v2 − v1 > 1. We represent the k − 1 cut points by k − 1
index values {	1, · · · , 	k−1} such that 1 < 	1 < 	2 < · · · <

	k−1 < |Φu |, i.e., the i-th cut point is between vertex v	i−1

and vertex v	i . Define 	0 = 1 and 	k = |Φu | + 1. Then, seg-
ment segi covers vertices {v	i−1, . . . , v	i−1}, for 1 ≤ i ≤ k.
Let f1 be the number of fake vertices if we cover Φu by
only one segment, i.e., f1 = v|Φu | − v1 + 1 − |Φu | where
v|Φu | − v1 + 1 is the total number of vertices in the range
[v1, v|Φu |]. It is easy to verify that the number of fake ver-
tices of covering Φu by k segments with the k − 1 cut points
{	1, . . . , 	k−1} is f1 − ∑k−1

i=1 (v	i − v	i−1 + 1). As f1 is a
fixed number for Φu , minimizing the number of fake ver-
tices is equivalent to maximizing

∑k−1
i=1 (v	i − v	i−1 + 1).

Definition 5 (Gap)Given the sequenceof vertices {v1, v2, . . . ,
v|Φu |} of Φu that are ordered in increasing vertex id order,

123

Identifying similar-bicliques in bipartite graphs 713

Fig. 5 Example of consLG

the gap of vertex vi for i > 1 is defined as vi − vi−1 + 1; the
gap of v1 is defined as 0.

Thus, the LG index constructs k segments to cover Φu ,
where the k − 1 cut points are the k − 1 vertices with the
largest gaps.

Example 4 Figure5 shows that the three segments con-
structed by the largest gap strategy for the same Φu as
Example 3. The two vertices with the largest gap are v100
and v50.

Choosing the number of segments to cover Φu . It is easy to
see that the more the number of segments, the fewer the
number of fake vertices introduced by the segments. In the
extreme case of covering Φu by |Φu | segments, there will be
no fake vertices introduced. However, the space complexity
would be too high to be practical as discussed in Sect. 5.1.
Thus, we set the number of segments for covering Φu as
α · log |Φu | where α is a user defined parameter, in viewing
that a fixed number for different Φu will not work as |Φu |
varies a lot across different vertices u.
Steady Segment (SS) Index. The LG index ignores the sim-
ilarities (between u and different vertices) in a segment and
thus may result in a very wide range of similarity values for a
segment. This is not good for indexedSN andprogressiveSN,
as they need to check all vertices covered by a segment seg
even if there is only one vertex in seg whose similarity to u
is no lower than ε. Motivated by this, we aim to construct
steady segments such that all similarities in a segment are
close to each other.

Definition 6 (Steady Segment) Given a steady threshold 0 <

γ < 1, a segment seg = 〈vmin, vmax, smax, c〉 ofΦu is steady
if

max
v∈V (seg)

sim(u, v) − min
v∈V (seg)

sim(u, v) ≤ γ

The first term, maxv∈V (seg) sim(u, v), is exactly seg.smax.
For ease of presentation, we denote the second term,
minv∈V (seg) sim(u, v), by seg.smin, the smallest similarity
value. A segment seg is steady if seg.smax − seg.smin ≤ γ .
The main advantage of a steady segment is that if seg is
steady and satisfies seg.smax ≥ ε, then it is likely that many

Fig. 6 Example of consSS

vertices of V (seg) have similarity values to u no lower than
ε, and thus, most of the computation will not be wasted.

Ideally, we would like to find the minimum number of
steady segments to coverΦu . However, the number of steady
segments required could be very large. For example, if the
steady threshold γ is very close to 0 and all vertices of
Φu have different similarity values to u, then the number
of required steady segments to cover Φu is |Φu |. Thus, we
instead construct a fixed number of steady segments to cover
asmany vertices ofΦu as possible and then cover the remain-
ing uncovered vertices of Φu by as few segments as possible
by ignoring the difference between the similarity values.

Given γ and k, our problem is to find k steady segments to
cover as many vertices of Φu as possible. We first construct,
for each vertex v ∈ Φu , a maximal steady segment segv

that starts at v (i.e., segv.vmin = v), and then select k seg-
ments S∗ from {segv | v ∈ Φu} such that

∣
∣
⋃

v∈S∗ V (segv)
∣
∣ is

maximized. This is an instance of the maximum k-coverage
problem which is NP-hard [40]. We select the k segments
in a greedy manner. That is, the k segments are selected
one-by-one. Let S be the starting vertices of the currently
selected segments. Then, the next segment to be added to

S is argmaxv∈Φu

∣
∣
∣
⋃

v′∈S∪{v} V (segv′)
∣
∣
∣ . As this function is

submodular, the greedy approach achieves an approximation
ratio of 1 − 1

e [17].
The pseudocode is shown inAlgorithm6, denoted consSS.

For each vertex u, we first compute its 2-hop structural
neighbors Φu and their similarities to u (Line 2) and
then invoke MaximalSteadySegments to compute maximal
steady segments that start at each vertex vi ∈ Φu (Line 3).
In MaximalSteadySegments, the maximal steady segment
segvi

that starts at vi is computed by iteratively trying to
add the next vertex to the segment (Lines 19–27). Next, we
iteratively add to Su the segment of C that covers the largest
number of uncovered vertices ofΦu (Lines 4–12); as a result,
after adding a segment into Su , we also need to update the
remaining segments of C to be disjoint from the segments of
Su (Lines 8–12). During this process, for time efficiency con-
sideration, we do notmaintain seg.smax; instead, we compute
seg.smax for each segment seg ∈ Su later (Line 13). Finally,
we create the minimum number of segments to cover all ver-
tices of Φu that are not covered by Su (Lines 14–15).

123

714 K. Yao et al.

Algorithm 6: consSS(G = (VL , VR, E), α, γ)

1 for each u ∈ VL ∪ VR do
2 Φu ← SimNei(G, u, 1

2|VL |+2|VR |);
3 C ← MaximalSteadySegments(G, u, Φu , γ);
4 Su ← ∅; k ← min{|Φu |, α · log |Φu |};
5 while |Su | < k and C �= ∅ do
6 seg∗ ← argmaxseg∈C seg.c;
7 Su ← Su ∪ {seg∗};
8 for each seg ∈ C do
9 if seg∗.vmin < seg.vmin ≤ seg∗.vmax then

10 Remove seg from C

11 else if seg.vmin < seg∗.vmin ≤ seg.vmax then
12 Let v be the vertex that immediately precedes

seg∗.vmin in Φu , change seg.vmax to v, and update
seg.c accordingly in C;

13 for each seg ∈ Su do Compute seg.smax for each maximal
consecutive sequence of vertices vi , vi+1, . . . , v j of Φu that
are not covered by Su do

14 Add to Su the segment that covers {vi , . . . , v j };
15 return I ← {Su | u ∈ VL ∪ VR}

Procedure MaximalSteadySegments(G, u, Φu , γ)

16 C ← ∅;
17 Let {v1, v2, . . . , v|Φu |} be vertices of Φu in increasing vertex id

order;
18 for i ← 1 to |Φu | do
19 smin ← 1; smax ← 0;
20 for j ← i to |Φu | do
21 if sim(u, v j) < smin then smin ← sim(u, v j) if

sim(u, v j) > smax then smax ← sim(u, v j) if
smax − smin > γ then

22 segvi
← 〈vi , v j−1,null, j − i〉;

23 break;

24 C ← C ∪ {segvi
};

25 return C

Example 5 Figure6 shows the three steady segments con-
structed for the sameΦu in Examples 3 and 4,where γ = 0.1.

Time complexity of consSS. For each vertex u ∈ VL ∪ VR ,
Line 2 of Algorithm 6 takes O(

∑
v∈N (u) d(v)) time, and

Line 3 takes O(|Φu |2) time. The while loop at Line 5 runs
for at most α · log |Φu | iterations, and each iteration takes
O(|Φu |) time. Lines 13–15 take O(|Φu |) time. Thus, the
total time complexity of consSS is

O
(∑

u∈VL∪VR

(|Φu |2 +
∑

v∈N (u)

d(v)
))

Computing all maximal steady segments in linear time.From
the above time complexity analysis of consSS, we can see that
the time complexity of computing the initial maximal steady
segments for all vertices dominates the total time complexity
of consSS. In view of this, we propose an efficient algorithm
to compute the maximal steady segments for all vertices in

Fig. 7 Computing maximal steady segments (γ = 0.3)

linear time, i.e., O(|Φu |). The general idea is based on the
following lemma.

Lemma 5 Let {v1, v2, . . . , v|Φu |} be the vertices ofΦu sorted
in increasing vertex id order. For any 1 ≤ i < |Φu |, the
largest vertex id in the maximal steady segment of vi+1 is no
less than that of vi , i.e., segvi+1

.vmax ≥ segvi
.vmax.

Proof This is easy to see since the segment covering vertices
from vi+1 to segvi

.vmax, which is a subset of V (segvi
), must

be steady. �
Following Lemma 5, we use two pointers, i and j , to

compute the maximal steady segments for all vertices of Φu .
Here, i is the index of the start vertex and j is 1 plus the
index of segvi

.vmax in Φu . We will increase i from 1 to |Φu |;
according to Lemma 5, j will not decrease. For initialization,
both i and j are set as 1. To compute segvi

, we iteratively
increase j by 1 until either j = |Φu | + 1 or the segment
coveringvertices {vi , . . . , v j } is not steady;when this process
finishes, we set segvi

.vmax = v j−1. After computing segvi
,

we continue to compute the maximal steady segment for the
next vertex by increasing i by 1. Note that we do not reset
j after increasing i ; this is correct according to Lemma 5.
For example, for Φu in Fig. 7, when i = 1, we have j = 3
and thus segv1

.vmax = v j−1 = v2; when i = 2, we have
j = 5 and thus segv2

.vmax = v4. Since both i and j are
non-decreasing, the time complexity would be c · |Φu |where
c is the time complexity of checking whether the segment
covering a given set of consecutive vertices is steady or not.

To check whether the segment covering a given set S
of consecutive vertices of Φu is steady or not, all we need
to obtain are minv∈S sim(u, v) and maxv∈S sim(u, v). Since
S consists of consecutive vertices of Φu , we could use
some advanced data structures (e.g., segment tree or the
one presented in our conference version [52]) to obtain
minv∈S sim(u, v) and maxv∈S sim(u, v) in log |Φu | time. In
this work, we propose to use a simple data structure (specifi-
cally, a queue) to achieve this in amortized constant time.We
focus our discussion on how to obtainminv∈S sim(u, v); note
that maxv∈S sim(u, v) can be obtained in a similar way. Our
data structure stores vertices of S that are not min-dominated
by other vertices of S.

Definition 7 (Min-Domination)Given a vertex u and a vertex
subset S ⊆ Φu , we say that v ∈ S min-dominates v′ ∈

123

Identifying similar-bicliques in bipartite graphs 715

S if (1) v has a larger vertex id than v′ (i.e., v > v′) and
sim(u, v) ≤ sim(u, v′).

It is easy to see that minv′∈S sim(u, v′) is equal to
sim(u, v) for v being the smallest vertex of S that is not
min-dominated by other vertices of S. We store in a queue
Qmin the list of vertices of S that are not min-dominated by
other vertices of S; note that storing all the vertices (instead
of just the smallest such vertex) that are not min-dominated
will make our maintaining ofQmin easy. As vertices inQmin

are stored in increasing id order, their similarities to u are
also strictly increasing. Suppose S = {vi , . . . , v j } and Qmin

currently stores the non-min-dominated vertices of S. To
maintain Qmin for S′ = {vi+1, . . . , v j ′ } where j ′ ≥ j , we
only need to

– remove vi from Qmin if vi ∈ Qmin,
– remove the longest suffix ofQmin that is min-dominated

by a vertex of {v j+1, . . . , v j ′ }, and
– add all vertices of {v j+1, . . . , v j ′ } that are not min-
dominated by any vertex of S′.

We note that all these operations can be conducted in amor-
tized constant time, which will be discussed shortly.

Algorithm 7: TPA(G, u, Φu, γ)

1 C ← ∅;
2 Let {v1, v2, . . . , v|Φu |} be vertices of Φu in increasing vertex id
order;

3 i ← 1, j ← 1;
4 Qmin ← {v1}, Qmax ← {v1};
5 while i ≤ |Φu | do
6 if Qmin. f ront() < vi then Qmin.pop_ f ront() if

Qmax. f ront() < vi then Qmax.pop_ f ront() while
Qmin.empty() or Qmax.empty() or
sim(u,Qmax. f ront()) − sim(u,Qmin. f ront()) ≤ γ do

7 if j ≤ |Φu | then j ← j + 1 if j > |Φu | then break
while !Qmin.empty() and
sim(u,Qmin.back()) ≥ sim(u, v j) do

8 Qmin.pop_back()

9 Qmin.push_back(v j);
10 while !Qmax.empty() and

sim(u,Qmax.back()) ≤ sim(u, v j) do
11 Qmax.pop_back()

12 Qmax.push_back(v j);

13 segvi
← 〈vi , v j−1,null, j − i〉;

14 C ← C ∪ {segvi
};

15 i ← i + 1;

16 return C

The pseudocode of our linear-time algorithm for comput-
ing all maximal steady segments is shown in Algorithm 7.
Same as MaximalSteadySegments in Algorithm 6, we first
sort vertices of Φu into increasing vertex id order (Line 2);

let {v1, v2, . . . , v|Φu |} be the vertices in sorted order. We ini-
tialize the two pointers i and j to both be 1 (Line 3) and
initialize two queues Qmin and Qmax (used for obtaining
the minimum and the maximum similarity in a segment,
respectively) by v1 (Line 4). Then, we iteratively compute
the maximal steady segment for vi , 1 ≤ i ≤ |Φu | (Lines 5–
19). To compute the maximal steady segment for vi , we
first pop the front element from Qmin and Qmin if it is
smaller than vi (Lines 6–7), and then keep increasing j if
the segment covering vertices {vi , . . . , v j } is still steady
(Lines 8–16). The testing of whether the segment cover-
ing vertices {vi , . . . , v j } is still steady or not is achieved by
comparing sim(u,Qmax. f ront()) − sim(u,Qmin. f ront())
with γ (Line 8); as discussed above, Qmin. f ront() stores
the vertex that has the lowest similarity to u among ver-
tices of {vi , . . . , v j } while Qmax. f ront() stores the one
with the highest similarity. Note that we consistently have
j ≥ i throughout the entire computation since the segment
covering one vertex is trivially steady. After increasing j
(Line 9) and j still being no larger than |Φu |, we update
Qmin and Qmax to store all the non-min-dominated and
non-max-dominated vertices of {vi , . . . , v j }, respectively
(Lines 11–16). Specifically, to updateQmin, we first remove
from it all vertices that are min-dominated by v j (Lines 11-
12), and then push v j to the back of Qmin (Line 13); Qmax

is updated similarly. Once we reach a j such that either j >

|Φu | (Line 10) or the segment covering vertices {vi , . . . , v j }
is no longer steady, we set the maximal steady segment segvi

of vi to be 〈vi , v j−1,null, j − i〉 (Line 17) and add it to C
(Line 18).

Lines 5–19 ofAlgorithm7 run in O(|Φu |) time, since (1) j
will increase for |Φu | times and (2) each vertex of Φu will
be inserted into and popped fromQmin (resp.Qmax) at most
once. Note that, in our implementation, we also store the sim-
ilarities intoQmin andQmax such that the similarity between
u and any vertex at the front or back of Qmin and Qmax

can be retrieved in constant time. Thus, the total time com-
plexity of Algorithm 7 is dominated by Line 2 which takes
O(|Φu | log |Φu |) time. By invoking Algorithm 7 at Line 3 of
Algorithm 6, the time complexity of Algorithm 6 becomes

O
(∑

u∈VL∪VR

(
α|Φu | log |Φu | + ∑

v∈N (u) d(v)
))
.

Example 6 Let’s considerΦu in Fig. 7 and compute the max-
imal steady segments for its vertices with γ = 0.3; note
that (v1, . . . , v6) = (1, 2, 3, 8, 9, 10). We initialize both
i and j as 1, and initialize both Qmin and Qmax as {v1}.
To compute the maximal steady segments for v1, we keep
increasing j until the segment covering vertices {vi , . . . , v j }
is no longer steady. When j is increased to 2, we update
Qmin as {v2} (note that v1 is min-dominated by v2 and thus
removed from Qmin) and update Qmax as {v1, v2}; the seg-
ment covering {v1, v2} is steady as sim(u,Qmax. f ront())−
sim(u,Qmin. f ront()) = 0.1 < γ . When j = 3, we update

123

716 K. Yao et al.

Qmin as {v3} and update Qmax as {v1, v2, v3}, as shown in
Fig. 7a. The segment covering {v1, v2, v3} is no longer steady
since sim(u,Qmax. f ront()) − sim(u,Qmin. f ront()) =
0.4 > γ , and thus, segv1

= 〈v1, v2,null, 2〉.
Next, we increase i to 2 for computing themaximal steady

segment for v2; we also remove v1 fromQmax since v1 < vi .
Same as illustrated above, we keep increasing j until the
segment covering {v2, . . . , v j } is no longer steady. When
j is still 3, Qmin = {v3} and Qmax = {v2, v3} and thus the
segment is steady.When j = 4,Qmin = {v3, v4} andQmax =
{v2, v4} and the segment is still steady. When j = 5,Qmin =
{v3, v4, v5} and Qmax = {v5} as shown in Fig. 7b, and the
segment is no longer steady. Thus, segv2

= 〈v2, v4,null, 3〉.

5.4 Parallelization

Our index construction algorithms can be easily parallelized,
since processing Φu is totally independent from process-
ing Φu′ for u �= u′. Thus, we propose to further speed up
the index construction with shared-memory parallelization
(i.e., handling different vertices concurrently with multiple
threads). Specifically, we use OpenMP to parallelize the “for
loop” at Line 1 of Algorithm 6 in our parallel implementa-
tion.

6 Indexmaintenance

In this section, we propose algorithms to dynamically main-
tain our index structures that are proposed in Sect. 5.3, as
real-world graphs are consistently changing with old edges
being removed and/or new edges being added. Note that the
algorithms introduced in this section can be applied to both
LG index and SS index.

Here, we mainly focus on edge deletion and insertion,
by first discussing the case of edge deletion in Sect. 6.1 and
then the case of edge insertion in Sect. 6.2. Note that vertex
deletion (resp. insertion) can be handled as a sequence of
edge deletion (resp. insertion) followed by (resp. following)
isolated vertex deletion (resp. insertion). When removing a
vertex from a graph, we preserve its id and do not assign
the id to other vertices. When inserting a new vertex into the
graph, its id is set as 1 plus the current largest id.

6.1 Edge deletion

Let (u, v) be the edge that is removed from G. Let Φu and
Φv be the sets of 2-hop neighbors of u and v, respectively, in
the graphG before removing the edge (u, v). After removing
edge (u, v), among {N (w) | w ∈ VL ∪ VR}, only N (u) and
N (v) change. Thus, only similarities in {sim(u, w) | w ∈
Φu} ∪ {sim(v,w′) | w′ ∈ Φv} will change their value. For
presentation simplicity, we assume that Φw does not change

for anyw ∈ VL∪VR ; that is, even if the similarity sim(w,w′)
decreases from a positive value to 0, we still consider w′ to
be in Φw. Thus, we have the following lemma.

Lemma 6 When an edge (u, v) is removed from G, only the
part {Sw | w ∈ Φu ∪ Φv ∪ {u, v}} of the index structure will
change.

In the following, we only discuss the index maintenance
for Su and Sw where w ∈ Φu ; note that Sv and Sw′
for w′ ∈ Φv can be maintained similarly. For any ver-
tex w ∈ Φu , we also have u ∈ Φw and thus there must
exist a segment seg ∈ Sw that covers u before the update,
i.e., seg.vmin ≤ u ≤ seg.vmax. Consequently, we only
need to update seg.smax asmax{sim(u, w), seg.smax}, where
sim(u, w) is the updated similarity between u and w. Note
that if sim(u, w) < seg.smax, it is also possible to decrease
seg.smax; but for updating efficiency consideration, we do
not decrease seg.smax. For the same reason, we also do not
update (i.e., decrease) seg.c. For vertex u, Su can be updated
in a similar way; that is, for each vertex w ∈ Φu , we find
the segment seg′ ∈ Su that covers w and update seg′.smax

as max{sim(u, w), seg′.smax}. Note that, we only need to
update one segment for Sw, but we may need to update mul-
tiple segments for Su .
Optimization. In the above process, if sim(u, w) becomes
smaller after the update, then we actually do not update the
segment that covers u or w. Thus, we can skip all such w ∈
Φu that sim(u, w) is smaller after removing the edge (u, v).
Fortunately, this set of vertices can be easily characterized
by the following lemma.

Lemma 7 After removing edge (u, v) from the graph, the
similarity sim(u, w) for w ∈ Φu decreases if and only if
(w, v) ∈ E, and it increases otherwise.

Proof Let d(u) and d(w) be the degrees of u andw before the
update, and C be the number of common neighbors of u and
w before the update. Then, sim(u, w) = C

d(u)+d(w)−C before
the update. After removing (u, v), d(w) remains unchanged
while d(u) decreases by 1. We consider two cases:

– If (w, v) ∈ E , the number of common neighbors
between u and w will decrease by 1. Thus, the similarity
between u and w after the update becomes sim(u, w) =

C−1
d(u)+d(w)−C , which is smaller than their similarity before
the update.

– If (w, v) /∈ E , the number of common neighbors between
u and w will remain unchanged and sim(u, w) =

C
d(u)+d(w)−C−1 , which is larger than their similarity
before the update.

This completes the proof. �

123

Identifying similar-bicliques in bipartite graphs 717

Algorithm 8: EdgeDelete∗(G, u, v, I)

1 UpdateDeletion(G, u, v, I);
2 UpdateDeletion(G, v, u, I);
3 Remove the edge (u, v) from G;

Procedure UpdateDeletion(G, u, v, I)

4 Φu ← SimNei(G, u, v, 1
2|VL |+2|VR |);

5 for each w ∈ Φu do
6 if (w, v) ∈ E then
7 continue; /* sim(u, w) is decreasing */;

8 Obtain the seg ∈ Sw s.t. seg.vmin ≤ u ≤ seg.vmax;
9 seg.smax ← max{sim(u, w), seg.smax};

10 Obtain seg′ ∈ Su s.t. seg′.vmin ≤ w ≤ seg′.vmax;
11 seg′.smax ← max{sim(u, w), seg′.smax};

Following Lemma 7, when we process a 2-hop neighbor
w ∈ Φu of u, we first check if (w, v) ∈ E . If (w, v) ∈ E , we
know that the similarity between u and w must be decreas-
ing and thus do nothing. The pseudocode of our algorithm
for handling edge deletion is shown in Algorithm 8. We first
invoke UpdateDeletion to update {Sw | w ∈ Φu ∪ {u}}
(Line 1), then invoke UpdateDeletion again (but with differ-
ent arguments) to update {Sw | w ∈ Φv ∪ {v}}, and finally
remove the edge (u, v) from the graph. The pseudocode of
the procedure UpdateDeletion is shown in Lines 4–11 of
Algorithm 8. We first invoke a variant of SimNei to com-
pute u’s old 2-hop neighbors (i.e., before removing (u, v))
and to compute the new (i.e., updated) similarity between
u and each w ∈ Φu (Line 4); this can be done in a similar
way to Algorithm 3, and we omit the details. Then, for each
vertex w ∈ Φu , if (w, v) ∈ E , we know from Lemma 7
that sim(w, u) must be decreasing and we skip w (Lines 6–
7); otherwise, we update the index Sw and index Su (Lines
8–11). Specifically, we search for the segment in Sw that cov-
ers u and update its smax (Lines 8–9). Then, we search for
the segment in Su that covers w and update its smax (Lines
10–11).

6.2 Edge insertion

Let (u, v) be the edge that is inserted into G. Let Φu and
Φv be the sets of 2-hop neighbors of u and v, respectively,
in the graph G after adding the edge (u, v). After adding
edge (u, v), among {N (w) | w ∈ VL ∪ VR}, only N (u) and
N (v) change. Thus, only similarities in {sim(u, w) | w ∈
Φu} ∪ {sim(v,w′) | w′ ∈ Φv} will change their value. Thus,
we have the following lemma.

Lemma 8 When an edge (u, v) is inserted into G, only the
part {Sw | w ∈ Φu ∪ Φv ∪ {u, v}} of the index structure will
change.

In the following, we only discuss the index maintenance
for Su and Sw where w ∈ Φu ; Sv and Sw′ for w′ ∈ Φv can

be maintained similarly. To update Sw for w ∈ Φu , we first
try to find the segment in Sw that covers u (i.e., seg ∈ Sw

s.t. seg.vmin ≤ u ≤ seg.vmax). If there is such a segment
seg, then we update seg.smax as max{sim(u, w), seg.smax}
and increase seg.c by 1 if the only common neighbor of u
and w is v. Otherwise, there is no segment of Sw covering
u (this means that u is a new 2-hop neighbor of w), then we
create a new segment for u and add it into Sw. The updating
of Su is conducted in a similar way.
Optimization. Similar to the optimization in Sect. 6.1, we
can skip all such w ∈ Φu that sim(u, w) becomes smaller
after adding the edge (u, v). This set of vertices is character-
ized by the following lemma.

Lemma 9 After adding edge (u, v) into the graph, the sim-
ilarity sim(u, w) for w ∈ Φu increases if and only if
(w, v) ∈ E, and it decreases otherwise.

Proof This can be proved in a similar way to the proof of
Lemma 7. �

Algorithm 9: EdgeInsert-Opt(G, u, v, I)

1 Insert the new edge (u, v) into G;
2 UpdateInsertion(G, u, v, I);
3 UpdateInsertion(G, v, u, I);

Procedure UpdateInsertion(G, u, v, I)

4 for each w ∈ N (v) do
5 Compute sim(u, w);
6 if ∃segi ∈ Sw s.t. segi .vmin ≤ u ≤ segi .vmax then
7 segi .smax ← max{sim(u, w), segi .smax};
8 if ComNei(u, w) = 1 then segi .c ← segi .c + 1

9 else
10 seg ← 〈u, u, sim(u, w), 1〉;
11 Sw ← Sw ∪ {seg};
12 if ∃segi ∈ Su s.t. segi .vmin ≤ w ≤ segi .vmax then
13 segi .smax ← max{sim(u, w), segi .smax};
14 if ComNei(u, w) = 1 then segi .c ← segi .c + 1

15 else
16 seg ← 〈w,w, sim(u, w), 1〉;
17 Su ← Su ∪ {seg};

Following Lemma 9, we only need to update the index
for w ∈ Φu such that (w, v) ∈ E . Thus, we can design
an algorithm EdgeInsert∗ in a similar way to EdgeDelete∗
(Algorithm 8); that is, similar to Lines 6–7 of Algorithm 8,
we skip the processing of w if (w, v) /∈ E . We omit the
pseudocode of EdgeInsert∗. This can significantly improve
the updating time. Nevertheless, we can do even better, by
noting that {w ∈ Φu | (w, v) ∈ E} is the same as N (v).
Thus, instead of first generating Φu and then skipping non-
neighbors of v fromΦu , we only process neighbors of v. The
pseudocode of our further optimized algorithm is shown in
Algorithm 9, denoted EdgeInsert-Opt. We first insert the

123

718 K. Yao et al.

edge (u, v) into the graph, then invoke UpdateInsertion
to update {Sw | w ∈ Φu ∪ {u}}, and finally invoke
UpdateInsertion again (but with different arguments) to
update {Sw | w ∈ Φv ∪ {v}}. The pseudocode of the proce-
dureUpdateInsertion is shown inLines 4–17ofAlgorithm9.
In UpdateInsertion, for each vertex w ∈ N (v) (Line 4), we
first compute sim(u, w) (Line 5) by computing the number
of common neighbors of u and w, denoted ComNei(u, w),
and then update the index Sw (Lines 6–11) and the index Su

(Lines 12–17). Specifically, to updateSw by u and sim(u, w),
we search for the segment segi inSw that covers u and update
segi .smax if necessary (Lines 6–8). If the number of common
neighbors between u andw is 1, we know that u isw’s new 2-
hop neighbor and we thus increase segi .c by 1 (Line 8); note
that, even if Sw has a segment covering u, it is still possible
that u is w’s new 2-hop neighbor because segments contain
fake vertices. If Sw has no segment covering u (this means
that u is w’s new 2-hop neighbor), we create a new segment
for u and add it to Sw (Lines 9–11). Update Su by w and
sim(u, w) is conducted similarly.
EdgeInsert∗vs EdgeInsert-Opt. Both EdgeInsert∗ and
EdgeInsert-Opt have their advantages and disadvantages.
EdgeInsert∗ needs to construct the full set Φu of u’s 2-hop
neighbors and compute the similarity between u and each
vertex w ∈ Φu . The set Φu could be large compared with
N (v) that is processed by EdgeInsert-Opt. Nevertheless,
the similarity between u and each w ∈ N (v) is potentially
computed more efficiently in EdgeInsert∗, since it invokes
SimNei to compute all the similarities at the same time which
enables computation sharing among the similarity computa-
tion of different vertices. In contrast, EdgeInsert-Opt needs
to conduct set intersection to compute N (u) ∩ N (w) which
is used in calculating sim(u, w). Our empirical study shows
that EdgeInsert-Opt performs better in practice.

6.3 Index reconstruction

To achieve high updating efficiency, our index maintenance
strategy discussed above only maintains a relaxed version of
our index. For example, seg.smax is only guaranteed to be an
upper bound (i.e., can be larger than) maxv∈V (seg) sim(u, v);
this is because we didn’t update seg.smax when the similar-
ity between u and a vertex covered by seg becomes smaller.
Also, after inserting an edge (u, v), when we cannot find a
segment in Su that covers u’s new 2-hop neighborw, we cre-
ate a new segment forw and insert this segment into Su . As a
result, the effectiveness of using our index to speed up query
processing may deteriorate when a large number of updates
has occurred. In view of this, we propose to reconstruct the
index from scratch when the number of updates exceeds a
threshold. To achieve this, we record the number of updates
that have occurred, including vertex insertion/deletion and
edge insertion/deletion.We reconstruct the entire index struc-

ture from scratch once this number is larger than ζ × |E |,
where ζ is the parameter to control the frequency of index
rebuilding and |E | is the number of edges in the bipartite
graph for which the index was last time reconstructed. Note
that, when we reconstruct the index from scratch, we also
reassign the vertex id to make sure that vertices of VL take
(integer) ids from {1, 2, . . . , |VL |}, and vertices of VR take
ids from {1 + |VL |, 2 + |VL |, . . . , |VR | + |VL |}.

7 Experiments

In this section, we evaluate the efficiency of our algorithms
as well as the effectiveness of our similar-biclique model.
Algorithms. We compare the following algorithms.

– ooMBEA: the state-of-the-art algorithm proposed in [8]
for enumerating all maximal bicliques.

– MSBE: our Algorithm 1 equipped with all the optimiza-
tions in Sect. 4.2.

– mat-MSBE: the materialized version of MSBE, as dis-
cussed at the end of Sect. 4.2.

– LG-MSBE and SS-MSBE: our index-based algorithms that
use the largest gap and steady segment index, respec-
tively.

The source code of our algorithms can be found at https://
github.com/kyaocs/Similar-Biclique-Idx. The source code
of ooMBEA is obtained from the authors of [8].

All our algorithms are implemented in C++ and run in
main memory. All experiments, except the one on evaluating
our parallel index construction algorithm, are conducted on
a machine with an Intel(R) 3.2GHz CPU and 64GB main
memory running Ubuntu 18.04.5. We set a timeout of 10
hours for running an algorithm on a graph.
Datasets. We evaluate the algorithms on 17 real bipartite
graphs, all of which are publicly available on KONECT .5

Statistics of the graphs are shown inTable 1,where the graphs
are listed in increasing order regarding the number of edges.
Query Parameters. A maximal similar-biclique enumera-
tion query consists of two parameters, ε and τ . ε is chosen
from {0.4, 0.5, 0.6, 0.7, 0.8}, and is set as 0.5 by default. τ is
chosen from {3, 4, 5, 6, 7}, and is set as 3 by default. In addi-
tion, we also have parameters α and γ in index construction;
we set α = 1 and γ = 0.3 by default.

7.1 Evaluating query efficiency

In this subsection, we evaluate the query efficiency of
our algorithms. Note that, we also implemented a version
of MSBE without the optimizations of Enum proposed in

5 http://konect.cc/networks/.

123

https://github.com/kyaocs/Similar-Biclique-Idx
https://github.com/kyaocs/Similar-Biclique-Idx
http://konect.cc/networks/

Identifying similar-bicliques in bipartite graphs 719

Table 1 Statistics of graphs Abbreviation Graph |VL | |VR | |E | Type

YT YouTube 94,238 30,087 293,360 Membership

GH GitHub 56,519 120,867 440,237 Membership

LX Linux 42,045 337,509 599,858 Post

BS Bibsonomy 767,447 5794 801,784 Assignment

BC BookCross 105,278 340,523 1,149,739 Rating

AM ActorMovie 127,823 383,640 1,470,404 Appearance

WU WebUni 6202 200,148 1,948,004 Appearance

CU CiteULike 731,769 153,277 2,338,554 Assignment

TV TVTropes 64,415 87,678 3,232,134 HasFeature

IM IMDB 303,617 896,302 3,782,463 Appearance

AZ Amazon 1,879,572 1,162,941 4,955,492 Rating

DI Discogs 1,754,823 270,771 5,302,276 Affiliation

FL Flickr 395,979 103,631 8,545,307 Membership

DB DBLP 1,953,085 5,624,219 12,282,059 Authorship

NY NYTimes 299,752 101,636 69,679,427 Appearance

DE Delicious 833,081 33,778,221 101,798,957 Interaction

OR Orkut 2,783,196 8,730,857 327,037,487 Affiliation

Fig. 8 Running time on all graphs (ε = 0.5, τ = 3)

Sect. 4.2; it is omitted from the experiments since it times
out in almost all the testings.
Running time on all graphs. The running time of the five
algorithms on all graphs with default ε and τ is illustrated
in Fig. 8. We can see thatmat-MSBE slightly improves upon
MSBE when it is feasible to store the similar neighbors of
all vertices in main memory. However, mat-MSBE remains
notably slow, primarily attributed to the substantial compu-
tational cost involved in computing similar neighbors for
L-side vertices and constructing the similarity graph Gs .
Additionally, mat-MSBE encounters out-of-memory issues
on BS,CU, andDI, asmarked by “oom” in Fig. 8; for example,
the memory consumption on BSwould be over 400GB. Note
that the memory consumption ofmat-MSBEmainly depends
on the structure, rather than the size, of the input graph,
and thus mat-MSBE does not run out-of-memory on other
larger graphs. Our two index-based algorithms, LG-MSBE
and SS-MSBE, are the fastest and they outperform the other
two index-free algorithms by up to 5 orders of magnitude.
SS-MSBE is generally faster than LG-MSBE. Compared with
the state-of-the-art maximal biclique enumeration algorithm

Fig. 9 Running time by varying ε and τ

ooMBEA, SS-MSBE is up to 6 orders of magnitude faster.
Thus, we exclude ooMBEA from our remaining evaluations.
Running time by varying ε and τ . The running time of
our four algorithms on IM and FL by varying ε and τ are
shown in Fig. 9.We can see that the running time of LG-MSBE
and SS-MSBE decreases when either ε or τ increases. This is

123

720 K. Yao et al.

Fig. 10 Efficiency of indexedVR (τ = 3)

because, more vertices will be pruned by indexedVR when
either ε or τ increases, and thus the enumeration process
of LG-MSBE and SS-MSBE run faster. Also, indexedVR runs
faster when ε or τ increases, as can be seen from Fig. 10.
In contrast, the running time of MSBE and mat-MSBE is not
so sensitive to ε or τ , as the dominating part of these two
algorithms is computing similar neighbors for vertices.
Efficiency of indexedVR. In this experiment, we evaluate
the efficiency of indexedVR for our two index structures.
Recall that indexedVR (Algorithm 5) has two phases. Thus,
we separately report the results of each phase. The running
time on IM and FL are shown in Fig. 10a and b. We can see
that the two index structures take almost the same time for
the first phase, while the second phase of SS index-based
indexedVR is much faster than LG index-based. This can
partially be explained by the number of vertices that need to
be pruned in the second phase, as reported in Fig. 10c and
d. We remark that, for a fixed ε and τ , the total number of
pruned vertices by different indexes are the same, and also
the same as that pruned by the index-free approach VReduce.
Thus, from the number of vertices that are pruned in Phase-II
as shown in Fig. 10, we can conclude that SS index prunes
much more vertices than LG index in Phase-I. For example,
for dataset FL and ε = 0.4, SS index prunes 467, 329 vertices
in Phase-I and 9, 691 vertices in Phase-II, while LG index
prunes 449, 195 vertices in Phase-I and 27, 825 vertices in
Phase-II. As the second phase dominates the running time,
SS index is superior.
Evaluate the optimizations for Enum. In this experiment,
we evaluate the performance of our two optimization tech-
niques (i.e., Lemma 1 and Lemma 2) on the Enum procedure.
The results are reported in Fig. 11. Specifically, we use our
fastest algorithm SS-MSBE to evaluate these two optimization
techniques. Note that SS-MSBE applies both optimizations.
For this testing, we also implement SS-MSBE-v1 that adopts
neither of the two optimizations, SS-MSBE-v2 that adopts
only Lemma 1, and SS-MSBE-v3 that adopts only Lemma 2.

Fig. 11 Evaluation of the optimizations for Enum

From Fig. 11, we can see that SS-MSBE-v1 cannot finish
in a reasonable time due to lacking of these optimization
techniques, and both SS-MSBE-v2 and SS-MSBE-v3 run sig-
nificantly faster than SS-MSBE-v1 demonstrating that both
Lemma 1 and Lemma 2 significantly improved the per-
formance. We can also observe that the improvements of
SS-MSBE over SS-MSBE-v2 and over SS-MSBE-v3 are not
that significant. This is because the additional improvements
brought by Lemma 2 over Lemma 1 and brought by Lemma 1
overLemma2are not that significant.Nevertheless,SS-MSBE
consistently runs faster than SS-MSBE-v2 and SS-MSBE-v3;
thus we apply both Lemmas in our algorithm.

7.2 Evaluating indexing techniques

Index size and construction time on all graphs. The size of
the two indexes on all graphs are shown in the fourth column
and last column of Table 2. As a comparison, we also report
the graph size in the second column of Table 2. We can see
that in most cases, the sizes of the two indexes are similar to
each other and are at the same level as the graph size, and
thus they are affordable to be stored in main memory.

The running time of our index construction algorithms
consLG, consSS, consSS∗ and consSS-Opt are reported in
the third, fifth, sixth and seventh columns of Table 2, respec-
tively. Here, consSS∗ uses a similarity tree to compute all the
maximal steady segments at Line 3 ofAlgorithm6; the details
can be found in our preliminary version [52]. consSS-Opt
invokes TPA (Algorithm7) to compute all themaximal steady
segments. We can see that consLG runs the fastest due to its
simplicity. By applying our novel optimization technique,
consSS-Opt is much faster than consSS and consSS∗ and is
only slightly slower than consLG. We omit consSS∗ from all
the remaining testings.
Index performance by varying α. In this experiment, we
evaluate the effect of α on the index size, index construction
time and efficiency ofMSBE. The results are shown in Fig. 12.
Recall that α controls the number of segments constructed
for Φu . As expected, the index size and index construction
time increase along with the increasing of α, as shown in
Fig. 12a and b.When α is no larger than 1, the index size is at
most at the same level as the graph size, but when α reaches
100, the index size can bemuch larger than the graph size. As
shown in Fig. 12c and d, the running time of both LG-MSBE

123

Identifying similar-bicliques in bipartite graphs 721

Table 2 Index size and
construction time

Graph Size Largest gap index Steady segment index
consLG (s) Size consSS (s) consSS∗ (s) consSS-Opt (s) Size

YT 4.6M 3 6.7M 21 8 6 8.3M

GH 7M 1.1 6.6M 90 4.9 1.5 6.2M

LX 9.2M 48 31M 9485 588 99 50M

BS 12.4M 506 75M 49,685 6975 805 59M

BC 18M 16 27M 1200 130 28 30M

AM 24M 1.5 24M 81 7 2.1 20M

WU 30M 11 15M 656 40 15 16M

CU 36M 1130 73M 296,094 12,547 1510 103M

TV 50M 11 4.4M 110 14 12 2.3M

IM 58M 10 56M 420 28 13 56M

AZ 76M 22 122M 2220 152 37 124M

DI 82M 549 132M 45,967 5187 863 146M

FL 132M 106 30M 3102 235 122 23M

DB 188M 29 299M 1905 177 45 324M

NY 1.1G 2623 35M 20,934 4397 2708 14M

DE 1.5G 3071 2.3G 129,304 13, 435 3910 3.1G

OR 5G 21,874 690M 246,045 23,872 23,164 459M

Fig. 12 Index performance by varying α

Fig. 13 Efficiency of SS-MSBE by varying γ

and SS-MSBE decreases when α increases. This is because
the more the number of segments, the fewer the number of
fake vertices. To strike a balance between index size and
efficiency of MSBE, we recommend to set α ∈ [0.1, 10].

Efficiency of SS-MSBEby varying γ . In this experiment, we
evaluate the performance of SS-MSBE for different γ val-
ues. Note that the index size and index construction time of
consSS-Opt are almost not affected by γ ; thus, we omit these
results. This is because consSS-Opt selects a fixed number of
steady segments (i.e., α log |Φu |) to cover as many vertices
ofΦu as possible, and then, it covers all remaining uncovered
vertices of Φu by using the fewest number of disjoint seg-
ments. Thus, the total number of segments generated for Φu

is at most 2α log |Φu | + 1, which is independent of γ . Fig-
ure13 shows the running time of SS-MSBE by varying γ from
0.1 to 0.9.We can see thatwhen γ is small (e.g., γ < 0.3), the
performance of SS-MSBE is not good. Themain reason is that
when γ is small, a steady segment will cover fewer vertices
due to the tighter constraint. As a result, more vertices need
to be covered by the ordinary segments, which then results
in introducing more fake vertices. Also, when γ is large, the
performance of SS-MSBE becomes worse. This is because for
large γ (e.g., γ = 1), a steady segment is no longer steady
and degenerates to the ordinary segment. This motivates us
to introduce steady segment. We recommend the value of γ

to be in [0.3, 0.5].
Parallel index construction. In this experiment, we evaluate
the parallelized version of our index construction algorithm
consSS-Opt by varying the number of CPU cores from 1 to
16 on our largest datasets DE and OR. This experiment was
conducted on a machine with an Intel(R) 2.6GHz CPU and
16 cores. As shown in Fig. 14, consSS-Opt has a near-linear
speedup by using multiple CPU cores. For example, on OR,
the running time of consSS-Opt decreases from 21, 101 sec-

123

722 K. Yao et al.

Fig. 14 Speeding up consSS-Opt by using multiple CPU cores

Fig. 15 Running time of index maintenance

onds (around 6 hours) to 2, 084 seconds (around 0.5 hour)
whenwe increase the core number from 1 to 16. This demon-
strates that the index construction can be easily parallelized,
and our index can be constructed more efficiently with the
help of multiple CPU cores which makes our index more
attractive.
Efficiency of index maintenance. In this experiment, we
evaluate the performance of our index maintenance algo-
rithms. For edge deletion, we randomly delete 1, 000 edges
from the graph one by one and report the average process-
ing time. For comparison, we also implement a version of
EdgeDelete∗ that does not performance the optimization
(i.e., Lemma 7), denoted EdgeDelete. The average process-
ing time of EdgeDelete∗ and EdgeDelete for handling edge
deletions is reported in Fig. 15a. We can see that the running
time of EdgeDelete∗ is at millisecond-level. For example,
when deleting an edge from DB, the maintenance of the
index can be completed in less than 0.1 ms. However, the
effectiveness of optimization technique is not obvious, i.e.,
EdgeDelete∗ performs similarly to EdgeDelete. Thismainly
because the number of u’s 2-hop neighbors that are adjacent
to v is much smaller than the total number of u’s 2-hop neigh-
bors; thus, the pruning at Lines 6–7 ofAlgorithm 8 is not very
effective.

For edge insertion, we randomly insert 1, 000 new edges
into the graph one by one and report the average processing
time. We compare EdgeInsert-Opt with EdgeInsert∗ and its

Fig. 16 Index size and query efficiency w.r.t the number of updates

non-optimized version EdgeInsert. The results are reported
in Figure 16. We can see that EdgeInsert∗ runs significantly
faster than EdgeInsert due to the optimization technique
described in Lemma 9. Nevertheless, EdgeInsert-Opt runs
the fastest, since it only processes the neighbors of u and v

for the newly inserted edge (u, v).
Index size and query efficiency w.r.t. the number of
updates. In this experiment, we evaluate the index size and
query efficiency w.r.t. the number of updates. In our index
maintenance algorithms, for time efficiency consideration,
we do not update a segment if one or more similarities in
the segment decrease, and we also do not enforce the steady
requirement of a segment. As a result, it is expected that the
query efficiency will deteriorate when the index has been
updated by a lot of edge insertions and deletions. The results
for edge deletion on IM and FL are shown in Fig. 16a and
b, respectively; here, the query time is the running time
of SS-MSBE under the default setting (i.e., ε = 0.5 and
τ = 3). We can see that the index size remains steady; this
is because deleting edges will not bring new segments to our
index. However, the query time increases when the number
of updates is over 105. The results for edge insertion on IM
and FL are shown in Fig. 16c and d, respectively. We can
see that both the index size and query time increase signifi-
cantly when the number of inserted edges is over 105. This
is because new segments are also created for handling edge
insertions. From this experiment, we recommend to recon-
struct the index from scratch when the number of updates
has reached 0.1 × |E |.

7.3 Effectiveness evaluations

Average Jaccard similarity. We compare the average Jac-
card similarity betweenL-side vertices in amaximal (similar-
)biclique. Specifically, for each maximal (similar-)biclique
C , we compute the average of the Jaccard similarity between
all pairs of vertices from CL , and then the average result of

123

Identifying similar-bicliques in bipartite graphs 723

Fig. 17 Average Jaccard similarity

Fig. 18 Number of maximal similar-bicliques

Fig. 19 Case study 1: anomaly detection

all maximal (similar-)bicliques is reported in Fig. 17. We can
see that vertices in a similar-biclique are much more similar
to each other than in a biclique.
Number of maximal similar-bicliques. The number of
maximal similar-bicliques for different ε and τ values are
shown in Fig. 18. We can see that the number of maximal
similar-bicliques decreases with the increase of either ε or τ ,
which is as expected. This is because the number of similar
neighbors for a vertex decreases with the increase of ε. Thus,
more and more similar-bicliques disappear under a larger
ε. It is worth mentioning that even under a high ε value of
0.7, there is still quite a few similar-bicliques, which exhibit
a high level of consistence among members from the same
side.
Case study 1: anomaly detection. In this case study, we
compare similar-biclique with other dense bipartite sub-
graph models, biclique, (α, β)-core [24] and k-biplex [54],
on anomaly detection in e-commerce applications. As men-
tioned in the Introduction, to improve the ranking of certain
products, e-business owners may employ a set of fraudulent
users to purchase a set of designated products. The fraud-
sters will also purchase other honest products trying to look
“normal”; this is called “camouflage” in the literature. We

Fig. 20 Case study 2: similar-bicliques in Unicode(τ = 2)

consider a camouflage attack in the same way as [18] on
“Amazon Review Data” (Magazine Subscriptions) ,6 which
contains 65, 546 reviews on 2, 316 magazines by 53, 617
users, by injecting 100 fraudulent users and 100 fraudulent
products with various edge densities. The amount of cam-
ouflage (i.e., edges linking to honest products) added per
fraudulent user is equal to the amount of fraudulent edges
for that user. We adopt F-score, 2×precision×recall

precision+recall , to evalu-
ate the accuracy of detecting suspicious users and products.
We apply the size constraint τ to all the models, where
α = β = τ for the (α, β)-core model; for our similar-
biclique model, ε is set as 0.2. The results by varying τ

and varying the density of the injected subgraph are shown
in Fig. 19. We can see that similar-biclique always achieves
the highest accuracy. This is due to the similarity constraint
imposed on users by similar-biclique, which naturally cap-
tures the reality that fraudulent users usually display a high
level of synchronized behavior with each other. In contrast,
biclique, 1-biplex, and (α, β)-core all have a low precision
and thus low F-score.
Case study 2: interesting pattern detection on Unicode.
We also conduct a case study on the Unicode dataset [25]
to illustrate the hierarchical structure of similar-bicliques
by varying the similarity threshold ε. Unicode captures the
languages that are spoken in a country. The three similar-
bicliques detected for ε = 0.7, 0.4, 0.01 are reported in
Fig. 20, where the entire result corresponds to ε = 0.01;
the similarity constraint is imposed on the countries and
τ = 2. We have the following observations. Firstly, the
five countries in the similar-biclique for ε = 0.7 are all
located in the Caribbean Sea Area with English and Span-
ish being their main language (around 90% population speak
English and Spanish). Secondly, more countries from Latin
America, e.g., Argentina and Chile, are included in the
similar-biclique for ε = 0.4, and the newly added four coun-
tries speak more diverse languages. For example, in Sint
Maarten, besidesEnglish andSpanish, around 8%population
speakVirgin IslandsCreoleEnglish and 4%population speak

6 https://nijianmo.github.io/amazon/index.html.

123

https://nijianmo.github.io/amazon/index.html

724 K. Yao et al.

Table 3 Case study 3: similar-bicliques in DBLP

Researchers Research Groups

Albert Reuther, Andrew Prout,
Antonio Rosa, Bill Bergeron,
Chansup Byun, David Bestor,
Julie Mullen, Matthew
Hubbell, Peter Michaleas,
William Arcand

High performance
computing@MIT Lincoln
Laboratory

Christian Menolfi, Lukas Kull,
Marcel A. Kossel, Matthias
Braendli, Pier Andrea
Francese, Thomas Morf

CMOS integrated
circuits@IBM
Research-Zurich

Calvin Yu-Chian Chen,
Chang-Hai Tsai, Chien-Yu
Chen 0002, Da-Tian Bau,
Fuu-Jen Tsai, Hung-Jin
Huang, Ming-Hsui Tsai,
Tin-Yun Ho, Yea-Huey
Chang, Yuan-Man Hsu

Molecular biophysics @Taiwan

......

Dutch .7 Lastly, when ε is 0.01, similar-biclique degenerates
to biclique, and more countries are included, e.g., America
and Germany. This demonstrates that similar-biclique can
detect interesting patterns.
Case study 3: research group identification in DBLP. Our
similar-biclique model also supports the case that not all ver-
tices in a side share a common neighbor. In this case study,
we show the similar-bicliques in a researcher-write-paper
bipartite graph DBLP 8 by using different size constraints
τL and τR on the two sides. The results for ε = 0.6, τL = 6,
and τR = 0 are illustrated in Table 3; thus, researchers in
a similar-biclique are not necessarily co-authors of the same
paper.Wefind that the detected similar-bicliques corresponds
to research groups in different institutes.

8 Conclusion

In this work, we formulated the notion of similar-biclique,
and proposed algorithms as well as optimization tech-
niques to enumerate all similar-bicliques in a bipartite graph.
Besides, index structures are also designed to speed up the
computation. We also proposed effective and efficient index
construction algorithms by investigating two different strate-
gies. In addition, we proposed indexmaintenance algorithms
to handle dynamic graph updates. Extensive empirical stud-
ies on real bipartite graphs demonstrated the effectiveness

7 https://www.unicode.org/cldr/cldr-aux/charts/25/summary/root.
html.
8 https://dblp.uni-trier.de/xml/.

of our similar-biclique model and the efficiency of our algo-
rithms. Case studies show that the similar-bicliquemodel can
be used to detect anomalies as well as interesting dense sub-
graph patterns. Our work initiates the study of integrating
similarity constraint into dense bipartite subgraph mining,
by taking the biclique model. For future studies, it will
be interesting to integrate similarity constraint into other
dense bipartite subgraph models, such as quasi-biclique, k-
biplex, (α, β)-core, k-bitruss, and k-wing. We believe that
our proposed index structures will also be useful for these
extensions.

Acknowledgements This work was partially supported by the Aus-
tralian Research Council Fundings of FT180100256 and DP220103731
and the Research Grants Council of Hong Kong, China, under No.
14202919 and No. 14205520.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abidi, A., Zhou, R., Chen, L., Liu, C.: Pivot-based maximal
biclique enumeration. In: IJCAI, pp. 3558–3564 (2020)

2. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc.
Netw. 25(3), 211–230 (2003)

3. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Sime-
one, B.: Consensus algorithms for the generation of all maximal
bicliques. Discret. Appl. Math. 145(1), 11–21 (2004)

4. Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Beheshti, S.-
M.-R., Bertino, E., Foo, N.: Collusion detection in online rating
systems. In: Asia-Pacific Web Conference, pp. 196–207. Springer
(2013)

5. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM 16(9), 575–577 (1973)

6. Chang, L., Wei Li, L., Qin, W.Z., Yang, S.: pscan: fast and exact
structural graph clustering. IEEE Trans. Knowl. Data Eng. 29(2),
387–401 (2017)

7. Chang, L., Yu, J.X., Qin, L.: Fast maximal cliques enumeration in
sparse graphs. Algorithmica 66(1), 173–186 (2013)

8. Chen, L., Liu, C., Zhou, R., Jiajie, X., Li, J.: Efficient maximal
biclique enumeration for large sparse bipartite graphs. Proc. VLDB
Endow. 15(8), 1559–1571 (2022)

9. Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maxi-
mal clique enumeration with limited memory. In: Proceedings of
KDD’12, pp. 1240–1248 (2012)

123

https://www.unicode.org/cldr/cldr-aux/charts/25/summary/root.html
https://www.unicode.org/cldr/cldr-aux/charts/25/summary/root.html
https://dblp.uni-trier.de/xml/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Identifying similar-bicliques in bipartite graphs 725

10. Dave, V., Guha, S., Zhang, Y.: Viceroi: catching click-spam in
search ad networks. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security, pp. 765–
776 (2013)

11. Dice, L.R.: Measures of the amount of ecologic association
between species. Ecology 26(3), 297–302 (1945)

12. Ding, D., Li, H., Huang, Z., Mamoulis, N.: Efficient fault-tolerant
group recommendation using alpha-beta-core. In: Proceedings of
the 2017 ACM on Conference on Information and Knowledge
Management, pp. 2047–2050 (2017)

13. El Bacha, R.L, Zin, T.T.: Ranking of influential users based on user-
tweet bipartite graph. In: 2018 IEEE International Conference on
Service Operations and Logistics, and Informatics (SOLI), pp. 97–
101. IEEE (2018)

14. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms.
Inf. Process. Lett. 51(4), 207–211 (1994)

15. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in
sparse graphs in near-optimal time. In: International Symposium
on Algorithms and Computation, pp. 403–414. Springer (2010)

16. Gangireddy, S.C.R., Long, C., Chakraborty, T.: Unsupervised fake
news detection: a graph-based approach. In: Proceedings of the
31st ACM Conference on Hypertext and Social Media, pp. 75–83
(2020)

17. Hochbaum, D.S.: Approximating covering and packing problems:
set cover, vertex cover, independent set, and related problems. In:
Approximation Algorithms for NP-Hard Problems, pp. 94–143
(1996)

18. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos,
C.: Fraudar: bounding graph fraud in the face of camouflage. In:
Proceedings of KDD’16 (2016)

19. Jaccard, P.: Distribution de la flore alpine dans le bassin des dranses
et dans quelques régions voisines. Bull. Soc. Vaudoise Sci. Nat. 37,
241–272 (1901)

20. Jeh, G., Widom, J.: Simrank: a measure of structural-context sim-
ilarity. In: Proceedings of KDD’02, pp. 538–543 (2002)

21. Jiang, M., Cui, P., Beutel, A., Faloutsos, C., Yang, S.: Catchsync:
catching synchronized behavior in large directed graphs. In: Pro-
ceedings of KDD’14, pp. 941–950 (2014)

22. Katz, L.: A new status index derived from sociometric analysis.
Psychometrika 18(1), 39–43 (1953)

23. Kloster, K., Sullivan, B.D., van der Poel, A.: Mining maximal
induced bicliques using odd cycle transversals. In: Proceedings
of the 2019 SIAM International Conference on Data Mining, SDM
2019, Calgary, Alberta, Canada, May 2–4, 2019, pp. 324–332
(2019)

24. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling
the web for emerging cyber-communities. Comput. Netw. 31(11–
16), 1481–1493 (1999)

25. Kunegis, J.: Konect: the koblenz network collection. In: Proceed-
ings of the 22nd International Conference onWorldWideWeb, pp.
1343–1350 (2013)

26. Kuznetsov, S.O.: On computing the size of a lattice and related
decision problems. Order 18(4), 313–321 (2001)

27. Lehmann, S., Schwartz, M.: Biclique communities. Phys. Rev. E
78(1), 016108 (2008)

28. Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in net-
works. Phys. Rev. E 73(2), 026120 (2006)

29. Ley, M.: The dblp computer science bibliography: Evolution,
research issues, perspectives. In: International Symposium on
String Processing and Information Retrieval, pp. 1–10. Springer
(2002)

30. Li, J., Li, H., Soh, D., Wong, L.: A correspondence between maxi-
mal complete bipartite subgraphs and closed patterns. In: European
Conference on Principles of Data Mining and Knowledge Discov-
ery, pp. 146–156. Springer (2005)

31. Li, J., Liu, G., Li, H., Wong, L.: Maximal biclique subgraphs and
closed pattern pairs of the adjacency matrix: a one-to-one corre-
spondence and mining algorithms. IEEE Trans. Knowl. Data Eng.
19(12), 1625–1637 (2007)

32. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for
social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–
1031 (2007)

33. Lin, Z., Lyu, M.R., King, I.: Matchsim: a novel similarity mea-
sure based onmaximum neighborhoodmatching. Knowl. Inf. Syst.
32(1), 141–166 (2012)

34. Liu, G., Sim,K., Li, J.: Efficientmining of largemaximal bicliques.
In: International Conference on DataWarehousing and Knowledge
Discovery, pp. 437–448. Springer (2006)

35. Liu, X., Li, J., Wang, L.: Quasi-bicliques: Complexity and binding
pairs. In: International Computing and Combinatorics Conference,
pp. 255–264. Springer (2008)

36. Lü, L., Zhou, T.: Link prediction in complex networks: a survey.
Phys. A 390(6), 1150–1170 (2011)

37. Lyu, B., Qin, L., Lin, X., Zhang, Y., Qian, Z., Zhou, J.: Maxi-
mum biclique search at billion scale. In: Proceedings of the VLDB
Endowment (2020)

38. Makino, K., Uno, T.: New algorithms for enumerating all maximal
cliques. In: ScandinavianWorkshoponAlgorithmTheory, pp. 260–
272. Springer (2004)

39. Martínez, V., Berzal, F., Cubero, J.-C.: A survey of link prediction
in complex networks. ACM Comput. Surv. (CSUR) 49(4), 1–33
(2016)

40. Megiddo, N., Zemel, E., Hakimi, S.L.: The maximum coverage
location problem. SIAM J. Algebr. Discrete Methods 4(2), 253–
261 (1983)

41. Peeters, R.: The maximum edge biclique problem is np-complete.
Discret. Appl. Math. 131(3), 651–654 (2003)

42. Salton, G.: Automatic Text Processing: the Transformation, Anal-
ysis, and Retrieval of, p. 169. Addison-Wesley, Reading (1989)

43. Sanderson, M.J., Driskell, A.C., Ree, R.H., Eulenstein, O., Lan-
gley, S.: Obtaining maximal concatenated phylogenetic data sets
from large sequencedatabases.Mol.Biol. Evolut 20(7), 1036–1042
(2003)

44. Sarıyüce, A.E., Pinar, A.: Peeling bipartite networks for dense
subgraph discovery. In: Proceedings of WSDM’18, pp. 504–512
(2018)

45. Satuluri, V., Parthasarathy, S., Ruan, Y.: Local graph sparsification
for scalable clustering. In: Proceedings of SIGMOD’11, pp. 721–
732 (2011)

46. Su, X., Khoshgoftaar, T.M: A survey of collaborative filtering tech-
niques. In: Advances in Artificial Intelligence, 2009 (2009)

47. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time com-
plexity for generating all maximal cliques and computational
experiments. Theoret. Comput. Sci. 363(1), 28–42 (2006)

48. Tseng, T., Dhulipala, L., Shun, J.: Parallel index-based structural
graph clustering and its approximation. In: Proceedings of SIG-
MOD’21, pp. 1851–1864 (2021)

49. Uno, T., Kiyomi, M., Arimura, H., et al.: Lcm ver. 2: efficient
mining algorithms for frequent/closed/maximal itemsets. In: Fimi,
vol. 126 (2004)

50. Wang, J., DeVries,A.P., Reinders,M.J.T.:Unifying user-based and
item-based collaborative filtering approaches by similarity fusion.
In: Proceedings of the 29thAnnual International ACMSIGIRCon-
ference onResearch andDevelopment in InformationRetrieval, pp.
501–508 (2006)

51. Wang, X., Liu, J.: A comparative study of the measures for eval-
uating community structure in bipartite networks. Inf. Sci. 448,
249–262 (2018)

52. Yao, K., Chang, L., Yu, J.X.: Identifying similar-bicliques in bipar-
tite graphs. Proc. VLDB Endow. 15(11), 3085–3097 (2022)

123

726 K. Yao et al.

53. Yoon, S.-H., Kim, S.-W., Park, S.: C-rank: a link-based similar-
ity measure for scientific literature databases. Inf. Sci. 326, 25–40
(2016)

54. Yu, K., Long, C., Deepak, P., Chakraborty, T.: On efficient large
maximal biplex discovery. IEEE Trans. Knowl. Data Eng. (2021)

55. Zaki, M.J., Hsiao, C.-J.: Charm: an efficient algorithm for closed
itemset mining. In: Proceedings of the 2002 SIAM International
Conference on Data Mining, pp. 457–473. SIAM (2002)

56. Zhang, Y., Phillips, C.A., Rogers, G.L., Baker, E.J., Chesler, E.J.,
Langston, M.A.: On finding bicliques in bipartite graphs: a novel
algorithm and its application to the integration of diverse biological
data types. BMC Bioinf. 15(1), 1–18 (2014)

57. Zhang, Z.-Y., Ahn, Y.-Y.: Community detection in bipartite net-
works using weighted symmetric binary matrix factorization. Int.
J. Mod. Phys. C 26(09), 1550096 (2015)

58. Zhao, P., Han, J., Sun, Y.: P-rank: a comprehensive structural sim-
ilarity measure over information networks. In: Proceedings of the
18th ACM Conference on Information and Knowledge Manage-
ment, pp. 553–562 (2009)

59. Zou, Z.: Bitruss decomposition of bipartite graphs. In: International
Conference on Database Systems for Advanced Applications, pp.
218–233. Springer (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Identifying similar-bicliques in bipartite graphs
	Abstract
	1 Introduction
	2 Related works
	3 Preliminary
	4 Our algorithms
	4.1 A baseline algorithm
	4.2 Our MSBE algorithm

	5 Speeding up similar neighbor computation and vertex reduction
	5.1 Overview of index structure
	5.2 Index-based algorithms
	5.3 Index construction
	5.4 Parallelization

	6 Index maintenance
	6.1 Edge deletion
	6.2 Edge insertion
	6.3 Index reconstruction

	7 Experiments
	7.1 Evaluating query efficiency
	7.2 Evaluating indexing techniques
	7.3 Effectiveness evaluations

	8 Conclusion
	Acknowledgements
	References

